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The analysis, understanding, and comparison of network structures is a prominent topic not
only in computer science theory but also in a diverse set of application-oriented fields. For in-
stance, social media sites use tools from this domain to understand large-scale structures arising
from localized connections between users, while computer graphics software applies the same
methodology to understanding the shapes of meshed surfaces. Further applications of this toolkit
range from designing random walk models using Markov chains [Lov93] to characterizing pat-
terns in molecules, neural networks, and food webs [CCKO07].

The obvious structure for representing a network is a graph, given by a collection of nodes
connected by edges (optionally associated with distances or weights). The analysis of graphs as
discrete objects is a classical topic predating the development of computer technology. Algorithms
for finding shortest paths, routing flow, finding spanning subtrees, identifying cycles, and so on
are well-understood, although many simple problems about graphs remain unsolved.

Some more modern branches of graph theory, however, treat graphs themselves as mutable
objects that should be understood in a continuous or probabilistic context. Graphs from many
sources are subject to discrete and continuous changes: social networks grow and evolve as users
“friend” and “un-friend” each other, links can lengthen or strengthen, and so on. Due to this
mutability as well as the possibility of error in the collection of graph data, multiscale methods
characterizing graphs at different levels of detail are helpful for understanding broad or changing
patterns in connectivity. Parameters such as scale and sensitivity, however, can be understood
as continuously-varying, and thus research carrying out such “semi-discrete” analysis with rigor
must combine insights from discrete graph theory and real analysis.

Of special interest are methods making use of partial differential equations (PDEs) and spec-
tral analysis. PDE methodologies model how physical interactions on a local scale can charac-
terize global behavior of waves, heat, and other phenomena on assorted media and domains. A
fundamental and predictable theme in PDE analysis is that the operators used to construct PDEs
encode information about the structure of the domains with which they are associated. For exam-
ple, the differential building blocks of the heat equation determine how a given surface conducts
heat. Less obviously, the De Rham cohomology from differential topology demonstrates that the
topology of a smooth surface can be understood by analyzing applications of its “first derivative”
operator d [MT97].

While first-order PDEs largely can be solved exactly, understanding the second-order Lapla-
cian operator leads to techniques for analyzing functions on a surface and the geometry of the sur-
face itself [Ros97]. Applications in geometry processing discretize these equations using finite ele-
ments, discrete exterior calculus (DEC), and other approximations of the Laplacian for per-vertex
signals on meshed surfaces [Hir03, RWSN(9]. Many such discretizations exhibit convergence in
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the limit of mesh refinement, providing a connection to the theory of smooth surfaces, and in the
case of DEC discrete theorems provide exact descriptions of behavior without any limiting pro-
cess. Regardless, with a discrete surface Laplacian in place, tools for matching, segmentation, and
other tasks can be designed using solutions to the heat and wave equations, among other model
PDEs [Broll].

PDE-based analysis of discrete surfaces has the advantage that it can draw intuition from par-
allel constructions in differential geometry. Differential graph analysis, on the other hand, requires
the development of a new framework to understand diffusion, oscillation, and other phenomena
as they might occur on graphs, which may not be physically realizable. Instead, we define a Lapla-
cian for functions on a graph with particular manipulations, constructions, and applications in
mind. Of particular success has been the field of “spectral graph theory,” which involves study-
ing eigenvalues of matrix-based graph Laplacians and connecting their properties to those of the
graph itself [Chu97].

Spectral graph theory still is a fairly discrete area of graph analysis in that Laplacians in this
domain are sparse matrices and their resulting spectra are finite. In contrast, solving PDEs like
the heat and wave equations on a graph involve continuous derivatives in a time variable. In this
nascent area of research, there is less consensus on the choice of appropriate “differential” opera-
tors and treatments of the time variable to yield meaningful solutions. Such solutions, however,
can yield insight into how signals might propagate from node to node of a graph through its
edges.

Here, we will discuss and contrast approaches proposed for graph adaptations of three model
PDEs: the Poisson, wave, and heat equations (introduced in [CY00, FT04b, CCKO07], resp.). In par-
ticular, we will show how the choice of a graph Laplacian operator complements the solutions and
properties of each model equation. Such a direct comparison motivates discussion of modeling
more complex PDEs on graphs and potential directions for future research.

1 Basic PDE Analysis

Here we introduce the model PDEs we eventually will consider on graphs. We focus on the defini-
tion and structure of each of these equations rather than its derivation from physical principles; we
refer the reader to any basic PDE textbook, such as [Str08], for a physically-motivated discussion.

In general, we will consider a partial differential equation in a scalar function u(x) to be any
equation of the form F({D"u : n € Z*},x) = G(x), where D"u denotes the set of nth derivatives
of u. To simplify matters, we will consider only the case where F is linear in u and its derivatives,
thus denoting a linear PDE. We take u to be a sufficiently differentiable function u# : (3 — R for
some domain (; optionally we can include an additional “time” variable + € R™ in which case
u: QO xRT — R. We remain purposefully vague in this section with respect to the choice of ();
of course one can think of (3 C IR” for the usual discussion of model PDEs, but we eventually will
take () to be a graph.

1.1 The Laplacian

The “method of characteristics” readily provides solutions to most model first-order PDEs in u,
but including a second-order term is sufficient to yield diverse and nontrivial behavior. To this
end, we introduce a linear Laplacian operator A, which evaluates the total second derivative of u;



for instance, the Laplacian of u : (3 C R"” — R takes the following form:

" 9%u
Au=-Y — 1
u Z;axz (1)

Symbolically we can factor the Laplacian operator from the right hand side, and thus we consider
A as a functional A : C*(Q)) — C®(Q). In the case of O C R" above we thus write

A:—Zﬁ. )

In functional analysis, the Laplacian is the canonical example of a compact self-adjoint linear
operator. Specifically, the operator satisfies the following properties:

Linear Foru,v € C®(Q) and ¢1,¢; € R, A(ciu + ¢c20) = c1Au + c2Av.

Compact A is bounded, in that for appropriate functional norm || - || there exists some M > 0
satisfying ||Au|| < M|u|| for all u € C*(Q). Furthermore, A applied to a sufficiently small
open neighborhood of the function u = 0 using the topology induced by the norm || - ||
yields a subset of a compact set in the same functional space.

Self-adjoint If we take u,v € C*(Q)), then (Au,v) = (u, Av) for the functional inner product (-, -).

Many of these properties are difficult to verify for functional operators on (2 C R" but become
trivial for operators such as the graph Laplacian, which operate on finite-dimensional spaces.
In this case, self-adjoint operators are given by symmetric matrices M € R"*" (thus satisfying
M = M") since we can write (M%) - @ = (M%) '@ =3' (M'®) =7- (M"®).

To distinguish the Laplacian from other elliptic operators, we will give it one more property
that will make it straightforward to generalize proofs of certain analytical theorems:

Categorizes extrema If x € ) is a local minimum of u : () — R, then [Au](x) < 0.

Here, we will assume that the idea of a “local minimum” is adapted to the domain (2 in question.
For instance, if O C R" and u € C*(Q)), then x will be a local minimum when u(x) < u(y) for all
y satisfying ||x — y|| < € for some ¢ > 0. On a graph, a local minimum of a function on vertices
will be a vertex whose associated value is less than or equal to the values at its neighbors.

One principal reason that self-adjoint linear operators are so appealing is that they admit a full
set of orthogonal eigenvectors spanning L?(Q).! In particular, there exist orthonormal eigenfunc-
tions ¢1, ¢y, . .. with corresponding eigenvalues 0 < Ay < Ay < ... such that f € L?(Q) can be
written f =), a;¢;.

For such a decomposition to exist, in many cases we must introduce boundary conditions.
Thus, if desired or necessary we decompose () into a disjoint boundary and interior as (2 = 0QQ U
(). In this case, we will consider only eigenfunctions ¢; satisfying A¢; = A;¢; in () and ¢; |30 = 0.
This restriction corresponds to Dirichlet boundary conditions; we will not consider derivative-
based Neumann boundary conditions or others here, although most of the frameworks we discuss
will behave equally well in this case.

I This discussion is again cavalier with respect to the exact properties of Q) for such spectral theory to hold. Since we
principally consider graphs and compact subsets of IR”, we will not delve into the particulars of this theory.
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1.2 The Elliptic Case: Laplace and Poisson Equations

The simplest possible PDE involving the Laplacian is the Laplace equation, given by:
Au=0 3)
This PDE is slightly generalized by the Poisson equation, which prescribes nonzero values for Au:
Au=f 4)

The Poisson and Laplace equations are elliptic, since the highest-order derivatives appear in the
elliptic operator A.

These equations appear in many situations, from Maxwell’s equations for electrostatics and
the governing equations of Brownian motion to byproducts of the Cauchy-Riemann equations
defining complex holomorphic functions. In discrete form, they are used in image smoothing
because they are critical points of the functional [ || VI|*> dA for image I.

Note that if we write f = }; a;¢; for Laplace eigenfunctions ¢; and similarly decompose u =
Y. bip;, then (4) becomes ) ; A;b;jp; = Y, a;¢;, and by orthogonality of the ¢;’s we have b; = 4i/4;; of
course if A; = 0 then ¢; satisfies the Laplace equation and can be added with a free coefficient. In
this way, solving the Poisson equation is trivial in the Laplace eigenfunction basis.

1.3 The Parabolic Case: The Heat Equation

By introducing a time variable f, we can model PDEs that evolve from some starting condition.
For instance, consider the time evolution of u given by

Ur = —Au (5)

where we denote u; = 2, where u satisfies u;—o = f € C®(Q) and we constrain u|sq = 0Vt > 0.
This PDE is known as the heat equation, because it models the diffusion of f over (2 for time t. It
is a model parabolic equation, because the matrix of high-order derivatives is positive semi-definite
(only first derivatives appear in t). Similar to the Poisson case, if we write f = Y a;¢; then it is
easy to see that u = Y a;e~"i*¢; satisfies our conditions.
Despite the generality of our choice of (), we actually can prove some facts about solutions of
the heat equation:

Lemma 1 (Weak Maximum/Minimum Principle). Suppose u € C%®(Q) satisfies uy > —Au with
Ulgn >0Vt €[0,T) and ul;—o > 0. Then, u > 0Vt € [0, T].

Proof. Our proof follows Theorem 3.1 of [CCKO07] but is a standard proof in analysis. Take Ty €
(0,T) and ¢ > 0, and define v = u + ¢t € C®°(Q x [0, T)). Suppose v has a minimum at (xo, ty) €
Q x [0, To] with xog € Qyand ty € (0, Ty]. Then, we must have

vt(xo0, to) = ue(xo,t0) +€ <0 (6)

because (xo, to) is a stationary point of v; we only require v; < 0 rather than v; = 0 in case ty = Tp.
By the “categorizes extrema” property, we also have

AU(X(), to) = AM(XO, to) S 0 (7)
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Combining (6) and (7) yields
vt(xo, to) + AU(X(), to) <0. (8)

This contradicts the relationship
vt(x0, o) + Av(xo, to) = [us(x0,to) + Au(xg, to)] +e>¢e>0 9)

by the premises of the Lemma. Thus, we must have that the only minima of v occur when ¢y = 0
or xp € 0Q). Suppose the minimum occurs at (xo, tp). For generic (x, t), we have

u(x,t)

x,t) — et by definition of v

v

v(x,
v(xg, tg) — et by definition of (xo, to)
u(

xo, to) + €tp — et again by definition of v
e(to — t) because u > 0 on dQ2 and when t = 0
—eT since to, t € [0, T]

(AVARYS

Note that T is fixed and € > 0 is arbitrary, so in reality this inequality shows u(x,t) > 0, as
needed. O

This principle leads us to the uniqueness of solutions to the heat equation. In particular, if 14
and u, both satisfy the heat equation with the same boundary conditions, then ugi = u; — us
satisfies the heat equation with zero initial and boundary conditions. By the maximum principle
applied to ugir and —ugir, we must have ugir = 0 for all ¢, as needed. In fact, letting t — oo
approaches solutions to the Laplace equation Au = 0, which thus has the unique solution u = 0 for
our zero boundary conditions. This observation in turn leads to uniqueness of Poisson equation
solutions Au = g since two solutions u; and u, satisfy A(u; — up) = 0.

1.4 The Hyperbolic Case: The Wave Equation

Our final model second-order PDE is the wave equation, given by
Uy = —Au (10)

with the same boundary conditions as the heat equation. We also prescribe u; = g att = 0.
Once again we can compute solutions in closed form as u = }; a; cos(\/A;t + b;)p;, where a;, b; are
chosen to satisfy the given initial conditions; if A; = 0 then we replace cos(- - - ) with a; + b;t. It
is hyperbolic because the time derivative has a different sign than the space derivative. We defer
discussion of the uniqueness of wave equation solutions until we have developed appropriate
notions of the gradient of a function, which depends more strongly on the domain (2 in question.

2 Geometric Realizations of Graphs

We turn now to the case when Q) is a graph G = (V, E) for vertices V and undirected edges E. We
assume | V|, |E| < co and that each edge e € E is associated with a length [, > 0. This description,
however, is a theoretical construct, so we must describe what it means to diffuse heat or propagate
waves along a graph; different models of diffusion or differential structures will lead to different
adaptations of the model PDEs from §1.



Symbol Description Notes

G = (V,E) | Graph V is the set of vertices; E C V x V is the set of edges

le Edge length Associated with edge e € E

g Geometric realization Constructed by gluing intervals C R of length [,
using the topology of G

Cck(G) Differentiable functions C* on edge interiors; C° at vertices

TG Tangent bundle Union of tangent bundles of edge interiors

X Vector field Function G\V — TG

Vf Gradient Vector field on G\V constructed using 1D calculus

Veale - X Calculus divergence Scalar function on G\ V

V Vertex measure Discrete measure on G with V(v) = 1Yo € V

& Edge measure Lebesgue edge measure on G; £(e) =1, Ve € E

ar Integrating factor Written a dV + B d€ for integration using V and £

dDx Divergence Integrating factor with V. on E and discrete
terms on V

dLys Laplacian Integrating factor given by —dDyy

Ap Edge-based Laplacian Coefficient of d€ in d Ly given by —V g - V f

Ay Vertex-based Laplacian Coefficient of dV in dLf givenby 7i - V f

A Normalized adjacency matrix | The adjacency matrix of G with rows normalized to
sum to 1

Al Set expansion For A C G, A" = {x € G : dist(x, A) < h}

Figure 1: Notation for our discussion of [FT04b].

We commence our discussion with the most intuitively-appealing construction, which is able
to apply analytical results directly but in the end suffers from considerable mathematical chal-
lenges. Our development will follow that of [FT04b]; we summarize notation in Figure 1.

2.1 Preliminaries

By far the most common visualization of a graph assigns a point in IR” to each vertex in V and
connects the pairs in E using line segments or curves of length /.. Note that such an embedding is
a construction rather than a fundamental property of graphs. For instance, there is no straightfor-
ward reason why a social network graph should be embeddable in a low-dimensional space in a
meaningful way. Even so, much of our intuition for graph theory comes from such a construction.

Formalizing this notion, we define the geometric realization of G as a topological object G con-
sisting of a closed interval of length I, for each edge ¢ € E whose endpoints are identified with
those of other segments using the connectivity of G. We identify each e € E with its corresponding
segment within G and each v € V with the corresponding point; we will use “vertex” and “edge”
to refer to either type interchangeably when the difference is unambiguous.

The maximal open interval contained within each edge e of G is the interior of e. Note that edge
interiors are simply line segments and as such can be modeled to conduct heat or waves identi-
cally to segments of IR. Thus, the primary challenge of this setup is the treatment of differential
operators near the points in V, which are nonmanifold when vertices have degree # 2. Thus,
to take advantage of this structure, before developing PDE theories for G, we develop its global



differential structure.

We first define coordinate-free differentiation of scalar functions on G. Take TG to be the “tan-
gent bundle” of G given by the union of the tangent bundles of the edge interiors, isomorphic to
(G\V) x R. Then, for functions f € C¥(G) = C¥(G\V)NC%(G) and vector fields X € CK(G\V, TG)
we can define the gradient Vf € C*"1(G\V, TG) and calculus divergence V. - X € CK-1(G\V) by
applying the usual definitions of gradient and divergence within edge interiors.

It is tempting to define the Laplacian of a function on G in a similar fashion to complete our
arsenal of differential graph operators. Unfortunately, doing so trivializes the heat and wave equa-
tions, as we have not specified any way for information to be communicated across the vertices.
Thus, our development must be considerably more subtle.

2.2 Integration and Divergence

Our adaptation of differential operators thus far has considered the one-dimensional structures—
or edges—of G but has neglected the zero-dimensional vertices. Interestingly, vertices of G appear
in our special treatment of the non-manifold points in G in a form similar to boundary conditions
of PDEs on intervals in R. This observation makes sense in light of the fact that we can consider
diffusion and wave propagation along G to satisfy the usual equations within edge interiors, with
boundary conditions that their values match at vertices.

To facilitate subsequent discussion, we introduce two measures on G:

e A discrete vertex measure V satisfying V(v) = 1Vv € V.
o A edge measure £ coinciding with the usual Lebesgue measure on edge interiors.

Note that this definition is somewhat more restrictive than that in [FT04b], but our results gener-
alize easily to their more flexible setting. We denote integration against these two measures using
J[---dVand [ ---dE, resp.

Relating integrals against V and £ will provide a compact methodology for expressing our
primary results about PDEs on G. Thus, we introduce integrating factors dI' = « dV + B d&, for
a:V — Rand B € L,(G\V); we may introduce continuity or differentiability conditions on p as
need be. Integration of functions on G is carried out as:

/gfdl“:/focdv+/f/3d5 (1)

As an initial example of the types of operations we can handle using this setup, we develop a
notion of vector field divergence on G satisfying a theorem analogous to the divergence theorem
on R". In general, note that our “calculus divergence” is somewhat unsatisfactory in that it yields
values only on G\ V. While this restriction might be acceptable for directional vector fields, which
most naturally are associated with points on edges, divergence may be measurable at vertices as
well as on edges.

We have two potential strategies for relating a given test function g € C®(G) and the di-
vergence of a vector field X: integrating the product gV - X or integrating the product —X - Vg.
Applying intuition from integration by parts, these two should be equivalent for the proper choice
of V. Unfortunately, carrying out the first expression with the calculus divergence does not yield



a divergence theorem for graphs, so we explore the second. Define a functional Dx : C®(G) — R
given by

Dx(g) = — o\ X-Vgde (12)

We prove a useful formula for such an operator:

Lemma 2 ([FT04b], Proposition 2.16). Suppose we define é to be the unit vector from u to v paralleling
edge e = (u,v) € E in TG|, and take

(f-X)(u)= ) & Xl(o). (13)

Then, for X € CY(TG) and g € C*(G),
Dx(g) = [ [(Veue X)g dE — (- X)g av], (1)

where we assume X can be extended to de = {u, v} by continuity.

Proof. By Stokes” Theorem, if we restrict to a single edge e = (u, v) we clearly have the relation
[ Vet X € = - (X1:(0) = XJo(w)),
e

where the second term represents a (discrete) integral about the boundary of e. Summing over all
edges in G yields

/Vcak-XdS:/ﬁ-XdV
g g

Consider the vector field Xg. Applying this formula yields:

/; Veute - (Xg) dE = /g i (Xg)dV

= / (7- X)g dV by linearity of the dot product
g

By the chain rule we can write V- (Xg) = (Ve - X)g + X - Vg. Substituting this expression
into the integral above and reordering terms yields the desired result. O
Thus, if we define the divergence of G to be the integrating factor
dDx = (Ve - X)dE — (- X)dV, (15)
then we satisfy the formula

/gngXJr[]x-ngg:o. (16)

This formula serves as our divergence theorem for geometric realizations of graphs. In particular,
if we take ¢ = 1 then we find

/ dDy = 0, (17)
g

as expected since the graphs we consider satisfy 0G = @. [FT04b] shows how to generalize this
result when a subset of V is marked as 9G.



2.3 Geometric Graph Laplacian

We now can define the Laplacian of a graph’s geometric realization:
dLs; = —dDyy (18)

Note that in classical notation this definition coincides with the relation Af = —V - (Vf), and that
our choice of Laplacians parallels that of [FT04b]. We define “edge-based” and “vertex-based”
Laplacians Ag and Ay by requiring dL¢ = Apd€ + AydV; substituting (15) yields:

AEf - _vcalc : Vf (19)
Avf=-Vf (20)

Note that a straightforward consequence of Lemma 2 is the relationship
/gdﬁf:/Vf-ngE:/de’g 1)

for sufficiently differentiable f,g. It is also easy to see that Agf = 0 implies that f must be
edgewise-linear; in this case the vertex-based Laplacian Ay coincides with proposed discrete
Laplacian matrices for graphs.

Before modeling with dL¢, we wish to understand the structure of its eigenspaces. Of course,
dL encodes two separate operators Ag and Ay, whose eigenstructures we must understand sep-
arately. Considering Ay or Ar alone is insufficient, since the former operates only at vertices and
the latter on edge interiors; instead, we will find that appropriate eigenvalue problems couple the
two operators, using Ay to put boundary conditions on Ag.

Note that G\V is a collection of open intervals, which clearly does not admit a countable and
complete set of eigenpairs (f;, A;). Thus, we must add more conditions to make our problem
well-posed. We provide an alternative motivation based on a variational problem.

Suppose we wish to find critical points of the Rayleigh quotient

[|vfRas
RO =" 1rrae

It is easy to see that uniformly scaling f has no effect on R, so we equivalently find critical points
of R(f) = [ |Vf|? d€ subject to [ |f|> d€ = 1. Such a variational problem leads to the Lagrange
multiplier function:

A2 =R(P) = ([ 177 de 1) = [(VF2=AIfP) e+
Taking the Gateaux derivative with respect to f in the g direction yields:
IA(f,28) = A+ g, Ao
= [ SV + BV = Alf + ghP)mo dE
- /(ZVg-Vf—ZAfg) dE
zz/gdcf—u/fgdgby(zn

- Z/g(AEf “Af)dE + Z/gAvf dV by definition of dL;



So, if f with [ |f|? d€ is a critical point of R, then it must satisfy both of:

Apf =Af (22)
Avf =0 (23)

for some A € R.

This derivation motivates the definition of an edge-based eigenpair of dL as a pair (f,A) sat-
isfying f € C®(G), Agf = Af, and Ayf = 0. Restricting f to an edge interior of G gives
f(x) = Acos(wx + B) for parameter x € [0,l,] and w = /A, since f is an eigenfunction of
the one-dimensional Laplacian along edges. More globally, our Rayleigh quotient construction al-
lows for a proof similar to that in [Eval0] for PDEs on Euclidean domains of the following spectral
theorem:

Lemma 3 ([FT04b], Proposition 3.2). The edge-based Laplacian admits a sequence of eigenpairs (fi, A;)
satisfying
e D<A <A< -

o {fi}ticz+ forms a complete orthonormal basis for L>(G), where orthonormality is measured with
respect to d€

./\i—)OO

In fact, it is straightforward to extend Weyl’s Law to show that the number N of eigenvalues
< A for fixed A grows like VA.

Returning to properties specific to the geometric graph Laplacian, we find that the Ay f =
0 condition provides a strong characterization of edge-based eigenfunctions. In particular, for
eigenvalue A > 0, recall that the corresponding eigenfunction f restricted to an edge e = (u,v) is
given by f|.(x) = A cos(wx + B) for x € [0,1,], w = V/A, and some A, B € R. We evaluate f|, and
its derivatives at the endpoints:

F(u) = £.(0) = AcosB
f(v) = fe(le) = Acos(wl, + B) = Acos(wl,) cos(B) — Asin(wl,) sin(B)

10 — . p_ _[f(v) —cos(wl)f(u)
f(0) = —AwsinB = —w sin(wl)

=

by combining the last two expressions

Summing the final expression around u is exactly the vertex-based Laplacian at u, yielding the
following condition for values of f at vertex u:

0=Avflu = Z f(v) — cos(wl,) f (u) (24)

sin(wl,)

e=(u,v)€E

In fact, any w satisfying (24) is an edge-based eigenvalue, since we can use our cosine expression
for f|. to fill in the remaining eigenfunction in edge interiors. In other words, we have proved the
following lemma:

Lemma 4. (f,w?) with wl, # k7t forany e € E,k € Z is an edge-based eigenpair if and only if w
satisfies (24) for allu € V and A f = w?f.
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This expression is encouraging computationally in that it gives a finite system of equations for
finding edge-based eigenvalues. Unfortunately, the condition is highly nonlinear and nonconvex
in w, so we cannot in general find the complete spectrum of a graph with arbitrary edge lengths.

One case in which it is possible to find a closed form for the edge-based spectrum of G is when
I, = 1Ve € E. Then, the denominator of (24) has no dependence on e and can be removed, leaving
behind a much simpler expression that can be solved for w.

Lemma 5 ([FT04b], Proposition 3.5). Let A be the adjacency matrix of G after normalizing each row
to sum to 1. Then, for each eigenvalue A of A, arccos(A) + 27tk and 27t — arccos(A) + 27tk are edge-
based eigenvalues for k € Z with the same multiplicities. Furthermore, eigenvalues 1t + 7tk occur with
multiplicity |E| — |V |; if this value is negative, we subtract the multiplicity from those occurring in A.

We omit the analytical details of the proof.

24 Geometric Graph Wave Equation

Having developed differential operators on G up to second order, we are now equipped to intro-
duce the general wave equation on G:

(adV + BdE)uy = dD,y, (25)
Here, we make the following assumptions:
e u € C%G x I) with u(-,t) € C>(G) for some interval I C R
e &, €C%G)and v € C1(G) witha,B,7 >0

Note if v = 1 then the equation becomes (adV + BdE)uy = —dL,, mimicking the classical wave
equation. Splitting into 4V and into d& terms yields the following system of equations:
aut = —yAyu (26)
Buit = —yApu+ Vvy-Vu (27)

To prove basic properties of (25), we will examine the energy function given by
Energy(A;t) = / (Y(Vu)? d€ +u?(a dV + B dE)) (28)
A

For A C G define A" = {x € G : dist(x,A) < h}. The following theorem characterizes the
evolution of this energy function over time:

Lemma 6. Suppose v < c?B on G. Then, if u satisfies (25) then Energy(A;0) > Energy(A; to).

The proof of this theorem once again follows that of analogous results from classical PDEs.
It immediately implies uniqueness of solutions to the wave equation given u and u; at t = 0. It
also shows that if two solutions agree on some subset of G, then they are guaranteed to agree
on a subset of G shrinking at rate ¢ over time. That is, the wave equation (25) with § > 0 can
be associated with a speed of propagation c¢ at which information can be communicated along G;
this property does not hold for most formulations of the wave equation on graphs. For example,
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taking B = 0 corresponds to an edgewise-linear model of wave propagation, and it can be shown
that a “hat function” about any vertex in G can propagate with infinite speed in this case.

Using arguments similar to our earlier discussion, it is easy to see that when all edges of G have
the same length we can find a closed-form solution to the wave equation without considering edge
interiors. Such a solution technique uses the Chebyshev polynomials in the matrix A to expand
cos(nA) forn € Z+.

2.5 Discussion and Applications

[FT04a, FT04b] provide many theoretical applications of the geometric graph Laplacian and other
differential structures on G. Spectral bounds on the diameter of G and related quantities can be
derived by applying analytical results involving Laplacian eigenvalues. Additional results on
graph structure can be derived by studying the heat equation with respect to the vertex Laplacian,
by considering the class of edgewise-linear functions [FT04a]; a more generic heat equation similar
to (25) is not considered.

This construction of “calculus on graphs” is very similar to the idea of a “quantum” or “metric”
graph appearing in the theoretical physics literature paired with Neumann or natural matching
boundary conditions [GS06]. While some results from either field may be applicable to the other,
the physical interpretations of PDEs on graphs are different in the two cases. For instance, quan-
tum graphs unsurprisingly involve the wave equations appearing in quantum physics, whereas
our constructions may be better interpreted as more classical oscillations of a graph realized using
a series of wires.

Such geometrizations appear to be useful tools for proving theoretical bounds on graph struc-
tures. In particular, many theorems regarding large-scale behavior of assorted differential equa-
tions carry over directly to the graph case with little to no modification, as we have seen studying
Laplacian eigenfunctions and the propagation of waves. As a computational tool, however, these
constructions can be cumbersome. In particular, when edge lengths are nonuniform, we have no
straightforward characterization of Laplacian eigenfunctions or solutions of the wave equation
and are forced to resort to approximation by chains of unit edges or finite elements simulation.

3 Discrete Operators on Graphs

Rather than posing PDE problems on the continuous topology given by G, we can attempt to for-
mulate analogous PDE-type equations on the original discrete graph G. In this case, rather than
applying PDE theory directly, we use it to inspire potential fully-discrete results. These tech-
niques have the advantage that they generally involve finite-dimensional linear algebra in RI"!
rather than more complex differential theory, even if Laplacians cannot be derived as easily from
continuous theory.

3.1 Graph Laplacians

Taking a reverse perspective for deriving potential graph Laplacians, we can examine patterns
that appear in discretizations of continuous PDEs, in hopes that the Laplacian matrices from
these domains have similar properties to the continuous operators that appear in the limit. For
instance, suppose we approximate a one-dimensional # : R — IR with a sequence of values
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..., U_1,Ug, Uy, .... Simple finite differencing approximates 4/4x with the sequence differences
u; — u;_1. Taking differences of these differences yields a second derivative ;1 — 2u; 4+ u;_1, or
convolution with a filter givenby ( 1 -2 1 ). A similar approach on an n-dimensional grid
yields a weight of —n on each central vertex and 1 on each neighbor. This construction suggests a
“combinatorial” Laplacian for per-vertex functions given as vectors in R/, given by

degu ifu=vo
L(u,v) =¢ —1 if u and v are adjacent (29)
0 otherwise

Similarly, consider random walks along a graph G with transition matrix P. That is P(u,v)
is the probability that state u transitions to state v where u and v are adjacent in the graph, and
otherwise P(u,v) = 0. A positive vector x € RV summing to 1 can represent the probability that
a particle is at one of the vertices of G; Px then gives the distribution of potential particle positions
after one time step.

One might study stationary distributions of such a Markov process, that is, probability distri-
butions on the vertices of a graph that do not change after a step of the random walk. These
distributions are given by the equation Px = x, or equivalently (I — P)x = 0. Notice the form of
the matrix [ — P:

1 ifu=v
[ — P](u,v) =< —P(u,v) ifuand v are adjacent (30)
0 otherwise

In particular, if a vertex u has equal probability of transitioning to any of its neighbors, this matrix
equal to T~'L, where T is the diagonal matrix of vertex degrees.

Motivated by these two examples and using the notation of [CY00], for a graph G = (V,E)
with edge weights w, we define the combinatorial Laplacian matrix L of G to be:

d, ifu=mv
L(u,v) = { —W(y) ifuandovareadjacent (31)
0 otherwise

withdy = ¥, 0)eE W(u,0)- Using our above example and analogous appearances of the Laplacian in
continuous probability theory, we also define a discrete Laplacian A = T~'L, for a diagonal matrix
T containing the values d,,. Neither L nor A is necessarily symmetric, so we define a symmetric
normalized Laplacian matrix & satisfying . = TV/2AT-1V/2 = T-V/21T7-1/2,

We take S C V to be a subset of vertices of the graph and say a function g € RIVI satisfies
Dirichlet boundary conditions if it is zero on V\S. We denote the Dirichlet eigenvalues A; < Ay <
.-+ < Ag of the graph, for s = |S] to be eigenvalues of .Zs, the submatrix of .Z corresponding to
the vertices in S.

3.2 Green’s Functions

The Green’s function of a PDE is its solution operator. Specifically, suppose a PDE on R takes the
form Lu(x) = f(x) for unknown u and linear differential operator L. Then, the Green’s function
G : R? — R (more precisely a distribution) provides solutions u for any f by convolution:

u(x) = /‘G(x,s)f(s) ds (32)
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Integration against G effectively provides an “inverse” for L, although boundary conditions must
be established to justify such a statement.

While rigorously establishing that G provides a unique solution to a given PDE can be an ana-
lytical challenge, the construction and manipulations of discrete Green’s functions is much simpler.
In particular, operators like the graph Laplacians from §3.1 are simply matrices in RIVI*IV], so their
Green’s functions intuitively can be computed using matrix inverses.

One way to understand the construction of discrete Green’s functions is through eigen-analysis
on the matrix 5. Imitating the proof for geometric Laplacians in §2.3, we can see that the minimal
eigenvalue A of %5 can be computed as:

A — inf Zx,yeSU&S (f(X) - f(y))Zw(x,y)
L Lres f2(x)ds

Here, we define the boundary 45 as those vertices in V'\ S adjacent to vertices in S. If S is connected
and 65 is nonempty, then this expression shows A; > 0, and thus we can construct an inverse ¢ of
Zs. We consider ¢ to be an operator on RI"|, extending to vertices in V\ S using zeros. Then, we
can write a matrix G = T~1/2¢T11/2 providing a discrete Green’s function for A; that is, it satisfies
GA =TonS.

One can use Green’s functions of elliptic operators like the Laplacian to interpret solutions to
more complex PDEs. For instance, suppose for t > 0 we define the heat kernel 5 = e~'%s using
matrix exponentiation. Then, the following heat equation is satisfied:

SAf = —tf e

(33)

The Green’s function in this case appears using the relationship ¥ = fooo s dt. For this reason,
discrete Green’s functions are of interest as the basic building blocks for studying not only their
associated operators but also other equations in which they appear.

While Green’s functions may be best described using matrix inverses, algorithmically this de-
scription leads to inefficient techniques: inverses of the sparse matrices s, Ls, and Ag are not
guaranteed to be sparse, and we have provided no guarantees on their conditioning. If we ex-
pand the matrix exponential in (34), however, we see that large eigenvalues of ¥’ are dampened
quickly as time t progresses, so it is possible to focus computations on eigenvalues of .Zs close to
0.

Since Zs is symmetric and positive definite, we can write its eigenfunctions as ¢1, ¢, ..., @)
with corresponding eigenvalues 0 < Ay < Ay <--- < /\‘ s|- Applying the usual eigenvector matrix
decomposition element-by-element, we can write

9(x,9) = L 404 ) (35)

Thus, as A — oo, the influence of A on ¢ vanishes. This heuristic argument aside, if we compute
the whole spectrum of ¢ we can use it to construct exact solutions to vertex-based PDEs on graphs
explicitly.

3.3 Solving the Laplace and Poisson Equations on Graphs

Suppose we wish to find f satistying Af = g for some g with nontrivial values on S U JS. We

can use the eigenvalue constructions of §3.2 to find such a solution explicitly. We first consider the
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Laplace equation Af = 0 and then extend our solution to the more general Af = g:

Lemma 7 ([CY00], Theorem 1). Suppose Af = 0 on S with f(x) = o (x) for x € 6S. Then, f satisfies?

flz) =d; ”ZZ FRAC ) Y AV i(x)e(y) (36)

XES
(xy)€E
yesS

Proof. For convenience, as in [CY00] we denote f = T'/2f and note that Af = 0 if and only if
Zsf = 0. Thus, it is straightforward to translate between solutions of Laplace’s equation with the
symmetrized Laplacian .#" and those using the discrete Laplacian A.

Since f satisfies an equation in .%s, it makes sense to expand it in the eigenfunctions {¢;} as
f = ¥, a;¢;, where by orthogonality of the ¢;’s we have a; = (¢;, f). For convenience, the boundary
conditions can be encoded by a function fy(x) given by o(x) on 4S and 0 otherwise; we will use
subscripts of S to denote a function restricted to S.

With the notation in place, it is possible to perform considerable simplification:

Aia; = Ay, f) since a; = (¢, f)
= (ZLs¢i, f) since Ls; = Aipi
= (Zs¢i, (f — fo)) since fy = 0on S
= (¢, T"YV2LTV2(f — fy)) since ¥ = T~Y2LT1/2 and & is symmetric
= (¢;, T 1/ZL(]" — fo)s) by definition off
= (TY2¢;, A(f — fo)s) since A = T'L and T is symmetric
= (TY2¢;, —(Afo)s) since Af =0

S Z (\/ECPZ'(X) . di Z (fo(x) — fo(y))> by expanding the inner product

x€S * (xy)€E
=Y ) d; Y 2¢i(x)o(y) since fo = 0in S and fy(x) = o(x) on S
X€ES (x,y)€E
yess

We divide both sides by A; and substitute into the eigenfunction expansion of f:

Yo a2 pi(x)e(y) | ¢ (37)

'(xy)EE
yess

fzzﬂifl’izz

i

1
1

2As an aside, the exponent of dy is correctly —% rather than % in [CY00].
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Finally, we apply the relationship f = T'/2f:

1 _ -
fsE =Y |5 L dix)oly) | d:9i(z) (38)
i " (vy)eE
y€esS
_ 1 _
— a2y i) L 4 Ppixo(y) 39)
i xeS
(xy)eE
yess
This final refactorization completes the proof. O

Lemma 8 ([CY00], Theorem 2). Suppose Af = g on S with f|ss = o, where S is a connected subgraph.
Then, f can be decomposed as a sum fi + f, where Afy = 0 with f|ss = o and f, = Gg for Green’s
function G of A.

Proof. Take fi = f — fo. Then, f = fi + fpand Af; = Af — Af, = g — g =0, as desired. O

With this characterization of Poisson equation solutions, it is straightforward to write closed-
form Green'’s functions and solutions to Laplace and Poisson equations on graphs with regular
structures [CY00]. Predictably, Green’s functions of grid-structured graphs nearly coincide with
the usual Discrete Fourier Transform basis.

3.4 Green’s Functions without Boundaries

Our construction depended on the fact that the set S of vertices on which we computed Green’s
functions satisfied 6S # @. When §S = 0, L = Lg no longer is full-rank, so we must deal with this
case using some specialized constructions.

It is easy to see that the vector ¢y given by ¢o(k) = /9 /x;d; comprises the null space of .Z.
Since . thus projects ¢ out of functions on the graph, we simply exclude it when constructing
the Green’s function ¢:

GL = LG =1~ podg (40)

Furthermore we constrain ¥¢o¢, = 0. Since the matrix gop] projects onto unit vector ¢, these
constraints simply state that ¢ should project out the ¢y component and act as an inverse to .2 on
the subspace orthogonal to ¢y.

With such a lack of boundary conditions, it is only possible to solve Poisson-type equations up
to constant shift by ¢. Parabolic equations such as the heat equation remain largely unchanged
since they mostly depend on initial conditions. Other problems including many involving Markov
chains are solved exactly by projecting out ¢y [AF02]; construction of such problems is out of scope
of the discussion at hand.

3.5 Relationship to Geometric Graph Realization

The development in this section relied fundamentally on the collection of discrete Laplacians de-
fined in §3.1. These Laplacians satisfy the properties stated in §1.1, and thus generic proofs that
depend only on “Laplacian-like” structures apply equally well to these Laplacians as to the geo-
metric Laplacians introduced in §2.3.
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To align completely with continuous intuition, however, ideally one might expect discrete
Green’s functions and discrete Laplacian eigenfunctions to coincide exactly with their counter-
parts on the geometric graph realization G restricted to graph vertices. Such optimism likely
would remain unsatisfied in the most general case: it seems unlikely to be able to find solutions
to continuous PDEs like the geometric graph wave equation knowing and making use only of
solution values at discrete locations. Even so, we can prove that in certain cases the geometric
and discrete graph Laplacians have more structure in common than the most basic properties of
Laplacian operators.

Recall Lemma 5, which characterizes geometric graph eigenvalues in the unit edge length
case. These geometric eigenvalues were given by {arccos(A) + 2tZ*,2m — arccos(A) +2nZ7" :
A € A(A)}, where A represents an eigenvalue of the normalized adjacency matrix A. Writing A
element-by-element yields

1 . .
- { Jog if u and v are adjacent

41
0 otherwise (41)

This matrix has exactly the same structure as the Markov matrix P from §3.1 when the probability
of a transition from a vertex to any of its neighbors is uniform. Eigenfunctions of P and I —
P trivially are identical, and thus we can see that in this case eigenfunctions of the discrete
Laplacian A coincide with geometric Laplacian eigenfunctions restricted to V. Corresponding
eigenvalues are related using the arccos A nonlinearity, although it is important to remember that
G has an infinite spectrum since there are multiple frequencies within a given edge yielding the
same boundary values.

Thus, in the equi-length case the discrete Laplacian actually can be used to construct geometric
PDE solutions. As edge lengths become nonuniform, however, this relationship breaks down,
mostly due to the nonconstant denominator in (24).

4 Semi-Discrete PDEs on Graphs

In §3, we defined discrete Laplacian operators for per-vertex functions on graphs. These operators
have key properties in common with Laplacians encountered in classical analysis and admit struc-
tures like Green’s functions paralleling objects on R" and on manifolds. Given this relationship,
it is a reasonable step to consider using discrete Laplacians to model flows on graphs. Intuitively,
such models yield flows that are spatially discrete along the domain () but continuous in time t.

This construction might be considered a “semi-discrete PDE,” in the sense that the time vari-
able remains continuous. An alternative viewpoint is that these equations become R!V|-valued
systems of ordinary differential equations (ODEs) with a single independent variable . Both of
these dual viewpoints are valuable:

e The PDE standpoint indicates that resulting solutions likely will have structures resembling
heat flow, wave propagation, and other physical effects modeled using parabolic and hyper-
bolic equations.

e The mathematics of ODEs provides straightforward characterizations of existence, unique-
ness, and properties of solutions that are stronger than their PDE equivalents. For example,
the Picard-Lindelof Existence and Uniqueness Thorem for ODEs automatically guarantees
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that discrete graph heat and wave equations have solutions for all time t > 0, effectively
sidestepping the need for more specialized existence and uniqueness proofs needed for
many PDEs [HSD12].

[CCKO7] exhaustively lists solution techniques for first- and second-order semi-discrete PDEs
on graphs including low-order driving terms and other special cases. Here, we will parallel their
development in the homogeneous case, characterizing solutions to the model equations of §1.
Analogous techniques apply to the more general case, although notation and technicalities become
considerably more complex.

4.1 w-PDEs on Graphs

We will continue to use the same notation as previous sections but briefly connect it to the notation
used in [CCKO7]. There, graph edges are associated with weights w : V x V — [0, c0); these are
identical to the weights w(, ) defined earlier, taking w(,,) = 0 when (x,y) & E. The prefix w is
added to PDE terminology to disambiguate from the continuous case. Vertex degrees d.,u are the
same as our d,, and integration of f : V. — R is given by

/Gfdwz Y f(u)d, :/fdu v

ueV
In contrast to [FT04b, FT04a], [CCKO7] develops a discrete calculus on graphs without con-
structing a geometric realization. They define a directional derivative [D,f]|(u) of f : V — R by
writing differences
W(u,0)

[Dof](u) = (f(0) = flu))y ] =1 (42)
The gradient V£ : V — RIVI at u is defined as a vector of D, f values evaluated at u:

(V) () = (Dof (#))oev (43)

Second-order PDEs are modeled using the discrete Laplacian A introduced in §3.1.> The definition
of directional differentiation above is consistent with this Laplacian, in the sense that the Laplacian
looks like summing double applications of D,. This self-consistent system admits analogs of many
integration-by-parts and related vector calculus identities for discrete graph operators [CB05].

4.2 w-Diffusion Equations

Although our definition of the Laplacian has changed, the form of the homogeneous w-diffusion
or heat equation on discrete graphs remains the same:

ur = —Au,

although now we have u € RIV! a signal only on vertices rather than G. Expanding the Laplacian
row-by-row demonstrates that this equation models flows between nodes where conductivity is
measured using w and the instantaneous flow rate is determined by the difference in value of u
between adjacent nodes; such models appear in discretized PDEs as well as in models of electrical

3The Laplacian used here differs from that in [CCK07] by a sign.
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networks. Notice that the proof of Lemma 1 applies for this heat equation, implying not only
existence and uniqueness but also a characterization of the continuum of values appearing in u.

Employing the notation of §3.2, we will assume that a subset S C V is specified on which we
desire to solve the heat equation and that boundary values are prescribed on éS. To do so, we once
again consider the normalized Laplacian . = T'/2AT~1/2 restricted to S, yielding operator .%s
with eigenvalues 0 < A; < Ay <--- < }\‘ | and eigenfunctions ¢1, ¢, . . ., Ps)- Since %5 is positive
definite, we can assume that the ¢;’s are orthogonal and unit length.

We can use intuition from the construction of (35) and the fact that e~*¢; satisfies the heat
equation Vi to construct a heat kernel Ks:

El
Ks(iw,0,1) = Y e M gitu) (o) 5 (4
i=1 u

This kernel provides a succinct description of solutions to the graph heat equation:

Lemma 9 ([CCKO07], Theorem 3.4). Suppose 6S # @. Take functions o : 6S x [0,T) — Rand f :
S — R such that o is continuous and L' in time t for each vertex. Then, the solution of the heat equation
uy = —Au with uli—g = f and u|ss = o ¥t € [0, T) is given by

u(x,t) = (Ks(x,-,t), f(+))s + /Ot<K5(x, t—7),Bs(-,T)) dT (45)

"oy

where inner products are over graph vertices summed over “-” and

Ba(y/ t) = Z

z€0S
(y,z)€E

7 t z
o(z )w(y, ) (46)
dy

Proof. Suppose u is such a solution. By completeness of the basis {¢;};, we can choose functions
a;(t) = (TV2u, ¢;) satisfying
Te?uls = Y ai(t)gi(x) (47)
i
since each ¢; satisfies the zero boundary condition.

Since .¢ = TY2AT-1/2, we can write ZTY? = TY2A. Thus, in the style of the proof of
Lemma 7, we expand the inner product for a;:

Aiai(t) = (TY2u(-,t), Ai;) s by definition of a;

TV2u(-, t), ZLs¢i)s since ¢; is an eigenfunction of s

TY2u(-,t), L¢i) s — (TY?u(-,t), L¢;)ss where we define § = S U S
LTYV2u (1), ¢) s — (TY?u(-,t), Ldi)ss by symmetry of .2
TY2Au(-,t), ¢i)s — (TV?u(-,t), L§;)ss since L = TY2AT1/2
—al(t) — (TY2u(-, 1), L¢;)ss since u satisfies the heat equation

= —al(t) — (T2 (-,t), Z¢:)ss by boundary conditions on u

o~~~ ——

If we expand the definition of A row-by-row, it is easy to see that

(xy)€E



This implies the following form for applications of .

Zf(x) = [TY2AT~'/2|f(x) by definition of £

w
_ \/7 2 : ( f(x) f () (xy) since we must apply powers of T
Ve \/dy ) da
(xy)€E

_ fx)  fly)
- (WZ)GE <dx B szd) W(xy)

In particular, taking f = ¢; and evaluating on the boundary x € 4S yields

¢i(y)w
Lgi(x)=— Y T
¢i(x) (x’yZ)EE T,

since ¢; satisfies the zero Dirichlet boundary conditions.
Thus, returning to our earlier chain of equalities for A;a;(t) shows

) o(z,t)pi(y)w
Aia;i(t) = — i t) +
=ss £ G
(y,2)€E

This is an inhomogeneous first-order ordinary differential equation in t whose solution is:

IV t . Pi(y)wy,z
a;(t) = cie Ait 4 pAit (/ U(z,T)e)‘lT dT> I e
ZEZ(SS 0 \/@

(y,z)€E

=1,...,

To choose the constants c¢;, we return to the definition of 4;(0) and evaluate at t = 0:

ci = (TY2u(-,0),¢1) = (T'f, ¢i)s

Finally, we substitute this expression into (47) to show:

= UL Zﬂi(f)sz(x)
_ 1 At —Ajt f AT 4)1( ) yz) ‘
T Zl: cie M +e (ZEZ)(;:SE (/0 o(z,T)e dT> — ¢:(x) by (50)
L v,z)€

(48)

(49)

(50)

(51)

_\/1072 (TV2f, pi)se Mt et Y (/Oto(z,r)e)‘ifdr>¢l()yz) ¢:(x) by (51)

iy

z€0S
L (y,z)€E
o(z, T)w
= Z (x,y,1) —|—/ Ks(x,y,t )M dt by definition of Kg
yEeS 2655 dy
(y,2)€E
= Z X, y,t) +/ Ks(x,-,t —T),Bs(+,T)) dt, as desired.
yEeS

20



This argument shows that if a solution exists to the heat equation then it must take this form.
It is easy to check that this expression does indeed satisfy the heat equation; in fact, this would
comprise a short but somewhat obtuse proof of the lemma. Nevertheless, it thus represents the
unique solution to the heat equation with given boundary and initial conditions. O

The proof of Lemma 9 is fairly technical, but from a high level it demonstrates the dual
PDE/ODE approach to understanding flows on graphs. ODE theorems are used to guarantee ex-
istence and simplify convergence since sums are finite. The construction of the solution, however,
relies on a separation of variables technique reminiscent of that used to solve the heat equation on
subsets of R".

4.3 w-Elastic Equations

As with the heat equation, the homogeneous w-elastic equation on discrete graphs takes the usual
form
uit = —Au,

for signals u € RIV|. Note that this equation when viewed as an ODE models the behavior of a

network of linked springs connecting vertices on a graph.

It is straightforward if verbose to parallel the proof of Lemma 9 to construct closed-form so-
lutions to the w-elastic equation with given boundary and initial conditions. To do so, we will
construct an additional Dirichlet kernel for this contrasting problem:

1
VAi

Then, solutions are provided by the following lemma:

sin(mm(x)gvi(y)] i 52)

Ws(x,y,t) = [ﬂPo(x)(PO(y) +Z

Lemma 10 ([CCKO07], Theorem 4.3). Suppose 6S # @. Take functions o : S x [0,T) — R and
f,g S — R such that o is continuous and L' in time t for each vertex. Then, the solution of the elastic
equation uy = —Au with ulj—o = f, ut|i=0 = g, and u|ss = oVt € [0, T) is given by

u(x, t) = (Ws(x, -, t),8)s + <aatW5(x, -,t),f> + /(:(Ws(x, t—1),Bs(+,T))s dT (53)

S
Proof sketch. Define a;(t) analogously to (47). Paralleling the expansion of A;a;(t) in Lemma 9
yields a second-order ODE in a;(t) as a function of ¢, with no first-order term. Applying the usual
inhomogeneous second-order ODE solution formula and substituting the given boundary condi-
tions yields the desired result. ]

4.4 Analysis and Properties

The generic proof of the weak maximum principle in Lemma 1 demonstrates how straightforward
it can be to extend standard analytical proofs to the semi-discrete case. Such structure preservation
is a common theme in the treatment of discrete PDEs on graphs. We provide two additional
examples of continuous theorems that naturally extend to the semi-discrete case, one for the heat
equation and one for the wave equation.
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Lemma 11 ([CCKO07], “Huygens Property” Theorem 3.6). Suppose u satisfies the heat equation u; =
—Au on a graph with S = V. Then, for every t,6 > 0 we have

u(x, t+6) = (K(x,-,8),u(-,t)) (54)

Proof. It is easy to check that the solution u in this case satisfies

ie ity (x) (55)

for constants {Ci}izl v|- Thus,

u(x, t+6) = Zce {(49) . (x) by (55)

Ze—/\éce /\t(PZ( )

\/>

Mo (x) <\/>4)1 \/1d> cheA/'tcpj(y)> by orthogonality of the ¢;’s

“Mopi(x)(\/d yoi(y )) by (55) again
= (K(x, -,5),u(-, t)), as desired
O
Our next property provides a discrete analog of (28), which is also conserved over time.
Lemma 12 ([CCKO07], Theorem 4.6). Suppose 6S # @ and u satisfies the w-elastic equation with u|ss =
0. Then, the following energy function remains constant with respect to t:
1
E(t) = / up+= Y, (Dyu(x, t))2] dy dVy (56)
S 2 .
(x,y)€Ey€eS
Proof. We show that the derivative of E with respect to t is zero:
E'(t) = /_ [2ututt + Z(Dyu - Dyuy) | dy dVy, differentiating under the (discrete) integral
S
Y
= [ [2usuy + Vu - Vug| d, dVy by definition of the discrete gradient
S
=2 / u(uy + Au)d, dV by discrete integration by parts [CB05]
S
= 2/ uy(uy + Au)dy dV since we specified u|ss = 0
S
= 0 since u satisfies the wave equation uy = —Auin S
Thus, E does not change as t progresses. O

Note that this lemma implies that solutions of the discrete wave equation with prescribed
boundary values are unique. This is because the difference u; — u; satisfies the conditions of
Lemma 12 with E(0) = 0. Thus, 9/at(117 — uz) = 0, and they agree at t = 0.
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5 Conclusion

The abstract definition of a graph as a collection of vertices and edges admits straightforward
visual and physical intuition but by design does not have a single application or construction in
mind. Such generality is exactly what makes graphs versatile data structures, but at the same time
provides limited guidance for the best adaptations of potentially valuable differential techniques.
Thus, there remains little consensus regarding the most effective methods for modeling flows,
waves, and other phenomena as they might propagate along a graph.

Key to the development of a PDE theory for functions on graphs is the choice of topological
domains and their accompanying operators. Arguably closest to the classical case, [FT04b] argues
that the geometric realization G is the most natural domain. Geometrizations have the advantage
that they can be realized physically and have differential structure in edge interiors, allowing
for the application of classical one-dimensional results with boundary conditions coupling vertex
values. Unfortunately, the transition from the manifold structure of subsets of R! to the “varifold”
structure of a graph presents considerable theoretical challenges: Even the choice of Laplacian
operators is unclear and may require combining two operators like Ag and Ay using integrating
factors. While abstract theorems characterizing graph diameters and other large scale properties
can be proven in some cases, much remains unknown about G and whether it can be used to
construct practical algorithms or analytical tools.

More practically implementable is the collection of techniques involving discrete differential
operators on functions in RIVl. These operators typically are expressible using sparse matrices that
easily can be computed and manipulated. In particular, depending on application there are at least
three discrete Laplacian operators that might be useful, notated here as L, A, and .. Even more
operators with similar structure can arise when dealing with Laplacians from geometry or simu-
lation applications such as [Hir03]. Thankfully, although the resulting flows can be different nu-
merically, their broad properties remain the same and even can be simplified from the continuous
case. For instance, discrete Green’s functions are constructed using matrix inversion, sidestepping
the need for specialized convolution constructions and arguments about convergence [CYO0O].

Partway between the fully continuous and fully discrete approaches are those methods al-
lowing for semi-discrete treatment of PDEs with continuity in time but discrete values along
graphs [CCKO07]. These techniques take advantage of the fact that per-vertex functions on graphs
admit some amount of “discrete differential” structure relating values at neighboring vertices,
while allowing continuity in variables that are not naturally discretized by the graph itself such
as time t. These methods provide a potential compromise in which we can understand flows with
continuous time, although computationally timestepping and eigenfunction computations will
make related analytical techniques approximate.

Regardless of the domain and corresponding operator, many common themes arise when con-
sidering flows on graphs; most of these themes are direct adaptations of concepts from classical
continuous theory. Most importantly, all three of [FT04b, CY00, CCK07] make use of operator
eigenfunctions to construct closed-form solutions to model PDEs. In the case of [FT04b], these
eigenfunctions exist in theory but are countably infinite, whereas in [CY00, CCKO07] they are finite.
Regardless, the theory of elliptic or positive definite operators guarantees that they fully charac-
terize the behavior of the associated PDEs, and the straightforward form of the heat and wave
equations simplifies their usage considerably. Eigenvector computation is a well-studied tech-
nique in numerical analysis, so such closed-form solutions can be used directly in applications
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studying graphs with discrete operators.

A less technical common theme is that many of the qualitative properties of model PDEs are
carried over from one domain to the other with little to no adaptation. Many theorems characteriz-
ing solutions to differential equations can be expressed with little more than the list of properties
of Laplacians in §1.1. This observation confirms the intuition that the heat and wave equations
have predictable properties on graphs even if they are not directly realizable in Euclidean space.

We have focused here on theoretical treatments of PDEs on graphs. Work in this domain is not
necessarily focused on providing algorithmic tools but can be applied directly and indirectly to
formulate methods for analyzing networks. For instance, having verified that the discrete graph
Laplacian encodes aspects of structure in a similar way to smooth Laplacians indicates that geo-
metric methods like [SOGO09] can be used for graph matching. More generally, the propagation
of heat and waves from vertex to vertex can help characterize graph topology at multiple scales
as t — oo through the use of straightforward numerical routines rather than specialized discrete
algorithms. Note that drawbacks similar to [GW92] still apply, in that heat and wave kernel meth-
ods have no hope of distinguishing isospectral graphs.

Considerable work remains to be done toward understanding the advantages and drawbacks
of network-based models of flows and differential equations. Even so, the promising initial work
of [FT04b, CY00, CCKO07] indicates that achieving deep results about these models may be as
simple as adapting pre-existing proofs and techniques from the continuous domain.
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