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QUADRATICALLY REGULARIZED OPTIMAL TRANSPORT ON
GRAPHS*
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Abstract. Optimal transportation provides a means of lifting distances between points on a ge-
ometric domain to distances between signals over the domain, expressed as probability distributions.
On a graph, transportation problems can be used to express challenging tasks involving matching
supply to demand with minimal shipment expense; in discrete language, these become minimum-cost
network flow problems. Regularization typically is needed to ensure uniqueness for the linear ground
distance case and to improve optimization convergence. In this paper, we characterize a quadratic
regularizer for transport with linear ground distance over a graph. We theoretically analyze the
behavior of quadratically regularized graph transport, characterizing how regularization affects the
structure of flows in the regime of small but nonzero regularization. We further exploit elegant
second-order structure in the dual of this problem to derive an easily implemented Newton-type
optimization algorithm.

Key words. optimal transportation, graphs, matching, flow
AMS subject classifications. 65K10, 90B06, 05C21

DOI. 10.1137/17M1132665

1. Introduction. Since its formalization in the eighteenth century, the optimal
transportation problem has provided practical and theoretical challenges in a variety
of scientific, mathematical, and engineering disciplines. Based on the natural problem
of optimizing a matching between supply and demand to minimize shipping costs, op-
timal transportation has been proposed in countless fields under different names: the
Monge-Kantorovich problem in economics [42], the Hitchcock—Koopmans problem in
engineering optimization [18], the earth mover’s distance in computer vision [31], the
Wasserstein distance in analysis [42], minimum-cost network flow in graph theory [19],
and the Mallows distance in statistics [27], to name a few. This appearance and reap-
pearance of optimal transportation underscores its fundamental nature and value as
a tool for modeling and analysis.

Modern computational applications of transport impose extreme demands on scal-
ability. Whereas problems involving a relatively small number of sources and targets
can be solved using standard linear programming, extending to thousands or millions
of nodes pushes the limits of generic polynomial-time algorithms. An additional chal-
lenge is provided by nonuniqueness of the solution to transport with linear ground
distance, leading to unpredictable output by standard software packages; this is ex-
acerbated on large graphs in which cycles and other features make multiple shortest
paths and matchings indistinguishable. Hence, recent incarnations of computational
transport must identify additional structure in the problem that can be leveraged to
overcome issues in the most generic instances of the problem.
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In this paper, we consider a critical application of “structured” optimal trans-
portation, namely, when the transport cost comes from distances along an underlying
graph. This realistic assumption appears in many contexts, e.g., transporting goods
along a road map or matching servers to clients on a computer network. While classi-
cal network flow-style phrasings of this problem have been tackled in the algorithms
community, here we take inspiration from numerical methods approximating transport
over continuum domains to study regularized transport over a network; regularization
ensures a unique solution to the transport and smooths the objective landscape of the
problem. We provide theoretical characterization of the behavior of the regularized
problem as it deviates from the nonregularized case. Furthermore, the appearance of
the graph Laplacian in the dual problem allows us to propose a Newton-style opti-
mization algorithm for the problem that leverages sparsity and low-rank structure to
invert the Hessian efficiently.

2. Related work. Transport over graphs has a rich history and has been con-
sidered in mathematics, operations research, computer science, and many other dis-
ciplines. At the broadest level, this problem is a slight generalization of the linear
assignment problem and can be solved using several classical techniques; see, e.g., [6, 4]
for discussion.

Without regularization, the particular problem we study would be an instance of
minimum-cost flow without edge capacities. [30] discusses classical algorithms for this
linear programming problem, such as the cycle canceling [20], network simplex [28],
and Ford-Fulkerson algorithms [15]. Classical methods such as these often are not
accompanied with systematic “tie-breaking” strategies in case the network flow is
nonunique, indicating the potential application of a strictly convex variation of the
problem such as ours.

The theoretical computer science community recently has reconsidered this class
of problems from an optimization perspective. In the undirected, capacity-free case, [306]
proposes a preconditioner for approximate minimum-cost flow problems that achieves
nearly linear runtimes. Reference [10] considers the more general case of minimum-
cost flow in directed graphs with unit capacities, extending a framework proposed
in [26] for approaching graph-based problems using the interior point method. These
algorithms are primarily of theoretical interest but do employ interior-point-style
methods, possibly implying a systematic choice of flows in the case of multiple optima.

In the continuum, the theory of optimal transport [42] classifies problems struc-
tured similarly to minimum-cost flow as the 1-Wasserstein distance or Beckmann
problem [1]; see [33] for analysis and [42, 17, 32] for theoretical discussion. Even over
general spaces, solutions of the 1-Wasserstein problem generally are nonunique and
include some degenerate optima [42, section 2.4.6]. Numerical algorithms for these
problems include [39], which uses finite element methods for a vector field version
of this problem accelerated using spectral decompositions, and [21], which adapts
primal-dual methods designed for L'-regularized optimization.

Our work involves a regularized model of transport, in which the cost of a per-
edge flow is augmented with a strictly convex term. For bipartite graphs, by far the
most popular regularized approach to transport involves entropic regularization [11, 3],
which leads to an instance of the well-known Sinkhorn—Knopp rescaling algorithm [38],
also known as the iterative proportional fitting procedure [44, 13]. These algorithms
are extremely effective for bipartite transport problems thanks to the elegant algo-
rithms in this case, but, to our knowledge, no Sinkhorn-like method has been formu-
lated for transport over more general graphs.



QUADRATICALLY REGULARIZED OPTIMAL TRANSPORT A1963

We instead apply quadratic regularization, accompanying the L'-style transport
objective function with an additional L? term. This regularizer was used in [21, 22, 23]
to derive a parallelizable primal-dual algorithm for regularized 1-Wasserstein distance
on regular grids of R?. Our work is complementary to theirs, providing algorithm-
independent analysis of the structure of flow in the presence of quadratic regular-
ization, in particular, how its coefficient controls sparsity, as well as analysis of the
dual yielding a Newton-type optimization method; the discussion here provides fine-
grained information about the quadratic case, whereas many of their constructions
apply to other regularizers.

[43] studies the general case of L! minimization problems with an L? regulariza-
tion term. In particular, they establish a similar result on sparsity of the regularized
solutions for a broader class of problems than the ones studied in this paper; our
result can be obtained by applying their results to a graph divergence operator. In
the context of the minimum-cost flow problem, our paper obtains the result by taking
a different proof approach: We analyze changes in mass flows in the primal solution
when the regularization parameter changes instead of studying the dual problem.

In the bipartite case, we could replace entropic regularization with quadratic
regularization for a less efficient but Sinkhorn-like algorithm through the alternating
projection framework of [3]; these projections would require sorting a list of floating-
point values in each iteration [14].

While our theoretical and practical consideration is largely focused on the small-
regularization regime, in the case of high regularization our flows begin to resemble
electrical flows on graphs [8, 26]. See, e.g., [9] for relevant notions from spectral graph
theory.

Finally, we note a few recent works [25, 40] with alternative models for opti-
mal transport inspired by fluid dynamics interpretations of transport with quadratic
costs [2]. These methods hold some potential for overcoming nonuniqueness issues as-
sociated with linear transport costs but relatively few faithful numerical discretization
and optimization techniques exist; [16] suggests one possible approach. One recent
paper applies regularization to the dynamical problem [24], potentially suggesting an
alternative means to introduce regularization in optimal transport.

3. Quadratically regularized transport on graphs.

3.1. Graph transport without regularization. Suppose G = (V,E) is a
connected graph with directed edges E C V x V. We associate edges in F with a
vector of edge weights ¢ € lel.

Denote Prob(V) to be the probability simplex over V', that is,

Prob(V):={peRVI:17p =1 and p > 0}.

The 1-Wasserstein [42], optimal transportation [42], or earth mover’s [31] distance
between two distributions pg, p1 € Prob(V) is defined as

MiNpeRIvVIx|V] TI“(CTT)

st. T >0,
(1) Wl(Poapl) T Tl = 00,
TT]I = pP1-

Here, the unknown matrix 7 € RIVIXIVl is a transportation plan transforming po
into p;. The precomputed cost matrix C' € ]RIIMVI contains shortest-path distances
between each pair of vertices on the graph given edge lengths in c. Intuitively, over
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all possible transportation matrices 7', we minimize the total “work” measured as the
sum of mass T, moved from vertex v to vertex w times distance C,,,. Note that C
needs not be symmetric since the edges in E are directed.

The cost of moving mass between two vertices ¢ and j on G can be decomposed
as the cost of moving mass along each edge on the shortest path between i and
j. Formalizing this argument provides an alternative to (1) with one variable per
edge in E, a considerable savings when G is sparse. Define an incidence matrix
D € {—1,0,1}EIxIVI a5

-1 ife= (v,w) for some w €V,
(2) D, = 1 if e = (w,v) for some w €V,
0 otherwise.

This matrix is an analog of the gradient operator for functions on R™. Then, an
alternative formula for Wy is

minJeR\m ZeeE CeJG
(3) Wl(p07l)1) = st. J Z 0,
DTJ = p1 — po.

The vector J contains one directed flow per edge; the constraint expresses the re-
quirement that J flows from pg to p;. The transpose DT takes the place of (negative)
divergence for vector fields on R™. In the language of smooth optimal transport, this
transformation of the W, problem for graphs becomes the Beckmann problem [34]
for measures on R™. [39] provides optimization techniques and applications of this
objective to computer graphics; [21] presents an algorithm targeted to image domains.

3.2. Regularized transport. Regardless of whether we write the problem as (1)
or (3), the transport problem, as formulated above, suffers from nonuniqueness of the
optimized variable T or J, that is, the problem is convex but not strictly convex. This
makes the output of transport algorithms with linear costs unpredictable at best.

A typical approach to making the problem better posed is to add a regular-
izer, i.e., a second objective term adding stronger convexity to the problem. For
instance, [11, 3] regularize the matrix T" in (1) by subtracting a term proportional to
its entropy — >, ey Tvw In Toep. This popular work arguably has revitalized interest
in computational optimal transportation by providing an efficient approximation to
a wide variety of challenging problems in this domain, but entropic regularization
is worth reconsidering in the context of the graph-based formulation (3) for a few
reasons:

e The regularization is written in terms of elements of 7" rather than elements
of J. Entropic regularization on J rather than 7" is possible but does not
appear to admit as elegant an optimization algorithm.

e As the coefficient of the regularizer is decreased to zero, algorithms based
on alternating projection exhibit slower convergence as well as numerical is-
sues dealing with near-zero values. Note [35] recently introduced some im-
provements that help entropy-regularized transport in the small regulariza-
tion regime.

e No matter how small the entropic regularizer, the resulting transportation
matrix T satisfies Ty, > 0 strictly for all pairs of vertices v,w € V. This
contrasts qualitatively with sparsity properties for nonregularized transport.

We emphasize the first point above. Entropic regularization appears to be most
effective when applied directly to the transport matrix but is less relevant for problems
where the variables can be decomposed into per-edge flows.
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In our paper, we explore algorithms for an alternative quadratically regularized
model of regularized transport:

minJER|E\ ZEEE CeJe+ %Ze JZ
(4) Wi a(po, p1) == st. J>0,
DTJ= P1 — po-

Our reasons for studying (4) include the following:

e The quadratic regularizer allows for J, = 0 exactly. Furthermore, this reg-
ularizer is amenable to the analysis in section 4 showing that o modulates
sparsity of J in a controlled fashion.

e The algorithm we will propose in section 5 has little in common with alter-
nating projection techniques used for entropically regularized transport and
is suited to low regularization and sparse graphs with |E| < |V|2.

3.3. Dual problem. The optimization problem (4) is a convex quadratic pro-
gram with affine constraints and, hence, it exhibits strong duality by the affine Slater
condition [5, eq. (5.27)]. Denote the positive part of a vector v € R"™ as vy with
elements (vy); := max{v;,0}, and let |v| denote its Euclidean norm. Then, strong
duality implies the following proposition.

PROPOSITION 1 (duality). Quadratically regularized transport on graphs (4) can
be computed as follows:

1 1
(5) Wi,a(po,p1) = — sup af'p— §|(DP —o)4l3] .
& peRrIVI

where f := p1 — po and ¢ € RIEIX1 s the vector of costs per edge. Furthermore, the
primal variable J. on edge e € E is zero whenever (Dp — ¢). < 0.
Proof. With the notation defined above,
minjepiel Yeep Cede + G 2o 2

Wi .o(po, p1) == st. J>0,
DTJ=f

min  max |:CTJ+ Sy (f — (DTJ))Tp]
JeRIPI peRIVI 2

(6)

max
peRIVI

@
fTp+ min (JT(C — Dp) + fJTJ) .
Jer!?! 2
Here, we switched max and min by strong duality, as noted above.
Now, the inner minimum can be explicitly computed since it is a quadratic func-
tion of the variable J; optimality yields the complimentary slackness condition

J= (DP—C)Jr.
(&7

Substituting into (6) provides the desired unconstrained dual formulation:

1
Wi a(po, p1) = sup pr—%KDp—C)H%

pe]R”/‘ O

This dual problem suggests posing our problem in terms of the active set of edges
implied by a dual variable p € RIVI.
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DEFINITION 2 (active set). The active set of edges in E associated with a dual
variable p is the set S(p) :={e € E: (Dp — ¢)e > 0}. In a minor abuse of notation,
we will denote the active set of edges in E associated with a primal variable J as the
set S(J):={ee€ E:J. >0}

Given « > 0, the solution J¢ of the primal problem (4), and the solution p® of
the dual problem (5), by complimentary slackness we know S(J%) = S(p®). Hence,
we denote S(«) := S(J*) = S(p*) to be the active set of edges associated with the
optimization problem with regularizing coefficient «.

For development of our optimization algorithm in section 5, we make a key ob-
servation regarding the derivatives of the dual problem (5). For convenience, define
M (p) to be a diagonal matrix associated with the active set S(p):

- = {1 42

This allows us to write the objective in (5) as

sup [af o= (D0 ) M)~
pERIVI

9(p)

Differentiating this expression, where M (-) is constant, gives the expressions

(8) Vg(p) = af — DT M(p)(Dp — c),
(9) Hess[g](p) = —D " M (p)D.

In the language of spectral graph theory [9], the unweighted Laplacian matrix of a
graph G = (V,E) is the matrix L := DT D. The second expression immediately
provides a key observation:

PROPOSITION 3. The Hessian of the dual problem (5) is the unweighted Laplacian
L(p) of the active subgraph G(p) := (V, S(p)).

Note that L(p) is never full-rank; in particular, the null space of L(p) is spanned
by the indicator vectors of the connected components of G. This prohibits direct
application of Newton’s method to optimizing the dual problem.

4. Effect of regularizer on active graph. Transport with quadratic regular-
ization is less well understood than its entropically regularized counterpart. A key
feature is that this problem allows elements of J to take zero values, while entropically
regularized transport would force J > 0. To better understand this and other prop-
erties, in this section we provide theoretical characterization of the computed flow J
as a function of the regularizing coefficient «.

4.1. Notation and basic properties. Recall that the flow J is nonzero only
on the active edges S(p). Denote p(«) to be an optimal dual variable as a function of
the regularizing coeflicient a. Our goal is to provide some intuition for the effect of v
on J and p.

To streamline discussion, let (LP) denote the nonregularized problem

minjegizl Y .cp Cede
(LP) st J >0,
DTJ = f,
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and let Jy be a solution of (LP) with active set S(Jy); note that Jy is nonunique.
Furthermore, define the union of all active sets of the nonregularized problem as

(10) So = U S(Jo)-

Jo solution of (LP)

Let (QP) denote the quadratically regularized primal min-cost flow problem

Minjegiel Y .cpCede + %Jf
(QP) st. J>0,
DTJ =,

and let J* be the solution of (QP) with active set S(«). Using |J%| to denote the
Euclidean norm of vector J, we can rewrite the objective of (QP) as

Va(J)=cTJ+ %m?.

S(Jp) might not be unique, as linear programming might exhibit multiple solu-
tions Jy with different active sets. The quadratically regularized problem, however,
must exhibit uniqueness of the solution thanks to strict convexity. By standard I'-
convergence arguments, J* converges to a solution of (LP) as o — 0.

The objective function of the quadratically regularized problem (QP) is the sum of
an L' cost ¢'.J and an L? regularizer |.J|2, where the parameter o tunes the influence
of the two terms. Intuitively, as a decreases, solutions of (QP) will favor low L! cost
at the expense of the L? cost, which will increase instead. This behavior is formalized
as follows:

PROPOSITION 4. Let 0 < oo < o, and J* be the solution of (QP). If J* # J*,
then ¢ J* < T JY and |J*]2 > |J|2.

Proof. Since J? is the unique minimizer of the strictly convex optimization prob-
lem, we have [VV,(JY)]T(J* — J%) < 0 or, equivalently,

(11) (T =T + a(J)T (T = T < 0.
Reversing the relationship for o shows

(I =T+ (J)T (I =T > 0.
Subtracting these two expressions yields the inequality
(12) (JYT (T = J*) > 0.

Substituting this expression into (11) shows our first claim ¢' (J* — J) < 0. For our
next claim, we simplify
‘Joe|2 _ |Jo/ + (Ja _ J(x’)|2 _ |Ja’|2 +2<Ja/)T(J°‘ _ Ja/) + |Ja _ Jo/|2
> TP = by (12)

> |J¥|?, as needed. d
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Sources

Transport problem (¢ = 1)

© @

Solution to (QP), a >0 Solution #1 to (LP) Solution #2 to (LP)

Fic. 1. Counterezample showing that the regularized J* (a0 > 0) can be sparser than some
nonunique nonregularized solution. Here we show a simple flow problem on a directed graph (top),
where values of f are shown on the nodes. When o > 0, the solution to (QP) with a > 0 has one
sparse edge (bottom left), but when a = 0 multiple solutions exist with different sparsity patterns
(bottom middle/right).

4.2. Overview of main results. Careful analysis of our problem gives us a
more precise description of the evolution of the solution as we decrease ae. We provide
two related results regarding the behavior of J¢ for small o > 0.

PROPOSITION 5 (sparsity). There exists a constant & > 0 depending on the
graph G and data f such that for all o € (0,&), the solution J* of (QP) is also a
solution of (LP).

Resulting from the proposition above is the following corollary.

COROLLARY 6 (sparsity 2). There exists & > 0 depending on the graph G and
data f as well as a unique solution Jo of (LP) such that for all o € (0, &), Jy is the
unique solution of (QP).

The following counterexamples rule out stronger theoretical results that have
frequently been observed experimentally:

e In Proposition 5, we do not necessarily have that all solutions of (LP) are
solutions of (QP) for low values of a. In particular, it is possible that the
solution J¢ is sparser than some solution of (LP), as shown in the counterex-
ample of Figure 1.

e We do not necessarily have monotonicity of the active sets in «, that is S(«) C
S(a’) for 0 < a < o, as shown in the counterexample of Figure 2. A
monotonicity conjecture will be formulated in a subsequent section, after
introducing appropriate notation.

4.3. Proofs.

4.3.1. Preliminaries. For completeness, we recall standard notions regarding
flow decomposition from [30]. We begin with a few definitions:
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Sources Sinks
1
5 2
=2 1

I<axkl

1000 edges with cost ﬁ

Transport problem (¢ marked per-edge)

Fic. 2. Counterezample showing that the regularized J does not necessarily contain the active
network of the regularized J*. Here we show a simple flow problem on a directed graph (left), where
values of f are shown on the nodes and the cost vector c is shown per edge. When « is close to 0
(top right), the solution to (QP) does not use the high L' cost edges, but rather transports the mass
using the low L' cost edges. When o is large (bottom right), it is not advantageous to use the low
LY cost path because of the multiple successive edges that have high L? cost. The solution prefers
then to use the high L cost edges.

e A directed path is an ordered set of distinct nodes {v;, —v;, —---—v;, } such
that (v;,,v;,,,) € E for all k € {0,...,n —1}. P denotes the set of directed
paths in G.

e For r € P, define s(r) := v;, to be the starting node of r, t(r) := v; to be
its ending node, and len(r) = n — 1 to be its length. Define

P:={(vi;,vi,,) k€ {l,...,len(r)}} CE

as the set of r’s edges.

e A cycle is an ordered set of nodes {v;, —v;, —---—wv;, } such that (v;,,v;,,,) €
E for all k € {0,...,n — 1}. Furthermore, all nodes are distinct except the
starting and ending nodes, which are the same (v;; = v;, ). Let C denote the
set of cycles.

e Given r € PUC, define a flow 6(r) : E — {0, 1} via

o (e

We will use 6(P) to refer to the analogous flow given an edge set P.
e Given a flow on paths and cycles J : P UC — R, we can define an arc flow
J : E — R by summation. For e € E, this flow can be written

(13) Je = Z5e(r)j(r)+z5e(c)j(c).

repP ceC

We will only need to consider flows .J satisfying the constraint DT J = f. The following
theorem decomposes every arc flow satisfying the divergence constraint D'.J = f into
path and cycle flows.

THEOREM 7 (flow decomposition theorem [30, Theorem 3.5]). Every nonnegative
path and cycle flow J has a unique representation as a nonnegative arc flow J, given
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by (13). Furthermore, suppose f : V — R satisfies ) .\ fo = 0, and suppose a
nonnegative arc flow J satisfies D'.J = f. Then, J can be decomposed as a path and
cycle flow J:PUC— Ry such that every directed path with positive flow connects a
source s € V with fs <0 to a target t € V with fi > 0.

We use this theorem to decompose the arc flow J into a path and cycle flow Je.
By optimality of J¢, this decomposition does not contain any cycles ¢ € C; if such a
decomposition contained a cycle, then removing it can only decrease the total cost.
We are left with path flows with positive mass.

Let PG~ be the set of all directed paths connecting sources to targets:

'P(S*t) = {T epP | fs(r) <0, ft(r) > O} .

By the remark above, for every e € F,

(14) JE= )" b(r) (),

rePs—t)

which we can denote in a more succinct notation J® = §-J%, where § € {0, 1}I1EIx [P !

is the matrix of path indicator functions. This decomposition of J¢ into (s —¢) paths
also applies to solutions of the nonregularized problem (LP).

For our remaining discussion, given a solution J either of (LP) or (QP) for some
a, J will refer to a corresponding path flow above. Such a decomposition will be
useful as it gives us a uniform upper bound on the flow depending only on G and f.

PROPOSITION 8 (boundedness). Suppose f : V — R satisfies Y, o f(v) = 0,

and take a flow J : E — R, with DTJ = f decomposed into J as in (14). Then, for
all paths v € PG~ and edges e € E we have J(r) < —fsry and Jo < — ZveV,f1,<0 fo-

Proof. Since there are no cycles in the decomposition of J, there exists a source
51 € V with no incoming flow. By the divergence constraint, J(r) < —f, for all
r € P61 such that s(r) = s1, i.e., the outgoing flow cannot be larger than what the
source has to offer.

Remove this source s; and all the paths starting from s; from the graph, and
repeat the process: There exists another source so € V that has no incoming flow
otherwise we would have a cycle, so by the same reasoning J(r) < —f, for all
r € PEY such that s(r) = sa. Repeating this process until exhausting all the
sources shows j(r) < —fsqy forall r € P=) . Furthermore, for every edge e € E,

Jo= 3 snd) =3 3 s

repls—t) VEV Lepls—t)

fv<0 s(r)=v

(Y J0)=- A :
veEV  Lepls—t) veV
fo<0 " 5(r)=v fu<0

We make a final remark before beginning the proofs of the propositions above.
Given a nonnegative flow J decomposed as J = §J, we can rewrite the objective
function V,, of (QP) on the path flows:

(15) V() :cTJ+%|J\2 :eiﬂ%fsj =V, (J),

where ¢ := 67¢ € RP“7I1 and § := 676 € RP“"IXIP“""I Note that S is a
symmetric nonnegative matrix and 0 < S(r,r’) < |E| for all r,r’ € P9,
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O——0 O——0 @ ®
QO o—
" T —

J1 J2

Fic. 3. Exzample decomposition provided by Lemma 9. Here, Ji=Jo+er Rl, where € = 1.

4.4. Proofs of Proposition 5 and Corollary 6. Now we are ready to begin
the proofs of Proposition 5 and Corollary 6. For the first proof, we will use the
following lemma.

LEMMA 9 (divergence-free decomposition). Suppose f : V — R satisfies ), oy fo
=0, and take Ji,J3 0 B = Ry with DTJ, = DTVJy = f; assume these flows admit

decompositions Ji, Jo with J; = 6J;. Then, there exist paths X* Xi, o, XX C
PE=Y satisfying

Jo(r) < Ji(r)  forallre X* ke {1,...,n},
Jo(r) > Jy(r)  for allr € XK, ke{l,...,n},

and corresponding scalars €1, ...,€, > 0 such that j1 = jg + ZZ=1 ekRk, where
(16) (Ri)e := > Se(r) = > de(r)
rexk rexk

The arc flows Ry, satisfy DT Ry, = 0 for all k € {0,...,n}.

Note we can equivalently write (16) via the path decomposition

Rk: ZX’P— ZX’I‘?

k k
reX”r ’I"EX+

where x, € {0,1}P“"”IX1 is the indicator of the rth path. Here the +/— subscript
denotes excess and lack of mass, respectively. Figure 3 illustrates a simple example
in which we need only one Ry, term.

Our basic approach to provmg this lemma will be to construct the Rj’s one-at-
a-time so that J1 and J2 + Zk 1 Gng agree on at least one more path than in step
¢ — 1. If they do not agree completely, we identify a set of (s — t) paths X , where
J1(r) < Ja(r) and another set of (s —t) paths X*, where .J; (1) > Jo(r). Furthermore,
we enforce the following property for the sources and targets of both sets of (s — t)
paths: each source has exactly one outgoing path from X* and one outgoing path
from X _’fr, and each target has exactly one incoming path from X* and one incoming
path from X _’f_.We repeat this procedure until all paths agree.

Proof. If Ji = Jo then choose n = 0, and there is nothing to prove.
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Assume .J; #* Jo. Then, there exists a path 7o € P~ such that jl(ro) #* jz(ro);
we can assume without loss of generality that .J; (rg) > Jo(r). This implies the source
so = $(po) sends strictly more mass by Jy than Jy to the target ¢ty = t(rp) along
ro. By the divergence constraint, another path r; € P68 must have the opposite
relationship, i.e., J; (r1) < jg(rl). Given rg, so = s(rg), and to = t(rg), we will iterate
this basic observation to construct e, and paths X*, X*.

We phrase our proof in terms of the following algorithm. Assume we initialize
jé :=J,, and loop over m = 0,1,2,... as follows:

e Step 1: Construct XT+17XT+1:
1. Since J; # Jj, identify 7o € P~ such that Jy(rg) # Ja(ro). Assume
without loss of generality that J; (o) > J}(ro).
2. Forn =1,2,..., repeat the following, where s, := s(r,,) and t,, := t(ry,):
— If n is odd, add a new target ¢, € 14 and a Qath rn € PGE1 guch
that s(rn) = sp—1, t(ry) = tn, and J5(r,) > J1(rn).
Such a path must exist: if it did not, then all paths r leaving s,
satisfy Jy(r) < Jy(r). Since r,_; leaving s, i satisfies J5(r) <
jl(r), this would contradict the divergence constraint:

_fsn,I = Z jg(’r‘) < Z jl(r) = _fsn,l-
repls—t) reps—t
s(r)=sn—1 s(r)=sn—_1

— Symmetrically, if n is even, add a new source s,, € V and a path r,, €
PG such that s(ry,) = sp, t(rn) = tn_1, and J5(r,) < Jy(rp).
— If s, or t, is a duplicate, halt this inner loop.
3. Depending on how we terminated the loop above, select a specific sub-
graph to construct X™*! and XTH:
— Case 1, duplicated a source s; (0 <1<n—2,1 even) or a target t,

(0<1<n—2 1 odd): Take
X™H = {r; 1 1+1<j <n,jeven} and
XPh={r; 1 1+1<j<n,jodd}.

— Case 2, repeated tg: Take

Xt = {r; :0<j <n,jeven} and
X7t = {r; :0<j <n,jodd}.

These two cases are constructed so that XTH and X™"! satisfy the
property (%) every source or target is connected with exactly one path
in X" and one path in X7"™", or is not connected at all.

e Step 2: Set
f%m—i-l = Z Xr — Z Xr-

m1 m41
reX reXy

The arc flow Ry,41 from Rm+1 is divergence-free by (x) above, i.e., DTR=0.
By cor}struction, R, 41 removes mass where Jo > J; and adds mass where
J1 > Jo.
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e Step 3: Set
Emt1 i= min |J1(r) — J5(r)].

rexmHuxTH
By construction, J; and J never coincide on paths r € X™! and XTH, SO

€ > 0.

e Step 4: Update jé via
m—+1

jé = jg + Z EkRk.
k=1

J4 is still nonnegative since we remove mass on the paths where .J; () < J4(r),
with an amount €,,; that maintains nonnegativity. Taking

P 2= AIGIN, ¢ byt |1 (r) — J5(r)],

by construction .J; (r Tril) = Jh(r 7541)- The previously cons:uructed IS A
¢ X™ U X7, maintaining the property Ji(ry) = Ji(r}) for all k €

{1,...,m} after the update.
e Step 5: Increment m, and then halt if J; = jé Otherwise, return to Step 1.
This algorithm must terminate because at each iteration we ensure that there is
at least an extra path r € Pt such that Ji(r) = Jb(r). At this point, J, = J} or,
after expansion, J1 = Jg + Zk ekRk. O

We use this lemma to prove Proposition 5.

Proof of Proposition 5. We prove the proposition by contradiction. To start, sup-
pose a € (0,@&) for some & > 0 that will be quantified later depending exclusively on
the graph G and the data f. Let J* be the unique solution of (QP) and assume that
J* does not solve (LP).

Our proof leverages the fact that the L' cost dominates when « is small. So, if
we move some mass onto some edges that are active in (LP), we can decrease the L'
cost without significantly perturbing the L? term. Our argument proceeds in three
steps:

1. Perturb the flow J¢ into J’ by moving mass.
2. Show that this perturbed flow J’ decreases the L' cost.
3. Show that for o small enough, the perturbed flow performs better than J¢
for (QP), which yields a contradiction.
The biggest difficulty of this proof is finding a relevant divergence-free perturbation
of the flow; this task is facilitated by the decomposition in Lemma 9.

For a solution Jo of (LP), Lemma 9 shows there exists n € N, €1,...,¢6, > 0,
and divergence-free arc flows Ry, ..., R, such that J jO — Jo 4+ Zk 1 exR. Moreover
n > 0 since we assumed that J< doesn t solve (LP). We begin by proving TR, <0
for all k € {1,...,n}; for ease of reading the vertical line on the left demarcates the

roof of this claim.
Suppose there exists k € {1,...,n} such that ¢TRy, > 0. Define

1
[
¢ g i L0}

Note ¢ > 0 since by construction in Lemma 9, Jo(r) > J(r) > 0 for r € X*.
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Next, define j(’) := Jo — €Ry,. Consider a path r. Recalling Jy > 0, we have
three cases:

re X* . Jy(r) > €Ry(r) since Ry(r) =1 and by choice of ¢’

r€ X% Ry(r) = —1, so again Jj(r) > 0 because —&' Ry (r) > 0.

rd Xku Xi . Ri(r) = 0 so again we still have J§(r) > 0.

Hence, Jj is nonnegative, and so is Jj after applying (13). Furthermore, since
DTRE =0, we have D' J} = f, implying that J, is a feasible solution.
Finally,
CTJ(; = VTJA(; = éTjo — GIETR]C < éTjo = CTJO
since we assumed &' Ry, > 0. This contradicts optimality of .Jy for (LP), invalidating
our initial assumption. Hence, ¢' Ry, < 0 Vk. 0
We next show that there exists some k € {1,...,n} such that TR, <0:
Suppose ¢' Ry, =0 for all k € {1,...,n}. Then,
n
c"Jo=c"Jo=e"J"+) e R =¢"J*=c"J
k=1

So, J* solves (LP). This contradicts our assumption at the outset that J* is not
a solution of (LP). O

Now that we found which paths to perturb, we will use them to decrease the
L' cost while judiciously controlling the increase of the L? term via an appropriate
choice of constants. Introduce the perturbed flow J = Jo+ ef%k, where € is a small
constant that will be chosen later. This perturbed flow is nonnegative by construction
of Xﬁ,X_’f_ and satisfies DT.J’ = f. Our remaining task is to show that it performs
better than J* for (QP) or, equivalently, that the following value is smaller than
Vo (J):

2
(17) Va(J') = Va(J) + € [eTRk + a(J“)TSRk} + %aRQSRk.
Define
(18)  Kpmin ==  max {Z )=y elr): Y )= > Er) < o}
X1,X2CPED reX, reXs reX, reXs

TH B T A
- max ¢ R:R= r ry C R<0;.
XI,XQCP(s—t){ Z X § : X }

reX, reXa

Note that Ky, < 0 since [PE~H| < +oo0.

By Proposition 8, there exists a constant M; > 0 that only depends on the
graph and f such that |/%[ < M;. Furthermore, since there is a finite number of
paths in G, there exists My > 0 which only depends on the graph such that |Ry| =
| 2rex. Xr — 2rex, Xr| £ Ma. Finally, the matrix S in (15) satisfies [S| < M;
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for some M3 > 0 depending only on the graph, since every entry is bounded by
|E|. | S| denotes the spectral norm of S. Combining these inequalities, there exists

K > 0 that only depends on the graph and f such that |(J%)T SRy| < K. Choose

~ Kmin ~
a=%>0,andassumeo<a<a.

By construction, for such a choice of o we have

ETRe+a(J*)TSR, < ¢ Ry+aKy  since [(J*)TSRy| < K

(19) < éT]%k + @ by choice of &
< Bwin 0 by definition of K.
Take K3 1= Amax(S)MZ, where Apax(S) denotes the maximum eigenvalue of S;

note K3 only depends on the structure of the graph. This choice provides the
inequality aR} SRy < GAmax(S)|Ri|> < @K3. Finally, choose € > 0 small enough
such that J’ remains nonnegative and K’;‘“e + ng% < 0; such an € must exist
because Kpin < 0. Then, by (17) and (19) we have V,,(J') < Vi (J%).

This final inequality shows V,(J") < V,(J%), which contradicts the definition of J
as the unique minimizer of V. 0

The proof of Corollary 6 is rather straightforward.

Proof of Corollary 6. Pick & given by Proposition 5, and let «, @’ such that 0 <
a<a <a.

Define J* (resp., J O‘/) to be the solution of the quadratically regularized prob-
lem (QP) with a regularization « (resp., o).

According to Proposition 5, J*, J* are also solutions of (LP). We will show, by
contradiction, that they are the same solution.

Assume J* # J*,

Because both flows are solutions of (LP), we have that ¢ J* = &' J

Since J¢ is the unique solution of (QP),

(07

Va(Joe) — Va(ja) — éTjoe + (ja)TSja < éTjo/ + §(jo‘/)TSja/ _ Va(Jou);

| R

because ¢ J* = ¢T.J* | we have that (J*)TSJ* < (J*)TSJ* | contradicting Propo-
sition 4.
We conclude that J* = J is the same solution of (LP). |

4.5. Monotonicity conjecture. Asshown in a previous counterexample, we do
not necessarily have monotonicity of the active sets S(«) as a grows. Indeed, when «
increases, new “L2-friendly” edges might be activated thanks to a mass transfer from
previously active “L'-friendly” edges. In certain cases, this mass transfer completely
deactivates these L!-friendly edges, ruling out such a property.

We experimentally observe a monotonicity property in the mass flow on the edges,
however. It appears that mass flow on these L?-friendly edges tends to always grow
as « increases, and vice versa for the L!-friendly edges. One difficulty consists in
determining these edges, which depends in a nontrivial way on the graph G and the
cost c.

This monotonicity behavior is summarized in the following conjecture.
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! O

i % i Q
' )

Solution for o = 1071 Solution for o« = 10 Solution for o = 103

T

Ry
Fic. 4. Ezample of solutions of (QP) for increasing values of «, and the corresponding newly
activated divergence-free flows R;.

CONJECTURE 1 (monotonicity). Let J*',J%2 be the solutions of the quadratic
program (QP) for 0 < a1 < ag. Use Lemma 9 to write

J? = J 4+ R,

3

where €; > 0. Then, for all & € (ay,a9), the solution Je of the quadratic pro-
gram (QP) with regularization o' is given by

TV =T+ R,

with the same divergence-free flows R; for some €; € [0, ¢;].

If this is true, one can choose the parameter ag — +00, so that the minimization
problem (QP) would yield a minimizer J°° for the quadratic term only, regardless
of the cost c¢. Comparing this solution to lim,, o J*' = J° and, in particular, ex-
tracting the divergence-free flows R; from the difference J> — JO, yields a complete
characterization of the L'- and L?-friendly paths. This result still does not give a
complete description of the ¢;’s in terms of «, but we believe that as it is stated,
Lemma 9 should be enough to obtain a clean proof.

Figure 4 illustrates the monotonic behavior on a graph with 5 vertices and 7
edges. The cost per edge is 1 unit per mass flow for all edges, except for the edge
leaving the source and pointing obliquely to the right which has cost 10. The red
vertex is a source providing 1 unit of mass (negative mass), the green vertex is a sink
taking away 1 unit of mass (positive); all other vertices are intermediary nodes.

In the top three parts of Figure 4, values of the flow solving (QP) for a = 1071, 10,
and 103 are marked on the edges, with positive flow represented in green, and negative
flow in red. In the bottom two parts, values of the divergence-free flows R;, where
J* = J%+ 3", & R;, are represented.

When o = 107!, we obtain a solution of (LP). As « increases to 10, the
divergence-free loop R; illustrated below the case a = 10 in Figure 4 is activated,
with a coeflicient growing up to €3 = 0.07. Increasing o will further increase €1,
meaning that mass flow on the newly activated edges will increase and mass flow on
a previously activated edge will decrease. A similar behavior occurs when « varies
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from 10 to 10%; on top of €; = 0.25, another divergence-free loop R, gets activated
with a coefficient €5 = 0.25.

5. Optimization algorithm. Our optimization algorithm for quadratically reg-
ularized flow takes inspiration from classical iterative methods for solving linear sys-
tems. In each iteration, we choose a search direction s from the current iterate x and
update our iteration via line search x +— x + ts for some ¢ > 0; note that this stan-
dard approach from optimization actually contrasts with the alternating projection
algorithms commonly used, e.g., in [3] for regularized transport. The difference here
is that our piecewise-quadratic objective function makes it possible to carry out a line
search in closed form.

From a very high level, our iterative algorithm for optimizing the dual problem (5)
divides into standard steps:

S < SEARCH-DIRECTION(py,) (section 5.2),
ty, < LINE-SEARCH(py, Sk;) (section 5.1),
(20) P41 <= Pk + tkSk.

We will present these steps in reverse order, since our line search procedure will inform
our choice of search directions.

5.1. Line search. Our first goal is to define a procedure for increasing the dual
objective (5) given a current iterate py € RV and a search direction s, € RIVI.
Denote My, := M(py) € {0, 1}/F1¥IFl the diagonal matrix indicating the active set
S(pr). Then, for small ¢ > 0, py the dual objective restricted to the line through s
is the parabola

1
g (t) = af T (p + tsi) — oDk +tDsy — ¢) " My(Dpy + tDsy, — c)

1
= f§t2[5;Lksk] + t[afTsk — v My Dsg| + const.,

where L; := DT M;,D is the Laplacian of the active subgraph and vy := Dp;, — c.
This parabola is minimized at

af s, — v,;erDsk

-
Sk Lksk

(21) tquadratic =

Note tquadratic = 0 in every step of our algorithm because we choose s, to be an ascent
direction for the dual objective.

This formula for minimizing the current parabola, however, is only applicable
if M(pr) = M(pr + tquadraticSk), that is, while the active set of edges S(-) remains
unchanged. Hence, we limit our line search if M changes before the parabola is

minimized. Define the “hitting time” vector
(22) hy == —v, @ (Dsk),

where @ indicates elementwise division. Then, if we define

min h
(23) tactive set +— { ese.ﬁ hll: > O’

then we choose

(24) tk — min(tquadratica tactive set)~
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If tx = tactive set, then the active set and, hence, M}, changes. In section 5.2.2, we docu-
ment how to deal with this change elegantly. We never find a case where tactive set = 0
before convergence.

5.2. Search direction. All that remains is the choice of search direction sy
given the current iterate py. Ideally, we might wish to use a search direction from
Newton’s method, but the Hessian (9) potentially has a large null space of dimension-
ality equal to the number of connected components in the active graph.

Locally, the objective is quadratic but not strictly convex; in particular, there are
directions along which it may be flat. Hence, we adopt an alternating strategy:

(25) s o { af — DT Mv,  if k is odd gradient direction,
L (af — DT Myvy) if kis even | pseudo-Newton direction.

The objective (5) is not affected by adding any multiple of 1 to p, so for numerical
stability we shift s; to sum to zero. We use the phrase “pseudo-Newton” to refer
to the fact that the Hessian Ly is not invertible. The Moore—Penrose pseudoinverse
L;: essentially restricts optimization to the space in which the objective function has
curvature; then, the gradient step accounts for optimization in directions for which
the Hessian provides no information.

The experiments in section 6 verify that our choice of search directions is useful
in practice for reducing the number of iterations. But, as written, it appears that
every iteration of our algorithm is far more expensive algorithmically: the Laplacian
Ly, changes any time the active set changes, preventing the use of a fixed factorization
to apply L; Our experiments also show that preconditioning the gradient descent
using the Laplacian L := DT D of the entire graph G is ineffective. Hence, as written,
the algorithm could take upwards of O(|V[?) time to apply LZ, whereas individual
iterations of gradient descent take O(|V]) time.

As suggested in [29], however, adding or removing an edge to the active set S(py)
corresponds to a rank-1 change of the Laplacian Lj. In particular, recall that Ly :=
DT M;,D, where M, contains 1 on the diagonal whenever the corresponding edge is
in the active set. Adding an edge to the active set corresponds to flipping a diagonal
element of M}, from 0 to 1, while removing an edge does the opposite. In other words,
if tx = tactive set, then Ly = Li £ dkdz, where dj, is the row of D corresponding to
the edge activated/deactivated at tactive set; Otherwise, L1 = Li. This suggests that
prefactorization plus rank-1 updates similar to the Sherman—Morrison formula [37]
can be used to make applying Lj less expensive from iteration to iteration.

Two confounding factors, however, require specialized attention before we can use
rank-1 update formulas:

1. Graph Laplacians are not full rank and, hence, standard techniques for
Cholesky factorization will fail.

2. The pseudoinverse L,:r is a dense matrix, whereas Ly is potentially sparse
when |E| < |V|?. Hence, rank-1 update formulas for L} directly as explained
in [29] are still expensive computationally.

We develop strategies for overcoming these issues in the subsections below.

5.2.1. Dealing with null space. Tools for sparse matrix factorization and
rank-1 updates typically assume that the matrices involved have full rank. In partic-
ular, they typically are optimized for applying inverses rather than pseudoinverses of
matrices. Hence, we first provide a technique for writing the application of Lﬁ in a
sparse but low-rank fashion.
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To do so, we note that the null space of Ly, is simply the set of indicators of each
. . |V | X (# components)
connected component in the active graph. Define NV, € R}/ to be the
matrix whose columns are an orthogonal basis for the null space of L, constructed,
e.g., by flood fill on the connected components of the active graph followed by nor-
malization. Furthermore, define Pj to be the projection operator onto the orthogonal
complement of the column space of Ny:

(26) P, :=1— NyN,.

Suppose we wish to find the product z := L;:b for some b € RIVI. Then, by defini-
tion of the pseudoinverse, x satisfies the relationship Lyx = Pb. Furthermore, the
pseudoinverse zeros out components of  in the null space of Ly, showing IV, ,;r z =0,
which of course implies Ny N, ,;'— x = 0. Adding these two expressions together shows
(L + NkNl;'—):L‘ =Pb = =L+ NkN,:)_lPkb. In other words:

(27) Lf = (L, + NN )7L Py

An analog of this formula also appears in [29].

5.2.2. Maintaining sparsity. The matrix Ly + NN, ,CT is invertible because the
column spaces of L, and Nj together span R!V! by construction and, hence, can
be factored using the standard Cholesky method. Unlike Ly, however, it is almost
certainly dense.

To circumvent this issue, note

.
MD M. D
(28) Lk+NkN,;r—< ]\f’: ) < ]\ﬁ; )
———
Wy

Here, we leverage the idempotence property M, ,f = My, since the diagonal of M, is
composed of zeros and ones.

We apply sparse matrix QR factorization machinery proposed in [12] to factor
Wy = Qo Ry, providing an initial Cholesky factorization

Lo + NoN, = W, Wy = Ry Ro.

Updating Ry to Rj41 is carried out by sparse rank-1 updates to the Cholesky factor-
ization, illustrated in Figure 5:
e Introducing an edge e € E to the active set makes at most four rank-1 changes
to L+ NNT:
1. Adding d.d], where d, is the row of D corresponding to e.
2. Subtracting nin{ + neng and adding an ' if e merges two connected
components ny and ny into a new component 7.
e Removing an edge e € E from the active set makes at most four rank-1
changes to L + NN ':
1. Subtracting d.d_ , where d, is the row of D corresponding to e.
2. Adding nyn{ +ngng and subtracting nn ' if e breaks a connected com-
ponent 7 into two connected components nq and ns.
Our algorithm never computes Lg + NIV, ,;r explicitly but rather updates its factor-
ization Ly + NyN, = RyR/ using a sparse upper-triangular Ry in each iteration
via the rules above. Each rank-1 update is carried out using the CHOLMOD library
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SRR

Two components Add edge: Remove old components: Add new component:

+ded] —niny —nang +an

FiG. 5. Rank-1 updates required to add an edge connecting two components. Remowving an edge
essentially corresponds to these operations in reverse.

in SUITESPARSE, which uses the algorithm described in [7] to update/downdate a
Cholesky factorization while maintaining sparsity.

With this rank-1 update machinery in place, Algorithm 1 provides pseudocode
combining the steps we have described into a full algorithm for regularized graph
transport.

6. Experiments. In this section, we illustrate the performance of our algorithm
on graphs of different sizes, as well as for different regularization parameters . Our
implementation is in MATLAB, and rank-1 updates are dealt with using the library
SUITESPARSE. Our single-threaded implementation is run on a laptop with an INTEL
17-4510U with 2 physical cores (4 logical) at 2.00 GHz and 12 GB of RAM.

Our code, which we will refer to as HESSUPDATE, is benchmarked against two
other codes; the first one, referred to as GRADDESCENT, is a classical gradient descent
(or rather “ascent” in our case). The second one, referred as PRECONDGRAD, is
similar to HESSUPDATE but does not update the Laplacian at all; it uses the full
Laplacian of the graph at each Newton step, which is prefactored initially.

The three implementations were benchmarked on 10 different graphs for each
size, with 5 different sizes: 50, 100, 500, 1,000 and 5,000 nodes. These graphs were
generated using the algorithm detailed in [41]. In particular, we used their method to
generate random connected graphs of varying sizes whose vertex degrees are restricted
to the range [1,10] and follow a heavy-tailed distribution with exponent a = 2.5 and
average z = 5. For each graph, eight different parameters a are tested, o = 107" for
ke {-1,...,5} as well as « = 5 and a = 10. For each graph and parameter a, 10
runs are made with randomly generated data f. To generate the data f, we randomly
select 10% of its nodes to be sources or sinks, and randomly assign values for their
capacities uniformly chosen between —10 and 10. Then we modify the capacity of
the last node to be the opposite of the sum of all the other capacities, ensuring that
ZUEV fo=0.

The graphs generated are bidirectional with one connected component, which
ensures that a feasible solution always exists for such random data. Results of these
10 runs are then averaged for each pair (nyertices, ). The three methods are limited to
a maximum of 3,000 iterations, with convergence considered as achieved if the norm
of the gradient is less than 1078,
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Algorithm 1 Optimization algorithm for quadratically regularized transport on
graphs. See the accompanying MATLAB implementation for code including toler-
ances and convergence criteria. Cholesky factorization updates (adding zx' for a
vector x) are always scheduled before downdates (subtracting xz ") so that R is al-
ways full rank.

function REGULARIZED-DUAL-TRANSPORT(G = (V, E), ¢, «, f)
// Optimization algorithm for dual problem (5)
p < RanpoM(|V] x 1) // Randomly initialize dual variable p
(v, M) < Dp—c¢; M <« diag(v > 0) // Indicator of active edges
L+ D"MD // Laplacian of active subgraph
N <« FrLooD-FILL-Basis(L) // Null space basis; one column per connected component
R + SPARSE-QR(((MD)T N)T) // Q mnot needed from QR factorization from (28)
for k=1,2,3,...
// Choose line search direction
s+ af — D" Mv // Gradient direction from (8)
if k is even then // Use pseudo-Newton every other iteration
s+ RT'R™T(s = NNTs) // Forward then back substitution to apply LT wvia (27)
// Line search
tquadratic 70‘f—r2}1’;MDS // Minimum of parabola, (21)
h + —v© (Ds) // Time t at which each edge flips active or inactive, (22)
tactive set < min(POSITIVE-ELEMENTS(h)) // First edge to change sign, (23)
t < min(tquadratic, tactive set) // Go to minimum or to active set change (24)
p< p+ts // Updated dual variable, (20)
// Update Cholesky factorization RTR=L+NNT for new Laplacian
(v, M) < Dp—c¢; M « diag(v > 0) // Update indicator of active edges
for each new edge e in active set
L« L+ded] // Rank-1 addition to Laplacian matriz
RANK-1-CHOLESKY-UPDATE(R, d.) // Add ded] to factorized matriz
if adding e merges components ¢y, c2 into ¢ then
REMOVE-COLUMNS(N, (c1, ¢2)) // Remowe old disjoint connected components
ADD-COLUMN(N, ¢) // Add new component
RANK-1-CHOLESKY-UPDATE(R, €) // Add c&" to factorized matriz
RANK-1-CHOLESKY-DOWNDATE(R, ¢1) // Subtract cic] from factorized matriz
RANK-1-CHOLESKY-DOWNDATE(R, c2) // Subtract ch; from factorized matrix
for each edge e removed from active set
L+ L—d.d] // Rank-1 subtraction from Laplacian matriz
if removing e splits component ¢ into components c1, c2 then
REMOVE-COLUMN(N, €) // Remove old connected component
ADD-COLUMNS(N, (c1, ¢2)) // Add new individual components
RANK-1-CHOLESKY-UPDATE(R, c1) // Add cie] to factorized matric
RANK-1-CHOLESKY-UPDATE(R, c2) // Add ch; to factorized matriz
RANK-1-CHOLESKY-DOWNDATE(R, €) // Subtract ec' from factorized matriz
RANK-1-CHOLESKY-DOWNDATE(R, d.) // Subtract d.d] from factorized matriz
return p

As a reference, we also include the runtime of a classical simplex algorithm on
the unregularized problem, for the same graphs and initial data. This algorithm will
be referred as SIMPLEX, and uses the MATLAB dual simplex implementation via the
command LINPROG.

Table 1 provides the average runtimes of the code for each pair (Nyertices; ). Since
this time is either the time to convergence or the time to reach the maximum number
of allowed iterations, we will also compute the average percent error between the
objective value when the code stops and the true global maximum value. These results
are presented in Table 2. Runtimes of SIMPLEX were independent of a (although each
run was made with a different f); hence, we only represent these results once, as a
function of the size of the graph.

We also provide in the last table of Table 2 the relative difference of the L!
objective value (c’.J) between the regularized solution with parameter o obtained
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TABLE 1
Average runtimes in seconds for HESSUPDATE, GRADDESCENT, and PRECONDGRAD as a func-
tion of the size of the graph and the parameter o, and average runtimes for SIMPLEX as a function
of the graph size.

Size a=107° 1074 1073 1072 1071 1 5 10
HesSUPDATE

50 44-107% 6.48-107% 4.93-107% 5.73-107% 1.01-1072 1.73-1072 2.33-1072 3.42-107?
100 1.52-1072 1.16-1072 1.2-1072 1.39-1072 6.52-1072 7.51-1072 0.14 0.14
500 0.33 0.39 0.87 2.97 6.5 2.75 3.59 4.25
1000 1.2 6.32 6.78 8.6 11.14 13.61 13.77 13.55
5000 3.4 4.66 7.84 9 11.56 14.28 13.3 14.73
GRADDESCENT

50 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26
100 0.89 0.89 0.9 0.9 0.9 0.89 0.9 0.89
500 21.19 21.17 21.23 21.14 21.16 21.16 21.17 21.14
1000 87.88 87.86 87.93 87.89 87.9 88.05 88.02 87.88
5000 586.73 583.2 582.73 540.24 539.91 540.64 539.58 540.17
PRECONDGRAD

50 0.34 0.33 0.23 6.92-1072 2.18-1072 1.09-1072 6.41-1073 4.74-1073
100 1.77 1.7 1.52 0.62 0.25 8.57-1072 4.95-1072 3.67-1072
500 23.81 23.73 23.89 22.28 6.86 2.28 1.21 0.5
1000 94.67 94.65 94.87 94.53 45.2 29.56 8.5 4.04
5000 646.16 647.34 645.69 599.40 554.84 383.79 241.55 64.19

SIMPLEX on the unregularized problem
50 1.07-1072
100 1.44-102

500 0.21
1000 2.66
5000 14.38

by HESSUPDATE run until convergence and the unregularized solution obtained by
SIMPLEX, for each run.

We can see from Table 1 that HESSUPDATE always outperforms GRADDESCENT
timewise. This is unsurprising as checking every other iteration if a Newton direction
is available allows us to bypass multiple gradient descent steps. We can also see
from Table 2 that convergence always occurs for HESSUPDATE within the allotted
number of iterations except for high temperatures « € {5,10} on big graphs of sizes
1,000 and 5,000, whereas GRADDESCENT always reaches the maximum number of
iterations before converging, except for a € {1073,1072} on small graphs of sizes 50
and 100.

We note some interesting behavior when comparing HESSUPDATE and PRECOND-
GRAD; HESSUPDATE always outperforms PRECONDGRAD in speed for smaller reg-
ularizers o whereas the opposite is true for larger temperatures, as we can see from
Tables 1 and 2. The explanation for this behavior is quite simple; our graphs have
one connected component and are bidirectional. As we increase the temperature, the
active graph tends to grow, barring pathological counterexamples. We can experi-
mentally check that for high temperatures, the optimal flow will activate nearly all
edges on the tested graphs and, hence, the full Laplacian is a good approximation
for the active Laplacian of the optimal solution. This allows PRECONDGRAD to have
quicker iteration because there is no update to do for the Laplacian, while conserving
good convergence speed because of a good static guess for the active graph.

For smaller temperatures, the opposite is true; the full Laplacian is a bad ap-
proximation as we can guess from the sparsity property Proposition 5. Hence the
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TABLE 2
Average relative error for HESSUPDATE, GRADDESCENT, and PRECONDGRAD as a function of
the size of the graph and the parameter a. oo means that the error was too big and the algorithm
did not converge. Also represented is the average relative difference L1 cost between HESSUPDATE
and SIMPLEX.

Size a=10"7 10~ 1073 1072 10! 1 5 10
HESSUPDATE

50 0 0 0 0 0 0 0 0

100 1.2-1073 0 0 0 0 0 48-1073 4-107*
500 1.4-1072 0 5-10* 1.87-1072 2.19-1072 0 3.84-1072  6.64-1072
1000 3.5-107%  1.5-1073 6.3-1073 3.13-1072 8.87-1072 2.93.1072 0.27 0.46
5000 5.9-107% 55.1073 1.23-1072 7.55-1072  8.9-1072 0.13 0.19 0.22

GRADDESCENT
50 0.88 0.26 1.51-1072 1.55-1072

oo o0 oo o0
100 0.86 0.27 1.21-1072 2.02-1072 oo 00 [ 00
500 0.85 0.3 1.7-1072 00 o o0 00 %)
1000 0.87 0.32 1.82-1072 00 0o 00 0o 00
5000 0.25 9.71-1072 4.5-1073 00 S 0 S S
PRECONDGRAD
50 0.22 7.09-1072 2.5-107% 0 0 0 0 0
100 0.26 7.48-1072 2.8-1073 0 0 0 0 0
500 0.37 0.1020 5.7-1073 1-1074 0 0 0 0
1000 0.43 0.1112 6.9-1073 1-1074 0 0 0 0
5000 0.52 0.3412 2.01-1072 1.2-1073 1-107 1-1074 0 0

Relative difference in L' cost between SIMPLEX and HESSUPDATE

50 0 0 0 0 1.35-1072  9.04-107% 6.12-1072 3.99.1072
100 0 0 0 0 141072 873.107* 5.56-107% 3.53-1072
500 0 0 0 0 19-1072  8.03-107% 4.84-1072 3.03-1072
1000 0 0 0 0 2-1072  7.41-1072 4.31-1072 2.67-1072
5000 0 0 0 0 215-1072 7.33-1072 4.23-1072 2.62-10"*

advantage gained from not having to compute or update the Laplacian at each step
is minimal compared to the loss of speed due to slow convergence.

The comparison between HESSUPDATE and SIMPLEX from Table 1 shows that
overall computation times of the regularized and unregularized problem are in the
same ballpark, although the simplex algorithm has some scaling issues. Table 2 shows
that HESSUPDATE’s solutions for the regularized problem are actually the same as
for the unregularized problem for temperatures ov < 10~2. This is consistent with the
sparsity Proposition 5. As a grows, however, the regularized solution starts differing
greatly from the unregularized one.

Using the same machine, we performed another set of experiments where we
compare this time the performance of HESSUPDATE with the algorithm introduced
in [21], which we will refer as FAST L'. FasT L! is designed to solve the optimal
transport problem on a regular grid in R? using a finite-volume discretization of mass
flow, by applying a primal-dual method for a quadratically regularized L' problem.
The results of this experiment are shown in Table 3.

We benchmarked HESSUPDATE and FAST L! on regular grids of R? with N &
{10, 20, 30,40} nodes per side. This gives a graph G with N2 € {100,400, 900, 1,600}
vertices and 2N (N — 1) € {180, 760, 1,740, 3,120} edges. The data f were again con-
structed by randomly choosing 10% of the vertices, assigning them random values
between —10 and 10, and setting the last chosen vertex to contain the appropri-
ate amount of mass to ensure a proper mass balance of sources and sinks. Ten
different functions f were generated for each (N, ) pair; average runtimes are re-
ported.

Our implementation of FAST L' in MATLAB uses the same parameters as theirs,
which are 4 = 7 = 0.025 and 6 = 1, which guarantee convergence for such values of
N according to [21, Theorem 1]. Both primal and dual variables were initialized to 0.
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TABLE 3
Average runtime in seconds for HESSUPDATE and FasT L1 for regular grids of R? of different
sizes and different parameters a. All solutions converged to within 0.5% of the ground truth value.

Grid size a=10"*%* 1073 102 1071 1 5 10
HESSUPDATE

10 0.9 0.11 5.84-1072 7.43-1072 6.09-1072 5.16-10"2 4.85-1072
20 4.14 6.42 0.9 1.26 0.7 0.59 0.69
30 9.4 22.71 11.89 6.08 8.4 6.02 6.09
40 19.46 40.56 60.49 37.89 36.41 40.19 39.56
Fast Lt

10 0.15 0.3 0.32 8.73-1072 0.54 1.33 12.2
20 0.59 1.23 1.72 1.53 2.9 51.09 31.87
30 1.57 4.87 5.27 10.28 14.63 173.4 143.23
40 4.69 20.1 23.47 41.28 49.31 550.65 569.87

The only difference between the authors’ implementation of FAST L! and ours
resides in the stopping condition; to ensure a reasonable comparison between the two
algorithms, we first run HESSUPDATE until convergence or reaching the maximum
number of iterations. We then compute the relative error between the objective value
obtained by HESSUPDATE and the ground truth value. Finally, we run FasT L!
until it reaches the same relative error compared to the ground truth value. Both
HeSSUPDATE and FAST L! were limited to single-threaded runs, and every attempt
were made to optimize the MATLAB implementation of FAST L' to the point where
the “shrink” operation dominates runtime.

HesSUPDATE outperforms FAST L' for o > 1072 over all grid sizes, and for
a = 1072 for small grid sizes (less than 20 nodes per side). For smaller temperatures,
FAST L' is faster for regular grids of R?. In general, the experiment reveals that FAST
L' may be slightly preferable in the low-temperature regime for grids on R?, in its
specific target case of grid graphs.

7. Discussion and conclusion. Our algorithm for regularized graph trans-
port finds immediate application in software for network flow and related problems.
Regularization allows the output for these problems to be predictable, since strict con-
vexity guarantees uniqueness of the minimizer. Our technique is efficient and built
upon general-purpose tools for sparse linear algebra, which will likely improve in the
future.

Several avenues for future research will address remaining theoretical and prac-
tical challenges suggested by our work. On the theoretical side, an analog of our
analysis may apply to the Beckmann model of transport over R™ [1, 32], showing how
quadratic regularization affects flows in the continuum. In computer science theory,
time-complexity analysis related to that in [36, 10] could reveal worst-case behavior
of our algorithm in terms of computational operations; note that our Newton step
may lead to convergence (with infinite-precision arithmetic) in a finite number of
steps. A better characterization of the evolution of the active sets with increasing
regularizers and a clean proof of the monotonicity Conjecture 1 also would complete
our understanding of the regularization. From a practical perspective, future imple-
mentations could consider extremely large graphs that cannot fit into memory and/or
architectures that require parallel processing with minimal synchronization.
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