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Abstract

Deep Neural Networks (DNNs) are fast becoming ubig-
uitous for their ability to attain good accuracy in various
machine learning tasks. A DNN’s architecture (i.e., its hyper-
parameters) broadly determines the DNN’s accuracy and per-
formance, and is often confidential. Attacking a DNN in the
cloud to obtain its architecture can potentially provide major
commercial value. Further, attaining a DNN’s architecture
facilitates other existing DNN attacks.

This paper presents Cache Telepathy: an efficient mech-
anism to help obtain a DNN’s architecture using the cache
side channel. The attack is based on the insight that DNN
inference relies heavily on tiled GEMM (Generalized Matrix
Multiply), and that DNN architecture parameters determine
the number of GEMM calls and the dimensions of the matri-
ces used in the GEMM functions. Such information can be
leaked through the cache side channel.

This paper uses Prime+Probe and Flush+Reload to attack
the VGG and ResNet DNNs running OpenBLAS and Intel
MKL libraries. Our attack is effective in helping obtain the
DNN architectures by very substantially reducing the search
space of target DNN architectures. For example, when attack-
ing the OpenBLAS library, for the different layers in VGG-16,
it reduces the search space from more than 5.4 x 10'? archi-
tectures to just 16; for the different modules in ResNet-50, it
reduces the search space from more than 6 x 10% architec-
tures to only 512.

1 Introduction

For the past several years, Deep Neural Networks (DNNs)
have increased in popularity thanks to their ability to attain
high accuracy and performance in a multitude of machine
learning tasks — e.g., image and speech recognition [26, 63],
scene generation [45], and game playing [51]. An emerging
framework that provides end-to-end infrastructure for using
DNNs is Machine Learning as a Service (MLaaS) [2, 19].
In MLaaS8, trusted clients submit DNNs or training data to
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MLaaS service providers (e.g., an Amazon or Google data-
center). Service providers host the DNNs, and allow remote
untrusted users to submit queries to the DNNss for a fee.

Despite its promise, MLaaS provides new ways to under-
mine the privacy of the hosted DNNs. An adversary may be
able to learn details of the hosted DNNs beyond the official
query APIs. For example, an adversary may try to learn the
DNN’s architecture (i.e., its hyper-parameters). These are
the parameters that give the network its shape, such as the
number and types of layers, the number of neurons per layer,
and the connections between layers.

The architecture of a DNN broadly determines the DNN’s
accuracy and performance. For this reason, obtaining it often
has high commercial value. Furthermore, once a DNN’s
architecture is known, other attacks are possible, such as the
model extraction attack [55] (which obtains the weights of the
DNN’s edges), and the membership inference attack [39,49]
(which determines whether an input was used to train the
DNN).

Yet, stealing a DNN’s architecture is challenging. DNNs
have a multitude of hyper-parameters, which makes brute-
force guesswork unfeasible. Moreover, the DNN design space
has been growing with time, which is further aggravating the
adversary’s task.

This paper demonstrates that despite the large search space,
attackers can quickly reduce the search space of DNN ar-
chitectures in the MLaaS setting using the cache side chan-
nel. Our insight is that DNN inference relies heavily on tiled
GEMM (Generalized Matrix Multiply), and that DNN archi-
tecture parameters determine the number of GEMM calls
and the dimensions of the matrices used in the GEMM func-
tions. Such information can be leaked through the cache side
channel.

We present an attack that we call Cache Telepathy. It is
the first cache side channel attack targeting modern DNNs
on general-purpose processors (CPUs). The reason for target-
ing CPUs is that CPUs are widely used for DNN inference
in existing MLaaS platforms, such as Facebook’s [25] and
Amazon’s [4].



We demonstrate our attack by implementing it on a state-
of-the-art platform. We use Prime+Probe and Flush+Reload
to attack the VGG and ResNet DNNs running OpenBLAS
and Intel MKL libraries. Our attack is effective at helping
obtain the architectures by very substantially reducing the
search space of target DNN architectures. For example, when
attacking the OpenBLAS library, for the different layers in
VGG-16, it reduces the search space from more than 5.4 x
10'2 architectures to just 16; for the different modules in
ResNet-50, it reduces the search space from more than 6 x
10* architectures to only 512.

This paper makes the following contributions:

1. It provides a detailed analysis of the mapping of DNN
hyper-parameters to the number of GEMM calls and their
arguments.

2. It implements the first cache-based side channel attack to
extract DNN architectures on general purpose processors.

3. It evaluates the attack on VGG and ResNet DNNss running
OpenBLAS and Intel MKL libraries.

2 Background

2.1 Deep Neural Networks

Deep Neural Networks (DNNs) are a class of Machine Learn-
ing (ML) algorithms that use a cascade of multiple layers of
nonlinear processing units for feature extraction and transfor-
mation [35]. There are several major types of DNNs in use
today, two popular types being fully-connected neural net-
works (or multi-layer perceptrons) and Convolutional Neural
Networks (CNNs).

DNN Architecture The architecture of a DNN, also called
the hyper-parameters, gives the network its shape. DNN
hyper-parameters considered in this paper are:

a) Total number of layers.

b) Layer types, such as fully-connected, convolutional, or
pooling layer.

c) Connections between layers, including sequential and non-
sequential connections such as shortcuts. Non-sequential
connections exist in recent DNNs, such as ResNet [26].
For example, instead of directly using the output from a
prior layer as the input to a later layer, a shortcut involves
summing up the outputs of two prior layers and using the
result as the input for a later layer.

d) Hyper-parameters for each layer. For a fully-connected
layer, this is the number of neurons in that layer. For a
convolutional layer, this is the number of filters, the filter
size, and the stride size.

e) The activation function in each layer, e.g., relu and
sigmoid.

DNN Weights The computation in each DNN layer in-
volves many multiply-accumulate operations (MACCs) on
input neurons. The DNN weights, also called parameters,
specify operands to these multiply-accumulate operations.
In a fully-connected layer, each edge out of a neuron is a
MACC with a weight; in a convolutional layer, each filter is a
multi-dimensional array of weights, which is used as a sliding
window that computes dot products over input neurons.

DNN Usage DNNs usage has two distinct phases: training
and inference. In training, the DNN designer starts with a net-
work architecture and a training set of labeled inputs, and tries
to find the DNN weights to minimize mis-prediction error.
Training is generally performed offline on GPUs and takes a
relatively long time to finish, typically hours or days [12,25].
In inference, the trained model is deployed and used to make
real-time predictions on new inputs. For good responsiveness,
inference is generally performed on CPUs [4,25].

2.2 Prior Privacy Attacks Need the DNN Ar-
chitecture

To gain insight into the importance of DNN architectures, we
discuss prior DNN privacy attacks [39,49,55,59]. There are
three types of such attacks, each with a different goal. All
of them require knowing the victim’s DNN architecture. In
the following, we refer to the victim’s network as the oracle
network, its architecture as the oracle DNN architecture, and
its training data set as the oracle training data set.

In the model extraction attack [55], the attacker tries to
obtain a network that is close enough to the oracle network. It
assumes that the attacker knows the oracle DNN architecture
at the start, and tries to estimate the weights of the oracle
network. The attacker creates a synthetic data set, requests
the classification results from the oracle network, and uses
such results to train a network that uses the oracle architecture.

The membership inference attack [39,49] aims to infer
the composition of the oracle training data set, which is ex-
pressed as the probability of whether a data sample exists in
the training set or not. This attack also requires knowledge
of the oracle DNN architecture. Attackers create multiple
synthetic data sets and train multiple networks that use the
oracle architecture. Then, they run the inference algorithm
on these networks with some inputs in their training sets and
some not in their training sets. They then compare the results
to find the patterns in the output of the data in the training
sets. The pattern information is used to infer the composition
of the oracle training set. Specifically, given a data sample,
they run the inference algorithm of the oracle network, obtain
the output and check whether the output matches the pattern
obtained before. The more the output matches the pattern, the
more likely the data sample exists in the oracle training set.

The hyper-parameter stealing attack [59] steals the loss
function and regularization term used in ML algorithms, in-



cluding DNN training and inference. This attack also relies
on knowing the oracle DNN architecture. During the attack,
attackers leverage the model extraction attack to learn the
DNN’s weights. They then find the loss function that mini-
mizes the training misprediction error.

2.3 Cache-based Side Channel Attacks

In a cache-based side channel attack, the attacker infers
a secret from the victim by observing the side effects of
the victim’s cache behavior. Recently, multiple variations
of cache-based side channel attacks have been proposed.
Flush+Reload [69] and Prime+Probe [38,43] are two pow-
erful ones. Flush+Reload requires that the attacker share
security-sensitive code or data with the victim. This sharing
can be achieved by leveraging the page de-duplication tech-
nique. In an attack, the attacker first performs a clflush
operation to the shared cache line, to push it out of the cache.
It then waits to allow the victim to execute. Finally, it re-
accesses the same cache line and measures the access latency.
Depending on the latency, it learns whether the victim has
accessed the shared line.

Prime+Probe does not require page sharing. It is more
practical than Flush+Reload as most cloud providers disable
page de-duplication for security purposes [58]. The attacker
constructs a collection of addresses, called conflict addresses,
which map to the same cache set as the victim’s line. In
an attack, the attacker first accesses the conflict addresses
to cause cache conflicts with the victim’s line, and evict it
from the cache. After waiting for an interval, it re-accesses
the conflict addresses and measures the access latency. The
latency is used to infer if the victim has accessed the line.

2.4 Threat Model

This paper develops a cache-timing attack that quickly reduces
the search space of DNN architectures. The attack relies on
the following standard assumptions.

Black-box Access We follow a black-box threat model in
an MLaaS setting similar to [55]. In a black-box attack, the
DNN model is only accessible to attackers via an official
query interface. Attackers do not have prior knowledge about
the target DNN, including its hyper-parameters, weights and
training data.

Co-location We assume that the attacker process can use
techniques from prior work [7,8,14,46,57,66,73] to co-locate
onto the same processor chip as the victim process running
DNN inference. This is feasible, as current MLaaS jobs are
deployed on shared clouds. Note that recent MLaaS, such as
Amazon SageMaker [3] and Google ML Engine [18] allow
users to upload their own code for training and inference,
instead of using pre-defined APIs. In this case, attackers

can disguise themselves as an MLaaS process and the cloud
scheduler will have difficulty in separating attacker processes
from victim processes.

Code Analysis We also assume that the attacker can an-
alyze the ML framework code and linear algebra libraries
used by the victim. These are realistic assumptions. First,
open-source ML frameworks are widely used for efficient
development of ML applications. The frameworks supported
by Google, Amazon and other companies, including Tensor-
flow [1], Caffe [32], and MXNet [6] are all public. Our analy-
sis is applicable to almost all of these frameworks. Second, the
frameworks’ backends are all supported by high-performance
and popular linear algebra libraries, such as OpenBLAS [64],
Eigen [23] and MKL [60]. OpenBLAS and Eigen are open
sourced, and MKL can be reverse engineered, as we show in
Section 6.

3 Attack Overview

The goal of Cache Telepathy is to substantially reduce the
search space of target DNN architectures. In this section,
we first discuss how our attack can assist other DNN privacy
attacks, and then give an overview of the Cache Telepathy
attack procedure.

Cache Telepathy’s Role in Existing DNN Attacks In set-
tings where DNN architectures are not known, our attack
can serve as an essential initial step for many existing DNN
privacy attacks, including model extraction attacks [55] and
membership inference attacks [49].
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Figure 1: Cache Telepathy assists model extraction attacks.

Figure |1 demonstrates how Cache Telepathy makes the
model extraction attack feasible. The final goal of the model
extraction attack is to obtain a network that is close enough
to the oracle network (Section 2.2). The attack uses the fol-
lowing steps. First, the attacker generates a synthetic training
data set (®). This step can be achieved using a random feature
vector method [55] or more sophisticated techniques, such
as hill-climbing [49]. Next, the attacker queries the oracle
network via inference APIs provided by MLaaS providers to
get labels or confidence values (®@). The synthetic data set
and corresponding query results will be used as training data



and labels later. In the case that the oracle architecture is not
known, the attacker needs to choose a DNN architecture from
a search space (®) and then train a network with the chosen
architecture (@). Steps @-@® repeat until a network is found
with sufficient prediction accuracy (®).

This attack process is extremely compute intensive, since it
involves many iterations of step @. Considering the depth and
complexity of state-of-the-art DNN, training and validating
each network can take hours to days. Moreover, without
any information about the architecture, the search space of
possible architectures is often intractable, and thus, the model
extraction attack is infeasible. However, Cache Telepathy can
reduce the architecture search space (®) to a tractable size and
make the attack feasible in settings where DNN architectures
are unknown.

Membership inference attacks suffer from a more serious
problem if the DNN architecture is not known. Recall that
the attack aims to figure out the composition of the oracle
training data set (Section 2.2). If there are many different can-
didate architectures, the attacker needs to consider the results
generated by all the candidate architectures and statistically
summarize inconsistent results from those architectures. A
large search space of candidate architectures, not only sig-
nificantly increases the computation requirements, but also
potentially hurts attack accuracy. Consider a candidate archi-
tecture which is very different from the oracle architecture. It
is likely to contribute incorrect results, and in turn, decrease
the attack accuracy. However, Cache Telepathy can reduce
the search space to a reasonable size. Moreover, the candidate
architectures in the reduced search space have the same or
very similar hyper-parameters as the oracle network. There-
fore, they perform very similarly to the oracle network on
various data sets. Hence, our attack also plays an important
role in membership inference attacks.

Overall Cache Telepathy Attack Procedure Our attack is
based on two observations. First, DNN inference relies heav-
ily on GEMM (Generalized Matrix Multiply). We conduct a
detailed analysis of how GEMM is used in ML frameworks,
and figure out the mapping between DNN hyper-parameters
and matrix parameters (Section 4). Second, high-performance
GEMM algorithms are vulnerable to cache-based side channel
attacks, as they are all tuned for the cache hierarchy through
matrix blocking (i.e., tiling). When the block size is public
(or can be easily deduced), the attacker can use the cache side
channel to count blocks and learn the matrix sizes.

The Cache Telepathy attack procedure includes a cache
attack and post processing steps. First, it uses a cache at-
tack to monitor matrix multiplications and obtain matrix pa-
rameters (Sections 5 and 6). Then, the DNN architecture
is reverse-engineered based on the mapping between DNN
hyper-parameters and matrix parameters (Section 4). Finally,
Cache Telepathy prunes the possible values of the remain-
ing undiscovered hyper-parameters and generates a pruned

search space for the target DNN architecture (Section 8.3).
We consider the attack to be successful if we can generate a
reasonable number of candidate architectures whose hyper-
parameters are the same or very similar to the oracle network.

4 Mapping DNNs to Matrix Parameters

DNN hyper-parameters, listed in Section 2.1, can be mapped
to GEMM execution. We first discuss how the layer type and
configurations within each layer map to matrix parameters, as-
suming that all layers are sequentially connected (Section 4.1
and 4.2). We then generalize the mapping by showing how the
connections between layers map to GEMM execution (Sec-
tion 4.3). Finally, we discuss what information is required to
extract the activation functions of Section 2.1 (Section 4.4).

4.1 Analysis of DNN Layers

There are two types of neural network layers whose com-
putation can be mapped to matrix multiplications, namely
fully-connected and convolutional layers.

4.1.1 Fully-connected Layer

In a fully-connected layer, each neuron computes a weighted
sum of values from all the neurons in the previous layer,
followed by a non-linear transformation. The ith layer com-
putes out; = f;(in; ® 0;) where in; is the input vector, 0; is the
weight matrix, ® denotes a matrix-vector operation, f is an
element-wise non-linear function such as tanh or sigmoid,
and out; is the resulting output vector.

The feed-forward computation of a fully-connected DNN
can be performed over a batch of a few inputs at a time (B).
These multiple input vectors are stacked into an input matrix
In;. A matrix multiplication between the input matrix and
the weight matrix (8;) produces an output matrix, which is
a stack of output vectors. We represent the computation as
O; = fi(In; - 8;) where In; is a matrix with as many rows as
B and as many columns as N; (the number of neurons in the
layer i); O; is a matrix with as many rows as B and as many
columns as N;;; (the number of neurons in the layer i + 1);
and 6; is a matrix with N; rows and N;; columns. Table |
shows the number of rows and columns of all the matrices.

| Matrix [ n_row | n_col |
Input: In; B N;i
Weight: 0; N; Nit1
Output: O; B Niti

Table 1: Matrix sizes in a fully-connected layer.



4.1.2 Convolutional Layer

In a convolutional layer, a neuron is connected to only a
spatial region of neurons in the previous layer. Consider the
upper row of Figure 2, which shows the computation in the
ith layer. The layer generates an output out; (right part of the
upper row) by performing convolution operations on an input
in; (center of the upper row) with multiple filters (left part of
the upper row). The input volume in; is of size W; x H; X D;,
where the depth (D;) also refers to the number of channels of
the input. Each filter is of size R; X R; X D;.

filters

@ . channely

channely

E——
(Wi-Ri+P)(H-Ri+P)

Figure 2: Mapping a convolutional layer (upper part of the
figure) to a matrix multiplication (lower part).

To see how a convolution operation is performed, the figure
highlights the process of generating one output neuron in
out;. The neuron is a result of a convolution operation — an
elementwise dot product of the filter shaded in dots and the
subvolume in in; shaded in dashes. Both the subvolume and
the filter have dimensions R; X R; X D;. Applying one filter
on the entire input volume (in;) generates one channel of the
output (out;). Thus, the number of filters in layer i (Dj41) is
the number of channels (depth) in the output volume.

The lower row of Figure 2 shows a common implementa-
tion that transforms the multiple convolution operations in a
layer into a single matrix multiply. First, as shown in arrow @,
each filter is stretched out into a row to form a matrix ;. The
number of rows in F} is the number of filters in the layer.

Second, as shown in arrow @, each subvolume in the in-
put volume is stretched out into a column. The number of
elements in the column is D; x R?. For an input volume with
dimensions W; x H; x Dj, there are (W; — R;+ P;) (H; — R; + P;)
such columns in total, where P; is the amount of zero padding.
We call this transformed input matrix mi Then, the convolu-
tion becomes a matrix multiply: out} = F; - in} (®).

Finally, the out} matrix is reshaped back to its proper
dimensions of the out; volume (arrow @). Each row of
the resulting out, matrix corresponds to one channel in the

out; volume. The number of columns of the our; matrix is
(W; —R; + P,)(H; — R; + P;), which is the size of one output
channel, namely, Wiy X H;;. Table 2 shows the number of
rows and columns of the matrices involved.

| Matrix | n_row | n_col
in D; x R? (W; —R; + P))(H; —R; + P,)
F,/ Djiq D; x R,-2
out, Di (Wi —Ri+P;)(Hi —Ri +P;) = Wiy 1 xHiq

Table 2: Matrix sizes in a convolutional layer.

The matrix multiplication described above processes a sin-
gle input. As with fully-connected DNNs, CNN inference
can consume a batch of B inputs in a single forward pass. In
this case, a convolutional layer performs B matrix multiplica-
tions per pass. This is different from fully-connected layers,
where the entire batch is computed using only one matrix
multiplication.

4.2 Resolving DNN Hyper-parameters

Based on the previous analysis, we can now map DNN hyper-
parameters to matrix operation parameters assuming all layers
are sequentially connected.

4.2.1 Fully-connected Networks

Consider a fully-connected network. Its hyper-parameters
are the number of layers, the number of neurons in each
layer (V;) and the activation function per layer. As discussed
in Section 4.1, the feed-forward computation performs one
matrix multiplication per layer. Hence, we extract the number
of layers by counting the number of matrix multiplications
performed. Moreover, according to Table |, the number of
neurons in layer i (V;) is the number of rows of the layer’s
weight matrix (0;). The first two rows of Table 3 summarize
this information.

l Structure \ Hyper-Parameter \ Value
FC network # of layers # of matrix muls
FC layer; N;: # of neurons n_row(0;)
Conv network # of Conv layers # of matrix muls / B
Conv layer; Dj: # of filters n_row(F})
R;: filter \/ n_rowl(in])
width and height' n_row(out]_,)
P;: padding difference between:
n_col(out!_,),n_col(in})
Pool; or pool or stride N \/ n_col(out!)
Stride; ;| width and height =\ n_col(in, )

Table 3: Mapping between DNN hyper-parameters and matrix
parameters. FC stands for fully connected.

ISpecifically, we learn the filter spatial dimensions. If the filter is not
square, the search space grows depending on factor combinations (e.g., 2 by



4.2.2 Convolutional Networks

A convolutional network generally consists of four types of
layers: convolutional, Relu, pooling, and fully connected. Re-
call that each convolutional layer involves a batch B of matrix
multiplications. Moreover, the B matrix multiplications that
correspond to the same layer, always have the same dimen-
sion sizes and are executed consecutively. Therefore, we can
count the number of consecutive matrix multiplications which
have the same computation pattern to determine B.

In a convolutional layer i, the hyper-parameters include the
number of filters (D;1), the filter width and height (R;), and
the padding (P;). We assume that the filter width and height
are the same, which is the common case. Note that for layer i,
we consider that the depth of the input volume (D;) is known,
as it can be obtained from the previous layer.

We now show how these parameters for a convolutional
layer can be reverse engineered. From Table 2, we see that
the number of filters (D; 1) is the number of rows of the filter
matrix Fi’ . To attain the filter width (R;), we note that the
number of rows of the in; matrix is D; X Riz, where D; is the
number of output channels in the previous layer and is equal
to the number of rows of the out{_1 matrix. Therefore, as
summarized in Table 3, the filter width is attained by dividing
the number of rows of in} by the number of rows of out_, and
performing the square root. In the case that layer i is the first
one, directly connected to the input, the denominator (out(’])
of this fraction is the number of channels of the input of the
network, which is public information.

Padding results in a larger input matrix (in}). After re-
solving the filter width (R;), the value of padding can be
deduced by determining the difference between the number
of columns of the output matrix of layer i — 1 (out,-’_ 1)» which
is W; x H;, and the number of columns of the in§ matrix, which
is (W;—R;+P)(H;—R;+P).

A pooling layer can be located in-between two convolu-
tional layers. It down-samples every channel of the input
along width and height, resulting in a small channel size. The
hyper-parameter in this layer is the pool width and height
(assumed to be the same value), which can be inferred as
follows. Consider the channel size of the output of layer i
(number of columns in our}) and the channel size of the input
volume in layer i 4 1 (approximately equals to the number of
columns in in;_ ). If the two are the same, there is no pooling
layer; otherwise, we expect to see the channel size reduced
by the square of the pool width. In the latter case, the exact
pool dimension can be found using a similar procedure used
to determine R;. Note that a non-unit stride operation results
in the same dimension reduction as a pooling layer. Thus,
we cannot distinguish between non-unit striding and pooling.
Table 3 summarizes the mappings.

4 looks the same as 1 by 8). We note that filters in modern DNNs are nearly
always square.

4.3 Connections Between Layers

We now examine how to map inter-layer connections to
GEMM execution. We consider two types of inter-layer con-
nections, i.e., sequential connections and non-sequential con-
nections.

4.3.1 Mapping Sequential Connections

A sequential connection is one that connects two consecutive
layers, e.g., layer i and layer i+ 1. The output of layer i is used
as the input of its next layer i + 1. According to the mapping
relationships in Table 3, a DNN places several constraints on
GEMM parameters for sequentially-connected convolutional
layers.

First, since the filter width and height must be integer val-
ues, there is a constraint on the number of rows of the input
and output matrices in consecutive layers. Considering the
formula used to derive the filter width and height in Table 3,
if layer i and layer i + 1 are connected, the number of rows
in the input matrix of layer i+ 1 (n_row(in,_,)) must be the
product of the number of rows in the output matrix of layer i
(n_row(out!)) and the square of an integer number.

Second, since the pool size and stride size are integer values,
there is another constraint on the number of columns of the
input and output matrix sizes between consecutive layers.
According to the formula used to derive pool and stride size,
if layer 7 and layer i + 1 are connected, the number of columns
in the output matrix of layer i (n_col(out])) must be very close
to the product of the number of columns in the input matrix of
layer i+ 1 (n_col(in], | )) and the square of an integer number.

The two constraints above help us to distinguish non-
sequential connections from sequential ones. Specifically,
if one of these constraints is not satisfied, we are sure that the
two layers are not sequentially connected.

4.3.2 Mapping Non-sequential Connections

In this paper, we consider that a non-sequential connection
is one where, given two consecutive layers i and i + 1, there
is a third layer j, whose output is merged with the output
of layer i and the merged result is used as the input to layer
i+ 1. We call the extra connection from layer j to layeri+1 a
shortcut, where layer j is the source layer and layer i + 1 is the
sink layer. Shortcut connections can be mapped to GEMM
execution.

First, there exists a certain latency between consecutive
GEMMs, which we call inter-GEMM latency. The inter-
GEMM latency before the sink layer in a non-sequential
connection is longer than the latency in a sequential con-
nection. To see why, consider the operations that are per-
formed between two consecutive GEMMs: post-processing
of the prior GEMM’s output (e.g., batch normalization) and
pre-processing of the next GEMM’s input (e.g., padding and
striding). When there is no shortcut, the inter-GEMM latency



is linearly related to the sum of the prior layer’s output size
and the next layer’s input size. However, a shortcut requires
an extra merge operation that incurs extra latency between
GEMM calls.

Second, the source layer of a shortcut connection must
have the same output dimensions as the other source layer of
the non-sequential connection. For example, when a short-
cut connects layer j and layer i + 1, the output matrices of
layer j and layer i must have the same number of rows and
columns. This is because one can only merge two outputs
whose dimension sizes match.

These two characteristics help us identify the existence of
a shortcut, its source layer, and its sink layer.

4.4 Activation Functions

So far, this section discussed how DNN parameters map to
GEMM calls. Convolutional and fully-connected layers are
post-processed by elementwise non-linear functions, such as
relu, sigmoid and tanh, which do not appear in GEMM pa-
rameters. We can distinguish relu activations from sigmoid
and tanh by monitoring whether the non-linear functions
access the standard mathematical library libm. reluis a
simple activation which does not need support from libm,
while the other functions are computationally intensive and
generally leverage libm to achieve high performance. We re-
mark that nearly all convolutional layers use relu or a close
variant [26,33,52,53,65].

S Attacking Matrix Multiplication

We now design a side channel attack to learn matrix multi-
plication parameters. Given the mapping from the previous
section, this attack will allow us to reconstruct the DNN ar-
chitecture.

We analyze state-of-the-art BLAS libraries, which have
extensively optimized blocked matrix multiply. Examples of
such libraries are OpenBLAS [64], BLIS [56], Intel MKL [60]
and AMD ACML [5]. We show in detail how to extract
the desired information from the GEMM implementation in
OpenBLAS. In Section 6, we generalize our attack to other
BLAS libraries, using Intel MKL as an example.

5.1 Analyzing GEMM from OpenBLAS

Function gemm nn from the OpenBLAS library per-
forms blocked matrix-matrix multiplication. It computes
C=0A-B+BC where a and P are scalars, A is an m X k
matrix, B is a k X n matrix, and C is an m X n matrix. Our
goal is to extract m, n and k.

Like most modern BLAS libraries, OpenBLAS implements
Goto’s algorithm [20]. The algorithm has been optimized for
modern multi-level cache hierarchies. Figure 3 depicts the

way Goto’s algorithm structures blocked matrix multiplica-
tion for a three-level cache. The macro-kernel at the bottom
performs the basic operation, multiplying a P x Q block from
matrix A with a Q X R block from matrix B. This kernel is
generally written in assembly code, and manually optimized
by taking the CPU pipeline structure and register availability
into consideration. The block sizes are picked so that the
P x Q block of A fits in the L2 cache, and the Q x R block of
B fits in the L3 cache.

Loop 1 iter=[n/R] n k n

(outermost)
m c +=nm A X & B
Loop 2 iter=[k/Q] R k
m C +: m A X Pack Bj
to

bufferB

Loop 3 iter=[m/P]

R
(innermost) Q

m C

Pack Ai
—— | to bufferA

;',Macro-kernel R

L ]+=

bufferA bufferB

Figure 3: Blocked GEMM with matrices in column major.

As shown in Figure 3, there is a three-level loop nest around
the macro-kernel. The innermost one is Loop 3, the interme-
diate one is Loop 2, and the outermost one is Loop 1. We
call the iteration counts in these loops iters, iter;, and itery,
respectively, and are given by:

iter; = [m/P)|
iter; = [k/Q] ey
iter; = [n/R]

Algorithm | shows the corresponding pseudo-code with the
three nested loops. Note that Loop 3 is further split into two
parts, to obtain better cache locality. The first part performs
only the first iteration, and the second part performs the rest.

The first iteration of Loop 3 (Lines 3-7) performs three
steps as follows. First, the data in the P x Q block from matrix
A is packed into a buffer (bufferA) using function itcopy.
This is shown in Figure 3 as arrow @ and corresponds to
line 3 in Algorithm 1. Second, the data in the Q x R block
from matrix B is also packed into a buffer (bufferB) using
function oncopy. This is shown in Figure 3 as arrow @ and
corresponds to line 5 in Algorithm 1. The Q x R block from
matrix B is copied in units of Q x 3UNROLL sub-blocks. This
breaks down the first iteration of Loop 3 into a loop, which
is labeled as Loop 4. The iteration count in Loop 4, itery, is



Algorithm 1: gemm_nn in OpenBLAS.
Input :Matrix A, B, C; Scalar o, 3; Block size P, Q,R; UNROLL
Output:C := oA -B+BC

1 for j=0,n,Rdo // Loop 1

2 | forl=0,kQdo// Loop 2
// Loop 3, 1lst iteration

3 itcopy(A[0,1],buf _A,P,Q)

4 for jj =j,j+R,3UNROLLdo // Loop 4

s oncopy(BIL.jjl,buf B+ (jj—j) x Q.Q,3UNROLL)

6 kernel(buf_A,buf_B+ (jj—j) x Q,Cll,j],P,Q,3UNROLL)

7 end
// Loop 3, rest iterations

8 for i = P,m,P do

9 itcopy(A[i,],buf_A,P,Q)

10 kernel(buf_A,buf _B,C|lL,j],P,Q,R)

1 end

12 end

13 end

given by:

itery = [R/3UNROLL)

or itery = [(n mod R)/3UNROLL] @
where the second expression corresponds to the last iteration
of Loop 1. Note that bufferB, which is filled by the first
iteration of Loop 3, is also shared by the rest of iterations.
Third, the macro-kernel (function kernel) is executed on the
two buffers. This corresponds to line 6 in Algorithm 1.

The rest iterations (line 8-11) skip the second step above.
These iterations only pack a block from matrix A to fill
bufferA and execute the macro-kernel.

The BLAS libraries use different P, Q, and R for differ-
ent cache sizes to achieve best performance. For example,
when compiling OpenBLAS on our experimental machine
(Section 7), the GEMM function for double data type uses
P=512;0=256,R = 16384, and 3UNROLL = 24.

5.2 Locating Probing Addresses

Our goal is to find the size of the matrices of Figure 3, namely,
m, k, and n. To do so, we need to first obtain the number
of iterations of the 4 loops in Algorithm [, and then use
Formulas |1 and 2. Note that we know the values of the
block sizes P, Q, and R (as well as 3UNROLL) — these are
constants available in the open-source code of OpenBLAS.

In this paper, we propose to use, as probing addresses,
addresses in the itcopy, oncopy and kernel functions of
Algorithm 1. To understand why, consider the dynamic invo-
cations to these functions. Figure 4 shows the Dynamic Call
Graph (DCG) of gemm_nn in Algorithm 1.

Each iteration of Loop 2 contains one invocation of func-
tion itcopy, followed by itery invocations of the pair oncopy
and kernel, and then (iter; — I) invocations of the pair
itcopy and kernel. The whole sequence in Figure 4 is
executed iter; X iter, times in one invocation of gemm_nn.

#pairs=iter,

—'{ itcopy }—*‘ oncopyH kernel }—~{ itcopy H kernel }—*

#pairs=iters-1

Figure 4: DCG of gemm_nn, with the number of invocations
per iteration of Loop 2.

We will see in Section 5.3 that these invocation counts are
enough to allow us to find the size of the matrices.

We now discuss how to select probing addresses inside the
three functions—itcopy, oncopy and kernel—to improve
attack accuracy. The main bodies of the three functions are
loops. To distinguish these loops from the GEMM loops,
we refer to them in this paper as in-function loops. We se-
lect addresses that are located inside the in-function loops as
probing addresses. This strategy helps improve attack accu-
racy, because such addresses are accessed multiple times per
function invocation and their access patterns can be easily
distinguished from noise (Section 8.1).

5.3 Procedure to Extract Matrix Dimensions

To understand the procedure we use to extract matrix dimen-
sions, we show an example in Figure 5(a), which visualizes
the execution time of a gemm_nn where Loop 1, Loop 2 and
Loop 3 have 5 iterations each. The figure also shows the
size of the block that each iteration operates on. Note that
the OpenBLAS library handles the last two iterations of each
loop in a special manner. When the last iteration does not
have a full block to compute, rather than assigning a small
block to the last iteration, it assigns two equal-sized small
blocks to the last two iterations. In Figure 5(a), in Loop 1,
the first three iterations use R-sized blocks, and each of the
last two use a block of size (R+n mod R)/2. In Loop 2, the
corresponding block sizes are Q and (Q+k mod Q)/2. In
Loop 3, they are P and (P +m mod P)/2.

Figure 5(b) shows additional information for each of the
first iterations of Loop 3. Recall that the first iteration of Loop
3 is special, as it involves an extra packing operation that
is performed by Loop 4 in Algorithm 1. Figure 5(b) shows
the number of iterations of Loop 4 in each invocation (ifery).
During the execution of the first three iterations of Loop 1,
iter4 is [R/3UNROLL]. In the last two iterations of Loop 1,
itery is [((R+n mod R)/2)/3UNROLL], as can be deduced
from Equation 2 after applying OpenBLAS’ special handling
of the last two iterations.

Based on these insights, our procedure to extract m, k, and
n has four steps.

Step 1: Identify the DCG of a Loop 2 iteration and
extract iter; X iter;. By probing one instruction in each of
itcopy, oncopy, and kernel, we repeatedly obtain the DCG
pattern of a Loop 2 iteration (Figure 4). By counting the
number of such patterns, we obtain iter; X iter;.
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Figure 5: Visualization of execution time of a gemm_nn where Loop 1, Loop 2, and Loop3 have 5 iterations each (a), and value

of iter4 for each first iteration of Loop 3 (b).

Step 2: Extract iter; and determine the value of m. In
the DCG pattern of a Loop 2 iteration, we count the number of
invocations of the itcopy-kernel pair (Figure 4). This count
plus 1 gives iter;. Of all of these iter; iterations, all but the
last two execute a block of size P; the last two execute a block
of size (P4 m mod P)/2 each (Figure 5(a)). To estimate the
size of this smaller block, we assume that the execution time
of an iteration is proportional to the block size it processes —
except for the first iteration which, as we indicated, is different.
Hence, we time the execution of a “normal” iteration of Loop
3 and the execution of the last iteration of Loop 3. Let’s call
the times #,,o;mq; and tguq. The value of m is computed by
adding P for each of the (iter; - 2) iterations and adding the
estimated number for each of the last two iterations:

m = (iter; —2) X P+ 2 X Lymall p
Lnormal

Step 3: Extract iter4 and ifer;, and determine the value
of k. In the DCG pattern of a Loop 2 iteration (Figure 4), we
count the number of oncopy-kernel pairs, and obtain itery.
As shown in Figure 5(b), the value of itery is [R/3UNROLL)]
in all iterations of Loop 2 except those that are part of
the last two iterations of Loop 1. For the latter, itery is
[((R4+n mod R)/2)/3UNROLL], which is a lower value.
Consequently, by counting the number of DCG patterns that
have a low value of ifery, and dividing it by 2, we attain iter,.
We then follow the procedure of Step 2 to calculate k. Specif-
ically, all Loop 2 iterations but the last two execute a block of
size Q; the last two execute a block of size (Q+ & mod Q)/2
each (Figure 5(a)). Hence, we time the execution of two itera-
tions of Loop 2 in the first Loop 1 iteration: a “normal” one

(2 oyma) @nd the last one (;,, ). We then compute k like in
Step 2:
t/
k= (iter—2) x Q+2 x il x 0
normal

Step 4: Extract iter; and determine the value of n. If
we take the total number of DCG patterns in the execu-
tion from Step 1 and divide that by iter;, we obtain iter;.

We know that all Loop 1 iterations but the last two exe-
cute a block of size R; the last two execute a block of size
(R+nmod R)/2 each. To compute the size of the latter
block, we note that, in the last two iterations of Loop 1, itery
is [((R+nmod R)/2)/3UNROLL]. Since both itery and
3UNROLL are known, we can estimate (R+n mod R) /2. We
neglect the effect of the ceiling operator because SUNROLL
is a very small number. Hence, we compute # as:

n = (iter; —2) x R+ 2 x iter4 x 3UNROLL

Our attack cannot handle the cases when m or k are less
than or equal to twice their corresponding block sizes. For
example, when m is less than or equal to 2 x P, there is no
iteration of Loop 3 that operates on a smaller block size. Our
procedure cannot compute the exact value of m, and can only
say that m < 2P.

6 Generalization of the Attack on GEMM

Our attack can be generalized to other BLAS libraries, since
all of them use blocked matrix-multiplication, and most of
them implement Goto’s algorithm [20]. We show that our
attack is still effective, using the Intel MKL library as an
example. MKL is a widely used library but is closed source.
We reverse engineer the scheduling of the three-level nested
loop in MKL and its block sizes. The information is enough
for us to apply the same attack procedure in Section 5.3 to
obtain matrix dimensions.

Constructing the DCG  We apply binary analysis [41,73]
techniques to construct the DCG of the GEMM function in
MKL, shown in Figure 6. The pattern is the same as the
DCG of OpenBLAS in Figure 4. Thus, the attack strategy in
Section 5 also works towards MKL.

Extracting Block Sizes Similar to OpenBLAS, in MKL,
there exists a linear relationship between matrix dimensions
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Figure 6: DCG of blocked GEMM in Intel MKL, with the
number of invocations per iteration of Loop 2.

#pairs=iters-1

and iteration count for each of the loops, as shown in Formu-
las 1 and 2. When the matrix size increases by a block size,
the corresponding iteration count increases by 1. We leverage
this relationship to reverse engineer the block sizes for MKL.
Specifically, we gradually increase the input dimension size
until the number of iterations increments. The stride on the
input dimension that triggers the change of iteration count is
the block size.

Special Cases According to our analysis, MKL follows
a different DCG when dealing with small matrices. First,
instead of executing three-level nested loops, it uses a single-
level loop, tiling on the dimension that has the largest value
among m, n, k. Second, the kernel computation is performed
directly on the input matrices, without packing and buffering
operations.

For these special cases, we slightly adjust the attack strategy
in Figure 5. We use side channels to monitor the number of
iterations on that single-level loop and the time spent for each
iteration. We then use the number of iterations to deduce
the size of the largest dimension. Finally, we use the timing
information for each iteration to deduce the product of the
other two dimensions.

7 Experimental Setup

Attack Platform We evaluate our attacks on a Dell work-
station Precision T1700, which has a 4-core Intel Xeon E3
processor and an 8GB DDR3-1600 memory. The processor
has two levels of private caches and a shared last level cache.
The first level caches are a 32KB instruction cache and a
32KB data cache. The second level cache is 256KB. The
shared last level cache is 8MB. We test our attacks on a same-
OS scenario using Ubuntu 4.2.0-27, where the attacker and
the victim are different processes within the same bare-metal
server. Our attacks should be applicable to other platforms,
as the effectiveness of Flush+Reload and Prime+Probe has
been proved in multiple hardware platforms [38, 69].

Victim DNNs We use a VGG [52] instance and a
ResNet [26] instance as victim DNNs. VGG is represen-
tative of early DNNs (e.g., AlexNet [33] and LeNet [34]).
ResNet is representative of state-of-the-art DNNs. Both are
standard and widely-used CNN's with a large number of layers
and hyper-parameters. ResNet additionally features shortcut
connections.

There are several versions of VGG, with 11 to 19 layers.
All VGGs have 5 types of layers, which are replicated a dif-
ferent number of times. We show our results on VGG-16.

There are several versions of ResNet, with 18 to 152 layers.
All of them consist of the same 4 types of modules, which are
replicated a different number of times. Each module contains
3 or 4 layers, which are all different. We show our results on
ResNet-50.

The victim programs are implemented using the Keras [10]
framework, with Theano [54] as the backend. We execute
each DNN instance with a single thread.

Attack Implementation We use Flush+Reload and
Prime+Probe attacks. In both attacks, the attacker and the
victim are different processes and are pinned to different
cores, only sharing the last level cache.

In Flush+Reload, the attacker and the victim share the
BLAS library via page de-duplication. The attacker probes
one address in itcopy and one in oncopy every 2,000 cycles.
There is no need to probe any address in kernel, as the access
pattern is clear enough. Our Prime+Probe attack targets the
last level cache. We construct two sets of conflict addresses
for the two probing addresses using the algorithm proposed
by Liu et al. [38]. The Prime+Probe uses the same monitoring
interval length of 2,000 cycles.

8 Evaluation

We first evaluate our attacks on the GEMM function. We
then show the effectiveness of our attack on neural network
inference, followed by an analysis of the search space of DNN
architectures.

8.1 Attacking GEMM
8.1.1 Attack Examples

Figure 7 shows raw traces generated by Flush+Reload and
Prime+Probe when monitoring the execution of the GEMM
function in OpenBLAS. Due to space limitations, we only
show the traces for one iteration of Loop 2 (Algorithm 1).

Figure 7(a) is generated under Flush+Reload. It shows
the latency of the attacker’s reload accesses to the probing
addresses in the itcopy and oncopy functions for each mon-
itoring interval. In the figure, we only show the instances
where the access took less than 75 cycles. These instances
correspond to cache hits and, therefore, cases when the victim
executed the corresponding function. Figure 7(b) is generated
under Prime+Probe. It shows the latency of the attacker’s
probe accesses to the conflict addresses. We only show the in-
stances where the accesses took more than 500 cycles. These
instances correspond to cache misses of at least one conflict
address. They are the cases when the victim executed the
corresponding function.
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Figure 7: Flush+Reload (a) and Prime+Probe (b) traces of the GEMM execution. The monitoring interval is 2,000 cycles.

Since we select the probing addresses to be within
in-function loops (Section 5.2), a cluster of hits in the
Flush+Reload trace (or misses in the Prime+Probe trace) indi-
cates the time period when the victim is executing the probed
function.

In both traces, the victim calls itcopy before interval
2,000, then calls oncopy 11 times between intervals 2,000
and 7,000. It then calls itcopy another two times in inter-
vals 7,000 and 13,000. The trace matches the DCG shown in
Figure 4. We can easily derive that itery = 11 and iter; = 3.

8.1.2 Handling Noise

Comparing the two traces in Figure 7, we can observe that
Prime+Probe suffers much more noise than Flush+Reload.
The noise in Flush+Reload is generally sparsely and randomly
distributed, and thus can be easily filtered out. However,
Prime+Probe has noise in consecutive monitoring intervals,
as shown in Figure 7(b). It happens mainly due to the non-
determinism of the cache replacement policy [13]. When
one of the cache ways is used by the victim’s line, it takes
multiple “prime” operations to guarantee that the victim’s line
is selected to be evicted. It is more difficult to distinguish the
victim’s accesses from such noise.

We leverage our knowledge of the execution patterns in
GEMM to handle the noise in Prime+Probe. First, recall
that we pick the probing addresses within tight loops inside
each of the probing functions (Section 5.2). Therefore, for
each invocation of the functions, the corresponding probing
address is accessed multiple times, which is observed as a
cluster of cache misses in Prime+Probe. We count the num-
ber of consecutive cache misses in each cluster to obtain its
size. The size of a cluster of cache misses that are due to
noise is smaller than size of a cluster of misses that are caused
by the victim’s accesses. Thus, we discard the clusters with
small sizes. Second, due to the three-level loop structure,
each probing function, such as oncopy, is called repetitively
with consistent interval lengths between each invocation (Fig-
ure 4). Thus, we compute the distances between neighboring
clusters and discard the clusters with abnormal distances to
their neighbors.

These two steps are effective enough to handle the noise in
Prime+Probe. However, when tracing MKL'’s special cases
that use a single-level loop (Section 6), we find that using

Prime+Probe is ineffective to obtain useful information. Such
environment affects the accuracy of the Cache Telepathy at-
tack, as we will see in Section 8.3.

8.2 [Extracting Hyper-parameters of DNNs

We show the effectiveness of our attack by extracting the
hyper-parameters of VGG-16 [52] and ResNet-50 [26]. Fig-
ures 8(a), 8(b), and 8(c) show the extracted values of the n, k,
and m matrix parameters, respectively, using Flush+Reload.
In each figure, we show the values for each of the layers (L1,
L2, L3, and L4) in the 4 distinct modules in ResNet-50 (M1,
M2, M3, and M4), and for the 5 distinct layers in VGG-16
(B1, B2, B3, B4, and B5). We do not show the other layers
because they are duplicates of the layers shown.
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Figure 8: Extracted values of the n, k, and m matrix param-
eters for VGG-16 and ResNet-50 using Flush+Reload on

OpenBLAS.

The figures show three data points for each parameter (e.g.,
m) and each layer (e.g., L1 in ResNet-M2): a hollowed circle,
a solid square or rectangle, and a solid circle. The hollowed
circle indicates the actual value of the parameter. The solid
square or rectangle indicates the value of the parameter de-



tected with our side channel attack. When the side channel
attack can only narrow down the possible value to a range, the
figure shows a rectangle. Finally, the solid circle indicates the
value of the parameter that we deduce, based on the detected
value and some DNN constraints. For example, for parame-
ter m in layer L1 of ResNet-M2, the actual value is 784, the
detected value range is [524,1536], and the deduced value is
784.

We will discuss how we obtain the solid circles later. Here,
we compare the actual and the detected values (hollowed cir-
cles and solid squares/rectangles). Figure 8(a) shows that our
attack is always able to determine the n value with negligible
error. The reason is that, to compute n, we need to estimate
iter; and itery (Section 5.3), and it can be shown that most of
the noise comes from estimating itery. However, since itery is
multiplied by the small 3UNROLL parameter in the equation
for n, the impact of such noise is small.

Figures 8(b) and (c) show that the attack is able to ac-
curately determine the m and k values for all the layers in
ResNet-M1 and VGG, and for most layers in ResNet-M4.
However, it can only derive ranges of values for most of the
ResNet-M2 and ResNet-M3 layers. This is because the m and
k values in these layers are often smaller than twice of the
corresponding block sizes (Section 5.3).

In Figure 9, we show the same set of results by analyz-
ing the traces generated using Prime+Probe. Compared to
the results from Flush+Reload, there are some differences
of detected values or ranges, especially in ResNet-M3 and
ResNet-M4.
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Figure 9: Extracted values of the n, k, and m matrix parame-

ters for VGG-16 and ResNet-50 using Prime+Probe on Open-
BLAS.

In summary, our side channel attacks, using Flush+Reload
or Prime+Probe, can either detect the matrix parameters with

negligible error, or can provide a range where the actual
value falls in. We will next show that, in many cases, the
imprecision from the negligible error and the ranges can be
eliminated after applying DNN constraints (Section 8.3.2).

8.3 Size of Architecture Search Space

In this section, we compare the number of architectures in the
search space without Cache Telepathy (which we call original
space), and with Cache Telepathy (which we call reduced
space). In both cases, we only consider reasonable hyper-
parameters for the layers as follows. For fully-connected
layers, the number of neurons can be 2/ where 8 <i < 13. For
convolutional layers, the number of filters can be a multiple
of 64 (64 x i, where 1 <i < 32), and the filter size can be an
integer value between 1 and 11.

8.3.1 Size of the Original Search Space

To be conservative, when computing the size of the original
search space, we assume that the attacker knows the number
of layers and type of each layer in the oracle DNN. There
exist 352 different configurations for each convolutional layer
without considering pooling or striding, and 6 configurations
for each fully-connected layer. Moreover, considering the
existence of non-sequential connections, given L layers, there
are L x 2! possible ways to connect them.

A network like VGG-16 has five different layers (BI, B2,
B3, B4, and B5), and no shortcuts. If we consider only these
five different layers, the size of the search space is about
5.4 x 10'? candidate architectures. A network like ResNet-50
has 4 different modules (M1, M2, M3, and M4) and some
shortcuts inside these modules. If we consider only these
four different modules, the size of the search space is about
6 x 10* candidate architectures. Overall, the original search
space is intractable.

8.3.2 Determining the Reduced Search Space

Using the detected values of the matrix parameters in Sec-
tion 8.2, we first determine the possible connections between
layers by locating shortcuts. Next, for each possible connec-
tion configuration, we calculate the possible hyper-parameters
for each layer. The final search space is computed as

C

L
search space =Y ([ ] x)) (3)
=1

i=1

where C is the total number of possible connection configura-
tions, L is the total number of layers, and x; is the number of
possible combinations of hyper-parameters for layer j.

Determining Connections Between Layers We show
how to reverse engineer the connections between layers using
ResNet-M1 as an example.



First, we leverage inter-GEMM latency to determine the
existence of shortcuts and their sinks using the method dis-
cussed in Section 4.3. Figure 10 shows the extracted matrix
dimensions and the inter-GEMM latency for the 4 layers in
ResNet-M1. The inter-GEMM latency after M1-L4 is signifi-
cantly longer than expected, given its output matrix size and
the input matrix size of the next layer. Thus, the layer after
MI1-L4 is a sink layer.
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Figure 10: Extracting connections in ResNet-M1.

Next, we check the output matrix dimensions of previous
layers to locate the source of the shortcut. Note that a shortcut
only connects layers with the same output matrix dimensions.
Based on the extracted dimension information (values of n
and m) in Figure 8, we determine that M1-L1 is the source. In
addition, we know that M1-L1 and M1-L2 are not sequentially
connected by comparing the output matrix of M1-L1 and the
input matrix of M1-L2 (Section 4.3).

Figure 10 summarizes the reverse engineered connections
among the 4 layers, which match the actual connections in
ResNet-M1. We can use the same method to derive the possi-
ble connection configurations for the other modules. Note that
this approach does not work for ResNet-M3 and ResNet-M4.
In these layers, the input and output matrices are small and
operations between consecutive layers take a short time. As a
result, the inter-GEMM latency is not effective in identifying
shortcuts.

Determining Hyper-parameters for Each Layer We
plug the detected matrix parameters into the formulas in Ta-
ble 3 to deduce the hyper-parameters for each layer. For
the matrix dimensions that cannot be extracted precisely, we
leverage DNN constraints to prune the search space.

As an example, consider reverse engineering the hyper-
parameters for Layer 3 in ResNet-M2. First, we extract the
number of filters. We round the extracted ny,-r3 from Fig-
ure 8(a) (the number of rows in F’) to the nearest multiple
of 64. This is because, as discussed at the beginning of Sec-
tion 8.3, we assume that the number of filters is a multiple
of 64. We get that the number of filters is 512. Second, we
use the formula in Table 3 to determine the filter width and
height. We consider the case where L2 is sequentially con-
nected to L3. The extracted range of kjs>-r3 from Figure 8(b)
(the number of rows in in’ of current layer) is [68,384], and
the value for nypp-7o from Figure 8(a) (the number of rows in
out’ of the previous layer) is 118. We need to make sure that

the square root of ky2-13/np2-12 is an integer, which leads
to the conclusion that the only possible value for kys-73 is
118 (one of the solid circles for kyr-73), and the filter width
and height is 1. The same value is deduced if we consider,
instead, that L1 is connected to L3. The other solid circle for
kara-13 1s derived similarly if we consider that the last layer in
M1 is connected to layer 3 in M2.

We apply the same methodology for the other layers. With
this method, we obtain the solid circles in Figures 8 and 9.

Determining Pooling and Striding We use the difference
in the m dimension (i.e., the channel size of the output) be-
tween consecutive layers to determine the pool or stride size.
For example, in Figure 8(c) and 9(c), the m dimensions of
the last layer in ResNet-M1 and the first layer in ResNet-M2
are different. This difference indicates the existence of a pool
layer or a stride operation. In Figure 8(c), the extracted value
of mys1-14 (the number of columns in out’ for the current
layer) is 3072, and the extracted range of mss-11 (the number
of columns in in’ for the next layer) is [524,1536]. We use
the formula in Table 3 to determine the pool or stride width
and height. To make the square root of niysi-r4/mpp-11 an
integer, my-r1 has to be 768, and the pool or stride width
and height have to be 2.

8.3.3 Size of the Reduced Search Space

Using Equation 3, we compute the number of architectures
in the search space without Cache Telepathy and with Cache
Telepathy. Table 4 shows the resulting values. Note that
we only consider the possible configurations of the different
layers in VGG-16 (B1, B2, B3, B4, and B5) and of the different
modules in ResNet-50 (M1, M2, M3, and M4).

[ DNN | ResNet-50 |  VGG-16 |
Original: No Cache Telepathy || >6x 10% [ > 5.4 x 102
OpenBLAS 512 16
Flush+Reload MKL 6idd o
. OpenBLAS 512 16
Prime+Probe MKL 57 %100 1936

Table 4: Comparing the original search space (without Cache
Telepathy) and the reduced search space (with Cache Telepa-
thy).

Using Cache Telepathy to attack OpenBLAS, we are able to
significantly reduce the search space from an intractable size
to a reasonable size. Both Flush+Reload and Prime+Probe
obtain a very small search space. Specifically, for VGG-16,
Cache Telepathy reduces the search space from more than
5.4 x 102 architectures to just 16; for ResNet-50, Cache
Telepathy reduces the search space from more than 6 x 10
to 512.

Cache Telepathy is less effective on MKL. For VGG-
16, Cache Telepathy reduces the search space from more



than 5.4 x 10'2 to 64 (with Flush+Reload) or 1936 (with
Prime+Probe). For ResNet-50, Cache Telepathy reduces
the search space from more than 6 x 10%® to 6144 (with
Flush+Reload) or 5.7 x 10" (with Prime+Probe). The last
number is large because the matrix dimensions in Module
M1 and Module 4 of ResNet-50 are small, and MKL handles
these matrices with the special method described in Section 6.
Such method is not easily attackable by Prime+Probe. How-
ever, if we only count the number of possible configurations
in Modules M1, M2, and M3, the search space is 41472.

Implications of Large Search Spaces A large search
space means that the attacker needs to train many networks.
Training DNNs is easy to parallelize, and attackers can re-
quest many GPUs to train in parallel. However, it comes
with a high cost. For example, assume that training one net-
work takes 2 GPU days. On Amazon EC2, the current price
for a single-node GPU instance is ~$3/hour. Without Cache
Telepathy, since the search space is so huge, the cost is unbear-
able. Using Cache Telepathy with Flush+Reload, the reduced
search space for the different layers in VGG-16 and for the
different modules in ResNet-50 running OpenBLAS means
that the training takes 32 and 1024 GPU days, respectively.
The resulting cost is only ~$2K and ~$74K. When attacking
ResNet-50 running MKL, the attacker needs to train 6144
architectures, requiring over $884K.

9 Countermeasures

We overview possible countermeasures against our attack,
and discuss their effectiveness and performance implications.
We first investigate whether it is possible to stop the attack
by modifying the BLAS libraries. All BLAS libraries use
extensively optimized blocked matrix multiplication for per-
formance. One approach is to disable the optimization or use
less aggressive optimization. However, it is unreasonable to
disable blocked matrix multiplication, as the result would be
very poor cache performance. Using a less aggressive block-
ing strategy, such as removing the optimization for the first
iteration of Loop 3 (lines 4-7 in Algorithm 1), only slightly
increases the difficulty for attackers to recover some matrix
dimensions. It cannot effectively eliminate the vulnerability.
Another approach is to reduce the dimensions of the matri-
ces. Recall that in both OpenBLAS and MKL, we are unable
to precisely deduce the matrix dimensions if they are smaller
than or equal to the block size. Existing techniques, such as
quantization, can help reduce the matrix size to some degree.
This mitigation is typically effective for the last few layers in a
convolutional network, which generally use small filter sizes.
However, it cannot protect layers with large matrices, such as
those using a large number of filters and input activations.
Alternatively, one can use existing cache-based side chan-
nel defense solutions. One approach is to use cache partition-
ing, such as Intel CAT (Cache Allocation Technology) [30].

CAT assigns different ways of the last level cache to differ-
ent applications, which blocks cache interference between
attackers and victims [37]. Further, there are proposals for
security-oriented cache mechanisms such as PLCache [62],
SHARP [67] and CEASER [44]. If these mechanisms are
adopted in production hardware, they can mitigate our attack
with moderate performance degradation.

10 Related Work

Recent research has called attention to the confidentiality of
neural network hyper-parameters. Hua et al. [29] designed
the first attack to steal CNN architectures running on a hard-
ware accelerator. Their attack is based on a different threat
model, which requires the attacker to be able to monitor all
of the memory addresses accessed by the victim. Our attack
does not require such elevated privilege. Hong et al. [27]
proposed to use cache-based side channel attacks to reverse
engineer coarse-grained information of DNN architectures.
Their attack is less powerful than Cache Telepathy. They can
only obtain the number and types of layers, but are unable to
obtain more detailed hyper-parameters, such as the number
of neurons in fully-connected layers and filter size in convolu-
tional layers. Batina et al. [9] proposed to use electromagnetic
side channel attacks to reverse engineer DNNs in embedded
systems.

Cache-based side channel attacks have been used to trace
program execution to steal sensitive information. A lot of
attacks target cryptography algorithms [15-17,24,31, 38,40,
47,68-70,72], such as AES, RSA and ECDSA. Recent works
also target application fingerprinting [28, 42,48, 50, 73] to
steal web content or server data, monitor user behavior [22,
36,46,71], and break system protection mechanisms such as
SGX and KASLR [11,21,61].

11 Conclusion

In this paper, we proposed Cache Telepathy, an efficient mech-
anism to help obtain a DNN’s architecture using the cache
side channel. We identified that DNN inference relies heavily
on blocked GEMM, and provided a detailed security analysis
of this operation. We then designed an attack to extract the
matrix parameters of GEMM calls, and scaled this attack to
complete DNNs. We used Prime+Probe and Flush+Reload to
attack VGG and ResNet DNNs running OpenBLAS and Intel
MKUL libraries. Our attack is effective at helping obtain the
architectures by very substantially reducing the search space
of target DNN architectures. For example, when attacking
the OpenBLAS library, for the different layers in VGG-16,
it reduces the search space from more than 5.4 x 10'? archi-
tectures to just 16; for the different modules in ResNet-50, it
reduces the search space from more than 6 x 10% architec-
tures to only 512.
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