
There’s Always a Bigger Fish: A Clarifying Analysis of a
Machine-Learning-Assisted Side-Channel Attack

Jack Cook
MIT CSAIL

Cambridge, MA, USA
cookj@mit.edu

Jules Drean
MIT CSAIL

Cambridge, MA, USA
drean@mit.edu

Jonathan Behrens
MIT CSAIL

Cambridge, MA, USA
behrensj@mit.edu

Mengjia Yan
MIT CSAIL

Cambridge, MA, USA
mengjiay@mit.edu

ABSTRACT
Machine learning has made it possible to mount powerful attacks
through side channels that have traditionally been seen as challeng-
ing to exploit. However, due to the black-box nature of machine
learning models, these attacks are often difficult to interpret cor-
rectly. Models that detect correlations cannot be used to prove
causality or understand an attack’s various sources of information
leakage.

In this paper, we show that a state-of-the-art website-fingerprint-
ing attack powered by machine learning was only partially analyzed.
In this attack, an attacker collects cache-sweeping traces, which
measure the frequency at which the entire last-level cache can be
accessed over time, while a victim loads a website. A neural network
is then trained on these traces to predict websites accessed by the
victim. The attack’s usage of the cache led to a consensus that the
attack exploited a cache-based side channel. However, we provide
additional analysis contradicting this assumption and clarifying the
mechanisms behind this powerful attack.

We first replicate the website-fingerprinting attack without mak-
ing any cache accesses, demonstrating that memory accesses are
not crucial to the attack’s success and may even inhibit its per-
formance. We then search for the primary source of information
leakage in our new attack by analyzing the effects of various iso-
lation mechanisms and by instrumenting the Linux kernel. We
ultimately find that this attack’s success can be attributed primarily
to system interrupts. Finally, we use this analysis to craft highly
practical and effective defense mechanisms against our attack.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures; • Computing methodologies→ Supervised learning
by classification.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8610-4/22/06.
https://doi.org/10.1145/3470496.3527416

KEYWORDS
side channels, website fingerprinting, microarchitecture, deep learn-
ing, security

ACM Reference Format:
Jack Cook, Jules Drean, Jonathan Behrens, and Mengjia Yan. 2022. There’s
Always a Bigger Fish: A Clarifying Analysis of a Machine-Learning-Assisted
Side-Channel Attack. In The 49th Annual International Symposium on Com-
puter Architecture (ISCA ’22), June 18–22, 2022, New York, NY, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3470496.3527416

1 INTRODUCTION
Application-level security in modern systems relies heavily on un-
derlying system software to enforce isolation between different
security domains. However, achieving this isolation is challeng-
ing due to the existence of covert channels and side channels. In a
covert- or side-channel attack, a transmitter program leaks informa-
tion about a secret to a receiver program by leveraging contention
over a shared resource. In this paper, we focus on studying side
channels where the transmitter program is the victim and the re-
ceiver program is the adversary. Most side channels exploit system-
level resource contention such as memory allocation [31] and file
system utilization [67], or hardware resource contention such as
caches [22, 46, 79, 80], branch predictors [16, 17], DRAM [58, 78],
and pipeline ports [3]. Side channels are widely effective and can be
used to leak cryptographic keys [55, 61, 69], website content [6, 64],
and user activity [43, 54].

Problems With Machine-Learning-Assisted Side-Channel Attacks.
Recently published side-channel attacks have made extensive use
of machine learning techniques, which simplify the development of
these attacks and improve their robustness [4, 7, 12, 29, 35, 40, 42, 50,
59, 62]. When exploiting a side channel, an attacker needs to extract
a secret from the observation of side effects generated by a victim’s
execution patterns. For relatively complicated applications such
as website fingerprinting [64, 73], document fingerprinting [49],
and acoustic side channels [2, 18], the relationship between these
observations and the secret can be difficult to identify. However,
machine learning models make it possible to solve this problem
with relatively high accuracy. This has led to major improvements
for many side-channel attacks [4, 7, 12, 29, 30, 35, 40, 42, 50, 52, 59,
62, 64, 65].

https://doi.org/10.1145/3470496.3527416
https://doi.org/10.1145/3470496.3527416

ISCA ’22, June 18–22, 2022, New York, NY, USA Cook et al.

Unfortunately, the usage of machine learning in these settings
has incited a worrying trend. Machine learning models are very
good at finding correlations, which enables them to be used re-
gardless of one’s understanding of the side channel being attacked.
This leads to the development of powerful attacks that are poorly
understood. Without proper analyses, the community is left unable
to develop effective countermeasures or strategies to close the side
channels entirely.

This Paper. In this paper, we provide such an analysis for an
attack that had not been entirely understood until now. Specifi-
cally, we show that the website-fingerprinting attack proposed by
Shusterman et al. [64], also known as a sweep-counting attack, does
not primarily leverage signals generated by cache contention. In
fact, we show that system interrupts are the primary source of
information leakage in this attack.

In a sweep-counting attack, the attacker begins by allocating
a buffer with the same size as the last-level cache (LLC). Then,
over a series of short time intervals, the attacker repeatedly records
cache-sweep counts by accessing the entire buffer multiple times and
storing, into a trace, the number of times it was able to do so. When
the attacker process is running in parallel with the processes ren-
dering a victim’s tab, the generated trace is characteristic of activity
performed by the website loaded by the victim and can be used as
that website’s “fingerprint.” The attack is implemented in JavaScript,
allowing it to be embedded in any website. It also achieves relatively
high accuracy on most web browsers and operating systems.

However, we find that in this sweep-counting attack, attributing
the attack’s success to the cache doesn’t tell the full story. Our
analysis challenges the previous assumption and shows that this
attack primarily exploits interrupt-based side channels. We present
two supporting arguments.

First, we demonstrate that the attack works well even after all
memory accesses are removed. In our new attack, which we call a
loop-counting attack, the attacker repeatedly increments a counter
in a loop and periodically saves it to a trace. We then evaluate
our loop-counting attack using website fingerprinting as an estab-
lished benchmark and compare our results with the state-of-the-art
cache-based attack introduced in [65]. We test multiple combina-
tions of operating systems (Linux, Windows, and macOS) and web
browsers (Chrome, Firefox, Safari, and Tor Browser). Our attack
can distinguish between 100 websites with accuracy as high as
96.6% in Chrome and Safari, and as high as 95.3% in Firefox. In all
but one experimental configuration, our attacker outperforms the
state-of-the-art [65]. These observations show that other side chan-
nels likely play an important role in the sweep-counting attack’s
success.

Second, in a more controlled experiment, we directly compare
the accuracy of the sweep-counting attack to our loop-counting
attack and show that the extensive memory accesses made by the
sweep-counting attack actually inhibit its performance. We also
observe that its accuracy is much more affected by noise introduced
by generating interrupts randomly than by repeatedly sweeping the
last-level cache. From these observations, we hypothesize that the
primary source of information leakage in both the sweep-counting
attack and our loop-counting attack comes from interrupt-based
side channels.

Intuitively, in both of these attacks, instruction throughput
should decrease as the attacker’s CPU core spends more time han-
dling system interrupts triggered by the victim. We verify our
hypothesis about a potential interrupt-based side channel with
additional analysis.

First, we investigate how our loop-counting attack performs
under different isolation mechanisms. Our findings make it possi-
ble to rule out various hypotheses regarding the attack’s primary
source of information leakage, such as frequency scaling and CPU
resource contention, both of which are also able to affect instruction
throughput. Our analysis shows that existing isolation mechanisms,
including virtual machine isolation, do not defend well against our
attack.

Second, we develop a tool that uses eBPF to instrument the Linux
kernel, which helps us prove that the primary source of leakage in
the loop-counting attack comes from system interrupts. We find
that over 99% of our attacker’s execution gaps lasting longer than
100 nanoseconds are caused by interrupts. We additionally leverage
our eBPF tool to study the timing characteristics of different types
of interrupts.

In our analysis, for the first time in the literature, we find that
non-movable interrupts, such as softirqs and rescheduling interrupts,
play an important role in leaking application information. This
finding is important as nearly all prior work studying interrupt-
based side channels [43, 68] focuses on movable interrupts such
as graphics and network interrupts. Linux provides convenient
interfaces to block information leakage due to movable interrupts
by isolating them from potential attackers. However, preventing
leakage due to non-movable interrupts may require major system
redesigns.

Finally, we use the insights from our analysis to propose and
evaluate two immediate countermeasures against our attack. One
of these adds randomness to the attacker’s timer, and a second
introduces noise by generating interrupts at random. These coun-
termeasures reduce our attack’s accuracy in Chrome on Linux from
96.6% to 5.2% and 70.7% respectively.

Contributions. The main contributions of this paper can be sum-
marized as follows:

• We demonstrate that in the sweep-counting attack presented
in [64], cache-based side channels are not the primary source
of information leakage. Instead, we provide analysis show-
ing that the attack’s primary source of leakage comes from
system interrupts.

• We show that interrupt-based side channels can be used to
mount a powerful website-fingerprinting attack that outper-
forms the state-of-the-art [65].

• We highlight the security implications of non-movable in-
terrupts, which have not been studied in detail.

• We open-source our trace collection, model training, and
eBPF toolset at https://github.com/jackcook/bigger-fish.

Our work highlights the importance of thoroughly analyzing
side-channel attacks, especially those assisted by machine-learning
techniques. We hope this work raises awareness about the limita-
tions of machine learning as a tool and motivates the community
to develop better methodologies for analyzing side channels.

https://github.com/jackcook/bigger-fish

There’s Always a Bigger Fish: A Clarifying Analysis of a Machine-Learning-Assisted Side-Channel Attack ISCA ’22, June 18–22, 2022, New York, NY, USA

2 BACKGROUND
2.1 Cache-Based Side Channels
Cache-based side channels [37, 46, 64, 80] have been extensively
studied in the literature to leak various types of sensitive infor-
mation, including cryptographic keys [46, 55, 80, 81], user activ-
ity [43, 44, 54], and website content [64, 65]. Many cache attacks,
such as Prime+Probe [46, 55], work by creating contention on
attacker-chosen cache sets between the attacker and victim and
using high-resolution timers to monitor the cache.

Shusterman et al. [64, 65] proposed a cache-occupancy attack
that requires no detailed knowledge of the cache’s organization,
such as knowledge of cache associativity and address mapping
functions, and can work with low-resolution timers, notably includ-
ing the timers provided by a web browser. Their attack works by
measuring the average memory activity of a victim. Specifically,
the attacker repeatedly measures the time it takes to access a last-
level-cache-sized buffer. When the victim performs some memory
accesses, it loads the corresponding data in the cache, evicting cache
lines that have been previously loaded by the attacker. When the
attacker executes again, it should take a longer time for the attacker
to access lines that are no longer present in the cache. This timing
information has been believed to be enough to infer the number of
cache lines that have been evicted, which is the “cache occupancy”
status of the victim. This attack is not fine-grained enough to re-
cover cryptographic keys, but is powerful enough to predict classes
of activity performed by the victim, such as web browsing activity.
In this paper, we show that contrary to popular belief, this attack
relies more on interrupt-based side channels than cache-based ones.

2.2 Interrupts
The attacks introduced in this paper primarily exploit interrupt-
based side channels. Thus, we give a brief introduction to interrupt
mechanisms and different interrupt types.

System interrupts are events triggered by hardware devices or
software that require immediate responses. It is a hardware mech-
anism used to deliver information from the outside world or to
otherwise signal an event that requires software attention. When
an interrupt is raised, it is routed to one of the CPU cores where it
triggers a special piece of code to save the current context and start
executing in kernel mode. The operating system then determines
the cause of the interrupt and triggers the appropriate interrupt
handler. During this process, the task that was previously running
on the core remains paused. Once the interrupt handler has com-
pleted, the scheduler either resumes the previous task where it left
off, or context switches to another process. User code is normally
oblivious to interrupts that happen while it is running, though a
particularly attentive process might notice a small jump in the wall
clock time.

Interrupts are notably one of the main asynchronous mecha-
nisms that stall a program’s execution. We describe several types
of interrupts that are relevant to our attacks, classifying them by
how they are triggered below.

Device Interrupts (IRQs). Device interrupts are triggered by hard-
ware devices, such as USB and PCI devices, to signal external events,
like the arrival of a network packet, or the completion of queued

work, such as writing a disk block. Each device interrupt is associ-
ated with a device source.

Operating systems have various policies for how they balance
device interrupts between different cores, but often interrupts are
either routed to one specific core based on the interrupt source
or distributed among all cores equally. In either case, the process
running on a core when an interrupt arrives may not belong to
the same process as the work that triggered the interrupt. Linux
provides a command line tool, irqbalance, through which users
can specify the interrupt distribution policy to improve system
performance.

Local Interrupts. Local interrupts originate from within the CPU
itself. For instance, processors contain programmable timers that
raise timer interrupts after a specified amount of time has elapsed.
Timer interrupts are critical to the operation of schedulers in mod-
ern operating systems, because these schedulers rely on timer in-
terrupts to preempt a process when its time slice expires, instead
of counting on the process to yield voluntarily.

Inter-Processor Interrupts (IPIs). Interrupts can also be triggered
by operating system software running on remote cores. For in-
stance, when the operating system makes updates to page tables
that require invalidation of TLB entries stored on other cores of the
system, it uses an inter-processor interrupt to perform the required
TLB shootdown.

Softirqs and IRQ Work. Softirqs and IRQ Work interrupts are
Linux software constructs that are used to perform some of the
work associated with handling device interrupts. They allow for
tasks to be queued to run at a more convenient time, often when
the OS is already handling a timer interrupt. Unfortunately, Linux
does not provide any interface for users to configure when and
where they are processed.

2.3 Interrupt-Based Timing Side Channels
Interrupt-based timing side channels leak information based on
CPU time used for handling interrupts. These side channels involve
a victim and an attacker, where the victim can be a user-space
program or the operating system. The goal of the attacker is to
figure out whether and when the operating system receives and
processes interrupts. The attacker program executes on a CPU core
and repeatedly probes a clock to record the time.

Figure 1 shows an example of an interrupt-based timing side
channel attack. The attacker and victim processes are executing
on two different cores. When there is no activity on the machine,
the attacker can continuously execute on the CPU (e.g. before T1),
and the observed timer samples increment steadily. However, the
attacker’s observation of the timer will be different if the victim
issues a request to an external hardware device, such as sending a
network request to a NIC card. When the requested packet arrives
at the machine, the NIC card will generate a network interrupt,
which can be routed to the attacker’s core depending on the inter-
rupt distribution policy used by the operating system. When the
interrupt arrives at the attacker’s core at𝑇 1, the CPU pauses the at-
tacker process and starts executing an interrupt handler. Only after
the interrupt handler is completed at 𝑇 2 can the operating system
resume the attacker process. In this case, the attacker will observe a

ISCA ’22, June 18–22, 2022, New York, NY, USA Cook et al.

T1: an interrupt
arrives at the core

T2: finish executing
interrupt handler

victim
process

Time

attacker
process

hardware devices

Figure 1: An example interrupt-based timing side channel.

“jump” in the observed timer samples. Based on the timer samples,
the attacker can figure out when the interrupt was triggered and
measure the amount of time used by the interrupt handler, which
is 𝑇 2−𝑇 1 in the above example.

Note that interrupt-based timing side channel attacks are differ-
ent from attacks that directly read system files to obtain interrupt
statistics. We provide a detailed discussion on these attacks in Sec-
tion 7.

2.4 Website-Fingerprinting Attacks and
Defenses

Throughout the paper, we use website fingerprinting as an estab-
lished benchmark for evaluating and comparing the effectiveness
of side-channel attacks. Website fingerprinting is a type of attack
where an attacker tries to distinguish which website is visited by
a victim. Knowing which website a user connects to is more than
sufficient to obtain detailed information about a victim, such as
religious beliefs, sexual orientation, and political views. There exist
many variants of website-fingerprinting attacks, which we can clas-
sify into two categories based on the resources that can be accessed
by the attacker: on-path attacks and co-located attacks.

An on-path attacker executes on a different machine from the
victim. The attacker observes all the network packets sent and
received by the victim’s machine and infers the website based on
the timing and size of the observed network packets [10, 20, 25, 27,
28, 32, 33, 41, 47, 56, 57, 60, 75, 76]. Such an attacker can only observe
the network-level activity of the victim, and thus can be mitigated
by obfuscating network traffic patterns [8, 9, 11, 53, 74, 77].

A co-located attacker executes on the same machine as the victim
and shares multiple micro-architectural resources with the victim,
including caches, DRAM, and GPUs. In the case of a low-privileged
attacker, the co-location can be achieved by observing the victim ac-
cessing a malicious website running attacker-controlled JavaScript
code. Prior work has demonstrated the usage of micro-architectural
timing side channels to distinguish different websites with high
accuracy [19, 23, 52, 54, 64, 65]. For example, Shusterman et al. [65]
proposed a website-fingerprinting attack that can distinguish 100
websites with accuracy up to 92%. The attack works by collecting
traces reflecting cache occupancy while the browser loads and ren-
ders websites, and then uses deep neural networks to classify the
traces correctly. We discuss other co-located website-fingerprinting
attacks in Section 7.

int Trace[T ∗1000];
loop {

counter = 0;
t_begin = time () ;

do {
/ / count iterations
counter++;
/ / memory accesses
for (i =0; i<size ; i++) {

tmp = buffer [i ∗ 64]
}

} while(time () −t_begin < P) ;

Trace[t_begin] = counter ;
}

(a) Sweep-counting attack

int Trace[T ∗1000];
loop {

counter = 0;
t_begin = time () ;

do {
/ / count iterations
counter++;

No memory accesses

} while(time () −t_begin < P) ;

Trace[t_begin] = counter ;
}

(b) Loop-counting attack

Figure 2: Pseudo-code of the sweep-counting attack (a) and
our loop-counting attack (b).

Threat Model. In this paper, we use interrupt-based timing side
channels to perform website-fingerprinting attacks as a recurring
example for our analysis. In this context, we follow the co-located
attack model. Unless explicitly stated otherwise, our attack’s code
is implemented in JavaScript and is restricted to the low-resolution
timer provided by the web browser being used.

3 THE LOOP-COUNTING ATTACK
In this section, we build an attacker program that is almost iden-
tical to the sweep-counting attack [64], but does not perform any
memory accesses. We call our new attack a loop-counting attack.
We show that the profiles of the traces collected by the two attack-
ers are highly correlated, suggesting that only a small amount of
information is lost when foregoing cache accesses.

3.1 Attack Description
We show pseudo-code for a sweep-counting attacker in Figure 2a
and our loop-counting attacker in Figure 2b. In both algorithms,
the attacker takes a parameter of period length 𝑃 as input. It then
constructs a trace, where each element in the trace measures how
many iterations of the inner-most loop were executed every 𝑃

milliseconds. In the sweep-counting attack’s code, the loop body
contains an increment operation, memory accesses to a large buffer,
and a call to the time() function. Note that the buffer’s size matches
the size of the last-level cache so that one completion of the inner
loop sweeps the entire last-level cache. The counter value can thus
be used to infer how many of the accessed cache lines reside in the
cache. Conversely, in the loop-counting attack’s code, we make no
memory accesses inside the inner-most loop, but instead only have
an increment instruction and a call to the time() function.

Since the sweep-counting attack’s code (in Figure 2a) measures
the throughput of memory accesses, it was previously believed
that the resulting trace was a good proxy for memory throughput
and cache occupancy over time. However, in addition to cache
hits and misses, the throughput of memory instructions can be

There’s Always a Bigger Fish: A Clarifying Analysis of a Machine-Learning-Assisted Side-Channel Attack ISCA ’22, June 18–22, 2022, New York, NY, USA

nytimes.com

amazon.com

weather.com

0 3 6 9 12 15
Time (s)

21000

22000

23000

24000

25000

26000

27000

Figure 3: Example loop-counting traces collected over 15
seconds. Darker shades indicate smaller counter values and
lower instruction throughput.

affected by many other factors, including interrupts, which have
been overlooked by previous work.

Intuitively, within a given period of time, if the program is pre-
empted by an interrupt handler, the attacker spends less time exe-
cuting the loop and thus fewer iterations can be completed, leading
to smaller trace values. Therefore, traces can capture a large amount
of timing information from system interrupts. It is still possible
that our trace includes signals from other sources. We examine this
possibility in detail in Section 5.

3.2 Trace Examples
In Figure 3, we present loop-counting traces generated using the
algorithm from Figure 2b on three victim websites (nytimes.com,
amazon.com, and weather.com).

We implement our attacker in JavaScript as a service worker.
Service workers run in the background on a separate thread from
the sites hosting them. Web browsers do not degrade the perfor-
mance of service workers when their host tabs leave the foreground,
allowing our attack to work well even when the attacker’s tab is
not visible.

Each trace is collected while a victim is browsing potentially sen-
sitive websites in a different tab. The JavaScript attacker repeatedly
calls performance.now() to measure the time, which is returned at
a low precision and often with some added noise, depending on the
browser being used. We generally pick a value for the period length
𝑃 that is larger than the timer resolution provided by the browser
in order to accurately measure throughput. For consistency, if not
explicitly stated otherwise, we set 𝑃 to 5 milliseconds.

We collect each trace by running the loop-counting attack code
(Figure 2b) for 15 seconds while the browser loads and renders
a website in another tab. The shades in the trace correspond to

75

100
nytimes.com

75

100

Av
er

ag
eV

al
ue

(%
)

amazon.com

0 3 6 9 12 15
Time (s)

75

100
weather.com

Our a�acker Sweep-counting a�acker

Figure 4: Normalized trace values averaged over 100 runs
while loading three websites. Traces collected with both at-
tackers are strongly correlated with each other.

counter values ranging approximately from 21,000 to 27,000. Darker
shades represent smaller counter values, indicating that the attacker
is preempted by interrupts and paused for more time.

We observe that traces for the same website are similar to each
other, while traces for different websites are quite different. For
example, according to the traces in Figure 3, we can infer that
amazon.com performs much of its activity in the first 2 seconds,
with spikes in activity around 5 and 10 seconds. Visual cues such as
these indicate that loop-counting traces can be used as fingerprints
to distinguish different websites.

3.3 Comparing Attacker Traces
In Figure 4, we compare the behavior of traces collected by the
loop-counting and the sweep-counting attackers. Each plot depicts
averaged traces over 100 runs from its respective website, which
were then normalized by dividing each value by the maximum
iteration count observed by that attacker. This maximum count
was about 27,000 loop iterations for our attacker, and 32 for the
sweep-counting attacker. The averaged traces from each attacker
are strongly correlated with each other, with a correlation coeffi-
cient of 𝑟 = 0.87 for nytimes.com, 0.79 for amazon.com, and 0.94
for weather.com, suggesting that traces collected by the sweep-
counting attacker are shaped by the same system events as those
collected by the loop-counting attacker.

4 EVALUATION
In this section, we demonstrate that the sweep-counting attack
by Shusterman et al. [64] does not primarily rely on cache-based
side channels. Specifically, we evaluate our loop-counting attack
against a state-of-the-art cache-based website-fingerprinting at-
tack [65] and find that our attack outperforms it in all but one
experimental configuration. We also find that the accuracy of the

nytimes.com
amazon.com
weather.com
amazon.com

ISCA ’22, June 18–22, 2022, New York, NY, USA Cook et al.

sweep-counting attack is only mildly affected by noise introduced
by sweeping the last-level cache. By contrast, we find that noise
introduced by randomly-generated interrupts significantly inhibits
its performance, leading us to believe that the primary source of in-
formation leakage in the sweep-counting attack comes from system
interrupts.

4.1 Evaluation Setup
To compare the two attacker programs, we use website finger-
printing as a benchmark. Specifically, we compare our work to the
state-of-the-art “cache-occupancy” attack also presented by Shus-
terman et al. [65]. To make a fair comparison, we closely follow
their methodology, including experimental configurations, data
collection methods, machine learning model, and hyperparameters.

Like Shusterman et al., we leverage machine learning to create
an attack consisting of two phases: an offline training phase and
an online attack phase. In the offline training phase, the attacker
collects a dataset composed of labeled traces, annotated with their
corresponding websites, and uses the dataset to train a machine
learning classifier. This step is performed on a machine under the
attacker’s control. In the online attack phase, the attacker collects
a trace while the victim visits an unknown website. The attacker
then uses the trained classifier to predict which website was visited
by the victim.

Data Collection. We perform our evaluation under two setups: a
closed-world setup and an open-world setup.

In the closed-world setup, the attacker knows the complete set
of the websites that the victim will visit. In our experiments, the
attacker aims to distinguish the victim’s accesses of 100 different
websites. We select the top 100 websites according to Alexa1, exclud-
ing websites that 1) are pornographic in nature, 2) serve essentially
the same content (e.g. if google.com is included, google.co.uk will
not be included), and 3) experience frequent issues with our test
infrastructure (see Appendix A).

We collect 100 traces from each of the 100 websites, forming a
dataset of 10,000 traces. The browser’s cache is not cleared before
accessing each website, mirroring typical user behavior.

In the open-world setup, the attacker does not have full knowl-
edge of the websites that will be visited by the victim. Instead, the
victim will access a set of “sensitive” and “non-sensitive” websites.
The attacker only knows the set of sensitive websites, and aims to
precisely identify the victim’s accesses to these websites. When the
victim visits a non-sensitive website, the attacker should simply
report “non-sensitive”.

To perform the evaluation for the open-world setup, we treat
the 100 websites used in the closed-world setup as sensitive web-
sites and label these traces with their URLs. We then collect 5,000
additional traces, each corresponding to a single unique website.
These websites are also chosen from the Alexa top sites list, and
the 5,000 traces are labeled as non-sensitive.

Machine Learning Model. We use a Long Short-Term Memory
(LSTM) network to train our machine learning classifier, as LSTM

1https://www.alexa.com/topsites, visited on July 9, 2021.

networks are highly capable of identifying patterns in temporal
data. We use the same model and hyperparameters2 as [65].

To train the classifier, we use standard 10-fold cross validation to
avoid overfitting. We split the dataset into 10 folds, each containing
10% of the traces. We then select one fold and use it as a held-
out test set, and further split the remaining traces into two sets:
a training set with 81% of the traces and a validation set with the
remaining 9% of the traces. We train the classifier using the training
set, stop training when the validation accuracy starts decreasing,
and report the prediction accuracy by applying the trained classifier
on the held-out test set. This procedure is repeated for each fold,
and the average accuracy across the 10 folds is reported as the final
accuracy.

4.2 Evaluation Results
In Table 1, for each combination of web browser and operating
system, we report our attack’s accuracy in our closed- and open-
world setups. We obtain traces from five machines. We use three
desktop computers, each with an Intel Core-i5 processor running
Ubuntu 20.04, a workstation computer with an Intel Xeon processor
running Windows 10 Enterprise, and a MacBook with an Intel Core-
i5 processor running macOS Big Sur 11.5. We evaluate our attack
on four commercial web browsers: Chrome 92, Firefox 91, Safari
14, and Tor Browser 10. Trace collection is automated with the
Selenium browser automation framework [1].

Tor Browser is a modified version of Firefox with additional se-
curity features intended to block local side channel attacks. Due to
these security features, it takes noticeably longer to load a page on
Tor Browser. We use 15-second traces when attacking Chrome, Fire-
fox, and Safari, and 50-second traces when attacking Tor Browser.

Closed-world Results. In the closed-world setup, our attack has a
base success rate of 1%, since our classifier makes a prediction out of
100 possible websites. These websites were selected according to the
procedure detailed in Section 4.1. We directly compare the accuracy
of our attack to the accuracy of the cache-occupancy attack from
[65]. Note that the contents of the top 100 Alexa websites have
changed since [65] was published, and we perform our work on
newer operating systems and web browsers. We bold the accuracy
for experiments where our attack achieves higher accuracy.

When attacking Chrome, which reduces the timer’s resolution
to 0.1 milliseconds and adds random “jitter,” our attack is stronger
for every experimental setup. For example, when attacking Chrome
running in Windows in a closed-world setup, our attack achieves an
accuracy of 92.5%, while the cache-occupancy attack only achieves
a success rate of 80.0%. Our attack’s accuracy does not degrade
when attacking Firefox and Safari, which use less precise timer
resolutions of 1ms.

Tor Browser uses an extremely low timer resolution of 100ms.
Our attack is still effective on Tor Browser, though with signifi-
cantly reduced accuracy. In the closed-world setup, our attack’s
accuracy is 49.8%, and the top-5 accuracy, the rate at which the cor-
rect website is one of the model’s top five predictions, is 86.4%. Our

2LSTM (32 units, sigmoid activation) with 2 pairs of convolutional layers (256 filters,
stride = 3, ReLU activation) and max pooling layers (pool size = 4), a dropout layer (rate
= 0.7), and a fully connected classification layer (output size = 100, softmax activation).
We use the Adam optimizer with learning rate = 0.001.

https://www.alexa.com/topsites

There’s Always a Bigger Fish: A Clarifying Analysis of a Machine-Learning-Assisted Side-Channel Attack ISCA ’22, June 18–22, 2022, New York, NY, USA

Table 1: Classification accuracy obtained with JavaScript loop-counting attacker.

Browser Timer
Resolution

Operating
System

Closed World Open World

Loop-
Counting

Attack

Cache
Attack
[65]†

Loop-Counting Attack
Cache

Attack [65]†

Sensitive Non-
Sensitive

Combined
Accuracy

Combined
Accuracy

0.1ms
w/ jitter

Linux 96.6±0.8 91.4±1.2 95.8±0.8 99.4±0.3 97.2±0.3 86.4±0.3
Chrome 92 Windows 92.5±1.0 80.0±1.6 91.4±0.8 99.2±0.6 94.5±0.5 86.1±0.8

macOS 94.4±1.0 – 92.4±1.0 97.6±1.0 94.3±1.0 –

1ms
w/ jitter

Linux 95.3±0.7 80.0±0.6 95.2±1.0 99.9±0.1 96.4±0.8 87.4±1.2
Firefox 91 Windows 91.9±1.2 87.7±0.8 90.9±0.9 99.6±0.3 93.7±0.6 87.7±0.3

macOS 94.4±0.8 – 93.5±1.1 98.6±0.7 95.0±0.8 –
Safari 14 1ms macOS 96.6±0.5 72.6±1.3 95.1±0.9 99.0±0.7 96.7±0.6 80.5±1.0

Tor Browser 10 100ms Linux 49.8±4.2 46.7±4.1 46.2±2.9 89.8±2.2 62.9±2.4 62.9±3.3
Tor Browser 10 (top 5) 100ms Linux 86.4±2.6 71.9±2.1 86.2±2.1 97.5±1.0 90.7±1.2 82.7±1.8

† We use the same data collection method and LSTM-based model as [64] and [65]. However, the following differences exist between our evaluation setup and
theirs: 1) [65] performed their experiments in 2018 and thus used older operating systems and web browsers, 2) Firefox has changed its timer resolution from
2ms in 2018 to the current 1ms, and 3) we use different Intel CPUs.

attack consistently performs at least as well as the cache-occupancy
attack [65].

To check whether the resulting differences between the two
attacks are meaningful, we use a standard 2-sample t-test to com-
pute the statistical significance of our classifier compared to the
classifier from [65]. Our results are always significant over [65]
with 𝑝 < 0.0001, except for the Tor Browser top-1 result for the
closed-world setup, which is significant with 𝑝 < 0.05.

Open-world Results. In our open-world setup, as explained in
Section 4.1, we add 5,000 “non-sensitive” traces to our existing col-
lection of 10,000 “sensitive” closed-world traces to make a complete
dataset of 15,000 traces. We then train a new model with 101 classes:
one for each sensitive website, and an additional “non-sensitive”
class with all 5,000 open-world traces. This experimental design is
identical to the design used in [65].

We report the base accuracy and standard deviation of this model
for each experiment in the “loop-counting attack” column of Table 1,
along with the respective accuracy from [65]. We bold the accuracy
for experiments where our attack achieves higher accuracy, and
note that our attack is stronger in all experiments except for Tor
Browser, in which we achieve the same accuracy. We refer to these
accuracy metrics as the model’s “combined accuracy.”

The base success rate in these experiments is 33%, which is the
success rate of a blind guess of “non-sensitive.” This makes open-
world accuracy figures difficult to compare to closed-world accuracy
figures, since the closed-world models have a base success rate of
1% by comparison. To reduce confusion, we also report the model’s
accuracy on sensitive and non-sensitive sites individually.

Robustness to Background Noise. We additionally test our attack’s
performance in the presence of system-wide background noise
on Chrome. In the absence of noise, our attack achieves 96.6%
accuracy, as shown in Table 2. When running Slack and Spotify
(playing music) alongside our attacker, we observe a drop of a just

few points in accuracy, down to 93.4%. This indicates that other
applications do not generate enough noise to have a significant
impact on our attack. This also strengthens our attack’s practicality
and shows that it could be used in a real-world setting.

Interpretation. The results we report in Table 1 show that our
loop-counting attacker, which makes no memory accesses, con-
sistently outperforms the state-of-the-art website-fingerprinting
attack. This finding demonstrates that side channels that do not
leverage the cache can be exploited to create a powerful attack.
This leads us to believe that the sweep-counting attack may already
be using other sources of information leakage. We analyze this
possibility in depth in Section 5.

Takeaway 1: Side channels other than the cache provide
enough signal to craft a powerful website-fingerprinting attack.

4.3 Comparison to the Sweep-Counting Attack
We now perform a more controlled experiment to exclude variations
due to differences in website content and machine configuration.
Specifically, we directly compare the sweep-counting and the loop-
counting attackers with the exact same configuration, running all
experiments on the same machine attacking Chrome 100, with an
Intel Core-i5 processor running Ubuntu 20.04.

We additionally compare the effects of two noise-injection coun-
termeasures on each attacker. The first countermeasure, proposed
by [65], introduces cache-sweep noise by repeatedly sweeping the
cache, causing evictions from each cache line. The second counter-
measure, introduced by us, introduces noise by generating spurious
interrupts. We present the countermeasure effects in this section
and defer the discussion of the technical details of the new coun-
termeasure to Section 6.2.

ISCA ’22, June 18–22, 2022, New York, NY, USA Cook et al.

Table 2: Classification accuracy obtained with our loop-
counting attack and the sweep-counting attack [64] in the
presence of different sources of noise.

Attack No Noise
Cache-Sweep

Noise
Interrupt

Noise

Loop-Counting 95.7% 92.6% 62.0%
Sweep-Counting [64] 78.4% 76.2% 55.3%

We present our results in Table 2. Our attack achieves signifi-
cantly higher accuracy out of 100 websites in all three scenarios.
Notably, the sweep-counting attack is far more sensitive to inter-
rupt noise than cache noise. The cache-sweep noise reduces the
sweep-counting attack’s accuracy by 2.2%, while the interrupt noise
reduces the attack’s accuracy by 23.1%, a relatively large drop in
performance. The decreases in performance due to the two sources
of noise is comparable to the responses exhibited by our interrupt-
based attacker. Therefore, we hypothesize that these attacks may
both exploit interrupt- and cache-based side channels, but that
system interrupts constitute the primary source of information
leakage.

Takeaway 2: Cache contention appears not to be the primary
source of information leakage in the sweep-counting attack
presented by Shusterman et al. [64].

5 THE PRIMARY SOURCE OF LEAKAGE
It is important to analyze how signals that enable attacks originate
and propagate within a system. Without properly analyzing the
various sources of leakage that power a side channel, the community
is left unable to develop effective countermeasures or strategies to
close the side channel entirely. In this section, we obtain a thorough
understanding of the loop-counting attack presented in Section 3
and its underlying interrupt-based timing side channel.

5.1 Effects of Isolation Mechanisms
We start our analysis by looking at how different isolation mech-
anisms affect our loop-counting attack. We use an attacker pro-
gram that implements the algorithm from Figure 2b in Python. The
Python code calls the time.time() function to read the system
timer. In contrast with our JavaScript attacker, when using a Python
attacker, we avoid all potential interference from the web browser,
such as global event queues and low-precision timers.

Table 3 shows classification accuracy when evaluating the
Python attack code on Chrome 92 in a closed-world setup. Note
that we create each configuration by incrementally adding a new
isolation mechanism in addition to the mechanisms from the pre-
vious configuration. For example, the last configuration inherits
all isolation mechanisms from previous configurations, including
disabling frequency scaling, pinning to separate cores, removing
IRQ interrupts, and additionally running the attacker process and
the victim process in two separate virtual machines.

Table 3: Classification accuracy obtained with Python loop-
counting attacker under various isolation mechanisms.

Isolation
Mechanism

Top-1
Accuracy

Top-5
Accuracy

Default 95.2% 99.1%
+ Disable frequency scaling 94.2% 98.6%
+ Pin to separate cores 94.0% 98.3%
+ Remove IRQ interrupts 88.2% 97.3%
+ Run in separate VMs 91.6% 97.3%

Disable Frequency Scaling. Recall that the loop-counting attack
code measures instruction throughput, which can be impacted by
processor frequency scaling. Therefore, we first verify whether the
signals used by our attack are affected by frequency scaling. Specif-
ically, our test machine has a clock speed of 1.6-3GHz. We disable
frequency scaling by using the Linux command cpufreq-set to fix
the CPU frequency at 2.5GHz. We observe a small decrease of 1%
in the top-1 accuracy, which indicates that our attack is still highly
effective even without any signal due to frequency scaling.

Separate Cores. We also investigate whether our attack is caused
by contention of CPU resources, which can happen when the op-
erating system schedules the attacker process and the victim pro-
cess onto the same core. On our 4-core machine without hyper-
threading, we use the Linux command taskset to pin the attacker
process to logical core 1 and the victim browser to logical core 2 to
avoid scheduling contention. We observe a negligible decrease of
0.2% in the attack’s accuracy, indicating that our attack does not
rely on CPU contention.

Remove IRQ Interrupts. As discussed in Section 2, there exist
many types of interrupts. For several IRQ types, such as graphics
interrupts, network interrupts, and SATA interrupts, there is no
restriction on where these interrupts should be processed. We use
the Linux command irqbalance to bind all movable IRQs to logical
core 0 in order to prevent them from interfering with the attacker
process. Timer interrupts, softirqs, rescheduling interrupts, and TLB
shootdowns are left on the attacker’s core, since these interrupts
execute on all cores and the operating system does not provide an
interface to move them.

We observe moderate decreases of 5.8% and 1% in the top-1 and
top-5 accuracy respectively. There are two takeaways from these
results. First, the timing characteristics of device interrupts play
an important role in leaking website identity, given that different
websites trigger characteristic network and graphics activities. Sec-
ond, removing all movable interrupts is not sufficient to mitigate
the attack: the remaining non-movable interrupts might play an
important role in leaking the victim’s activity. We demonstrate the
essential role of these interrupts in Section 5.2.

Run in Separate VMs. Finally, we evaluate how our interrupt-
based side channel performs under a stronger isolation mechanism
using virtual machines. We run the attacker and victim processes in
two separate VMs, with all isolation mechanisms from the previous
configurations enabled. We observe a slight increase of 3.4% in the
top-1 accuracy. Such an observation contradicts our expectation, as

There’s Always a Bigger Fish: A Clarifying Analysis of a Machine-Learning-Assisted Side-Channel Attack ISCA ’22, June 18–22, 2022, New York, NY, USA

one would expect the stronger isolation offered by virtual machines
would reduce the effectiveness of our attack. A plausible explanation
for this phenomenon is that when routing an interrupt to a core
running a VM, the signal is amplified as the interrupt needs to be
processed by both the host OS and the guest OS. For example, VM
entries and exits are generally much more expensive than process-
level context switches. This observation has worrying implications
for cloud computing environments, which rely on similar isolation
mechanisms to separate different clients.

Takeaway 3: Current isolation mechanisms are insufficient to
completely mitigate the loop-counting attack, which monitors
instruction throughput for website fingerprinting.

5.2 Identifying the Underlying Side Channel
We now use the instrumentation functionalities provided by Linux
to analyze the loop-counting attack in more detail and uncover
the underlying side channels being exploited. In particular, Linux
allows setting kprobes and tracepoints at specific points in the
kernel binary. When execution reaches those points, Linux will call
into small user-provided programs which can inspect the current
system state and record data. To ensure safety, these programs are
specified using the restricted API of eBPF byte code [34].

Analysis Tool. We use eBPF to log the timestamp and root cause
of various types of interrupts arriving at a specific core and then
compare them to the gaps observed by a user-space attacker pinned
to the same CPU core. In this case, our attacker is written in Rust
and watches for jumps in the local time by repeatedly reading from
Linux’s CLOCK_MONOTONIC time source. Reading from the mono-
tonic clock is slower than directly accessing the CPU timestamp
counter, but still incurs very little overhead because it is imple-
mented via vDSO (virtual dynamic shared object). Since eBPF also
has access to the monotonic clock, time measurements are syn-
chronized between the two programs and we can attribute specific
interrupts recorded in the kernel with specific gaps observed by
the user-space attacker.

One limitation we face is that Linux restricts which kernel func-
tions can be traced3, with recent versions (5.11 and later) being
slightly less restrictive. This means that we are unable to monitor
all entry points into the operating system, but nonetheless when
running with Intel Turbo Boost disabled4, our tool detects that the
overwhelming majority of the gaps are caused by an interrupt type
that we are able to monitor.

Analysis Results. Figure 5 reports the overall time spent in in-
terrupt handlers during each 100-millisecond interval of averaged
traces over 100 runs from three popular websites, sample traces
for which were presented in Section 3. In this experiment, we use
irqbalance to prevent the attacker’s core from receiving IRQs, so
that almost all observable execution gaps come from non-movable

3See https://lore.kernel.org/lkml/20131101112530.14657.87835.stgit@kbuild-fedora.
novalocal/
4When running with Turbo Boost enabled, we observe a significant number of execu-
tion gaps that don’t seem to correspond with time spent in the OS. Finding the cause
of these gaps and whether they represent another side channel is left as future work.

0

5

nytimes.com

0

5

H
an

dl
er

Ti
m

e
(%

) amazon.com

0 3 6 9 12 15
Time (s)

0

5

weather.com

So�irq Rescheduling Interrupt

Figure 5: Percentage of time spent processing interrupts av-
eraged over 100 runs while loading three different websites.

interrupts. Notice that the amount of time spent handling inter-
rupts closely matches the appearance of the traces in Figure 3. For
instance, most of the interrupt-handler activity when loading ny-
times.com happens in the first 4 seconds while for amazon.com, we
observe spikes at 5 and 10 seconds.

Different websites can even trigger different types of non-
movable interrupts. For example, weather.com routinely triggers
rescheduling interrupts, which we found often occur alongside TLB
shootdowns. Identifying the JavaScript-based mechanisms causing
different sites to trigger different types of interrupts is left as future
work.

Notably, we find that our eBPF tool confirms that over 99% of
execution gaps longer than 100 nanoseconds are caused by inter-
rupts. We consider this result to serve as a rigorous proof that
our loop-counting attacker primarily exploits signals from system
interrupts.

Takeaway 4: Our loop-counting attack primarily exploits
signals from system interrupts.

Analysis Implications. This result highlights the robustness of
our attack. Interrupt-based side channels are universal, as inter-
rupts exist on every platform and can be detected by many differ-
ent attackers. For instance, our traces and the trace of interrupt-
handler activity are generated using different attack code (polling
CLOCK_MONOTONIC versus measuring instruction throughput with
Chrome’s reduced resolution timer), and written in different pro-
gramming languages (Rust versus JavaScript).

We additionally identify the security problems associated with
non-movable interrupts, such as softirqs and rescheduling inter-
rupts, which have never before been studied in side-channel attacks.
For example, softirqs are a mechanism used by the Linux kernel

https://lore.kernel.org/lkml/20131101112530.14657.87835.stgit@kbuild-fedora.novalocal/
https://lore.kernel.org/lkml/20131101112530.14657.87835.stgit@kbuild-fedora.novalocal/

ISCA ’22, June 18–22, 2022, New York, NY, USA Cook et al.

So�irq

Timer Interrupt

IRQ Work

0 2 4 6 8 10
Gap length (µs)

Network Receive IRQ

Figure 6: Distributions of interrupt handling times.

to handle complex interrupt-related tasks that are not critical and
can be deferred. This helps to keep the kernel responsive and to
correctly handle other time-sensitive interrupts. This mechanism
is especially helpful for long-running tasks, such as the decryption
of a network packet or the launch of an operation on the GPU. A
lightweight interrupt handler will simply queue a softirq that will
perform the operation at a more appropriate time. The operating
system can decide to allocate this softirq to a different core, po-
tentially moving operations onto a core shared with an attacker.
Unfortunately, the Linux kernel does not offer any interface to
control the dispatching of softirqs.

Truly understanding the causal relationship between non-
movable interrupts and other system events would require instru-
menting the kernel at a more in-depth level than allowed by eBPF.
KUtrace [66] is a good example of such a tool. Since it is infeasible
to isolate non-movable interrupts from applications running on the
system, our attack highlights the fact that existing isolation mech-
anisms are ineffective to mitigate interrupt-based side channels.
Major system redesigns are necessary to close this side channel.

Takeaway 5: Non-movable interrupts, such as softirqs and
rescheduling interrupts, leak information from victim processes.
Blocking information leakage from these interrupts may re-
quire major system redesigns.

5.3 Interrupt Characteristics
We further analyze several types of interrupts in Figure 6. The
figure shows various interrupt types that occur frequently during
our experiments and the distributions of user-space execution gaps
that they cause, averaged over 50 page loads spanning 10 websites.
Here, we run on a different core to avoid observing network-receive
interrupts and IRQ work processing. All of the gaps associated with
these interrupts are longer than 1.5𝜇s, due to the high overhead
of context switches caused by mitigations for Meltdown and other
relevant CPU vulnerabilities.

Multiple interrupts can be associated with a single gap in user-
space execution. This is particularly common for softirqs and IRQ
work because neither can happen on their own, and thus are typ-
ically run while processing a timer interrupt. This is visible in
Figure 6. Because the x-axis reflects the total gap length observed
by the attacker rather than just the amount of time spent processing
that particular interrupt, the spike at 5.5𝜇s for IRQ work matches
the spike at that value for timer interrupts (though the scale is dif-
ferent, because the vast majority of timer interrupts do not involve
processing IRQ work).

Takeaway 6: Different types of interrupts have characteristic
handling time distributions.

6 COUNTERMEASURES
As we saw in Section 5.2, defending against our attack by closing the
interrupt-based side channel will require major system redesigns.
As a partial solution, we propose and evaluate two countermeasures
against our loop-counting attack.

The first countermeasure explores a randomized timer similar to
a “fuzzy timer” that has been analyzed theoretically in prior work
[21, 38]. We also provide an analysis of timers that are currently
used in real-world browsers, along with the security benefits of
each one individually.

The second countermeasure directly injects noise into the
interrupt-based side channel. It is implemented in a Chrome exten-
sion and generates thousands of interrupts while sites load.

6.1 Randomized Timer
Modern browsers have employed several strategies to limit attack-
ers’ observation capabilities by reducing the precision of the timer.
Unfortunately, our results from Section 4.2 show that these mech-
anisms are ineffective. We find key limitations in existing timer
fuzzing techniques and propose a new mechanism.

Existing Timers. Existing timer fuzzing techniques involve two
strategies: reducing the timer’s resolution, and adding jitter to the
timer’s returned value. The browser has access to a precise timer,
which we denote as 𝑇real , and outputs a “fake” timer value that
generally deviates from the actual time, which we denote as 𝑇secure .
To reduce the timer’s resolution, the browser outputs a quantized
timer value using the formula below,

𝑇secure =

⌊
𝑇real
Δ

⌋
· Δ

where Δ is the timer resolution, which is currently 0.1ms in Chrome,
1ms in Firefox and Safari, and 100ms in Tor Browser.

The second technique is to add small perturbations to the timer.
For example, Chrome adds jitter using the following formula.5

𝑇secure =

⌊
𝑇real
Δ

⌋
· Δ + 𝜖 , 𝜖 ∈ {0,Δ}

Since the timer must increase monotonically, 𝜖 is not picked ran-
domly but computed using a hash function. Given that 𝜖 is either 0

5https://chromium-review.googlesource.com/c/chromium/src/+/853505

https://chromium-review.googlesource.com/c/chromium/src/+/853505

There’s Always a Bigger Fish: A Clarifying Analysis of a Machine-Learning-Assisted Side-Channel Attack ISCA ’22, June 18–22, 2022, New York, NY, USA

0 200
Real time (ms)

0

200

Ti
m

er
ou

tp
ut

(m
s)

0 1
Real time (ms)

0

1

0 200
Real time (ms)

0

200

(c) Randomized
timer (Ours)

(b) Ji�ered timer
(Chrome)

(a) �antized
timer (Tor)

Figure 7: Example outputs of different timers.

99.5 100.0 100.5
Real time (ms)

0

1

Pr
op

or
tio

n

4.8 5.0 5.2
Real time (ms)

0.0

0.2

0 50 100
Real time (ms)

0.0

0.1

(c) Randomized
timer (Ours)

(b) Ji�ered timer
(Chrome)

(a) �antized
timer (Tor)

Figure 8: Distributions of durations of one 5-millisecond
attacker loop with different timers.

or Δ, the difference between the value 𝑇secure and the actual time
𝑇real is guaranteed to be less than 2 · Δ ms.

Our Randomized Timer. We propose a randomized timer that
empirically provides stronger security than existing timer-based de-
fense mechanisms. Our timer increases monotonically with random
increments at random intervals. It works as follows. Every Δ ms, we
generate 2 random integers 𝛼 and 𝛽 . If the difference between the
current returned timer value and the real time is within the range of
𝛼 · Δ, the timer value is not changed. If the difference exceeds 𝛼 · Δ,
the returned value is updated to 𝑇secure + 𝛽 · Δ. The computation
process is summarized below.

𝑇 ′
secure =

𝑇secure if 𝑇real −𝑇secure ≤ 𝛼 · Δ
𝑇secure + 𝛽 · Δ if 𝛼 · Δ < 𝑇real −𝑇secure

≤ threshold
𝑇real + 𝛽 · Δ otherwise

Comparing Different Timers. Figure 7 compares the behavior of
three secure timers: a quantized timer with a resolution of 100ms
(used by Tor Browser) in Figure 7a, a jittered timer with a resolution
of 0.1ms (used by Chrome) in Figure 7b, and our randomized timer
in Figure 7c. The dashed lines in each plot represent the values
that would be returned by a timer with perfect precision. Our
randomized timer uses the following parameters: 𝛼 and 𝛽 following
a uniform distribution U[5,55] and threshold=100ms.

Figure 8 compares the attacker’s performance when restricted
to the usage of the same three secure timers. Our loop-counting
attacker functions by repeatedly measuring throughput during

Table 4: Classification accuracy obtained with Python loop-
counting attacker with different timers.

Timer Δ 𝑃 Top-1 Top-5
(ms) (ms) Accuracy Accuracy

Jittered 0.1 5 96.6% 99.4%
Quantized 100 5 86.0% 96.9%

5 1.0% 5.1%
Randomized 1 100 1.9% 6.9%

500 5.2% 13.7%

periods of 5ms. When it loses its ability to do this, its performance
degrades significantly. In Figure 8a, we see that when the timer’s
precision is reduced to 100ms with no randomness, as is done by
Tor Browser, the attacker loses its ability to measure 5ms intervals,
but can still precisely measure the throughput of 100ms intervals.
In Figure 8b, we see that adding small amounts of jitter, as is done
by Chrome, slightly inhibits the attacker’s ability to do this, as
the period lengths vary from 4.8ms to 5.2ms roughly following a
Gaussian distribution. However, in Figure 8c, we see that our timer
makes it impossible for the attacker to accurately estimate how
much time has passed in a single attacker loop, as it could range
from 0 to 100ms of real time.

Evaluation Results. We implement our randomized timer in
Chrome and show the classification accuracy for a closed-world
setup in Table 4. When setting the attacker’s period length 𝑃 (from
Figure 2b) to 5ms and using the default jittered timer in Chrome,
the attack achieves 96.6% accuracy. A quantized timer with a reso-
lution of 100ms reduces the attack’s accuracy to 86%, which is still
significantly higher than the 1% base accuracy. When using our
randomized timer, the attack’s accuracy drops to 1% and the top-5
accuracy drops to 5.1%, almost the same as a blind guess.

Our randomized timer forces the attacker to use a larger attack
period length. However, even when the period length is set to 100ms
or 500ms, the randomized timer mitigation remains highly effective,
as the attack’s accuracy remains low, at 1.9% and 5.2% respectively.

In summary, our randomized timer defends well against our
attack. It offers a higher timer resolution than the timer used by Tor
Browser, making it more practical to use, and it is relatively easy to
implement. Our timer should be used in settings where increased
security is desired. For applications that require a high-resolution
timer in order to function, such as online games, browsers can
adopt a custom permission model which would allow users to grant
permission to a high-precision timer on a case-by-case basis [43].

6.2 Adding Noise with Spurious Interrupts
Countermeasure Description. This countermeasure functions by

scheduling thousands of activity bursts and network pings at ran-
dom intervals, which generates thousands of interrupts. We im-
plement our countermeasure as a Chrome extension and train our
model on traces collected while the extension is active. This counter-
measure comes with a reasonable cost: adding system noise slows
down Chrome. The average load time on the 100 websites used in
our closed-world experiments increases slightly when our Chrome

ISCA ’22, June 18–22, 2022, New York, NY, USA Cook et al.

extension is enabled, from 3.12 seconds to 3.61 seconds, a 15.7%
increase.

Evaluation. We compare the effectiveness of our interrupt-based
countermeasure with the cache-sweep countermeasure introduced
by [65]. The cache-sweep countermeasure repeatedly evicts the
entire last-level cache by allocating an LLC-sized buffer and access-
ing every cache line in a loop. We present our results in Table 2.
Our spurious interrupt countermeasure decreases our attack’s ac-
curacy from 95.7% to 62.0%, while the cache-sweep mitigation only
decreases its accuracy to 92.6%. As discussed in Section 4.3, this
result supports our finding that the primary source of information
leakage in both attacks comes from system interrupts.

7 RELATEDWORK
7.1 Interrupt-Related Attacks
Prior work has looked at attacks that leverage interrupts to breach
system privacy in a different way than presented in this paper.
These attacks generally require direct access to system files con-
taining interrupt statistics, only consider one type of interrupt, or
intentionally introduce interrupts to pause the victim program and
boost the effectiveness of other types of side channels.

In Linux, all reported interrupts are counted by the kernel and
logged in the system file /proc/interrupts, which can be accessed
by any process. Several attacks exploit such statistical information
to monitor application activities [68], monitor keystroke timings
and user behaviors on touch screens [15], and detect website con-
tent [48]. Fortunately, these attacks are easy to mitigate as one could
simply disable non-privileged access to the interrupt pseudo-file.

Other work uses timing side channels to monitor keystrokes
[43, 63, 70]. Note that none of these attacks have considered non-
movable interrupts and only consider a simplistic scenario that, as
a result, can easily be defeated by handling the keyboard interrupts
on a different core than the attacker (see Section 5.1).

Another line of work exploits interrupts to target systems
equipped with Intel SGX [13] by periodically pausing the execution
of victim programs. For example, SGX-Step [71] and CopyCat [51]
introduce high-frequency timer interrupts to pause enclave pro-
grams and obtain fine-grained side channel observations. They
can achieve the maximal temporal resolution of measuring the vic-
tim state while executing every single instruction. SGXlinger [26]
exploits the fact that context switches in enclave programs re-
quire draining multiple micro-architectural states, including the
store buffer. Thus, an attacker can trigger context switches using
interrupts and infer the memory intensiveness of an enclave pro-
gram based on context switch latency. Nemesis [72] exploits the
micro-architectural behavior that delays interrupt processing until
instruction retirement. Interrupt latency, which varies based on the
instructions executed when the interrupt arrives, is used by the
attacker to infer the execution state of an enclave program.

7.2 Co-located Website-Fingerprinting Attacks
A co-located website-fingerprinting attack executes attacker-
controlled code on the same machine as the victim web browser
and leaks website content by exploiting system vulnerabilities or
shared micro-architectural resources.

Lee et al. [39] discovered a GPU vulnerability in 2014 where
both NVIDIA and AMD GPUs did not initialize newly allocated
GPU memory. They showed that an unprivileged attacker process
could directly read browser data when a GPU was used to accel-
erate webpage rendering. PerfWeb [24] leaks website identity by
exploiting hardware performance counters. The above two attacks
can be easily mitigated by fixing the GPU vulnerability and limiting
access to performance counters.

Side-channel attacks can be used for website fingerprinting. Me-
mento [31] is a side-channel attack that tracks changes in the
browser’s memory footprint. Loophole [73] exploits contention
on shared event loops, which are FIFO queues in browsers that
store and dispatch website events. Oren et al. [54] demonstrated a
Prime+Probe cache side-channel attack implemented in JavaScript
and used their attack to monitor website content and user activities.
Shusterman et al. [65] proposed a cache-occupancy side-channel
attack that can leak website identity with a high accuracy using
low-resolution timers. Their follow-up work [64] demonstrated that
the cache occupancy-attack can bypass multiple countermeasures
deployed in modern browsers and can even be mounted from CSS
when JavaScript is disabled. These attacks all exploit shared micro-
architectural structures, which are commonly mitigated through
resource partitioning [5, 14, 36, 45]. However, interrupt-based tim-
ing side-channel attacks, as shown in this paper, are much more
difficult to mitigate. Our attack succeeds in large part due to the
presence of resources that cannot be partitioned.

8 CONCLUSION
This paper highlighted the importance of thoroughly analyzing side-
channel attacks by clarifying the primary source of information
leakage behind a machine-learning-assisted attack.

Previous work by Shusterman et al. [64, 65] introduced a power-
ful website-fingerprinting attack that leverages timing side channels
to achieve high accuracy. While effective, we found that this attack
was not entirely understood. In this paper, we showed this attack
does not only exploit cache contention, but in fact primarily exploits
interrupt-based side channels. We constructed a loop-counting at-
tack that makes no memory accesses and achieves even stronger
performance. We additionally provided in-depth analysis to fully
understand how our attack works under different isolation mech-
anisms and which interrupts play an important role in leaking
information. Our analysis showed that it is virtually impossible to
isolate all interrupts from a specific CPU core, since some interrupts
are needed for the system to function properly. Finally, we proposed
and evaluated two countermeasures that defend well against our
new attack.

ACKNOWLEDGMENTS
We thank our shepherd Yanjing Li and our anonymous reviewers
for helpful feedback; Peter Deutsch for resolving issues with our
machines so we could run our experiments; Sacha Servan-Schreiber
for inspiring the title of our paper; and our friends, family, and
labmates for their support. This research is partially supported by
NSF Grant CNS-2046359, AFOSR Grant FA9550-20-1-0402, and the
MIT-IBM Watson AI Lab.

There’s Always a Bigger Fish: A Clarifying Analysis of a Machine-Learning-Assisted Side-Channel Attack ISCA ’22, June 18–22, 2022, New York, NY, USA

REFERENCES
[1] Gunes Acar, Marc Juarez, et al. 2020. tor-browser-selenium - Tor Browser Au-

tomation With Selenium. https://github.com/webfp/tor-browser-selenium.
[2] Mohammad Abdullah Al Faruque, Sujit Rokka Chhetri, Arquimedes Canedo, and

Jiang Wan. 2016. Acoustic Side-Channel Attacks on Additive Manufacturing
Systems. In 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems
(ICCPS). https://doi.org/10.1109/ICCPS.2016.7479068

[3] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar
Pereida García, and Nicola Tuveri. 2019. Port Contention for Fun and Profit. In
2019 IEEE Symposium on Security and Privacy (SP). https://doi.org/10.1109/SP.
2019.00066

[4] Michael Backes, Markus Dürmuth, Sebastian Gerling, Manfred Pinkal, Caroline
Sporleder, et al. 2010. Acoustic Side-Channel Attacks on Printers. In USENIX
Security Symposium.

[5] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, and Srinivas
Devadas. 2019. MI6: Secure Enclaves in a Speculative Out-Of-Order Proces-
sor. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture.

[6] Benjamin A Braun, Suman Jana, and Dan Boneh. 2015. Robust and Efficient Elim-
ination of Cache and Timing Side Channels. (2015). Preprint, arXiv:1506.00189
[cs.CR].

[7] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. 2017. Convolutional Neu-
ral Networks With Data Augmentation Against Jitter-Based Countermeasures.
In International Conference on Cryptographic Hardware and Embedded Systems.
Springer.

[8] Xiang Cai, Rishab Nithyanand, and Rob Johnson. 2014. CS-BuFLO: A Congestion
Sensitive Website Fingerprinting Defense. In Proceedings of the 13th Workshop on
Privacy in the Electronic Society.

[9] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014.
A Systematic Approach to Developing and Evaluating Website Fingerprinting
Defenses. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security.

[10] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. 2012. Touching
From a Distance: Website Fingerprinting Attacks and Defenses. In Proceedings of
the 2012 ACM Conference on Computer and Communications Security.

[11] Giovanni Cherubin, Jamie Hayes, and Marc Juárez. 2017. Website Fingerprinting
Defenses at the Application Layer. Proceedings on Privacy Enhancing Technologies
(2017).

[12] Shane S Clark, Hossen Mustafa, Benjamin Ransford, Jacob Sorber, Kevin Fu,
and Wenyuan Xu. 2013. Current Events: Identifying Webpages by Tapping
the Electrical Outlet. In European Symposium on Research in Computer Security.
Springer.

[13] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive (2016).

[14] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. In 25th USENIX Security
Symposium (USENIX Security 16).

[15] Wenrui Diao, Xiangyu Liu, Zhou Li, and Kehuan Zhang. 2016. No Pardon for
the Interruption: New Inference Attacks on Android Through Interrupt Timing
Analysis. In 2016 IEEE Symposium on Security and Privacy (SP). https://doi.org/
10.1109/SP.2016.32 ISSN: 2375-1207.

[16] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump
Over ASLR: Attacking Branch Predictors to Bypass ASLR. In MICRO.

[17] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Ponomarev.
2018. BranchScope: A New Side-Channel Attack on Directional Branch Predictor.
In ASPLOS.

[18] Sina Faezi, Sujit Rokka Chhetri, Arnav Vaibhav Malawade, John Charles Chaput,
William Grover, Philip Brisk, and Mohammad Abdullah Al Faruque. 2019. Oligo-
Snoop: A Non-Invasive Side Channel Attack Against DNA Synthesis Machines.
In Network and Distributed Systems Security (NDSS) Symposium 2019.

[19] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. 2018. Drive-by
Key-Extraction Cache Attacks From Portable Code. In International Conference
on Applied Cryptography and Network Security. Springer.

[20] Xun Gong, Nikita Borisov, Negar Kiyavash, and Nabil Schear. 2012. Website
Detection Using Remote Traffic Analysis. In International Symposium on Privacy
Enhancing Technologies Symposium. Springer.

[21] J.W. Gray. 1993. On Analyzing the Bus-Contention Channel Under Fuzzy Time.
In [1993] Proceedings Computer Security Foundations Workshop VI. https://doi.
org/10.1109/CSFW.1993.246643

[22] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA.

[23] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. In USENIX Security.

[24] Berk Gulmezoglu, Andreas Zankl, Thomas Eisenbarth, and Berk Sunar. 2017.
PerfWeb: How to Violate Web Privacy With Hardware Performance Events. In
European Symposium on Research in Computer Security. Springer.

[25] Jamie Hayes and George Danezis. 2016. k-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In 25th USENIX Security Symposium (USENIX
Security 16).

[26] Wenjian He, Wei Zhang, Sanjeev Das, and Yang Liu. 2018. SGXlinger: A New Side-
Channel Attack Vector Based on Interrupt Latency Against Enclave Execution.
In 2018 IEEE 36th International Conference on Computer Design (ICCD). https:
//doi.org/10.1109/ICCD.2018.00025 ISSN: 2576-6996.

[27] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. 2009. Website
Fingerprinting: Attacking Popular Privacy Enhancing Technologies With the
Multinomial Naïve-Bayes Classifier. In Proceedings of the 2009 ACM workshop on
Cloud computing security.

[28] Andrew Hintz. 2002. Fingerprinting Websites Using Traffic Analysis. In Interna-
tional workshop on privacy enhancing technologies. Springer.

[29] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede, and
Joos Vandewalle. 2011. Machine Learning in Side-Channel Analysis: A First
Study. Journal of Cryptographic Engineering (2011).

[30] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji, Xinfeng
Xie, Yufei Ding, Chang Liu, Timothy Sherwood, et al. 2020. DeepSniffer: A
DNN Model Extraction Framework Based on Learning Architectural Hints. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems.

[31] Suman Jana and Vitaly Shmatikov. 2012. Memento: Learning Secrets From Process
Footprints. In 2012 IEEE Symposium on Security and Privacy. IEEE.

[32] Rob Jansen, Marc Juarez, Rafa Galvez, Tariq Elahi, and Claudia Diaz. 2018. Inside
Job: Applying Traffic Analysis to Measure Tor From Within. In NDSS.

[33] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. 2014.
A Critical Evaluation of Website Fingerprinting Attacks. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security.

[34] The Linux kernel development community. 2013. BPF (Berkeley Packet Filter)
Documentation. https://www.kernel.org/doc/html/latest/bpf/index.html. Ac-
cessed on 08.13.2021.

[35] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic.
2019. Make Some Noise. Unleashing the Power of Convolutional Neural Networks
for Profiled Side-Channel Analysis. IACR Transactions on Cryptographic Hardware
and Embedded Systems (2019).

[36] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and
Joel Emer. 2018. DAWG: A Defense Against Cache Timing Attacks in Speculative
Execution Processors. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE.

[37] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
S&P.

[38] David Kohlbrenner and Hovav Shacham. 2016. Trusted Browsers for Uncertain
Times. In 25th USENIX Security Symposium (USENIX Security 16).

[39] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim. 2014. Stealing Webpages
Rendered on Your Browser by Exploiting GPU Vulnerabilities. In 2014 IEEE
Symposium on Security and Privacy. IEEE.

[40] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. 2015. A Machine
Learning Approach Against a Masked AES. Journal of Cryptographic Engineering
(2015).

[41] Shuai Li, Huajun Guo, and Nicholas Hopper. 2018. Measuring Information
Leakage in Website Fingerprinting Attacks and Defenses. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security.

[42] Pavel Lifshits, Roni Forte, Yedid Hoshen, Matt Halpern, Manuel Philipose, Mohit
Tiwari, and Mark Silberstein. 2018. Power to Peep-All: Inference Attacks by Mali-
cious Batteries on Mobile Devices. Proceedings on Privacy Enhancing Technologies
(2018).

[43] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémentine Maurice,
and Stefan Mangard. 2017. Practical Keystroke Timing Attacks in Sandboxed
JavaScript. In ESORICS.

[44] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In USENIX
Security.

[45] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B. Lee. 2016. CATalyst: Defeating Last-Level Cache Side Channel
Attacks in Cloud Computing. In 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA). https://doi.org/10.1109/HPCA.2016.
7446082

[46] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In S&P.

[47] Liming Lu, Ee-Chien Chang, and Mun Choon Chan. 2010. Website Fingerprinting
and Identification Using Ordered Feature Sequences. In European Symposium on
Research in Computer Security. Springer.

[48] Haoyu Ma, Jianwen Tian, Debin Gao, and Chunfu Jia. 2020. Walls Have Ears:
Eavesdropping User Behaviors via Graphics-Interrupt-Based Side Channel. In
Information Security. Springer International Publishing, Cham. https://doi.org/
10.1007/978-3-030-62974-8_11 Series Title: Lecture Notes in Computer Science.

https://github.com/webfp/tor-browser-selenium
https://doi.org/10.1109/ICCPS.2016.7479068
https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1109/SP.2016.32
https://doi.org/10.1109/SP.2016.32
https://doi.org/10.1109/CSFW.1993.246643
https://doi.org/10.1109/CSFW.1993.246643
https://doi.org/10.1109/ICCD.2018.00025
https://doi.org/10.1109/ICCD.2018.00025
https://www.kernel.org/doc/html/latest/bpf/index.html
https://doi.org/10.1109/HPCA.2016.7446082
https://doi.org/10.1109/HPCA.2016.7446082
https://doi.org/10.1007/978-3-030-62974-8_11
https://doi.org/10.1007/978-3-030-62974-8_11

ISCA ’22, June 18–22, 2022, New York, NY, USA Cook et al.

[49] Haoyu Ma, Jianwen Tian, Debin Gao, and Chunfu Jia. 2021. On the Effectiveness
of Using Graphics Interrupt as a Side Channel for User Behavior Snooping. IEEE
Transactions on Dependable and Secure Computing (2021).

[50] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. 2016. Breaking
Cryptographic Implementations Using Deep Learning Techniques. In Interna-
tional Conference on Security, Privacy, and Applied Cryptography Engineering.
Springer.

[51] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar.
2020. CopyCat: Controlled Instruction-Level Attacks on Enclaves. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association, 469–486. https://
www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat

[52] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-Ghazaleh.
2018. Rendered Insecure: GPU Side Channel Attacks are Practical. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
ACM, Toronto Canada. https://doi.org/10.1145/3243734.3243831

[53] Rishab Nithyanand, Xiang Cai, and Rob Johnson. 2014. Glove: A Bespoke Website
Fingerprinting Defense. In Proceedings of the 13th Workshop on Privacy in the
Electronic Society.

[54] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D
Keromytis. 2015. The Spy in the Sandbox: Practical Cache Attacks in JavaScript
and Their Implications. In CCS.

[55] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: The Case of AES. In CT-RSA.

[56] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zin-
nen, Martin Henze, and Klaus Wehrle. 2016. Website Fingerprinting at Internet
Scale. In NDSS.

[57] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. 2011.
Website Fingerprinting in Onion Routing Based Anonymization Networks. In
Proceedings of the 10th Annual ACMWorkshop on Privacy in the Electronic Society.

[58] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.
In USENIX Security.

[59] Stjepan Picek, Ioannis Petros Samiotis, Jaehun Kim, Annelie Heuser, Shivam
Bhasin, and Axel Legay. 2018. On the Performance of Convolutional Neural
Networks for Side-Channel Analysis. In International Conference on Security,
Privacy, and Applied Cryptography Engineering. Springer.

[60] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter
Joosen. 2018. Automated Website Fingerprinting through Deep Learning. In
Proceedings 2018 Network and Distributed System Security Symposium. Internet
Society, San Diego, CA. https://doi.org/10.14722/ndss.2018.23105

[61] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.
Hey, You, Get Off of My Cloud: Exploring Information Leakage in Third-Party
Compute Clouds. In CCS.

[62] Ronald L Rivest. 1991. Cryptography and Machine Learning. In International
Conference on the Theory and Application of Cryptology. Springer.

[63] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clémentine Maurice,
Raphael Spreitzer, and Stefan Mangard. 2017. KeyDrown: Eliminating Keystroke
Timing Side-Channel Attacks. arXiv:1706.06381 [cs] (June 2017). http://arxiv.org/
abs/1706.06381 arXiv: 1706.06381.

[64] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi Oren,
and Yuval Yarom. 2021. Prime+Probe 1, JavaScript 0: Overcoming Browser-based
Side-Channel Defenses. arXiv:2103.04952 [cs] (March 2021). http://arxiv.org/abs/
2103.04952 arXiv: 2103.04952.

[65] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,
Yossi Oren, and Yuval Yarom. 2019. Robust Website Fingerprinting Through the
Cache Occupancy Channel. In USENIX Security.

[66] Richard Sites. 2021. Understanding Software Dynamics. Addison Wesley.
[67] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan Mangard.

2017. Systematic Classification of Side-Channel Attacks: A Case Study for Mobile
Devices. IEEE Communications Surveys & Tutorials (2017).

[68] Xiaoxiao Tang, Yan Lin, Daoyuan Wu, and Debin Gao. 2018. Towards Dynamically
Monitoring Android Applications on Non-Rooted Devices in the Wild. In Pro-
ceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile
Networks. ACM, Stockholm Sweden. https://doi.org/10.1145/3212480.3212504

[69] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient Cache Attacks on
AES, and Countermeasures. Journal of Cryptology (2010).

[70] J.T. Trostle. 1998. Timing Attacks Against Trusted Path. In Proceedings. 1998 IEEE
Symposium on Security and Privacy (Cat. No.98CB36186). https://doi.org/10.1109/
SECPRI.1998.674829 ISSN: 1081-6011.

[71] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A Practical
Attack Framework for Precise Enclave Execution Control. In SysTEX.

[72] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Nemesis: Studying Microar-
chitectural Timing Leaks in Rudimentary CPU Interrupt Logic. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
ACM, Toronto Canada. https://doi.org/10.1145/3243734.3243822

[73] Pepe Vila and Boris Köpf. 2017. Loophole: Timing Attacks on Shared Event Loops
in Chrome. In USENIX Security.

[74] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.
Effective Attacks and Provable Defenses for Website Fingerprinting. In 23rd
USENIX Security Symposium (USENIX Security 14).

[75] Tao Wang and Ian Goldberg. 2013. Improved Website Fingerprinting on Tor. In
Proceedings of the 12th ACM workshop on Workshop on privacy in the electronic
society.

[76] Tao Wang and Ian Goldberg. 2016. On Realistically Attacking Tor with Website
Fingerprinting. Proceedings on Privacy Enhancing Technologies (2016).

[77] Tao Wang and Ian Goldberg. 2017. Walkie-Talkie: An Efficient Defense Against
Passive Website Fingerprinting Attacks. In 26th USENIX Security Symposium
(USENIX Security 17).

[78] Yao Wang, Andrew Ferraiuolo, and G Edward Suh. 2014. Timing Channel Pro-
tection for a Shared Memory Controller. In HPCA.

[79] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy
Campbell, and Josep Torrellas. 2019. Attack Directories, Not Caches: Side Channel
Attacks in a Non-Inclusive World. In S&P.

[80] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In USENIX Security.

[81] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: A Timing
Attack on OpenSSL Constant Time RSA. JCEN (2017).

A CLOSED-WORLDWEBSITES DATASET
1688.com 6.cn adobe.com
alibaba.com aliexpress.com alipay.com
amazon.com aparat.com apple.com
babytree.com baidu.com bbc.com
bing.com booking.com canva.com
chase.com cnblogs.com cnn.com
csdn.net daum.net detik.com
dropbox.com ebay.com espn.com
etsy.com facebook.com fandom.com
force.com freepik.com github.com
godaddy.com gome.com.cn google.com
grammarly.com hao123.com haosou.com
xinhuanet.com huanqiu.com ilovepdf.com
imdb.com imgur.com indeed.com
instagram.com intuit.com jd.com
kompas.com linkedin.com live.com
mail.ru medium.com microsoft.com
msn.com myshopify.com naver.com
netflix.com nytimes.com office.com
ok.ru okezone.com panda.tv
paypal.com pikiran-rakyat.com pinterest.com
primevideo.com qq.com rakuten.co.jp
reddit.com rednet.cn roblox.com
salesforce.com savefrom.net sina.com.cn
slack.com so.com sohu.com
spotify.com stackoverflow.com taobao.com
telegram.org tianya.cn tiktok.com
tmall.com tradingview.com tribunnews.com
tumblr.com twitch.tv twitter.com
vk.com walmart.com weibo.com
wetransfer.com whatsapp.com wikipedia.org
wordpress.com yahoo.com youtube.com
yy.com zhanqi.tv zillow.com
zoom.us

https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://doi.org/10.1145/3243734.3243831
https://doi.org/10.14722/ndss.2018.23105
http://arxiv.org/abs/1706.06381
http://arxiv.org/abs/1706.06381
http://arxiv.org/abs/2103.04952
http://arxiv.org/abs/2103.04952
https://doi.org/10.1145/3212480.3212504
https://doi.org/10.1109/SECPRI.1998.674829
https://doi.org/10.1109/SECPRI.1998.674829
https://doi.org/10.1145/3243734.3243822

	Abstract
	1 Introduction
	2 Background
	2.1 Cache-Based Side Channels
	2.2 Interrupts
	2.3 Interrupt-Based Timing Side Channels
	2.4 Website-Fingerprinting Attacks and Defenses

	3 The Loop-Counting Attack
	3.1 Attack Description
	3.2 Trace Examples
	3.3 Comparing Attacker Traces

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Evaluation Results
	4.3 Comparison to the Sweep-Counting Attack

	5 The Primary Source of Leakage
	5.1 Effects of Isolation Mechanisms
	5.2 Identifying the Underlying Side Channel
	5.3 Interrupt Characteristics

	6 Countermeasures
	6.1 Randomized Timer
	6.2 Adding Noise with Spurious Interrupts

	7 Related Work
	7.1 Interrupt-Related Attacks
	7.2 Co-located Website-Fingerprinting Attacks

	8 Conclusion
	Acknowledgments
	References
	A Closed-World Websites Dataset

