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Abstract

Recently a great deal of attention has been given to numerical algorithms for subspace

state space system identi�cation �N�SID�� In this paper� we derive two new N�SID al�

gorithms to identify mixed deterministic�stochastic systems� Both algorithms determine

state sequences through the projection of input and output data� These state sequences

are shown to be outputs of non�steady state Kalman �lter banks� From these it is easy to

determine the state space system matrices� The N�SID algorithms are always convergent

�non�iterative� and numerically stable since they only make use of QR and Singular Value

Decompositions� Both N�SID algorithms are similar� but the second one trades o� accu�

racy for simplicity� These new algorithms are compared with existing subspace algorithms

in theory and in practice�

Key words � Subspace identi�cation� non�steady state Kalman �lter� Riccati di�erence

equations� QR and Singular Value Decomposition



� Introduction

The greater part of the systems identi�cation literature is concerned with computing poly�

nomial models� which are however known to typically give rise to numerically ill�conditioned

mathematical problems� especially for Multi Input Multi Output systems� Numerical al�

gorithms for subspace state space system identi�cation �N�SID�� are then viewed as the

better alternatives� This is especially true for high�order multivariable systems� for which

it is not trivial to �nd a useful parameterization among all possible parametrizations�

This parametrization is needed to start up the classical identi�cation algorithms �see e�g�

Ljung� ��	
�� which means that a�priori knowledge of the order and of the observability

�or controllability� indices is required�

With N�SID algorithms� most of this a�priori parametrization can be avoided� Only the

order of the system is needed and it can be determined through inspection of the dominant

singular values of a matrix that is calculated during the identi�cation� The state space

matrices are not calculated in their canonical forms �with a minimal number of parameters��

but as full state space matrices in a certain� almost optimally conditioned basis �this basis

is uniquely determined� so that there is no problem of identi�ability�� This implies that

the observability �or controllability� indices do not have to be known in advance�

Another major advantage is that N�SID algorithms are non�iterative� with no non�linear

optimization part involved� This is why they do not su�er from the typical disadvantages of

iterative algorithms� e�g� no guaranteed convergence� local minima of the objective criterion

and sensitivity to initial estimates�

For classical identi�cation� an extra parametrization of the initial state is needed when

estimating a state space system from data measured on a plant with an non�zero initial

condition� A �nal advantage of the N�SID algorithms� is that there is no di�erence

between zero and non�zero initial states�

Most commonly known subspace methods are realization algorithms of e�g� Kung ���
	��

where a discrete�time state space model is computed from a block Hankel matrix with

Markov parameters� It is unfortunate that the theory here relies on Markov parameters as

a starting point� something rather di�cult to measure or compute in practice �e�g� think

of unstable systems��

An alternative direct identi�cation scheme for purely deterministic systems is described by

e�g� Moonen et al� ���	��� Moonen � Ramos ������� where a state space model is computed

directly from a block Hankel matrix constructed from the input�output data� In a �rst

�Read as a Californian license plate � enforce it
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step� a state vector sequence is computed as an interface between a 
past� and a 
future��

Once the state vector sequence is known� the system matrices are computed from a set of

linear equations�

Similar data�driven identi�cation schemes for purely stochastic identi�cation are well known�

�see e�g� Arun � Kung ������ and the references therein�� Less well known is that these

algorithms can compute extremely biased results� This problem was studied and solved by

Van Overschee � De Moor �����a�����b��

The problem addressed in this paper is that of identifying a general state space model

for combined deterministic�stochastic systems directly from the input�output data� Some

papers in the past have already treated this problem but from a di�erent viewpoint� In

Larimore ������ for instance� the problem is treated from a purely statistical point of

view� There is no proof of correctness �in a sense of the algorithms being asymptotically

unbiased� whatsoever� In De Moor et al� ������� Verhaegen ������ the problem is split

up into two subproblems � deterministic identi�cation followed by a stochastic realization

of the residuals� In Moonen et al� ������ the problem is solved for double in�nite block

Hankel matrices� which implies practical computational problems�

In this paper� we will derive two N�SID algorithms that determine the deterministic

and stochastic system at the same time� The connection with classical system theory

�Kalman �lter� will be used to prove the exactness �unbiasedness for an in�nite number of

measurements� of algorithm �� or the degree of approximation �calculation of the bias for

an in�nite number of measurements� of algorithm ��

The approach adopted here is similar to the identi�cation schemes of Moonen et al� ���	��

for the purely deterministic case and Van Overschee � De Moor �����a�����b� for the

stochastic case� First a state sequence is determined from the projection of input�output

data� This projection retains all the information �deterministic and stochastic� in the past

that is useful to predict the future� Then� the state space matrices are determined from

this state sequence� Fig� � shows how these N�SID algorithms di�er from the classical

identi�cation schemes�

The connection of the two new N�SID algorithms with the existing algorithms described

above will also be indicated�

This paper is organized as follows � The problem description and the mathematical tools

can be found in section �� In section � the main projection is de�ned� Section � introduces

a closed form formula for the non�steady state Kalman �lter estimation problem� This

result is related to the results of section � to �nd the interpretation of the main projection

as a sequence of outputs of a non�steady state Kalman �lter bank� Section � introduces a
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�rst N�SID algorithm that identi�es the system matrices exactly� In section � accuracy is

traded o� for simplicity in a second approximate N�SID algorithm� Section 
 shows how

these N�SID algorithms can be implemented in a numerically reliable way� using the QR

and the Singular Value Decomposition �SVD�� Section 	 investigates the connection with

other existing algorithms� Finally section � will treat some comparative examples� The

conclusions can be found in section ���

� Preliminaries

In this section� we describe the linear time invariant system we want to identify� We also

introduce the input and output block Hankel matrices� the past and future horizon as well

as the input�output equations�

��� System description

Consider the following combined deterministic�stochastic model to be identi�ed �

xk�� � Axk �Buk � wk ���

yk � Cxk �Duk � vk ���

with

E�

�
� wk

vk

�
A� wt

l vtl

�
� �

�
� Qs Ss

�Ss�t Rs

�
A �kl � �� ���

and A�Qs � Rn�n� B � Rn�m� C � Rl�n�D � Rl�m� Ss � Rn�l and Rs � Rl�l� The input

vectors uk � Rm�� and output vectors yk � Rl�� are measured� vk � Rl�� and wk � Rn��
on the other hand are unmeasurable� Gaussian distributed� zero mean� white noise vector

sequences� fA�Cg is assumed to be observable� while fA�
�
B �Qs����

�
g is assumed to

be controllable�

This system ������� is split up in a deterministic and a stochastic subsystem� by splitting

up the state �xk� and output �yk� in a deterministic ��d� and stochastic ��s� component �

xk � xdk � xsk� yk � ydk � ysk� The deterministic state �xdk� and output �ydk� follow from the

deterministic subsystem� which describes the in�uence of the deterministic input �uk� on

the deterministic output �

xdk�� � Axdk �Buk ���

ydk � Cxdk �Duk ���

�
E denotes the expected value operator and �kl the Kronecker index�

�



The controllable modes of fA�Bg can be either stable or unstable� The stochastic state

�xsk� and output �ysk� follow from the stochastic subsystem� which describes the in�uence

of the noise sequences �wk and vk� on the stochastic output �

xsk�� � Axsk � wk ���

ysk � Cxsk � vk �
�

The controllable modes of fA� �Qs����g are assumed to be stable�

The deterministic inputs �uk� and states �xdk� and the stochastic states �xsk� and outputs

�ysk� are assumed to be quasi�stationary �as de�ned in Ljung� ��	
� pp� �
�� Note that even

though the deterministic subsystem can have unstable modes� the excitation �uk� has to be

chosen in such a way that the deterministic states and output are �nite for all time� Also

note that since the systems fA�Bg and fA� �Qs����g are not assumed to be controllable� the

deterministic and stochastic subsystem may have common as well as completely decoupled

input�output dynamics�

The main problem of this paper can now be stated � Given input and output measurements

u�� � � � � uN and y�� � � � � yN �N � ��� and the fact that these two sequences are generated

by an unknown combined deterministic�stochastic model of the form described above� �nd

A�B�C�D�Qs� Rs� Ss �up to within a similarity transformation��

In the next two sections� we will de�ne some more useful properties and notations for the

deterministic and the stochastic subsystem�

����� The deterministic subsystem

Associated with the deterministic subsystem �������� we de�ne the following matrices �

� The extended �i � n� observability matrix �i �where the subscript i denotes the

number of block rows� �

�i
def
�

�
BBBBBBBB�

C

CA

CA�

� � �

CAi��

�
CCCCCCCCA

� The reversed extended controllability matrix �d
i �where the subscript i denotes the

number of block columns� �

�d
i
def
�
�
Ai��B Ai��B � � � AB B

�
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� The lower block triangular Toeplitz matrix Hd
i �

Hd
i
def
�

�
BBBBBBBB�

D � � � � � �

CB D � � � � �

CAB CB D � � � �

� � � � � � � � � � � � � � �

CAi��B CAi��B CAi��B � � � D

�
CCCCCCCCA

����� The stochastic subsystem

For the stochastic subsystem �����
� we de�ne �

P s def
� E�xsk�x

s
k�
t�

G
def
� E�xsk�y

s
k�
t�

��
def
� E�ysk�y

s
k�
t�

With equations ���������
� and through stability of the controllable modes of the system

fA� �Qs����g� we �nd easily that the following equations are satis�ed �

P s � AP sAt �Qs �	�

G � AP sC t � Ss

�� � CP sC t �Rs

This set of equations describes the set of all possible stochastic realizations that have the

same second order statistics as a given stochastic sequence ysk� We call them the positive

real equations� More details can be found in Faure ���
���

It is also easy to derive that �

�i
def
� E�ysk�i�y

s
k�
t� �

����
���
CAi��G i � �

�� i � �

Gt�At��i��C t i � �

Associated with the stochastic subsystem� we de�ne the following matrices �

� The matrix �s
i �

�s
i
def
�
�
Ai��G Ai��G � � � AG G

�
� The block Toeplitz covariance matrix Ls

i �

Ls
i
def
�

�
BBBBB�

�� ��� ��� � � � ���i

�� �� ��� � � � ���i

� � � � � � � � � � � � � � �

�i�� �i�� �i�� � � � ��

�
CCCCCA

�



� The block Toeplitz cross covariance matrix Hs
i �

Hs
i
def
�

�
BBBBB�

�i �i�� �i�� � � � ��

�i�� �i �i�� � � � ��

� � � � � � � � � � � � � � �

��i�� ��i�� ��i�� � � � �i

�
CCCCCA � �i�

s
i

��� Block Hankel matrices and input�output equations

Input and output block Hankel matrices are de�ned as �

U�ji��
def
�

�
BBBBB�

u� u� u� � � � uj��

u� u� u� � � � uj

� � � � � � � � � � � � � � �

ui�� ui ui�� � � � ui�j��

�
CCCCCA Y�ji��

def
�

�
BBBBB�

y� y� y� � � � yj��

y� y� y� � � � yj

� � � � � � � � � � � � � � �

yi�� yi yi�� � � � yi�j��

�
CCCCCA

where we presume that j �� throughout the paper� The subscripts of U and Y denote

the subscript of the �rst and last element of the �rst column� The block Hankel matrices

formed with the output ysk of the stochastic subsystem are de�ned as Y s
�ji�� in the same

way�

Somewhat loosely we denote the �past� inputs with U�ji�� or U�ji and the �future� inputs

with Uij�i�� or Ui��j�i��� A similar notation applies for the past and future outputs� This

notational convention is useful when explaining concepts�

The deterministic and stochastic state matrices are de�ned as �

Xd
i
def
�
�
xdi xdi�� xdi�� � � � xdi�j��

�
Xs
i
def
�
�
xsi xsi�� xsi�� � � � xsi�j��

�
For the deterministic subsystem we de�ne �

lim
j��

�

j

�
BB�

U�ji��

Uij�i��

Xd
�

�
CCA� U t

�ji�� U t
ij�i�� �Xd

� �
t
� def

�

�
BB�
R�� R�� St

�

Rt
�� R�� St

�

S� S� P d

�
CCA �

�
� R St

S P d

�
A

where we use the assumption that the limit exists �quasi�stationarity of uk and xdk��

For the stochastic subsystem we �nd that� due to stationarity of ysk� the following equalities

hold true �

lim
j��

�

j

�
� Y s

�ji��

Y s
ij�i��

�
A� �Y s

�ji���
t �Y s

ij�i���
t
�
�

�
� Ls

i �Hs
i �

t

Hs
i Ls

i

�
A ���

The Matrix input�output equations are de�ned in the following Theorem �De Moor�

��		� �

�



Theorem �

Y�ji�� � �iX
d
� �Hd

i U�ji�� � Y s
�ji�� ����

Yij�i�� � �iX
d
i �Hd

i Uij�i�� � Y s
ij�i�� ����

Xd
i � AiXd

� ��d
iU�ji�� ����

The Theorem is easy to prove by recursive substitution into the state space equations�

� The Main Projection

In this section� we introduce the projection of the future outputs onto the past and future

inputs and the past outputs� The results can be described as a function of the system

matrices and the input�output block Hankel matrices�

We de�ne the matrices Zi and Zi�� as �

Zi � Yij�i���

�
� U�j�i��

Y�ji��

�
A ����

Zi�� � Yi��j�i���

�
� U�j�i��

Y�ji

�
A ����

where A�B � ABt�BBt���B� The row space of A�B is equal to the projection of the row

space of A onto the row space of B�

Formula ���� corresponds to the optimal prediction of Yij�i�� given U�j�i�� and Y�ji�� in a

sense that �

kYij�i�� � Zik�F
is minimized constrained to

Zi � Row Space

�
� U�j�i��

Y�ji��

�
A

So� intuitively� the kth row of Zi would correspond to a k step ahead prediction of the

output� This intuition become clearer in section ��

These projections �Zi and Zi��� are useful in determining the combined system� since �as

we will show in Theorem �� the linear combinations to be made of the input�output block

Hankel matrices to generate the matrices Zi and Zi�� are functions of the system matrices

�A�B�C�D�Qs� Ss� Rs�� Moreover� the system matrices can be retrieved from these linear

combinations� as will be explained in section ��






It is tedious though straightforward to prove the following Theorem which delivers formulas

for the linear combinations to be made of the rows of the input�output block Hankel

matrices to generate the matrices Zi and Zi�� �

Theorem � Main projection

� If the deterministic input uk and state xdk are uncorrelated with the stochastic output

ysk �

lim
j��

�

j
Y s
�ji��U

t
� � � lim

j��

�

j
Y s
�ji���X

d
� �

t � �

lim
j��

�

j
Y s
ij�i��U

t
� � � lim

j��

�

j
Y s
ij�i���X

d
� �

t � �

where the subscript � denotes past or future

� and if the input is �persistently exciting of order �i �Ljung� ���	� pp� 
�
�� �

rank U�j�i�� � �mi

� and if the stochastic subsystem is not identically zero �the purely deterministic case

will be treated in section ����
�

then �for j ����

Zi � �i �Xi �Hd
i Uij�i�� ����

Zi�� � �i�� �Xi�� �Hd
i��Ui��j�i�� ����

with �

�Xi �
�
Ai �Qi�i �d

i �QiH
d
i Qi

��BB�
SR��U�j�i��

U�ji��

Y�ji��

�
CCA ��
�

�Xi�� �
�
Ai�� �Qi���i�� �d

i�� �Qi��H
d
i�� Qi��

��BB�
SR��U�j�i��

U�ji

Y�ji

�
CCA ��	�

and

Qi � �i�
��
i

�i � Ai�P d � SR��St��ti ��s
i ����

�i � �i�P
d � SR��St��ti � Ls

i ����

A proof can be found in Appendix A� In the next section� we give an interpretation of

these projections�

	



� A Bank of Kalman Filters

In this section� we show how the sequences �Xi and �Xi�� can be interpreted in terms of

states of a bank of j non�steady state Kalman 
lters� applied in parallel to the data� This

interpretation will lead to a formula that will prove to be extremely useful when determining

the system matrices from the data�

As stated before� it may come as no surprise that there is a connection between the states
�Xi de�ned by the projection Zi and some optimal prediction of the outputs Yij�i���

To establish this connection� we need one more Theorem that states how the non steady

state Kalman �lter state estimate �xk can be written as a linear combination of u�� � � � � uk���

y�� � � � � yk�� and the initial state estimate �x��

Theorem � Kalman Filter

Given �x�� P�� u�� � � � � uk��� y�� � � � � yk�� and all the system matrices �A�B�C�D�Qs� Ss� Rs��

then the non steady state Kalman 
lter state �xk de
ned by the following recursive formulas �

�xk � A�xk�� �Buk�� �Kk���yk�� � C�xk�� �Duk��� ����

Kk�� � �APk��C
t �G���� � CPk��C

t��� ����

Pk � APk��A
t � �APk��C

t �G���� � CPk��C
t����APk��C

t �G�t ����

can be written as �

�xk �
�
Ak �Qk�k �d

k �QkH
d
k Qk

�

�
BBBBBBBBBBBBBB�

�x�

u�

� � �

uk��

y�

� � �

yk��

�
CCCCCCCCCCCCCCA

����

where �

Qk � �k�
��
k ����

�k � AkP��
t
k ��s

k ����

�k � �kP��
t
k � Ls

k ��
�

The proof of this Theorem and some details concerning the special form of the Kalman

�lter equations ��������� can be found in Appendix B and Appendix C� Let us just indicate

�



that the error covariance matrix  Pk
def
� E��xk� �xk��xk� �xk�

t� is given by P s�Pk� with P
s

the state covariance matrix from Lyapunov equation �	��

Note that the limiting solution �k ��� of ���� is �P�� where P� is the state covariance

matrix of the forward innovation model �Faure� ��
��� Hence the limiting error covariance

matrix is  P� � P s�P�� which is the smallest state error covariance matrix we can obtain

�in the sense of nonnegative de�niteness��

Also note that the expressions for �k and �k �������
� are equal to the expressions of �i

and �i ��������� with P d � SR��St substituted by P��

If we now combine the results of Theorem � and �� we �nd an interpretation of the sequences
�Xi and �Xi�� in terms of states of a bank of non�steady state Kalman �lters� applied in

parallel to the data� More speci�cally� compare formulas ��
�� ��	� and ���� �

�� The j columns of �Xi are equal to the outputs of a bank of j non�steady state Kalman

�lters in parallel� The �p���th column of �Xi for instance� is equal to the non�steady

state Kalman �lter state �xi�p of the Kalman �lter ����� ����� ����� with initial error

covariance matrix at starting time p �

 Pp � Pp � P s � P d � SR��St � P s

�xp � SR��

�
BB�

up

� � �

up��i��

�
CCA

Notice that  Pp is independent of the column index� so it is denoted with  P ��

In this way� all the columns can be interpreted as Kalman �lter states� The initial

states of the j �lters together can be written as �

�X� � SR��U�j�i��

All this is clari�ed in Fig� ��

The expressions for  P � and �X� can be interpreted �somewhat loosely� as follows � If

we had no information at all about the initial state� then the initial state estimate

would be �X� � � and the initial error covariance would be equal to the expected

variance of the state �  P � � E�xkxtk� � P d � P s� Now� since the inputs are possibly

correlated� we can derive information about �X� out of the inputs U�j�i��� This is

done by projecting the �unknown� exact initial state sequence Xd
� �Xs

� onto the row

space of the inputs U�j�i�� �

�X� � �Xd
� �Xs

���U�j�i�� � SR��U�j�i��

��



This extra information on the initial state of the Kalman �lter also implies that the

error covariance matrix reduces from P d � P s to �

 P � � P d � P s � lim
j��

�

j
�X�� �X��t � P d � P s � SR��St

These are exactly the same expressions for �X� and  P � as we found above�

It can also be seen that when the inputs are uncorrelated �white noise�� the projection

of Xd
� �Xs

� onto the inputs U�j�i�� is zero� which implies that there is no information

about the initial state �X� contained in the inputs U�j�i���

The state sequence �Xi�� has a similar interpretation� The pth column of �Xi�� is equal

to the non�steady state Kalman �lter state estimate of the same �in a sense of the

same initial conditions� non�steady state Kalman �lter bank as discussed above� but

now the �lter has iterated one step beyond the estimate of the pth column of �Xi�

This is valid for all columns p � �� � � � � j�

�� We de�ne the residuals Ri of the projection as �

Ri � Yij�i�� � Zi � Yij�i�� � �i �Xi �Hd
i Uij�i�� ��	�

Since Zi is the result of the projection of Yij�i�� on the row space of U�j�i�� and Y�ji���

the residuals of this projection �Ri� will always satisfy � RiU
t
�j�i�� � �� RiY

t
�ji�� � �

and RiZ
t
i � �� Also� since �Xi can be written as a linear combination of U�j�i�� and

Y�ji�� �see formula ��
��� we �nd � Ri
�X t
i � ��

�� Since the corresponding columns of �Xi and �Xi�� are state estimates of the same �in a

sense of the same initial conditions� non�steady state Kalman �lter at two consecutive

time instants� we can write �see formula ����� �

�Xi�� � A �Xi �BUiji �Ki�Yiji � C �Xi �DUiji� ����

It is also trivial that �

Yiji � C �Xi �DUiji � �Yiji � C �Xi �DUiji� ����

If we inspect the formula for Ri a little bit closer ��	�� we see that its �rst row is

equal to Yiji � C �Xi �DUiji� And since we know that the row space of Ri �and thus

also the �rst l rows of Ri� is perpendicular to U�j�i��� Y�ji�� and �Xi� we �nd �together

��



with ���� and ����� �

�Xi�� � A �Xi �BUiji �

�
BB�
U�j�i��

Y�ji��
�Xi

�
CCA
�

����

Yiji � C �Xi �DUiji �

�
BB�
U�j�i��

Y�ji��
�Xi

�
CCA
�

����

where ���� indicates a matrix whose row space is perpendicular to the row space of

���� These formulas will prove to be extremely useful in the next section where we

determine the system matrices from Zi and Zi���

This summarizes the whole interpretation as a bank of non�steady state Kalman �lters�

� Identi�cation Scheme

In this section� we derive anN�SID algorithm to identify exactly �unbiased for j ��� the

deterministic subsystem� directly from the given inputs uk and outputs yk� The stochastic

subsystem can be determined in an approximate sense�

��� The projections

First� the projections Zi and Zi�� ��������� have to be calculated� In section 
 we will

describe a numerically stable way to do this�

For convenience� we rewrite these projections as follows �

Zi �

	
L�
i
�z�

li�mi

L�
i
�z�

li�mi

L�
i
�z�

li�li


�BB�
U�ji��

Uij�i��

Y�ji��

�
CCA ����

Zi�� �

�
� L�

i��
 �z �
l�i����m�i���

L�
i��
 �z �

l�i����m�i���

L�
i��
 �z �

l�i����l�i���

�
A
�
BB�

U�ji

Ui��j�i��

Y�ji

�
CCA ����

with� from �������	� �

L�
i � �i

�
�Ai �Qi�i�S�R����jmi ��d

i �QiH
d
i

�
����

L�
i � Hd

i � �i�A
i �Qi�i�S�R

���mi��j�mi ����

L�
i � �iQi ��
�

��



with �R����jmi denoting the submatrix from column � to column mi�

The expressions for L�
i��� L

�
i�� and L�

i�� are similar� but with shifted indices�

��� Determination of �i and n�

An important observation is that the column space of the matrices L�
i and L�

i coincides

with the column space of �i� This implies that �i and the order of the system n can be

determined from the column space of one of these matrices� The basis for this column space

actually determines the basis for the states of the �nal �identi�ed� state space description�

Let us mention two other possible matrices that have the same column space as �i �

L�
i � L�

iL
�
i ��	��

L�
i L�

i

��� U�ji��

Y�ji��

�
A ����

It should be mentioned that� for i � � the �rst one ��	� will lead to a deterministic

subsystem that is balanced �See also Moonen � Ramos� ����� while the second one ����

leads to a deterministic system that is frequency weighted �with the input spectrum�

balanced �Enns� ��	�� together with a stochastic subsystem of which the forward innovation

model is balanced in a deterministic sense� We will not expand any more on this� but keep

this for future work�

We can now determine �i��i�� and the order n as follows � Let T be any rank de�cient

matrix whose column space coincides with that of �i�

� Calculate the Singular Value Decomposition �

T �
�
U� U�

��� !� �

� �

�
A V t

� Since T is of rank n� the number of singular values di�erent from zero will be equal

to the order of the system�

� The column spaces of �i and U�!
���
� coincide �� So� �i can be put equal to U�!

���
� �

� With �i de�ned as �i without the last l rows �l is the number of outputs�� we get �

�i�� � �i

In the following� we will take T equal to the expression in formula ����� but one can replace

this with any other matrix of which the column space coincides with �i�

�The factor �
���
�

is introduced for symmetry reasons�

��



��� Determination of the system matrices

We now assume that �i� �i�� and n are determined as described in the previous section�

and are thus known� From ��������� it follows that� �

�Xi � �yi �Zi �Hd
i Uij�i��� ����

�Xi�� � �yi���Zi�� �Hd
i��Ui��j�i��� ����

In these formulas� the only unknowns on the right hand side are the matricesHd
i and Hd

i���

From ���� and ���� we also know that �

�
� �Xi��

Yiji

�
A �

�
� A

C

�
A �Xi �

�
� B

D

�
AUiji �

�
BB�
U�j�i��

Zi

�Xi

�
CCA
�

����

If we now substitute the expressions for �Xi and �Xi�� ��������� in this formula� we get �

�
� �yi��Zi��

Yiji

�
A �

�
� A

C

�
A


 �z �
term �

�yiZi �

�
� K��

K��

�
A


 �z �
term �

Uij�i�� �

�
BB�
U�j�i��

Zi

�Xi

�
CCA
�


 �z �
term �

����

where we de�ne �

�
� K��

K��

�
A def

�

�
BBBBBB�
B �A�yi

�
� D

�i��B

�
A �yi��H

d
i�� �A�yi

�
� �

Hd
i��

�
A

D � C�yi

�
� D

�i��B

�
A �C�yi

�
� �

Hd
i��

�
A

�
CCCCCCA ����

Observe that the matrices B and D appear linearly in the matrices K�� and K���

Let " be a matrix whose row space coincides with that of�
� �yiZi

Uij�i��

�
A

then �from ����� � �
� �yi��Zi��

Yiji

�
A �" �

�
� A K��

C K��

�
A
�
� �yiZi

Uij�i��

�
A �"

�Ay denotes the Moore�Penrose pseudo�inverse

��



Obviously� this is a set of linear equations in the unknowns A�C�K���K���

Another point of view is that one could solve the least squares problem �

min
A�C�K���K��

k
�
� �yi��Zi��

Yiji

�
A �

�
� A K��

C K��

�
A
�
� �yiZi

Uij�i��

�
A k�F ����

Either way� from ���� we �nd �term by term� �

term �� A and C exactly�

term �� K�� and K�� from which B and D can be unraveled by solving a set of linear

equations� analogous to the one described in De Moor ���		�� Note that in ����� B

and D appear linearly� Hence if A�C��i��i���K�� and K�� are known� solving for B

and D is equivalent with solving a set of linear equations�

term �� The residuals of the least squares solution ���� can be written as �

� �

�
BB�
U�j�i��

Zi

�Xi

�
CCA
�

�

�
� Wiji

Viji

�
A

where W�j� and V�j� are block Hankel matrices� with as entries wk and vk � the process

and measurement noise� This is clearly indicated by equation �����

The system matrices Rs� Ss and Qs are determined approximately from � as follows �

�

j
���t� �

�
� Qs Ss

�Ss�t Rs

�
A

The approximation is due to the fact that the bank of Kalman �lters for �nite i is

not in steady state �see for instance the Riccati di�erence equation ������ As i grows

larger� the approximation error grows smaller� For in�nite i the stochastic subsystem

is determined exactly �unbiased�� More details on this purely stochastic aspect can

be found in Van Overschee � De Moor �����a�����b��

��� N�SID Algorithm �

In this section� we summarize the �rst N�SID algorithm step by step� not yet paying

attention to the �ne numerical details� which will be treated in section 
�

�The block Hankel matrices of the residual � have only one block row� The notation is introduced to

be consistent with previous notations�

��



�� Determine the projections �

Zi � Yij�i���

�
BB�

U�ji��

Uij�i��

Y�ji��

�
CCA

�

	
L�
i
�z�

li�mi

L�
i
�z�

li�mi

L�
i
�z�

li�li


�BB�
U�ji��

Uij�i��

Y�ji��

�
CCA

Zi�� � Yi��j�i���

�
BB�

U�ji

Ui��j�i��

Y�ji

�
CCA

�� Determine the Singular Value Decomposition

�
L�
i L�

i

��� U�ji��

Y�ji��

�
A �

�
U� U�

��� !� �

� �

�
AV t

The order is equal to the number of non�zero singular values�

�i � U�!
���
� and �i�� � U�!

���
�

�� Determine the least squares solution ��� and �� are residuals� �

�
BB�

j

n �yi��Zi��

l Yiji

�
CCA �

�
BB�

n mi

n K�� K��

l K�� K��

�
CCA �

�
BB�

j

n �yiZi

mi Uij�i��

�
CCA �

�
BB�
j

n ��

l ��

�
CCA

�� The system matrices are determined as follows �

��� A � K��

C � K��

��� B�D follow from A�C and K���K�� through a set of linear equations�

���

�
� Qs Ss

�Ss�t Rs

�
A � �

j

�
� ���

t
� ���

t
�

���
t
� ���

t
�

�
A

The deterministic subsystem will be identi�ed exactly �as j ��� independent of i��

The approximation of the stochastic subsystem is still dependent on i and converges

as i���

��



� A Simple Approximate Solution

In this section� we introduce an N�SID algorithm that is very similar to the �exact� �as

j � �� algorithm of the previous section �algorithm ��� The algorithm we present now


nds a good approximation to the state �Xi� and to the system matrices� without having to

go through the complicated step � for the determination of B and D� This results in a

simple and elegant algorithm with a slightly lower computational complexity as compared

to algorithm �� Another advantage of this simpli
ed N�SID algorithm is that it is very

closely related to existing algorithms �Larimore� ������ This means that the analysis of this

simpli
ed algorithm can also be applied to the other algorithms� and can thus contribute to

a better understanding of the mechanism of these algorithms� A disadvantage is that the

results are not exact �unbiased� for 
nite i �except for special cases�� but an estimate for

the bias on the solutions can be calculated�

If we could determine the state sequences �Xi and �Xi�� directly from the data� the matrices

A�B�C and D could be found as the least squares solution of ����������

Unfortunately� it is not possible to separate the e�ect of the input Hd
i Uij�i�� from the e�ect

of the state �i �Xi in formula ����� by just dropping the term with the linear combinations of

Uij�i�� �L
�
i � in the expression for Zi� We would automatically drop a part of the initial state

if we did this �see for instance ������ So� it is not possible to obtain an explicit expression

for �i �Xi and �i�� �Xi��� without knowledge of Hd
i � which would require knowledge of the

system matrices�

It is however easy to �nd a good approximation of the state sequences� directly from the

data� If we use this approximation in ���������� we obtain a second very elegant and simple

N�SID algorithm that calculates approximations of the system matrices�

	�� The Approximate States

In this section� we derive an approximate expression for the states �Xi and �Xi��� This

approximation can be calculated directly from input�output data�

The approximate state sequences are calculated by dropping the linear combinations of

Uij�i�� out of Zi� and the linear combinations of Ui��j�i�� out of Zi��� In this way� we

obtain Kalman �lter states of a di�erent Kalman �lter� compared to the one that produces
�Xi �in a sense of di�erent initial conditions�� We call the resulting matrices �i  Xi and

�i��  Xi�� �

�i  Xi � Zi � L�
iUij�i�� ����

�i��  Xi�� � Zi�� � L�
i��Ui��j�i�� ��
�

�




From ���� and ���� we derive �

�Xi �
�

Ai �Qi�i�S�R

����jmi ��d
i �QiH

d
i Qi

�	 U�ji��

Y�ji��



����

�Xi�� �
�

Ai�� �Qi���i���S�R

����jm�i��� ��d
i�� � Qi��H

d
i�� Qi��

�	 U�ji

Y�ji




The matrices �i  Xi and �i��  Xi�� can be obtained directly from the data without any knowl�

edge of the system matrices� and can be interpreted as oblique projections as described in

Appendix D�

The state sequence  Xi is generated by a bank of non�steady state Kalman �lters� with �
 P � � P d � SR��St � P s and  X� � S�R����jmiU�ji��� The state sequence  Xi�� on the

other hand� is generated by a bank of non�steady state Kalman �lters� with �  P � �

P d � SR��St � P s and  X� � S�R����jm�i���U�ji� So clearly� both sequences do not belong

to the same bank of Kalman �lters� and the useful formulas ��������� are not valid for

these � sequences�

Still� we will see below� that  Xi and  Xi�� are very close to �Xi and �Xi��� and that �Xi �  Xi�
�Xi�� �  Xi�� if at least one of the following conditions is satis�ed �

� i��

� The deterministic input uk of the combined deterministic�stochastic system is white

noise

� The system is purely deterministic

For these three special cases� we will analyze the di�erence between �Xi ��
� and  Xi ��	��

de�ned as �Xi �

�Xi
def
� �Xi �  Xi � �Ai �Qi�i�S�R

���mi��j�miUij�i�� ����

����� i��
De�ne the term between square brackets in ���� as Pi

def
� Ai � Qi�i� Now� it is easy to

prove �Appendix E� that �

Pi �
i��Y
k	�

�A�KkC� ����

Since the non�steady state Kalman �lter converges to a stable closed loop system �Anderson

� Moore� ��
��� we �nd that Pi grows smaller when i grows larger� It is also clear that �

�	



limi�� Pi � �� In the limit� equation ���� thus becomes �with S�R���mi��j�miUij�i�� �nite� �

lim
i��

�Xi � lim
i��

PiS�R
���mi��j�miUij�i�� � �

The same holds for �Xi��� So� we can conclude that� for i � �� there is no di�erence

between the state sequences �Xi and  Xi� Actually� when i � �� the non�steady state

Kalman �lter bank converges to a steady state Kalman �lter bank� i�e� the Kalman �lters

converge �the Riccati di�erence equation ���� converges to an algebraic Riccati equation��

To obtain the e�ect of i�� on a computer� in theory we would need a test like �

k�XikFp
n�j

�
kPiS�R

���mi��j�miUij�i��kFp
n�j

� 	mach

where 	mach is the machine precision� This is a condition that can only be checked� after

the identi�cation is done� Appendix G indicates how this quantity can be calculated�

In practice� it turns out that i does not have to be that large� The identi�cation results

are already very good for reasonably small i �� ���� This will become apparent in the

examples of section ��

����� uk white noise

With the deterministic input uk white noise� we �nd � S � � and R � I�mi with I�mi

the �mi � �mi identity matrix� So� for a white noise input� we �nd for any i �see ����� �
�Xi �  Xi

����� Purely deterministic system

From Moonen et al� ���	��� we know that generically for deterministic systems we have �if

there is no �rank�cancellation�� see De Moor ���		�� �

rank

�
� U�ji��

Y�ji��

�
A � mi� n and rank

�
� Uij�i��

Yij�i��

�
A � mi� n ����

which implies that

rank

�
� U�j�i��

Y�ji��

�
A � �mi� n

This rank de�ciency implies that for purely deterministic systems� the proof of Theorem

� breaks down �B�� can not be calculated�� The following Theorem is an alternative for

Theorem � for purely deterministic systems �

��



Theorem � Purely deterministic systems

If the input is persistently exciting and the stochastic subsystem is zero we have �

�i  Xi �
�
�i��d

i �Ai�yiH
d
i � �iAi�yi

��� U�ji��

Y�ji��

�
A � �iXi � �i �Xi

A proof can be found in Appendix F� This implies that for deterministic systems� �Xi is

also equal to zero�

	�� The Algorithm

We know from ���� and ���� that the least squares solution L of �

min
L
k
�
� �Xi��

Yiji

�
A� L

�
� �Xi

Uiji

�
A k�F

is equal to �

L �

�
� A B

C D

�
A

We also know that from the residuals of this least squares problem� we can approximately

calculate the stochastic subsystem �exactly if i � ��� Unfortunately� it is impossible

to calculate the states �Xi and �Xi�� directly from the data� without any knowledge of the

system matrices� In the previous section� we have seen that for some special cases �Xi �  Xi�

In the general case� we have �Xi �  Xi if i is reasonably large� This is because �section ������

�Xi �
i��Y
k	�

�A�KkC�S�R���mi��j�miUij�i��

Consequently� for the least squares solution  L of �

min

L
k
�
�  Xi��

Yiji

�
A�  L

�
�  Xi

Uiji

�
A k�F ����

we have �

 L �
�
� A B

C D

�
A

Contrary to �Xi�  Xi can be calculated directly from the data� without any knowledge of

the system matrices� The solution is exact �  L � L� for the cases of section ����� �i����

section ����� �input is white noise� and section ����� �purely deterministic�� since then
�Xi �  Xi� In Appendix G� an approximate expression for �L �  L� is derived� This is the

bias on the solution�

��



	�� N�SID Algorithm �

In this section� we summarize the second N�SID algorithm step by step� not yet paying

attention to the �ne numerical details� which will be treated in section 
�

�� Determine the projections �

Zi � Yij�i���

�
BB�

U�ji��

Uij�i��

Y�ji��

�
CCA

�

	
L�
i
�z�

li�mi

L�
i
�z�

li�mi

L�
i
�z�

li�li


�BB�
U�ji��

Uij�i��

Y�ji��

�
CCA

Zi�� � Yi��j�i���

�
BB�

U�ji

Ui��j�i��

Y�ji

�
CCA

�

�
� L�

i��
 �z �
l�i����m�i���

L�
i��
 �z �

l�i����m�i���

L�
i��
 �z �

l�i����l�i���

�
A
�
BB�

U�ji

Ui��j�i��

Y�ji

�
CCA

�� Determine the Singular Value Decomposition

�
L�
i L�

i

��� U�ji��

Y�ji��

�
A �

�
U� U�

��� !� �

� �

�
AV t

The order is equal to the number of non�zero singular values�

�i � U�!
���
� and �i�� � U�!

���
�

�� Determine the states  Xi and  Xi�� �

 Xi � �yi
�
L�
i L�

i

��� U�ji��

Y�ji��

�
A

 Xi�� � �yi��
�
L�
i�� L�

i��

��� U�ji

Y�ji

�
A

�� Determine the least squares solution �

�
BB�

j

n  Xi��

l Yiji

�
CCA �

�
BB�

n m

n  L��
 L��

l  L��
 L��

�
CCA �

�
BB�

j

n  Xi

m Uiji

�
CCA �

�
BB�
j

n ��

l ��

�
CCA

��



�� The system matrices are �approximately� determined as follows �

���

�
� A B

C D

�
A �

�
�  L��

 L��

 L��
 L��

�
A

���

�
� Qs Ss

�Ss�t Rs

�
A � �

j

�
� ���

t
� ���

t
�

���
t
� ���

t
�

�
A

where in the general case the approximation of the deterministic and stochastic sub�

system depends on i �even when j ��� and converges as i� j ���

� A Numerically Stable and E�cient Implementa	

tion

In this section� we describe how N�SID algorithms � and � can be implemented in a

numerically stable and e�cient way� We make extensive use of the QR decomposition and

SVD�

In section ��� and ��� we described step by step� two N�SID algorithms that determine

the system matrices from given input�output data� In this section� we will show how these

two algorithms can be implemented in a numerically stable and e�cient way�

Steps � through � are common to both algorithms�

�� Construct the block Hankel matrix H �

H �

�
� U�j�i��

Y�j�i��

�
A �qj


 �z �
��m�l�i�j

�� Calculate the R factor of the RQ factorization of H

H � R
�z�
��m�l�i���m�l�i

� Qt
�z�
��m�l�i�j

with QtQ � I and R lower triangular� It is important to note that in the �nal

calculations� only the R factor is needed� which lowers the computational complexity

signi�cantly�

�The scalar
p
j is used to be conform with the de�nition of E�

��



Partition this factorization in the following way �

�
BBBBBBBBBB�

j

mi U�ji��

m Uiji

m�i� 	� Ui��j�i��

li Y�ji��

l Yiji

l�i� 	� Yi��j�i��

�
CCCCCCCCCCA
�

�
BBBBBBBBBB�

mi m m�i� 	� li l l�i� 	�

mi R�� � � � � �

m R�� R�� � � � �

m�i� 	� R�� R�� R�� � � �

li R�� R�� R�� R�� � �

l R�� R�� R�� R�� R�� �

l�i� 	� R�� R�� R�� R�� R�� R��

�
CCCCCCCCCCA

�
BBBBBBBBBB�

j

Qt
�

Qt
�

Qt
�

Qt
�

Qt
�

Qt
�

�
CCCCCCCCCCA

where we use the shorthand notation R������� for the submatrix of R consisting of

block rows � to � and block columns � to ��

�� Calculate the projections �see also the note at the end of this section��

Zi � R������� R
��
�������

�
� U�j�i��

Y�ji��

�
A �

�
L�
i L�

i L�
i

��BB�
U�ji��

Uij�i��

Y�ji��

�
CCA

Zi�� � R������� R
��
�������

�
� U�j�i��

Y�ji

�
A �

�
L�
i�� L�

i�� L�
i��

��BB�
U�ji

Ui��j�i��

Y�ji

�
CCA

�� Determine �i and n through the SVD of �i  Xi �

�
L�
i � L�

i

�
R�������Q

t
��� �

�
U� U�

��� !� �

� !�

�
A �Q��� V �t

Note that this SVD can be calculated through the SVD of � L�
i � L�

i �R�������� since

Q��� is an orthonormal matrix� The rank is determined from the dominant singular

values of this decomposition �!��� and �i can be chosen as �

�i � U�!
���
� � �i�� � �i

where the underbar means deleting the last l rows �l is the number of outputs�� The

two algorithms described in section � and � now di�er in step � and ��

��



N�SID Algorithm � �

�� We �nd for the left hand side and right hand side of equation ����� written as a

function of the original Q matrix ��
� �yiZi

Uij�i��

�
A �

�
� !����� U t

�R�������

R�������

�
AQt

����
� �yi��Zi��

Yiji

�
A �

�
� !����� �U��yR�������

R�������

�
AQt

���

�� Now the least squares problem ���� can be rewritten as

min
K
k
�
� !����� �U��yR�������

R�������

�
A�K

�
� !����� U t

�R�������

R�������

�
A k�F

and solved in a least squares sense for K� Note that the Q matrix has completely

disappeared from these �nal formulas� The �rst n columns of K are A and C stacked

on top of each other� The next columns determineB and D as described in section ��

The residuals of this solution determine the stochastic system as described in section

��

N�SID Algorithm � �

�� We have � �
�  Xi

Uiji

�
A �

�
� !����� U t

�

�
L�
i � L�

i

�
R�������

R�������

�
AQt

���

�
�  Xi��

Yiji

�
A �

�
� !

����
� �U��

y
�
L�
i�� � L�

i��

�
R�������

R�������

�
AQt

���

�� Now the least squares problem ���� can be rewritten as

min

L
k

�
� �

����
� �U��y

�
L�
i�� � L�

i��

�
R�������

R�������

�
A� �L

�
� �

����
� U t

�

�
L�
i � L�

i

�
R�������

R�������

�
A k�F

Once again� the Q matrix has completely disappeared from these �nal formulas�

From  L and the residuals we can �nd the system matrices as described in section ��

Note �

��



� The projection of step � is written as a function of U and Y � and not as a function

of Q� because we need to be able to drop the linear combinations �L�
i � of the rows of

Uij�i�� in Zi to �nd the sequence �i  Xi and the linear combination �L�
i��� of the rows

of Ui��j�i�� in Zi�� to �nd the sequence �i��  Xi�� �see formulas �������
���

� The possible rank de�ciency of the row space we are projecting on �in step �� has to

be taken into account �see section ������� This occurs when R������� and R������� are

rank de�cient� It can be checked by inspection of the singular values of R�������� If

one of them turns out to be zero �purely deterministic case�� a basis " for the space

we are projecting on has to be selected� This basis should contain the row vectors of

Uij�i�� explicitly� This makes it easy to drop the linear combinations of Uij�i�� �L�
i �

in Zi to obtain the sequence �i  Xi�

With the singular value decomposition ��
� U�ji��

Y�ji��

�
A �

�
� R�������

R�������

�
AQt

��� �
�
U� U�

��� S� �

� �

�
A
�
� V t

�

V t
�

�
AQt

���

we �nd as an appropriate basis �

" �

�
� V t

�

R�������

�
AQt

���

The rest of the algorithm is very similar to the general case�

We should note that in the generic real life case� the problem of rank de�ciency is a

pure academic one�


 Connection with existing algorithms


�� Instrumental variable method

This method was described by De Moor et al� ������� Verhaegen ������� The basic idea

will be shortly repeated here� We start from the input�output equation ���� � Yij�i�� �

�iXd
i �Hd

i Uij�i�� � Y s
ij�i��� Projection of this equation on the row space perpendicular to

that of Uij�i��� gives �

Yij�i���U
�
ij�i�� � �iX

d
i �U

�
ij�i�� � Y s

ij�i�� ����

Note that Y s
ij�i���U

�
ij�i�� � Y s

ij�i�� since Y s
ij�i���Uij�i�� � � as j � �� Projection of ����

on U�ji�� gives � �Yij�i���U
�
ij�i����U�ji�� � �i�Xd

i �U
�
ij�i����U�ji�� since Y s

ij�i���U�ji�� � �� It

��



can be seen from this equation that the column space of �Yij�i���U
�
ij�i����U�ji�� is equal to

that of �di �only the deterministic controllable modes are observed�� So� from the column

space of �di � A and C can be derived� B and D are then found from the fact that �

��di �
��Yij�i���Uij�i���U

y
ij�i�� � ��di �

�Hd
i which leads to a set of linear equations in B and D�

Finally� the stochastic subsystem is identi�ed from the di�erence between the measured

output and a simulation of the identi�ed deterministic subsystem with the given input uk�

This di�erence is almost equal to the output of the stochastic subsystem �ysk�� The stochas�

tic subsystem can then be identi�ed with for instance one of the algorithms described by

Arun � Kung ������� Van Overschee � De Moor �����a�����b��

A clear disadvantage of this algorithm is the fact that the deterministic and stochastic

subsystem are identi�ed separately� This involves more calculations� Two di�erent A

matrices will also be identi�ed �one for the deterministic and one for the stochastic system��

even though a lot of the dynamics could be shared between the two subsystems�


�� Intersection Algorithms

In the literature� a couple of algorithms� which we call �intersection algorithms� have been

published by Moonen et al� ���	��� Moonen et al� ������� It is interesting to note the

analogy between these algorithms� and algorithm � described in section �� We show that

the row space of  Xi can also be found as the intersection between the row spaces of two

Hankel matrices H� and H�� De�ne I � row space H� 	 row space H� with �

H� �

�
� Y�ji��

U�ji��

�
A and H� �

�
BBB� Yij�i���

�
� U�j�i��

Y�ji��

�
A

Uij�i��

�
CCCA

Facts �

� The subspace I is n dimensional�

Proof � We have � rank H� � 
�� with 
� � �m � l�i in the generic com�

bined deterministic�stochastic case� From equation ����� we �nd that � rank H� �

mi� n� Finally� if the input is persistently exciting � rank
�
Ht

� Ht
�

�t
� 
� �mi�

With Grassmann�s Theorem� we �nd � dim �H� 	 H�� � rank H� � rank H� �
rank

�
Ht

� Ht
�

�t
� �
�� � �mi� n�� �
� �mi� � n

� The intersection subspace I is equal to the row space of  Xi� Proof �

�  Xi lies in the row space of H�� since it is written as a linear combination of

U�ji�� and Y�ji�� �see Formula ��	���

��



�  Xi lies also in the row space of H� since we know from ���� that �

 Xi � �yi �Yij�i���

�
� U�j�i��

Y�ji��

�
A� L�

iUij�i���

So�  Xi lies in the intersection of the row spaces of H� and H�� Since both the

intersection subspace I and the row space of  Xi are n dimensional� they must coincide�

This derivation indicates strong similarities between N�SID algorithm � and the existing

intersection algorithm mentioned above� When j ��� both algorithms will calculate the

same solution �if the same state space basis is used�� In practice however ��nite j�� they

calculate slightly di�erent models� In the references given above� only purely deterministic

systems and the asymptotic case i� � are treated� The interpretation of Kalman �lter

states is totally absent� as is the e�ect of �nite i�

The similarities indicate an alternative way to calculate the states  Xi and  Xi�� as inter�

sections �see Moonen� ���� for example��


�� Interpretation of general projection methods

Larimore ������ shows that viewed from a statistical point of view� the state �memory�

Mi is the solution to �

p�Yij�i��j
�
� U�j�i��

Y�ji��

�
A� � p�Yij�i��j

�
� Uij�i��

Mi

�
A�

where p�AjB� is the probability distribution of A given B�

For Gaussian processes� these distributions are characterized by the �rst two moments� and

we can replace p�AjB� by the expectation operation E�AjB�� This expectation operator

can in its turn be replaced by the projection operator �Papoulis� ��	��� We then get �

Yij�i���

�
� U�j�i��

Y�ji��

�
A � Yij�i���

�
� Uij�i��

Mi

�
A ����

By substitution it is easy to verify that all of the following � alternatives � Mi � �Xi�

Mi �  Xi and Mi � �Xi�U
�
ij�i�� satisfy equation ����� Actually� every matrix Mi satisfying

Mi � Zi � #Uij�i�� and rank Mi � n with # an arbitrary li�mi matrix� will also satisfy

equation ���� and give rise to an n dimensional memory� This ambiguity is due to the fact

that the exact in�uence of the input variable Uij�i�� on the output is not known� In the

�




frame work of linear theory� the most natural choice for Mi is though the one for which �

Yij�i���

�
� U�j�i��

Y�ji��

�
A � �iMi �Hd

i Uij�i��

is satis�ed �# � Hd
i �� This is because this choice corresponds to the linear state space

equations �

Mi�� � AMi �BUiji

Yiji�

�
� U�j�i��

Y�ji��

�
A � CMi �DUiji

This leads to the choice Mi � �Xi�

� Examples

��� A simple example

This simple simulation example illustrates the concepts explained in this paper� We con�

sider the single input single output single state system in forward innovation form �Faure�

��
�� �

xk�� � ������xk � ��		��uk � ������ek

yk � ��	
��xk � ���	��uk � ���	��ek

With ek a unit energy �� � ��� zero mean� Gaussian distributed stochastic sequence�

E	ect of i �

We �rst investigate the e�ect of the number of block rows �i� of the block Hankel matrices�

The input uk to the system is the same for all experiments and is equal to a �ltered unit

energy �� � ��� zero mean� Gaussian distributed stochastic sequence added to a Gaussian

white noise sequence �� � ����� The �lter is a second order Butterworth �lter� with cut�o�

frequency equal to ����� �sampling time ��� The number of data used for identi�cation is

�xed at ����� ��� di�erent disturbance sequences ek were generated� For each of these

sequences and for each i in the interval ��� ���� two models were identi�ed using N�SID

algorithm � �section �� and � �section ��� Also for each of these models the bias was

calculated using the expression in appendix G� Then the mean of all these quantities over

the ��� di�erent disturbance sequences was calculated �Monte Carlo experiment��

�	



Fig� � shows the results as a function of i for both N�SID algorithms� The results for

algorithm � are represented with a dotted line ��� and circles �o�� The results for algorithm

� are represented with a dotted�dashed ���� line and the stars �$�� The exact values are

indicated with a dashed line�

Fig� a% shows the eigenvalue of the system as a function of i� Clearly the estimates are

accurate� and there is hardly any di�erence between the two algorithms� Fig� b% shows the

deterministic zero of the system �A�BD��C� as a function of i� The di�erence between

the two N�SID algorithms is clearly visible� Algorithm � estimates a zero that is close to

the exact deterministic zero� independently of i� Algorithm � on the other hand is clearly

biased for small i� Fig� c% shows this bias �dashed�dotted line� and the estimated bias

�dotted line� using the expressions of appendix G as a function of i� As expected� the bias

grows smaller as i grows larger� Fig� d% shows the calculated and estimated bias on the

identi�ed D matrix� This matrix seems to be a lot more sensitive to i than A�

Finally Fig� e% shows the estimated stochastic zero as a function of i �the eigenvalues of

A�KC� with K the steady state Kalman gain�� The convergence is very slow �the exact

zero is �������� More details can be found in Van Overschee � De Moor �����a�����b��

For this example� we can conclude that both algorithms do a good job of estimating A and

C� B and D are estimated accurately with N�SID algorithm �� but not with algorithm �

�for small i�� The bias can be calculated though� The accuracy of the stochastic subsystem

is strongly dependent on i for both algorithms�

E	ect of j �

Throughout the paper� we assumed that j � �� The e�ect of �nite j is shown in Fig� �

f%� This Figure shows the standard deviation �stars� of the estimate of A as a function of

j �i � ��� For each j� ��� Monte Carlo experiments were done� The standard deviation is

proportional to ��
p
j �dashed line�� So� the accuracy of the results depend on j as ��

p
j�

��� A glass oven

The glass oven has � inputs �� burners and � ventilator� and � outputs �temperature�� The

data have been pre�processed � detrending� peak shaving� delay estimates� normalization

�Backx� ��	
��

Using 
�� data points� �ve di�erent models are identi�ed �the ��� following points are

used as validation data� �

�� A state space model with N�SID algorithm � of section �

�� A state space model with N�SID algorithm � of section �

��



�� A state space model with the algorithm of section 	��

�� An ARX model �Ljung� ����� followed by a balanced truncation

�� A prediction error model �Ljung� �����

The results are summarized in Table �

The �rst row indicates the chosen order� Fig� � shows the singular values that led to the

system order � for N�SID algorithm � and �� The gap in the singular values is clearly

visible� For the ARX model� the parameters �na%nb� indicate that �na� was a �� � matrix

with as entries �� and �nb� a � � � matrix with as entries � �see also Ljung� ������ In

this way� the resulting state space model was of order ��� It was reduced to a fourth

order model using balanced truncation of the deterministic subsystem� This is basically

the same philosophy as for the N�SID algorithms� but the last ones do not calculate

the intermediate model explicitly� For the prediction error model� we used the identi�ed

model of algorithm � in the controllability canonical form �controllability indices � �� �� ��

Number of parameters � ��� as an initial value �the initial values obtained from �canform�

or �canstart� of Ljung ������ did not converge�� We restricted the number of iterations to

� �no improvement with more iterations��

The third row shows the number of �oating point operations� Algorithm � needs about �&

less computation �simpler algorithm�� The calculation of the ARX model takes � times as

much computation� The calculation of the prediction error model �only � iterations� takes

about �� times as much computation ' It should be mentioned that none of the algorithms

was optimized in the number of operations �nor ours� nor the ones in the Matlab toolbox��

but these �gures still give an idea of the order of magnitude of the number of computations�

The fourth row is the error �in percent� between the measured validation output and the

simulated output using only the deterministic subsystem� The �fth row shows the error

between measured and Kalman �lter one step ahead prediction�

With �yvk�i the i
th validation output channel and �ysk�i the i

th simulated output channel�

the error is de�ned as �Nv � ���� �

	 � ��� �
�

�

�X
i	�

vuutPNv

k	���y
v
k�i � �ysk�i�

�PNv

k	���y
v
k�i�

�
� &

The best deterministic prediction is obtained with the ARX model� which is logical since

it came about by balanced truncation of the deterministic subsystem� The other models

perform a little worse �but all four about the same��

��



The Kalman �lter error is the smallest though for the �rst two N�SID algorithms� The

projection retains the deterministic and stochastic information in the past useful to predict

the future� This implies that the resulting models will perform best when used with a

Kalman �lter� The prediction error model does not improve this Kalman �lter prediction

error at all� There is even a slight decline which is probably due to numerical errors since

during the iteration procedure a warning for a badly conditioned matrix was given� This

means that� even though there is no optimization involved� the results obtained with the

N�SID algorithms� for this industrial MIMO process are close to optimal�

For this example� the N�SID algorithms thus calculate a state space model without any

a�priori �xed parametrization� and this in a fast and numerically reliable way�

Finally� we should mention that� as we found out in discussion with Lennart Ljung� the pre�

diction error method can be made to work better with some extra manipulations� The main

problem with the prediction error method is that the outputs are pairwise collinear� This

results in a very hard� ill�conditioned optimization problem� for every possible parametriza�

tion� This problem can be solved as follows � �rst estimate an initial model� Now� in the

optimization step� only the parameters of the C and D matrix corresponding to three out�

puts can vary �output �� �� and � for this example�� The optimization is better conditioned

now and the resulting model has a similar performance as the subspace models for this

example� The number of �oating point operations stays extremely high though and this

method is rather complicated and requires quite some insight from the identi�ers�

�� Conclusions

In this paper two new N�SID algorithms to identify combined deterministic�stochastic

linear systems have been derived� The �rst one calculates unbiased results� the second one

is a simpler biased approximation� The connection between these N�SID algorithms and

the classical Kalman �lter estimation theory has been indicated� This allows interpretations

and proofs of correctness of the algorithms�

In future work� we will discuss other connections with linear system theory � model reduc�

tion properties� frequency interpretations and connections with robust control�

The open problems that remain to be solved are the connection with maximum likelihood

algorithms �Ljung� ��	
� and the problem of �nding good asymptotic statistical error

estimates�

��
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A Proof of the projection theorem

Proof of formula ���� �

Note � Due to the complexity of the formulas� we use the subscripts p �past� and f

�future� throughout this appendix as follows � For U � Y d and Y s� these subscripts denote

respectively the subscript �ji� � and ij�i� �� For Xd and Xs they denote the subscript �

and i� We also make use of ��� � ���� without explicitly mentioning it�

De�ne
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f Y t
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The second part we need to express in terms of the system matrices is �
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with �
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Note that B is guaranteed to be of full rank ���m � l�i� due to the persistently exciting

input and the non�zero stochastic subsystem� To compute B��� we use the formula for the

inverse of a block matrix �Kailath� ��	�� �
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Using ���� and ��
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L�
i

L�
i

�
	 
iA

iSR�� � 
i�
d

i

�
I �

�
� Hd

i

�
� I

�
��
iA

iS��H
d

i �
t � 
iA

iSR��St
t
i � 
i�

d

iR���H
d

i �
t � 
i�

d

i S
t

�

t

i

�Hd

i R
t

���H
d

i �
t �Hd

i
St�


t

i � 
iA
iP d
ti � 
i�

s

i � 
i�
d

iR���H
d

i �
t

�
iA
iS��H

d

i
�t � 
i�

d

i
St�


t

i
� Hd

i
Rt
���H

d

i
�t � Hd

i
St�


t

i
����

i
�Hd

i

�
I �

�
� 
iSR

���

	
�


i�
d

i
Hd

i

�
� 
iA

iSR�� � 
i�A
i�SR��St � P d�
ti ��s

i ��
��
i

�Hd

i

�
I �

�
� 
iSR

���

	
�


i�d

i
� 
i�i�

��
i

Hd

i
Hd

i

�
� 
iA

iSR�� � 
i�i�
��
i


iSR
��

	
�


i��
d

i
�QiH

d

i
� Hd

i

�
� 
i�A

i � Qi
i�SR
��

which is exactly the same as the �rst part of �����

Once again� using ���� and ��
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which is exactly the same as the second part of �����
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The proof of formula ���� is completely analogous�

B Notes on the special form of the Kalman �lter

In this Appendix� we give two di�erent forms of the recursive Kalman 
lter� The 
rst one

is the classical form that can be found in for instance Astrom � Wittenmark� ����� This

form is transformed into the form of �������
�� which is more useful for this paper�

Consider the system ������� �

xk�� � Axk �Buk � wk

yk � Cxk �Duk � vk

where� for the time being� we assume that A�B�C�D as well as
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vk

�
A� wt

l vtl

�
� �

�
� Qs Ss

�Ss�t Rs

�
A �kl
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are known�

Given �x��  P� and u�� � � � � uk��� y�� � � � � yk��� the non�steady state Kalman �lter state esti�

mate �xk is then given by the following set of recursive formulas �Astrom � Wittenmark�

��	�� �

�xk � A�xk�� �Buk�� �Kk���yk�� � C�xk�� �Duk��� ��	�

with �

Kk�� � �A  Pk��C
t � Ss��C  Pk��C

t �Rs��� ����

 Pk � A  Pk��A
t �Qs � �A  Pk��C

t � Ss��C  Pk��C
t �Rs����A  Pk��C

t � Ss�t ����

and  Pk the error covariance matrix �

For our purpose� a di�erent form of these general Kalman �lter equations is more useful�

With P s� G��� the solution of the set of positive real equations �

P s � AP sAt �Qs 
 P s

G � AP sC t � Ss 
 G

�� � CP sC t �Rs 
 ��

and the transformation �
 Pk � P s � Pk

we get �from ����� �

Kk�� � ��AP sC t � Ss� �APk��C
t���CP sC t �Rs� � CPk��C

t���

� �APk��C
t �G���� � CPk��C
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For the Riccati equation �from ����� we have �
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t � �APk��C

t �G����� CPk��C
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t �G�t

This means that the Kalman �lter ��������� calculates the same state estimate �xk as the

original Kalman �lter ��	������ with  P� � P s � P��

C Proof of the Kalman �lter linear combinations

In this Appendix we prove Theorem 
�

�




First we show that �

Pk � AkP��A
t�k � �k�
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k �tk ����

We prove ���� by induction �

Proof � �
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So� from ���� �
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Which is the equation of the Kalman �lter ����� This implies that Pi�� as written in ����

will be the state covariance at time instant i� ��

End of Proof �
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The rest of the proof is also a proof by induction�

We prove ���� �
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k � �
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K� � �AP�C
t �G���� � CP�C

t���

and the state by ���� �

�x� � A�x� �Bu� �K��y� � C�x� �Du��

� �A�K�C��x� � �B �K�D�u� �K�y�

� The linear combinations ���� are for k � � ��
A� ���

��
� C B � ���

��
� D ���

��
�

�
But we also know that for k � � ��
� and ���� �

���
��
� � �AP�C

t �G��CP�C
t � ���

��

So� these linear combinations give us the Kalman �lter state estimate� for a Kalman

�lter with initial state covariance matrix P�� and initial state estimate �x��
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Now we have to prove that the linear combinations in ���� are the same as those of ����

for k � i� ��
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End of Proof �
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If we now look at ���� for k � i� �� we get ��
Ai�� � �A�KiC�Qi�i �KiCA

i A�d
i � �A�KiC�QiH

d
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These last linear combinations are exactly the same as ����� This concludes the proof of

the Kalman �lter states�

End of Proof �

�

D Oblique Projections

In this section� we introduce oblique projections� It is shown that �i  Xi and �i��  Xi�� can

be interpreted as oblique projections� A geometrical interpretation will also be provided�

��



D�� Oblique projections

De
nition � Oblique Projection

Given two subspaces B�C of a j�dimensional ambient space and two matrices B � Rq�j� C �
R
r�j the rows of which generate a basis for these spaces � then the oblique projection along

C on B denoted with PBjC is uniquely de
ned by �Baksalary � Kala� ��	�� �

BPBjC � B

CPBjC � �

The following Theorem is easy to derive from this de�nition �

Theorem � Oblique Projection

Given two matrices B � Rq�j with row space B and C � Rr�j with row space C � then the

oblique projection along C onto B can be written as �

PBjC �
�
Bt C t

�
�
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� BBt BC t

CBt CC t

�
A����jqB

with ������jq the 
rst q columns of ���
���

Proof �
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Theorem �

With A � Rp�j and

A
�
Bt C t

��� BBt BC t

CBt CC t

�
A�� � �

M N
�

we have �

APBjC � MB � A�

�
� B

C

�
A�NC

The Theorem is easy to prove starting from Theorem ��

As a last fact on oblique projections� we �nd from Baksalary � Kala ���
�� that the oblique

projection on B along C� can also be written as a � orthogonal projection on B �

PB�� � �Bt�B�Bt���B

with

� � PC�
and PC� denoting the orthogonal projection operator on the row space orthogonal to C�

D�� Interpretation of the states

From Theorem � and the de�nition of  Xi and  Xi�� �������
�� it can clearly be seen that

�i  Xi and �i��  Xi�� are oblique projections �

�i  Xi � Yij�i��P� U�ji��

Y�ji��

�
jUij�i��

�
�
L�
i L�

i

��� U�ji��

Y�ji��

�
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�i��  Xi�� � Yi��j�i��P� U�ji
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�
jUi��j�i��
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�
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i��

��� U�ji

Y�ji

�
A

Fig� � shows how the oblique projection of the row space of Yij�i�� on the row spaces of

� U t
�ji�� Y

t
�ji�� �

t along the row space of Uij�i�� can be interpreted as the following sequence

of operations �

� an orthogonal projection to determine Zi

��



� followed by a decomposition of Zi into directions along the row spaces of � U t
�ji�� Y

t
�ji�� �

t

and Uij�i��� This gives respectively �i  Xi and L�
iUij�i���

The decomposition of Zi into �i �Xi and Hd
i Uij�i�� is also indicated�

This is just a nice geometrical interpretation of the kalman �lter states� and has no further

consequences for the derivation of the identi�cation algorithm�

E Additional Proof

In this Appendix� we prove that �

Pi �
i��Y
k	�

�A�KkC�

Proof �

We have �with ����� �

Pi � Ai �Qi�i

� Ai � �A�Ki��C�Qi���i�� �Ki��CA
i��

� Ai �AQi���i�� �Ki��CQi���i�� �Ki��CA
i��

� A�Ai�� �Qi���i����Ki��C�Ai�� �Qi���i���

� �A�Ki��C��Ai�� �Qi���i���

� �A�Ki��C�Pi��

From this� we �nd easily �

Pi �
i��Y
k	�

�A�KkC�

�

F Purely Deterministic Systems

In this appendix� we prove that for purely deterministic systems� the algorithms still work�

From the deterministic input�output equations ��������� �Moonen et al� � ��	�� we �nd �

Yij�i�� � �i��
d
i �Ai�yiH

d
i �U�ji�� �Hd

i Uij�i�� � �iA
i�yiY�ji��
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So� from this and ���� and the fact that the input is persistently exciting� we �nd �
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�
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This implies that �
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G Calculation of the bias

For the calculation of the bias L�  L the error on the states  Xi and  Xi�� has to be calculated�

From ���������� we have �

�  Xi �
i��Y
k	�

�A�KkC�S�R���mi��j�miUij�i��

This quantity can only be calculated after the system is identi�ed� In the following it is

thus assumed that the system matrices A�B�C�D�Qs� Ss� Rs are known� �R and Q are the

submatrices of the RQ decomposition as de�ned in section 
��

� SR�� can be calculated as �

SR�� � Xd
�U

t
�j�i���U�j�i��U

t
�j�i���
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� �yi �Y
d
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��
�������

� For the calculation of the Kalman �lter gains Kk� we also need the initial covariance

estimate �
 P� � P d � P s � SR��St

� We have approximately �

lim
j��

�

j
 Xi

 X t
i � P d � P s

And from the description of the algorithm �see section 
� we have �

 Xi
 X t
i

j
� !�

Thus we have �

P d � P s � !�

� SR��St can be easily found as �
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� �yi �R��������Hd
i R���������R

t
��������Rt

��������H
d
i �

t���yi �
t

��



algorithm � � � � �

order � � �%� �%� �

i � � � � �

�ops �������	 �������� ������
� ��
����� ���������

pred� determ� �
��� �
��� �	��� ���
� �
���

pred� Kalman ���
� ���
� ����
 �	��	 ���	


Table �� Comparison of � identi�cation algorithms�

Care should be taken when subtracting both quantities to obtain  P�� It is possible

that due to the approximations�  P� becomes negative de�nite� If this is the case� it

should be put equal to zero�

� Now the Kalman gains Kk can be calculated using formulas ����������

The errors �  Xi and �  Xi�� can be easily calculated as �

�  Xi �
i��Y
k	�

�A�KkC�S�R���mi��j�miR�������Q���

�  Xi�� �
iY

k	�

�A�KkC�S�R���m�i�����j�miR�������Q���

The least squares solution of �

min
�L
k
�
�  Xi�� � �  Xi��

Yiji

�
A � (L

�
�  Xi � �  Xi

Uiji

�
A k�F

will thus be a better approximation for L as  L is� The bias can then be calculated as �

L �  L � (L �  L
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state estimates based upon i measurements of uk and yk�
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