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Abstract

Recently a great deal of attention has been given to numerical algorithms for subspace
state space system identification (N4SID). In this paper, we derive two new N4SID al-
gorithms to identify mixed deterministic-stochastic systems. Both algorithms determine
state sequences through the projection of input and output data. These state sequences
are shown to be outputs of non-steady state Kalman filter banks. From these it is easy to
determine the state space system matrices. The N4SID algorithms are always convergent
(non-iterative) and numerically stable since they only make use of QR and Singular Value
Decompositions. Both N4SID algorithms are similar, but the second one trades off accu-
racy for simplicity. These new algorithms are compared with existing subspace algorithms
in theory and in practice.

Key words : Subspace identification, non-steady state Kalman filter, Riccati difference

equations, QR and Singular Value Decomposition



1 Introduction

The greater part of the systems identification literature is concerned with computing poly-
nomial models, which are however known to typically give rise to numerically ill-conditioned
mathematical problems, especially for Multi Input Multi Output systems. Numerical al-
gorithms for subspace state space system identification (N4SID') are then viewed as the
better alternatives. This is especially true for high-order multivariable systems, for which
it is not trivial to find a wuseful parameterization among all possible parametrizations.
This parametrization is needed to start up the classical identification algorithms (see e.g.
Ljung, 1987), which means that a-priori knowledge of the order and of the observability
(or controllability) indices is required.

With N4SID algorithms, most of this a-priori parametrization can be avoided. Only the
order of the system is needed and it can be determined through inspection of the dominant
singular values of a matrix that is calculated during the identification. The state space
matrices are not calculated in their canonical forms (with a minimal number of parameters),
but as full state space matrices in a certain, almost optimally conditioned basis (this basis
is uniquely determined, so that there is no problem of identifiability). This implies that
the observability (or controllability) indices do not have to be known in advance.
Another major advantage is that N4SID algorithms are non-iterative, with no non-linear
optimization part involved. This is why they do not suffer from the typical disadvantages of
iterative algorithms, e.g. no guaranteed convergence, local minima of the objective criterion
and sensitivity to initial estimates.

For classical identification, an extra parametrization of the initial state is needed when
estimating a state space system from data measured on a plant with an non-zero initial
condition. A final advantage of the N4SID algorithms, is that there is no difference

between zero and non-zero initial states.

Most commonly known subspace methods are realization algorithms of e.g. Kung (1978),
where a discrete-time state space model is computed from a block Hankel matrix with
Markov parameters. It is unfortunate that the theory here relies on Markov parameters as
a starting point, something rather difficult to measure or compute in practice (e.g. think
of unstable systems).

An alternative direct identification scheme for purely deterministic systems is described by
e.g. Moonen et al. (1989), Moonen & Ramos (1991), where a state space model is computed

directly from a block Hankel matrix constructed from the input-output data. In a first
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step, a state vector sequence is computed as an interface between a ‘past’ and a ‘future’.
Once the state vector sequence is known, the system matrices are computed from a set of
linear equations.

Similar data-driven identification schemes for purely stochastic identification are well known,
(see e.g. Arun & Kung (1990) and the references therein). Less well known is that these
algorithms can compute extremely biased results. This problem was studied and solved by
Van Overschee & De Moor (1991a,1991b).

The problem addressed in this paper is that of identifying a general state space model
for combined deterministic-stochastic systems directly from the input-output data. Some
papers in the past have already treated this problem but from a different viewpoint. In
Larimore (1990) for instance, the problem is treated from a purely statistical point of
view. There is no proof of correctness (in a sense of the algorithms being asymptotically
unbiased) whatsoever. In De Moor et al. (1991), Verhaegen (1991) the problem is split
up into two subproblems : deterministic identification followed by a stochastic realization
of the residuals. In Moonen et al. (1992) the problem is solved for double infinite block
Hankel matrices, which implies practical computational problems.

In this paper, we will derive two N4SID algorithms that determine the deterministic
and stochastic system at the same time. The connection with classical system theory
(Kalman filter) will be used to prove the exactness (unbiasedness for an infinite number of
measurements) of algorithm 1, or the degree of approximation (calculation of the bias for
an infinite number of measurements) of algorithm 2.

The approach adopted here is similar to the identification schemes of Moonen et al. (1989)
for the purely deterministic case and Van Overschee & De Moor (1991a,1991b) for the
stochastic case. First a state sequence is determined from the projection of input-output
data. This projection retains all the information (deterministic and stochastic) in the past
that is useful to predict the future. Then, the state space matrices are determined from
this state sequence. Fig. 1 shows how these N4SID algorithms differ from the classical
identification schemes.

The connection of the two new N4SID algorithms with the existing algorithms described

above will also be indicated.

This paper is organized as follows : The problem description and the mathematical tools
can be found in section 2. In section 3 the main projection is defined. Section 4 introduces
a closed form formula for the non-steady state Kalman filter estimation problem. This
result is related to the results of section 3 to find the interpretation of the main projection

as a sequence of outputs of a non-steady state Kalman filter bank. Section 5 introduces a



first N4SID algorithm that identifies the system matrices exactly. In section 6 accuracy is
traded off for simplicity in a second approximate N4SID algorithm. Section 7 shows how
these N4SID algorithms can be implemented in a numerically reliable way, using the QR
and the Singular Value Decomposition (SVD). Section 8 investigates the connection with
other existing algorithms. Finally section 9 will treat some comparative examples. The

conclusions can be found in section 10.

2 Preliminaries

In this section, we describe the linear time invariant system we want to identify. We also
introduce the input and output block Hankel matrices, the past and future horizon as well

as the input-output equations.

2.1 System description

Consider the following combined deterministic-stochastic model to be identified :

1 = Axp 4 Bug + wy (1)
yr = Cap+ Duy +vp (2)

() (= (Yo o o

and A,Q* € RV B ¢ R (C € RX", D € X7 S5 ¢ p" and R* € RY¥L The input

vectors u, € R™*! and output vectors y, € R™*! are measured. v, € R and w;, € R™!

with

o~

on the other hand are unmeasurable, Gaussian distributed, zero mean, white noise vector
sequences. {A,C'} is assumed to be observable, while {A, ( B (Q*)'/? )} is assumed to
be controllable.

This system (1)-(2) is split up in a deterministic and a stochastic subsystem, by splitting
up the state (z;) and output (yz) in a deterministic (.) and stochastic (.*) component :
zp = 28 + 25, yp =y + yi. The deterministic state (z¢) and output (yf) follow from the
deterministic subsystem, which describes the influence of the deterministic input (uy) on

the deterministic output :

$Z+1 = Azj + Buy (4)
yg = C:L'i—l—Duk (5)

’E denotes the expected value operator and 6;; the Kronecker index.



The controllable modes of {A, B} can be either stable or unstable. The stochastic state
(%) and output (y;) follow from the stochastic subsystem, which describes the influence

of the noise sequences (w; and vi) on the stochastic output :

v = Aditw (6
vi = Cap+u (7)
The controllable modes of {A, (Q*)'/?} are assumed to be stable.
The deterministic inputs (uy) and states (z§) and the stochastic states (z3) and outputs
(y;) are assumed to be quasi-stationary (as defined in Ljung, 1987, pp. 27). Note that even
though the deterministic subsystem can have unstable modes, the excitation (uy) has to be
chosen in such a way that the deterministic states and output are finite for all time. Also
note that since the systems {A, B} and {A, (Q*)'/?} are not assumed to be controllable, the
deterministic and stochastic subsystem may have common as well as completely decoupled

input-output dynamics.

The main problem of this paper can now be stated : Given input and output measurements
Uy ... uy and yi,...,yny (N — o0), and the fact that these two sequences are generated
by an unknown combined deterministic-stochastic model of the form described above, find
A, B,C,D,Q* R°,S* (up to within a similarity transformation).

In the next two sections, we will define some more useful properties and notations for the

deterministic and the stochastic subsystem.

2.1.1 The deterministic subsystem
Associated with the deterministic subsystem (4)-(5), we define the following matrices :

e The extended (¢ > n) observability matrix I'; (where the subscript ¢ denotes the

number of block rows) :

C
CA

r; €| oa
C A

e The reversed extended controllability matrix A? (where the subscript 7 denotes the

number of block columns) :

At Camp arp B B)



e The lower block triangular Toeplitz matrix H¢ :

D 0 0
CB D 0

ai et cap B D
CA=B CA-*B CAB ... D

2.1.2 The stochastic subsystem

For the stochastic subsystem (6)-(7) we define :

S df S S
P < E[l’k(%)t]
def s/ s
G < E[xk(yk)t]
def s/ s
Ao < E[yk(yk)t]

With equations (3),(6),(7) and through stability of the controllable modes of the system
{A,(Q*)"/?}, we find easily that the following equations are satisfied :

P* o= APA' 4@ (8)

G = APC'+5°

Ao = CPC'+ R

This set of equations describes the set of all possible stochastic realizations that have the

same second order statistics as a given stochastic sequence y;. We call them the positive

real equations. More details can be found in Faure (1976).

It is also easy to derive that :

def

CA-LG >0

Ai = Elyinu(w) =1 Ao 1 =10

GHAY™-10t i<

Associated with the stochastic subsystem, we define the following matrices :

o The matrix A? :

A dgf

(A6 A6 L AG G

e The block Toeplitz covariance matrix L7 :

I dgf

K3

Ao Ay Ay .. A
Al Ao A—l <. A2—i
ANicr A Ais o0 Ao



e The block Toeplitz cross covariance matrix H? :

A; ANy ANy ..M
e dgf A A; Aoy o0 Ay A
Aoy Agimo Agimg o0 A

2.2 Block Hankel matrices and input-output equations

Input and output block Hankel matrices are defined as :

Ug U Uy ... Ujq Yo Y1 Y2 - Yi—1
def up Uz Uz ... Uj v def YiooY2 Yz .. Y
Upji-1 = oi—1 =
Uj—1  U; Ujpr oo Ujpj—2 Yi1 Y Y1 - Yitj—2

where we presume that j — oo throughout the paper. The subscripts of U and Y denote
the subscript of the first and last element of the first column. The block Hankel matrices
formed with the output yj; of the stochastic subsystem are defined as Ygj;_; in the same
way.

Somewhat loosely we denote the "past” inputs with Ug,_; or Uy; and the "future” inputs
with Usjgi—1 or Uipqj2i—1. A similar notation applies for the past and future outputs. This
notational convention is useful when explaining concepts.

The deterministic and stochastic state matrices are defined as :
d d_Gf d d d d s d_Gf s s s s
X = ( TP Ty Thg e Ty X7 = TPy Xy e Th

For the deterministic subsystem we define :

Ugji— Ry Ry | St
] o t t aye ) def :1 N 1 _ RS
lim | Ui ( Usjiz1 Uljaiza ‘ (X§) ) = | By, B |5 [= a
j—oo S|P
Xd Sy Sy | P

where we use the assumption that the limit exists (quasi-stationarity of u; and z¢).

For the stochastic subsystem we find that, due to stationarity of y;, the following equalities

hold true :
. 1 05|i—1 s s _ L’f (H;)t
i (i ) o o) = (4 "

7|2¢—1 [

The Matrix input-output equations are defined in the following Theorem (De Moor,
1988) :



Theorem 1

Yoo1 = DiX¢ + HUguy + Yoo (10)
Yipicn = rX¢+ HZdUiIM—l + Vi (11)
X = AXI+ AU (12)

The Theorem is easy to prove by recursive substitution into the state space equations.

3 The Main Projection

In this section, we introduce the projection of the future outputs onto the past and future
inputs and the past outputs. The results can be described as a function of the system
matrices and the input-output block Hankel matrices.

We define the matrices Z; and Z;14 as :

Zi = Yipioa/ ( UO'%i_l ) (13)

Uop\2i—
Jiy1 = Yz’-|-1|2z'—1/( 0|2'1) (14)

where A/B = AB'(BB")"'B. The row space of A/B is equal to the projection of the row
space of A onto the row space of B.

Formula (13) corresponds to the optimal prediction of Yjjz;—1 given Upjz—1 and Ypi—1 in a

sense that :
1Yijior — Zill3
is minimized constrained to
Ugjai
Z; € Row Space Of2i—t
Yoji-1

So, intuitively, the &% row of Z; would correspond to a k step ahead prediction of the
output. This intuition become clearer in section 4.

These projections (Z; and Z;41) are useful in determining the combined system, since (as
we will show in Theorem 2) the linear combinations to be made of the input-output block
Hankel matrices to generate the matrices Z; and Z;;; are functions of the system matrices
(A, B,C,D,Q*, S°, R*). Moreover, the system matrices can be retrieved from these linear

combinations, as will be explained in section 5.



It is tedious though straightforward to prove the following Theorem which delivers formulas
for the linear combinations to be made of the rows of the input-output block Hankel

matrices to generate the matrices 7; and Z;14 :
Theorem 2 Main projection

o If the deterministic input uy and state x§ are uncorrelated with the stochastic output

Yi ¢
. t 1 d
lim =Yg, ;U =0 lim —Yg, (X9 =0
J—ro0 ] ]—>OO ]
lim =Y, UF=0 lim —Y&, (X9 =0
J—ro0 ] J—ro0 ]

where the subscript . denotes past or future

o and if the input is "persistently exciting of order 2t (Ljung, 1987, pp. 363)” :

rank Upjgi—q = 2ma

e and if the stochastic subsystem is not identically zero (the purely deterministic case
will be treated in section 6.1.3)

then (for j — o0):

Z; = Finl-HflUﬂziq (15)
Jiy1 = Fi—lj(i—l—l -|-H2d_1Ui+1|2z’—1 (16)
with :
SR 1U0|2i—1
X = ( A — QT —Q:H | Q; ) Uspji—1 (17)
Yojica
SR—1U0|22—1
Xin = (A" = QuaTip | ALy = Qi HE | Qi ) Uoji (18)
Yoy
and
Qi = xabi'
i = A(PT— SRTUSHTE + A2 (19)
W, = Ly(P— SRRSO+ Lf (20)

A proof can be found in Appendix A. In the next section, we give an interpretation of

these projections.



4 A Bank of Kalman Filters

In this section, we show how the sequences X; and )A(H_l can be interpreted in terms of
states of a bank of j non-steady state Kalman filters, applied in parallel to the data. This
interpretation will lead to a formula that will prove to be extremely useful when determining
the system matrices from the data.

As stated before, it may come as no surprise that there is a connection between the states
X, defined by the projection Z; and some optimal prediction of the outputs ¥Y;j5;_;.

To establish this connection, we need one more Theorem that states how the non steady
state Kalman filter state estimate &, can be written as a linear combination of ug, ..., ug_1,

Yo, ...,Yr—1 and the initial state estimate Zg.

Theorem 3 Kalman Filter
Gliven &o, Po, o, ..., Uk—1,Y0, - - ., Yk—1 and all the system matrices (A, B,C, D,Q*, S*°, R*),

then the non steady state Kalman filter state &y defined by the following recursive formulas :

t = Afp_1+ Bug—1+ K1 (yp-1 — C2p—1 — Dug—q) (21)
[(k—l = (APk_lct + G)(AO + CPk—l Ct)_l (22)
Py = AP A — (AP O+ GY (Ao + CP O Y AP CH+ GY (23)

can be written as :

Ug

b= AF = Quly | AL - Qutif | Q1) uk_l (24)
Yo

Yk—1
where :
Qr = xp' (25)

i = AFPTL 4+ A3 (26)
v = TpPlt + L (27)

The proof of this Theorem and some details concerning the special form of the Kalman

filter equations (21)-(23) can be found in Appendix B and Appendix C. Let us just indicate

9



that the error covariance matrix P, dgf E[(x) — &) (xr — 2x)"] is given by P® 4+ Py, with P*

the state covariance matrix from Lyapunov equation (8).

Note that the limiting solution (k — o0) of (23) is —P.,, where P, is the state covariance
matrix of the forward innovation model (Faure, 1976). Hence the limiting error covariance
matrix is ]500 = P?— P, which is the smallest state error covariance matrix we can obtain
(in the sense of nonnegative definiteness).

Also note that the expressions for ¢, and v (26)-(27) are equal to the expressions of

and x; (19)-(20) with P4 — SR=1S? substituted by Pp.

If we now combine the results of Theorem 2 and 3, we find an interpretation of the sequences
X; and )A(H_l in terms of states of a bank of non-steady state Kalman filters, applied in

parallel to the data. More specifically, compare formulas (17), (18) and (24) :

1. The j columns of X, are equal to the outputs of a bank of j non-steady state Kalman
filters in parallel. The (p+ 1) column of X, for instance, is equal to the non-steady
state Kalman filter state 2,4, of the Kalman filter (21), (22), (23), with initial error

covariance matrix at starting time p :
P,=P, 4+ P = P'— SRS 4P
Up
i, = SR
Up42i-1
Notice that ]5p is independent of the column index, so it is denoted with P°.

In this way, all the columns can be interpreted as Kalman filter states. The initial

states of the j filters together can be written as :
X0 = SR Uppaioy
All this is clarified in Fig. 2.

The expressions for P° and X0 can be interpreted (somewhat loosely) as follows : If
we had no information at all about the initial state, then the initial state estimate
would be X° = 0 and the initial error covariance would be equal to the expected
variance of the state : P° = E[zy2l] = P? 4+ P*. Now, since the inputs are possibly
correlated, we can derive information about X0 out of the inputs Upjg;—1. This is
done by projecting the (unknown) exact initial state sequence X¢ 4+ X¢ onto the row

space of the inputs Upp;_; :
X0 = (Xg + XOS)/UO|2i—1 = SR—1U0|2¢—1

10



This extra information on the initial state of the Kalman filter also implies that the
error covariance matrix reduces from P 4+ P* to :

~ 1 - N
P =Pl 4 PP — lim = X°(XO) = P'+ P° — SR7'S!

J—ro0 ]

These are exactly the same expressions for X° and P° as we found above.

[t can also be seen that when the inputs are uncorrelated (white noise), the projection
of X+ X onto the inputs Up|2i—1 is zero, which implies that there is no information

about the initial state X° contained in the inputs Upji1.

The state sequence )A(H_l has a similar interpretation. The p'* column of )A(H_l is equal
to the non-steady state Kalman filter state estimate of the same (in a sense of the
same initial conditions) non-steady state Kalman filter bank as discussed above, but
now the filter has iterated one step beyond the estimate of the p** column of X;.

This is valid for all columns p =1,...,7.

. We define the residuals R; of the projection as :
Ri=Yipicr = Zi = Yipica = DiXi = HUjppi (28)

Since Z; is the result of the projection of Yj;_ on the row space of Uppy;—; and Yg|;_1,
the residuals of this projection (R;) will always satisfy : RiUé|2i—1 =0, R;Y), =0

lim1
and R;Z! = 0. Also, since X; can be written as a linear combination of Upj2i—1 and

Yoji—1 (see formula (17)), we find : RZXZ = 0.

. Since the corresponding columns of XZ and )A(H_l are state estimates of the same (in a
sense of the same initial conditions) non-steady state Kalman filter at two consecutive

time instants, we can write (see formula (21)) :
Xip1 = AX; + BUy; + K;(Yi; — CX; — DUy) (29)
It is also trivial that :
Yii = CXi + DUy + (Yyy — CX; — DUy;) (30)

If we inspect the formula for R; a little bit closer (28), we see that its first row is
equal to Yj; — C)A(Z' — DUy;. And since we know that the row space of R; (and thus
also the first [ rows of R;) is perpendicular to Upjpi_1, Yoji—1 and )AQ, we find (together

11



with (29) and (30)) :

Xipn = AX;+ BUy; + Yoji—1 (31)

Yii = OXi+ DUy + Yoji-1 (32)

where (.)* indicates a matrix whose row space is perpendicular to the row space of
(.). These formulas will prove to be extremely useful in the next section where we

determine the system matrices from Z; and Z;,4.

This summarizes the whole interpretation as a bank of non-steady state Kalman filters.

5 Identification Scheme

In this section, we derive an N4SID algorithm to identify exactly (unbiased for j — oo ) the
deterministic subsystem, directly from the given inputs uy and outputs y,. The stochastic

subsystem can be determined in an approrimate sense.

5.1 The projections

First, the projections Z; and Z;11 (13)-(14) have to be calculated. In section 7 we will
describe a numerically stable way to do this.

For convenience, we rewrite these projections as follows :

Ll L2 L3 M
Z; = ( — | ~~ \ﬁ-/) Usj2i—a (33)
lixmi | lixmi | lixli EE—
Yoji-1
Uy
L I I e
Zign = ( Ny Ny Ny ) Ui1)2i—1 (34)
ti=1)xm(i1) | ti=0xm(i-1) | =i )\
oli
with, from (15)-(18) :
L} = H{+Ti[A = QLiS(B™ ) mis1jzmi (36)
L = T;Q; (37)

12



with (R_l)lhm denoting the submatrix from column 1 to column ma.

The expressions for L}, ,,L? | and L}, are similar, but with shifted indices.

5.2 Determination of I'; and n.

An important observation is that the column space of the matrices L} and L? coincides
with the column space of I';. This implies that I'; and the order of the system n can be
determined from the column space of one of these matrices. The basis for this column space
actually determines the basis for the states of the final (identified) state space description.

Let us mention two other possible matrices that have the same column space as I'; :
Li+ L)L} (38)
Uojiz
L3 ) |~ (39)
Yoji-1
It should be mentioned that, for i — oo the first one (38) will lead to a deterministic

subsystem that is balanced (See also Moonen & Ramos, 1991) while the second one (39)

leads to a deterministic system that is frequency weighted (with the input spectrum)

(2

balanced (Enns, 1984) together with a stochastic subsystem of which the forward innovation
model is balanced in a deterministic sense. We will not expand any more on this, but keep
this for future work.

We can now determine I';,I';_; and the order n as follows : Let T' be any rank deficient

matrix whose column space coincides with that of I';.

e Calculate the Singular Value Decomposition :
¥ 0
= (U Uz)( ; O)Vf
e Since 7' is of rank n, the number of singular values different from zero will be equal
to the order of the system.
e The column spaces of I'; and UlZ}/Q coincide 2. So, I'; can be put equal to U12}/2 .
e With I'; defined as I'; without the last [ rows (/ is the number of outputs), we get :
I'ioa =14

In the following, we will take 7" equal to the expression in formula (39), but one can replace

this with any other matrix of which the column space coincides with 1.

3The factor 21/2 is introduced for symmetry reasons.

13



5.3 Determination of the system matrices

We now assume that I';, I';_; and n are determined as described in the previous section,
and are thus known. From (15)-(16) it follows that? :

A

X = F:[(Zi_HidUiDi—l) (40)
)A(H_l = F;r_l(ZZ'-H—Hid_lUi+1|2i—1) (41)

In these formulas, the only unknowns on the right hand side are the matrices H¢ and H{ ;.
From (31) and (32) we also know that :

L
. Uoj2i—
Xi—l—l - A A»—|— B I N 0|Z2 1 (42)
Kh = C P D ap Xz

If we now substitute the expressions for X; and )A(H_l (40)-(41) in this formula, we get :

L

Upj2i—1
I A K
Ut Sk ) FIZZ' + L Uijzi—1 + Z; (43)
Yiji C Ka2 .
term 1 term 2 —_—
term 3
where we define :
D 0
B — ATl I HE, — AT
( = ) dﬁf ' = (a1)
K D
# p-crl —ert Y
I',.«B Hf_l

Observe that the matrices B and D appear linearly in the matrices K15 and Ks,.

Let 1I be a matrix whose row space coincides with that of

Itz
Uij2i-1
7 AlK Iz
i—1%i+1 /H _ 12 i 4 /H
Yiji C ‘ Ka2 Uij2i-1

4 At denotes the Moore-Penrose pseudo-inverse

then (from (43)) :

14



Obviously, this is a set of linear equations in the unknowns A, C, K12, Kos.

Another point of view is that one could solve the least squares problem :

pin | (D) (AR ) (12
A,CK12,K22 Yis C ‘ Kaa Usjai—1 g

Either way, from (43) we find (term by term) :

term 1. A and C exactly.

(45)

term 2. K3 and Koy from which B and D can be unraveled by solving a set of linear
equations, analogous to the one described in De Moor (1988). Note that in (44), B
and D appear linearly. Hence if A, C,1';, 1,1, K15 and Kqg are known, solving for B

and D is equivalent with solving a set of linear equations.

term 3. The residuals of the least squares solution (43) can be written as :

L

Ugjai—
B 0|Z2 1 B M/Z|Z
= ' B Vi

where W) and V. are block Hankel matrices® with as entries wy and vy : the process

and measurement noise. This is clearly indicated by equation (42).

The system matrices R*,S® and ()° are determined approximately from p as follows :

l( t)N Qs S
jPP - (Ss)t R®

The approximation is due to the fact that the bank of Kalman filters for finite ¢ is
not in steady state (see for instance the Riccati difference equation (23)). As ¢ grows
larger, the approximation error grows smaller. For infinite ¢ the stochastic subsystem

is determined exactly (unbiased). More details on this purely stochastic aspect can

be found in Van Overschee & De Moor (1991a,1991b).

5.4 N4SID Algorithm 1

In this section, we summarize the first N4SID algorithm step by step, not yet paying

attention to the fine numerical details, which will be treated in section 7.

>The block Hankel matrices of the residual p have only one block row. The notation is introduced to

be consistent with previous notations.

15



1. Determine the projections :

Upji-1
Zi = Yo/ | Uipiza
Yoji-1
Upji-1
AT =
- Al A A R Ui|2i—1
lixmi | lixmi | lixti ) \————
Yoji-1
Uy
Ziyi = Yigpio/ | Uipapior
Yoji

2. Determine the Singular Value Decomposition

Uiz 1 0
(i) a3 )

The order is equal to the number of non-zero singular values.

(1

I, =027 and Ty =05

3. Determine the least squares solution (p; and py are residuals) :

J noomi J J

n F:[_1Zz’+1 n{Kin Kig n FIZZ' n { p1
- = S - + _

! Yii [\ Ko Ky mi \ Usjai—1 [\ p2

4. The system matrices are determined as follows :

4.1 A — K
C — K2
4.2 B, D follow from A,C" and Ki3,Ks; through a set of linear equations.

L3 Q° | 5° o1 p1py | prps
(5°)| R? T\ p2pt | p2ph

The deterministic subsystem will be identified exactly (as j — oo, independent of 7).
The approximation of the stochastic subsystem is still dependent on ¢ and converges

as 1 — oo.
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6 A Simple Approximate Solution

In this section, we introduce an N4SID algorithm that is very similar to the “exact” (as
J — oo) algorithm of the previous section (algorithm 1). The algorithm we present now
finds a good approximation to the state )AQ, and to the system matrices, without having to
go through the complicated step J for the determination of B and D. This results in a
simple and elegant algorithm with a slightly lower computational complexity as compared
to algorithm 1. Another advantage of this simplified N4SID algorithm is that it is very
closely related to existing algorithms (Larimore, 1990). This means that the analysis of this
simplified algorithm can also be applied to the other algorithms, and can thus contribute to
a better understanding of the mechanism of these algorithms. A disadvantage is that the
results are not exact (unbiased) for finite ¢ (except for special cases), but an estimate for
the bias on the solutions can be calculated.

If we could determine the state sequences X, and )A(H_l directly from the data, the matrices
A, B,C and D could be found as the least squares solution of (31)-(32).

Unfortunately, it is not possible to separate the effect of the input HZdUi|2i—1 from the effect
of the state I'; X; in formula (15), by just dropping the term with the linear combinations of
Uijzi—1 (L?) in the expression for Z;. We would automatically drop a part of the initial state
if we did this (see for instance (36)). So, it is not possible to obtain an explicit expression
for Fi)AQ and Fi_l)A(H_l, without knowledge of sz, which would require knowledge of the
system matrices.

It is however easy to find a good approximation of the state sequences, directly from the
data. If we use this approximation in (31)-(32), we obtain a second very elegant and simple

N4SID algorithm that calculates approximations of the system matrices.

6.1 The Approximate States

In this section, we derive an approximate expression for the states X; and )A(H_l. This
approximation can be calculated directly from input-output data.

The approximate state sequences are calculated by dropping the linear combinations of
Usjai—1 out of Z;, and the linear combinations of U qj2;—1 out of Z;1;. In this way, we
obtain Kalman filter states of a different Kalman filter, compared to the one that produces
)A(Z' (in a sense of different initial conditions). We call the resulting matrices Fi)NQ and

Fi—l)N(i—I—l :

X, = Zi— L (46)
lioiXipn = Zign — L2 Uipappia (47)
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From (33) and (34) we derive :

Xio= ([A = QISR )i + A — Qi H

. Uy;
Xt = (A = Qi T SR pmgirn) + Ay = Qi By | Qigr ) ( ‘ )

The matrices Fi)NQ and I';_4 )N(H_l can be obtained directly from the data without any knowl-
edge of the system matrices, and can be interpreted as oblique projections as described in
Appendix D.

The state sequence X; is generated by a bank of non-steady state Kalman filters, with :
P = P — SRSt 4 P oand X© = S(R™)1miloji—1- The state sequence )N(H_l on the
other hand, is generated by a bank of non-steady state Kalman filters, with : P° =
P1— SRS+ Psand X0 = SR )1}m(i+1)Uo)i- So clearly, both sequences do not belong
to the same bank of Kalman filters, and the useful formulas (31)-(32) are not valid for
these 2 sequences.

Still, we will see below, that X; and )N(H_l are very close to XZ and )A(H_l, and that XZ = )NQ,

A ~

Xiy1 = Xigq if at least one of the following conditions is satisfied :
® i — 00

e The deterministic input u; of the combined deterministic-stochastic system is white

noise
o The system is purely deterministic

For these three special cases, we will analyze the difference between X; (17) and X, (48),
defined as X :

dgf

§X; B X - X, =[A - QiLS(B™ ) miz1j2miUijzia (49)

6.1.1 — o0

def

Define the term between square brackets in (49) as P; = A’ — Q;I';. Now, it is easy to

prove (Appendix E) that :
i1
P = [[(A - K,C) (50)
k=0
Since the non-steady state Kalman filter converges to a stable closed loop system (Anderson

& Moore, 1979), we find that P; grows smaller when i grows larger. It is also clear that :
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lim;—.o P; = 0. In the limit, equation (49) thus becomes (with S(R™"),i1(2miUsj2i—1 finite) :

hm 0X; = hm piS(R_l)mi-l—leiUﬂZi—l =0

11— 00 11— 00

The same holds for 6 X;11. So, we can conclude that, for ¢+ — oo, there is no difference
between the state sequences X; and X;. Actually, when ¢ — oo, the non-steady state
Kalman filter bank converges to a steady state Kalman filter bank, i.e. the Kalman filters
converge (the Riccati difference equation (23) converges to an algebraic Riccati equation).

To obtain the effect of 1 — oo on a computer, in theory we would need a test like :

where €,,,0, 18 the machine precision. This is a condition that can only be checked, after

16Xi]lr PSR ) mirjamiUipzi-a || 7

< €mach

the identification is done. Appendix G indicates how this quantity can be calculated.
In practice, it turns out that : does not have to be that large. The identification results
are already very good for reasonably small ¢ (~ 10). This will become apparent in the

examples of section 9.

6.1.2 wu; white noise

With the deterministic input u; white noise, we find : S = 0 and R = Iy,,; with I,
the 2mi x 2mi identity matrix. So, for a white noise input, we find for any ¢ (see (49)) :
)A(Z' = )N(Z

6.1.3 Purely deterministic system

From Moonen et al. (1989), we know that generically for deterministic systems we have (if

there is no rank-cancellation’, see De Moor (1988)) :
Uoji- : Uijai- .
rank( 0 l)zmz—l—n and rank( 12 l)zmz—l—n (51)

which implies that

Uoj2i— .

rank Ofzi-1 ) _ 2mi +n

Yoji-1

This rank deficiency implies that for purely deterministic systems, the proof of Theorem

2 breaks down (B~! can not be calculated). The following Theorem is an alternative for

Theorem 2 for purely deterministic systems :
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Theorem 4 Purely deterministic systems

If the input is persistently exciting and the stochastic subsystem is zero we have :

DiX; = (DAY — ATHHY | T AT ) (h) =X =T3X;

oli—1

A proof can be found in Appendix F. This implies that for deterministic systems, 6.X; is

also equal to zero.

6.2 The Algorithm

We know from (31) and (32) that the least squares solution £ of :

min || -z 17
£ Yis U|2
o ( A B )
C D

We also know that from the residuals of this least squares problem, we can approximately

is equal to :

calculate the stochastic subsystem (exactly if i — oo0). Unfortunately, it is impossible
to calculate the states X; and Xz—l—l directly from the data, without any knowledge of the
system matrices. In the previous section, we have seen that for some special cases X; = X..

In the general case, we have X~ X, ifiis reasonably large. This is because (section 6.1.1)

i—1
6X; = [[(A = KyC)S(R™ ) mitrj2miUijoia

k=0

Consequently, for the least squares solution £ of :

. X X,
y 52
mgnH( v, ) (Uh)HF (52)
Z:(A B)
C D

Contrary to )AQ, X, can be calculated directly from the data, without any knowledge of

we have :

the system matrices. The solution is exact (/j = L) for the cases of section 6.1.1 (¢ — o),
section 6.1.2 (input is white noise) and section 6.1.3 (purely deterministic), since then
X, =X,. In Appendix G, an approximate expression for (£ — /j) is derived. This is the

bias on the solution.
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6.3 N4SID Algorithm 2

In this section, we summarize the second N4SID algorithm step by step, not yet paying

attention to the fine numerical details, which will be treated in section 7.

1. Determine the projections :

Upji-1
Zi = Yo/ | Uipica
Yoji-1
= (\ﬁ-/ — \ﬁ-/) Uij2i-1
lixmi | lixmi | lixti —
Yoji-1
Uy
Zigi = Yippic/ | Uisipio
Yoji
Uy
_ ( L, 12, L3, ) o
S—— N—— N—— +1]2i—1
(=) xm(i41) | 1(i=1)xm(i=1) | I(i=1)x1(i+1) —

Yoji

2. Determine the Singular Value Decomposition

(L} L?)(EU/O:FI):(% Uz)(zol g)vt
0le—1

The order is equal to the number of non-zero singular values.

I, =027 and Ty =05

3. Determine the states )N(Z and )N(H_l :

X, = 1

)N(H_l = F:'r_1 ( Lzl—l—l ‘ L?-I-l ) ( (;/;E )

4. Determine the least squares solution :

J n.om J J

n )N(i-l—l n /311 /312 n )N(z nfp1
- = - ] . N + _

! Yi|i ! /321 /322 m Ui|i [\ p2
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5. The system matrices are (approximately) determined as follows :

A B /311 /312
5.1 — g g
C D Lo La

59 Q° | S* .1 p1py | p1PY
(S°) | R? T\ papl | p2nh

where in the general case the approximation of the deterministic and stochastic sub-

system depends on ¢ (even when j — oo0) and converges as ¢, ] — oo.

7 A Numerically Stable and Efficient Implementa-
tion

In this section, we describe how N4SID algorithms 1 and 2 can be implemented in a
numerically stable and efficient way. We make extensive use of the QR decomposition and
SVD.

In section 5.4 and 6.3 we described step by step, two N4SID algorithms that determine
the system matrices from given input-output data. In this section, we will show how these
two algorithms can be implemented in a numerically stable and efficient way.

Steps 1 through 4 are common to both algorithms.

1. Construct the block Hankel matrix H ©

2. Calculate the R factor of the RQ factorization of ‘H

H = R e
~—~ ~—
2(m+1)ix2(m+1)e 2(m+l)ixj

with Q*Q = I and R lower triangular. It is important to note that in the final
calculations, only the R factor is needed, which lowers the computational complexity

significantly.

SThe scalar /7 is used to be conform with the definition of E.
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Partition this factorization in the following way :

j mi  m  m(i—1) I l(e=1) j
mi Ugjir mi R 0 0 0 0 0 Q!
m Uy m Ry Rss 0 0 0 0 Q}
m(i — 1) | Upqjpica | mi—1) | Ra1 Rap Ras 0 0 0 Q4
l Yoji-1 ol Ry Rao Ry3 Ry O 0 Q4
l Yy l Rs51 Rsz Rs3 Rsq4  Rss 0 Q%
l(i—1) \ Y I(i—=1) \Rer Re2 Re3 Reqs Res  Res Qs

where we use the shorthand notation R4g;.3 for the submatrix of R consisting of

block rows 4 to 6 and block columns 1 to 3.

3. Calculate the projections (see also the note at the end of this section).

Ui U0|2—1
Z; = Rse14 Rf:}m:z;( Ot ) = ( L\ L2 L ) Usj2i—a

’ Yoi-1 Yot
o Uy
— 0[2:—1 —
Ziy1 = Regis 31;31:5 ( 3|/0|, ) - ( Liy ‘ L ‘ L ) Uitipi-1
Z Yoji

4. Determine I'; and n through the SVD of X, :

1 0

0 Y ) (Qua V)

(10 13) Rl = ( U UQ)(

Note that this SVD can be calculated through the SVD of ( L} 0 L? )Ry.41.4, since
()1.4 18 an orthonormal matrix. The rank is determined from the dominant singular

values of this decomposition (¥1), and I'; can be chosen as :
Dy=0,3" , Tiy=1;

where the underbar means deleting the last [ rows (/ is the number of outputs). The

two algorithms described in section 5 and 6 now differ in step 5 and 6.
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N4SID Algorithm 1 :

5. We find for the left hand side and right hand side of equation (43), written as a

function of the original () matrix :

FIZZ' _ Zl_l/szRS:&lA "

Ui|2i—1 32:3,1:4 i
FI—IZi+1 _ ZII/Q(Q)TR&&I:S t

}/2|2 R5:5,1:5 1o

6. Now the least squares problem (45) can be rewritten as

min ( 574U Roaua ) . ( 72U R4 ) "

R5:5,1:4 R2:3,1:4

and solved in a least squares sense for K. Note that the () matrix has completely
disappeared from these final formulas. The first n columns of K are A and C stacked
on top of each other. The next columns determine B and D as described in section 5.

The residuals of this solution determine the stochastic system as described in section

3.

N4SID Algorithm 2 :

5. We have :
X\ (U (L 0 L3 ) Ruana
U2|2 R2:2,1:4 b
Xz’+1 . ZII/Q(Q)T( Lzl-l—l 0 L?+1 )R1:571:5 t
}/2|2 R5:5,1:5 b

6. Now the least squares problem (52) can be rewritten as

( EII/Z(Q)T( Li, 0 L}, )R1:5,1:4 )_[; ( EII/QU{ ( Li 0 L7 )RM’M ) Iz

min |
L R2:2,1:4

R5:5,1:4

Once again, the ) matrix has completely disappeared from these final formulas.

From £ and the residuals we can find the system matrices as described in section 6.

Note :
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e The projection of step 3 is written as a function of U and Y, and not as a function
of (), because we need to be able to drop the linear combinations (L?) of the rows of
Uij2i—1 in Z; to find the sequence I X; and the linear combination (L?_I_l) of the rows
of Uiy1)2i—1 in Ziyy to find the sequence Fi_l)N(H_l (see formulas (46)-(47)).

e The possible rank deficiency of the row space we are projecting on (in step 3) has to
be taken into account (see section 6.1.3). This occurs when Rj.41.4 and Rys1.5 are
rank deficient. It can be checked by inspection of the singular values of [y.41.4. If
one of them turns out to be zero (purely deterministic case), a basis II for the space
we are projecting on has to be selected. This basis should contain the row vectors of
Usjai—1 explicitly. This makes it easy to drop the linear combinations of Ujjg;—q (L?)
in Z; to obtain the sequence I X,

With the singular value decomposition :

Uoji-1 Ry " S, 0 1% .
= ? ] — U U .
( Yoji-1 ) ( Ri:1:4 ) Q14 ( v ) ( 0 0 % 14

we find as an appropriate basis :

Vt
Il = ! Q1.
( Ro31.4 ) i

The rest of the algorithm is very similar to the general case.

We should note that in the generic real life case, the problem of rank deficiency is a

pure academic one.

8 Connection with existing algorithms

8.1 Instrumental variable method

This method was described by De Moor et al. (1991), Verhaegen (1991). The basic idea
will be shortly repeated here. We start from the input-output equation (11) : Yy =
;X4 + HZdUi|2i—1 + Yij5_q- Projection of this equation on the row space perpendicular to

that of Usjp_1, gives :
K|2i—1/Ui|L2i—1 = FiXid/UiTQi—l + i|52i—1 (53)

Note that Y /UZ»|L22»_1 = Yjj_, since KT2¢—1/UZ'|22'—1 =0 as j — oo. Projection of (53)

7|2¢—1

on Uyji—y gives : [K|2¢—1/UZ»|L22»_1]/UO|Z»_1 = Fi[Xfl/UiTzi—l]/UOIi—l since Y;'|52i—1/U0|i—1 =0. It
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can be seen from this equation that the column space of [K|2i—1/UZ’|L2¢_1]/U0|i—1 is equal to
that of T'? (only the deterministic controllable modes are observed). So, from the column
space of 'Y, A and C can be derived. B and D are then found from the fact that :
(F?)L[Kpi_l/Uim_l]UZﬁ%_l = (T9)L H? which leads to a set of linear equations in B and D.
Finally, the stochastic subsystem is identified from the difference between the measured
output and a simulation of the identified deterministic subsystem with the given input wu.
This difference is almost equal to the output of the stochastic subsystem (y;). The stochas-
tic subsystem can then be identified with for instance one of the algorithms described by
Arun & Kung (1990), Van Overschee & De Moor (1991a,1991b).

A clear disadvantage of this algorithm is the fact that the deterministic and stochastic
subsystem are identified separately. This involves more calculations. Two different A

matrices will also be identified (one for the deterministic and one for the stochastic system),

even though a lot of the dynamics could be shared between the two subsystems.

8.2 Intersection Algorithms

In the literature, a couple of algorithms, which we call 'intersection algorithms’ have been
published by Moonen et al. (1989), Moonen et al. (1992). It is interesting to note the
analogy between these algorithms, and algorithm 2 described in section 6. We show that
the row space of X; can also be found as the intersection between the row spaces of two

Hankel matrices H; and Hy. Define Z = row space H; N row space Hy with :
Upj2i—1
Yoi- Yijoi-
H, = Ofi—1 and Hy = ai-1/ ( Yoji-1 )
Upji-1

Facts :

e The subspace 7 is n dimensional.

Proof : We have : rank H; = k1, with k&1 = (m + )¢ in the generic com-
bined deterministic-stochastic case. From equation (15), we find that : rank Hy =
mt + n. Finally, if the input is persistently exciting : rank ( H H )t = K1 + ma.
With Grassmann’s Theorem, we find : dim [Hy; N Hy] = rank H; + rank Hy —
rank( HYOH )t =(k1)+(mi+n)— (k1 +mi)=n

e The intersection subspace 7 is equal to the row space of X;. Proof :

— X, lies in the row space of Hy, since it is written as a linear combination of

Uoji—1 and Ygi_y (see Formula (48)).
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— X; lies also in the row space of Hy since we know from (46) that :
~ Up\gi—
X = F;rD/ﬂzi—l/ ( Y0|2 ! ) — L?Uﬂzi—l]

So, X; lies in the intersection of the row spaces of H; and H,. Since both the

intersection subspace 7 and the row space of X; are n dimensional, they must coincide.

This derivation indicates strong similarities between N4SID algorithm 2 and the existing
intersection algorithm mentioned above. When 5 — oo, both algorithms will calculate the
same solution (if the same state space basis is used). In practice however (finite j), they
calculate slightly different models. In the references given above, only purely deterministic
systems and the asymptotic case 1 — oo are treated. The interpretation of Kalman filter
states is totally absent, as is the effect of finite ¢.

The similarities indicate an alternative way to calculate the states )N(Z and )N(H_l as inter-

sections (see Moonen, 1992 for example).

8.3 Interpretation of general projection methods

Larimore (1990) shows that viewed from a statistical point of view, the state (memory)
M; is the solution to :

Upj2i—1 Usjgiza
Yij2iz = pYij2i-
p[ |2 1|( Y0|z’—1 )] p[ |2 1|( M. )]

where p[A|B] is the probability distribution of A given B.

For Gaussian processes, these distributions are characterized by the first two moments, and
we can replace p[A|B] by the expectation operation E[A|B]. This expectation operator
can in its turn be replaced by the projection operator (Papoulis, 1984). We then get :

Upj2i—1 Usjgiza
Yijgic1/ = Yijgi—1/ 54
[26—1 ( Yoot ) [26—1 ( M, ) (54)

By substitution it is easy to verify that all of the following 3 alternatives : M; = )AQ,
M; = X; and M; = )A(Z'/U“L%_l satisfy equation (54). Actually, every matrix M; satisfying
M; = Z; — QU;j3,—; and rank M; = n with {0 an arbitrary /s x m: matrix, will also satisfy
equation (54) and give rise to an n dimensional memory. This ambiguity is due to the fact

that the exact influence of the input variable U;3,_1 on the output is not known. In the
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frame work of linear theory, the most natural choice for M; is though the one for which :
Uoj2iz
Yipic1/ ( Y0|2 ! ) =I''M,; —I—HflUim—l

is satisfied (2 = H¢). This is because this choice corresponds to the linear state space

equations :
Miyn = AM;+ BUy;

Yii/ ( Uorai- ) = CM;+ DUy,

This leads to the choice M, = XZ

9 Examples

9.1 A simple example

This simple simulation example illustrates the concepts explained in this paper. We con-

sider the single input single output single state system in forward innovation form (Faure,

1976)

Trr1 = 0.9490x; 4 1.8805uy — 0.1502¢
yr = 0.8725z, — 2.0895uy, + 2.5894¢

With ey a unit energy (o = 1), zero mean, Gaussian distributed stochastic sequence.
Effect of ¢ :

We first investigate the effect of the number of block rows (¢) of the block Hankel matrices.
The input uy to the system is the same for all experiments and is equal to a filtered unit
energy (o = 1), zero mean, Gaussian distributed stochastic sequence added to a Gaussian
white noise sequence (o = 0.1). The filter is a second order Butterworth filter, with cut-off
frequency equal to 0.025 (sampling time 1). The number of data used for identification is
fixed at 1000. 100 different disturbance sequences e; were generated. For each of these
sequences and for each ¢ in the interval [2,15], two models were identified using N4STD
algorithm 1 (section 5) and 2 (section 6). Also for each of these models the bias was
calculated using the expression in appendix G. Then the mean of all these quantities over

the 100 different disturbance sequences was calculated (Monte Carlo experiment).
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Fig. 4 shows the results as a function of ¢ for both N4SID algorithms. The results for
algorithm 1 are represented with a dotted line (:) and circles (o). The results for algorithm
2 are represented with a dotted-dashed (-.) line and the stars (*). The exact values are
indicated with a dashed line.

Fig. a/ shows the eigenvalue of the system as a function of . Clearly the estimates are
accurate, and there is hardly any difference between the two algorithms. Fig. b/ shows the
deterministic zero of the system (A — BD™'(') as a function of 7. The difference between
the two N4SID algorithms is clearly visible. Algorithm 1 estimates a zero that is close to
the exact deterministic zero, independently of z. Algorithm 2 on the other hand is clearly
biased for small ¢. Fig. ¢/ shows this bias (dashed-dotted line) and the estimated bias
(dotted line) using the expressions of appendix G as a function of ¢. As expected, the bias
grows smaller as 7 grows larger. Fig. d/ shows the calculated and estimated bias on the
identified D matrix. This matrix seems to be a lot more sensitive to ¢ than A.

Finally Fig. e/ shows the estimated stochastic zero as a function of 7 (the eigenvalues of
A — KC, with K the steady state Kalman gain). The convergence is very slow (the exact
zero is 0.9996). More details can be found in Van Overschee & De Moor (1991a,1991b).
For this example, we can conclude that both algorithms do a good job of estimating A and
C. B and D are estimated accurately with N4SID algorithm 1, but not with algorithm 2
(for small ¢). The bias can be calculated though. The accuracy of the stochastic subsystem
is strongly dependent on ¢ for both algorithms.

Effect of j :

Throughout the paper, we assumed that j — co. The effect of finite 5 is shown in Fig. 4
f/. This Figure shows the standard deviation (stars) of the estimate of A as a function of
J (1 =5). For each j, 100 Monte Carlo experiments were done. The standard deviation is
proportional to 1/4/7 (dashed line). So, the accuracy of the results depend on j as 1/+/7.

9.2 A glass oven

The glass oven has 3 inputs (2 burners and 1 ventilator) and 6 outputs (temperature). The
data have been pre-processed : detrending, peak shaving, delay estimates, normalization
(Backx, 1987).

Using 700 data points, five different models are identified (the 300 following points are

used as validation data) :
1. A state space model with N4SID algorithm 1 of section 5

2. A state space model with N4SID algorithm 2 of section 6
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3. A state space model with the algorithm of section 8.1
4. An ARX model (Ljung, 1991) followed by a balanced truncation
5. A prediction error model (Ljung, 1991)

The results are summarized in Table 1

The first row indicates the chosen order. Fig. 5 shows the singular values that led to the
system order 5 for N4SID algorithm 1 and 2. The gap in the singular values is clearly
visible. For the ARX model, the parameters 'na/nb’ indicate that ma’ was a 6 x 6 matrix
with as entries 4, and mb” a 6 x 3 matrix with as entries 4 (see also Ljung, 1991). In
this way, the resulting state space model was of order 33. It was reduced to a fourth
order model using balanced truncation of the deterministic subsystem. This is basically
the same philosophy as for the N4SID algorithms, but the last ones do not calculate
the intermediate model explicitly. For the prediction error model, we used the identified
model of algorithm 1 in the controllability canonical form (controllability indices : 2,2, 1.
Number of parameters : 93) as an initial value (the initial values obtained from ’canform’
or ‘canstart’ of Ljung (1991) did not converge). We restricted the number of iterations to
3 (no improvement with more iterations).

The third row shows the number of floating point operations. Algorithm 2 needs about 5%
less computation (simpler algorithm). The calculation of the ARX model takes 3 times as
much computation. The calculation of the prediction error model (only 3 iterations) takes
about 25 times as much computation ! It should be mentioned that none of the algorithms
was optimized in the number of operations (nor ours, nor the ones in the Matlab toolbox),
but these figures still give an idea of the order of magnitude of the number of computations.
The fourth row is the error (in percent) between the measured validation output and the
simulated output using only the deterministic subsystem. The fifth row shows the error
between measured and Kalman filter one step ahead prediction.

With [y}]; the 0 validation output channel and [y;]; the it simulated output channel,
the error is defined as (N, = 300) :

e = 100 [l 26: \l 52”1([9}5] — [yZ]Z)z ] %

6= e ([y7]:)?

The best deterministic prediction is obtained with the ARX model, which is logical since

it came about by balanced truncation of the deterministic subsystem. The other models

perform a little worse (but all four about the same).
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The Kalman filter error is the smallest though for the first two N4SID algorithms. The
projection retains the deterministic and stochastic information in the past useful to predict
the future. This implies that the resulting models will perform best when used with a
Kalman filter. The prediction error model does not improve this Kalman filter prediction
error at all. There is even a slight decline which is probably due to numerical errors since
during the iteration procedure a warning for a badly conditioned matrix was given. This
means that, even though there is no optimization involved, the results obtained with the
N4SID algorithms, for this industrial MIMO process are close to optimal.

For this example, the N4SID algorithms thus calculate a state space model without any
a-priori fixed parametrization, and this in a fast and numerically reliable way.

Finally, we should mention that, as we found out in discussion with Lennart Ljung, the pre-
diction error method can be made to work better with some extra manipulations. The main
problem with the prediction error method is that the outputs are pairwise collinear. This
results in a very hard, ill-conditioned optimization problem, for every possible parametriza-
tion. This problem can be solved as follows : first estimate an initial model. Now, in the
optimization step, only the parameters of the C' and D matrix corresponding to three out-
puts can vary (output 1, 4, and 6 for this example). The optimization is better conditioned
now and the resulting model has a similar performance as the subspace models for this
example. The number of floating point operations stays extremely high though and this

method is rather complicated and requires quite some insight from the identifiers.

10 Conclusions

In this paper two new N4SID algorithms to identify combined deterministic-stochastic
linear systems have been derived. The first one calculates unbiased results, the second one
is a simpler biased approximation. The connection between these N4SID algorithms and
the classical Kalman filter estimation theory has been indicated. This allows interpretations

and proofs of correctness of the algorithms.

In future work, we will discuss other connections with linear system theory : model reduc-
tion properties, frequency interpretations and connections with robust control.

The open problems that remain to be solved are the connection with maximum likelihood
algorithms (Ljung, 1987) and the problem of finding good asymptotic statistical error

estimates.
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A Proof of the projection theorem

Proof of formula (33) :

Note : Due to the complexity of the formulas, we use the subscripts p (past) and f
(future) throughout this appendix as follows : For U, Y and Y, these subscripts denote
respectively the subscript 0z — 1 and |2 — 1. For X¢ and X* they denote the subscript 0

and 7. We also make use of (9) - (12) without explicitly mentioning it.
Define

def . 1 t t t _
A% g Ly, (0303 3 ) = (A ] )
We have :
1
A = lim =Y, U!
1 ],Ego] fYp
= lim %(FiAng +TAN, + HIU; + YU,
7—00

= T;A'S; + ;AR + HERYL,

1
Ay = lim =Y;U;

1
J—00 ]

= T;A"Sy + TiAYRig + HI Ry

(TiA' XS+ TuAJU, + HU; + Y})U;

1
Az = lim -Y;Y)
3 ]ggo j I
1 .

= Jim E(FZ»AZX;I + DA, + HIU; + YOO (XD'TE 4+ UNHD + (V)

= T;APIT 4 T AS (HD + TALSIT + T ARy (HS + HESITE + HERL(HE) + HY
= T;APIT 4 T AR (HS 4 T A (HD + T AYSITE - HERL (A + HESIT + T A2

Thus, we find :
0 - (.m Ay Ag)
= NN N
lixmi lixmi | lixli

;A PITE 4 T A2 4+ T ARy (HEY 4+ T AUS (HE )

_ | DA 4 DAY Ru Riz)

+HI( Riy Ry )

](55)

The second part we need to express in terms of the system matrices is :

Uy
B B!
B i L 0y | (00 vy |y ) = (2L
7o\ — B2 | Bag

Y,
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with :

1

J—00 ]

1
= lim ~(I'X] + H'U, + Y,;))[ U, U} |

J—ro0 ]

= I'S+ sz[ Ry Rz ]

1
822 = hm —,}/p}/pt

J—ro0 ]

1
= lim = (I3X o HAU, + V) (X T+ UL + (7))

J—00 ]

= [P 4 T3Sy (HY 4+ HESITE + HE Ry (HE) + L

and By, = R.

Note that B is guaranteed to be of full rank ((2m + [)i) due to the persistently exciting
input and the non-zero stochastic subsystem. To compute B!, we use the formula for the
inverse of a block matrix (Kailath, 1980) :

-1
(Bn 651) _ (Bf11+5f11551¢‘15215f11\—Bﬁll’?’%ﬁb‘l) (56)

By | By — By B! ‘ U

with ¢ = Byy — By By B,

So, in our case, this becomes :

B O L e L D R G KL R o
ST TS | 7

Y = DPT 4 L+ T SU(HS + HESIT + HER G (HE — (1,8 + HE Riy Raa YRS + [

= [y(PY=SRTISHI! 4 Lg

From formulas (13) and (33) and the definitions of A and B, we find (with j — co):

( Ly L} L} ) - %Yim—l ( Ué|2¢—1 Yotlz'—l )[% ( [Qﬁ:l ) ( US|22’-1 YOtIi—l )]_1
= AB™!
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Using (55) and (57), we thus find :

(L} 12 ) = DA'SR+0AY( T o )+H (0 1)
H[0AS (HY + T3 A'SR™ISTE + Ty ASRy (HE) 4+ T ASSITE
FHERL (HY 4+ HESIT! — DA PAT — Ty AS — T ARy, (HY)!
—TiAS (H = TiALSITE - HER(HY)' = HESIT g7 (HE (1 0 ) +TWSR™)

7

(Tiad HE )+ DA'SR™ 4 Ti(AY(SRTIS" = POT! — Ay (HE (T 0 ) +TiSR™Y)

( DiAS — Ty tHE  HYE ) + I APSR™ — Dixp T 'IiSR™Y

( LAY —QiHY HE ) +1,[4' - QTi]SR™!

which is exactly the same as the first part of (33).
Once again, using (55) and (57), we find for L? :
L} = [T AS (HY — TAYR (HY — HIRL,(HE) — T, A'SR™ ST
—DAL (1 0)STE=HE (0 1) ST+ AP 4 A
AT Ry (HY) + TR ATS (H]) + TiALSIT + HE R (HY) + HESST w7
= Ti(A(P" = SRTSOIT + Ay
= Tixity !
= 1@

which is exactly the same as the second part of (33).

The proof of formula (34) is completely analogous.

B Notes on the special form of the Kalman filter

In this Appendix, we give two different forms of the recursive Kalman filter. The first one
is the classical form that can be found in for instance Astrom & Wittenmark, 1984. This
form is transformed into the form of (21)-(23), which is more useful for this paper.
Consider the system (1)-(2) :

Ty = Awxp+ Bug + wy
yr = Czp+ Duy + v

where, for the time being, we assume that A, B,C, D as well as

Wy L B Q* S*
E[( v ) ( wy vy )] = ( (S%)t R® ) g
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are known.
Given &g, Py and ug, ..., Us_1, Yo, - - -, ys_1, the non-steady state Kalman filter state esti-
mate &y is then given by the following set of recursive formulas (Astrom & Wittenmark,
1984) :

T = AZp_1 + Bug_y + Ky_1(yp—1 — C&pmy — Dug—yq) (58)

with :

K1 = (AP C' 4 5°)(C Py O+ R*)? (59)
Py = AP A 4+ Q° — (AP, C + S*)(C Py C 4 R*)TH AP, Ct + S°) (60)

and ]5k the error covariance matrix :
For our purpose, a different form of these general Kalman filter equations is more useful.

With P* G, Ay the solution of the set of positive real equations :

PP = APA +Q° = P
G=APC'+5 = @
Ao=CPC'+R = A

and the transformation :

P.=P+ P
we get (from (59)) :

Kier = ((APC'+ 8%) 4 AP CH((CP*C' + R*) + C P, CY) ™!
= (AP C' + G) (Ao + C Py O

For the Riccati equation (from (60)) we have :

PP+ Py = APPA' 4 AP, (A4 (P° — AP*AY)
—((AP*C'+ 5%) + AP, 1 CH((CPC' + R*) + C P CHTH(APSC 4 S%) + AP CY),
P, = APk_lAt — (APk_lCt + G)(Ao + CPk_lCt)_l(APk_lCt + G)t

This means that the Kalman filter (21)-(23) calculates the same state estimate &) as the
original Kalman filter (58)-(60) with Py= P+ P,.
C Proof of the Kalman filter linear combinations

In this Appendix we prove Theorem 3.
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First we show that :
Pk = AkPO(At)k — quvbk_lxll; (61)

We prove (61) by induction :

Proof 1 :

k=1:

From the Kalman filter formula (23) , we find :

P = ARA" — (APyC' 4 GY(CPyCt + Ao) " (APC! + G

which is exactly the same as (61) for k& = 1.
k=1 = k=i4+1
We have to prove that

Py = AT P (AY T — B (62)

given that :
P = APy (AY) = xib 7'

Hereto, we write Xi+1¢¢_.|_11X§+1 as a function of y; and ;.

Vi ‘ i -
CXZ AO + CAZP()(At)ZCt

Xi+1¢i_-|—11X§+1 = ( Axi | G+ Ai—l_lPo(At)iCt ) (

uA 63
(G—I—Ai-l_lPo(At)iCt)t ( )

To calculate the inverse of the middle block matrix in (63), we use formula (56). (To avoid

confusion we use ¢ in stead of ).

Yy = Ao+ C(AR(AY) — xab7 )"
= AO -I— CPZCt

Finally, if we put ¢ = AT Py (AN C? 4 G, we find for (63) :

. v T INECT O | e Oty (XA
Xi+1¢¢+11X§+1 = (AX’i ¢ )( ; ‘ :

—y Cxr! ! &'
= AT AT Axor IO T O A
— AT I Oy ot — e O T I EAT + gy gt
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So, from (62) :

Pigr = AT PR (AYT — X
— AR w;lxﬂ A~ (AT IO — )y (Cxa A — )
= APA" = [A(wTXE = ATP(AD)CT = Gy A T = ATPy(AN) et = G

= APA'— (APC'+ G)(AO +CPCY)” (APZ»Cf +G)

Which is the equation of the Kalman filter (23). This implies that Pyq as written in (62)
will be the state covariance at time instant z + 1.

End of Proof 1

The rest of the proof is also a proof by induction.
We prove (24) :

Proof 2 :

k=1

e The Kalman filter gain Ky is given by (22) :
Ko = (AP,C' 4+ G) (Ao + C P, CY)7!

and the state by (21) :

A~

1 = Ai’o + BUO + [(O(yO — Ci’o — DUO)
== (A — [(OC)JA?O + (B — [X’OD)UO + [(OyO

e The linear combinations (24) are for k =1 :
(A=’ C | B—xwr'D | vt )
But we also know that for & =1 (27) and (26) :
X1¢;1 = (AP()Ct + G)(CPOCt + Ao)_l

So, these linear combinations give us the Kalman filter state estimate, for a Kalman

filter with initial state covariance matrix F,, and initial state estimate .

k=1 = k=174+1
We know that (24) is valid for k =1 :

Ug Yo
b= (A= QT)do+ (AL —Q:HY | ... | +Q

Ui—1 Yi-1
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with Q; = ;!
So, from this we ﬁnd the state estimate at time ¢ 4+ 1 through the Kalman filter equation

(21)

20

Uo

Uy—1
K; ) u; (64)
Yo

Fip1 = ( (A= K,O) (A" = Qily)

(A - K:C)(A¢ - QiHY) | (B-KiD) | (A - KiC)Q;

Yi—1
Yi

Now we have to prove that the linear combinations in (64) are the same as those of (24)
for k=14 1.
Proof 3 :

Hereto, we have to prove that :

Q= (A-KC)Q: K, ) (65)
From the same formulas as in Proof 1, we find :
Xitr¥gt = (AT + AT O T Oxa Tt — Ut Oxap Tt | — AT IXEC T + gust )
(AQi — (6 — AQixICH Y CQi | (6 — AQixiCHys ! )
= ( AQi - (ARC! + G)(A0 +COPCH™I0Q; | (APCY 4+ G)(Ag + CPCH)™1 )
( k)

(A - K;C)Qi

End of Proof 3

O
If we now look at (24) for k =1+ 1, we get :
(A™ — (A - K:C)QiTi — K;CAT| AA! — (A — K.C)Q:Hf — K;CAY
B~ KD |(A-KC)Qi | K )
= (A= KO) A = Q) | (A= K,C) (A} = QHY) | B~ KD | (A~ K,0)Q: | K: )

These last linear combinations are exactly the same as (64). This concludes the proof of
the Kalman filter states.
End of Proof 2

D Oblique Projections

In this section, we introduce oblique projections. It is shown that I.X; and Fi_l)N(H_l can

be interpreted as oblique projections. A geometrical interpretation will also be provided.
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D.1 Oblique projections

Definition 1 Oblique Projection
Given two subspaces B,C of a j-dimensional ambient space and two matrices B € R1*, (' €

R™*7 the rows of which generale a basis for these spaces , then the oblique projection along

C on B denoted with Pge is uniquely defined by (Baksalary & Kala, 1979) :

BPsec = B
CPB|C =0

The following Theorem is easy to derive from this definition :

Theorem 5 Oblique Projection
Given two matrices B € R with row space B and C € R™™ with row space C , then the

oblique projection along C onto B can be written as :

-1
BB' B(C!
et (2025

with ();I; the first ¢ columns of (.)7".

Proof :

e~ (2 00

-1
= ( BB BCt)(BBt Bct) B
g

BB' BC(! )_1
lq

OBt CC!
= (]q 0)1|qB
= B
-1
BB B(C!
e et (225
g

-1
— (CBf C(ﬂ) BB B B
cpocct )

= (01, )1|qB
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Theorem 6
With A € RP*I and

-1
BB B(C!
a(m o) () ()

we have :

B
APB|C:MB:A/(C)—NC

The Theorem is easy to prove starting from Theorem 5.
As a last fact on oblique projections, we find from Baksalary & Kala (1979) that the oblique

projection on B along C, can also be written as a A orthogonal projection on B :
Psa = AB(BAB)'B

with
A — ,PcJ_

and Py1 denoting the orthogonal projection operator on the row space orthogonal to C.

D.2 Interpretation of the states
From Theorem 6 and the definition of X; and )N(H_l (46)-(47), it can clearly be seen that
Fi)NQ and Fi_l)N(H_l are oblique projections :

X = Y¢|2z’—173(

U, .
0li—1 )|U
i|2i—1
Yoli—1 l

Upji-1
0]i—1

FiiXipn = YipiaPy g,
( Yols )|Ui+1|2i—1

Uy
(|25 ) ( i )

Ilig. 3 shows how the oblique projection of the row space of Y;2,_1 on the row spaces of

I
—~
S

( Ué“_l Y0t|z'—1 )t along the row space of Ujj2i—1 can be interpreted as the following sequence

of operations :

e an orthogonal projection to determine Z;
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e followed by a decomposition of Z; into directions along the row spaces of ( Ué“_l Yot|z'—1

and Usjpi—1. This gives respectively Fi)NQ and L?Uim—l-

The decomposition of Z; into sz(i and HZdUi|2i—1 is also indicated.
This is just a nice geometrical interpretation of the kalman filter states, and has no further

consequences for the derivation of the identification algorithm.

E Additional Proof

In this Appendix, we prove that :

Proof :
We have (with (65)) :
P o= A - Qi
= A — (A= Ki.1CO)Qi_1Tiq — K,y CA™?
= A" = AQialiy + KiaCQialiy — Ky CA™!
= AAT' = Qi Tiy) — K, C(AT = QT )
= (A—K;1C) (A" —Qi1Ti_y)
= (A—K,_,C)P,_,

From this, we find easily :

F Purely Deterministic Systems

In this appendiz, we prove that for purely deterministic systems, the algorithms still work.

From the deterministic input-output equations (10)-(12) (Moonen et al. , 1989) we find :

Yipica = i[AY — ATTHAUg iy + H Uiy + T ATV
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So, from this and (51) and the fact that the input is persistently exciting, we find :

with :

Ty = DAY — ATIHY + T
T, = H?

K3

Ts = AT+ T8

and the homogeneous solution satisfying :

Uoji—1
( Tlh ‘ 0 ‘ T?fb ) Ui|2i—1 =0
Yoji-1
So, we find that :
R - U0|2i—1
Zi = Yz|22—1/( Yo )
Upji-1
= (0| n|n) | Upia
Yoji-1
Yojior
= (rad— At | HE | TaAT!) | Yoo,
Yij2iza

= Yipia
This implies that :

X, = Z— LU
= Yipio1 — HUijai
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(G Calculation of the bias

For the calculation of the bias £—L the error on the states )N(Z and )N(H_l has to be calculated.
From (49)-(50), we have :

i1
§X; = [[(A = KiO)S(R™ ) mig1j2miUsjaica

k=0

This quantity can only be calculated after the system is identified. In the following it is
thus assumed that the system matrices A, B, C, D, Q*, S*, R® are known. (R and () are the

submatrices of the RQ decomposition as defined in section 7).

e SR™! can be calculated as :

SR = XgUém—l(U0|2i—1Ué|2i—1)_1
= F:'r [Yocfzq - HidUOh'—l]US|22’—1(U0|2i—1Ué|2i—1)_1
= F:'r [YOIi—lUSDi—l - HZdUOIi—lUém—l](U0|2i—1Ué|2i—1)_1
= THRyans — Hf Rians) Bib o

e For the calculation of the Kalman filter gains K}, we also need the initial covariance

estimate :

Py=P'+ P~ SR'S!
— We have approximately :

1 ~ =
lim = X; X! ~ P? 4 p*

And from the description of the algorithm (see section 7) we have :

X X!
— =3
J
Thus we have :
Pl Py,

— SRS can be easily found as :

SRTISY = SR (Rispalss) (SR
= T1[Ryans— HI Ryl [Ris1:s — 33:1,1:3(1{2'51)25]@1)15
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algorithm 1 2 3 4 5
order 5 5 3/3 4/4 5
? 5 5 5 - -
flops 14355148 | 13590364 | 24056676 | 41744504 | 330529255
pred. determ. 47.41 47.95 48.56 45.72 47.34
pred. Kalman 10.76 10.76 14.17 28.98 10.87

Table 1: Comparison of 5 identification algorithms.

Care should be taken when subtracting both quantities to obtain Py. It is possible
that due to the approximations, Py becomes negative definite. If this is the case, it

should be put equal to zero.
e Now the Kalman gains K}, can be calculated using formulas (22)-(23).

The errors §X; and (55(24_1 can be easily calculated as :

i—1
0X; ~ H(A—KkC)S(R_l)m¢+1|2mz’32:3,1:3@1:3
k=0
§Xip1 =~ JI(A— K C)S(R™ )iy j2mi Ra315Q1:3
k=0

The least squares solution of :

) Xip1 +6Xip o Xi+6X; 9
min || — L |7
L Yii '
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Input-Output

data uy, yx
Classical
N4SID Identification
Kalman states System matrices
Least Kalman
Squares filter
System matrices Kalman states

Figure 1: The left hand side shows the N4SID approach : first the (Kalman) states, then
the system matrices. The right hand side is the classical approach : first the system, and

then an estimate of the states.

PO =pl— SRS 4 po X0 [ SR 'Upjai1 ]
Ug Up Uj_1
Usji-1 Ui—1 Uigp—1 Uiy
Yoi-1 Yo Yp Yi—1
Yi-1 Yitp-1 Yitj—2
L A\ 4 4 7 )
Xi [ T e Tipp e 2 J

Figure 2: Interpretation of the sequence X, as a sequence of non-steady state Kalman filter

state estimates based upon ¢ measurements of u; and y;.
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I X;

>
-

Figure 3: Interpretation of I';X; as an oblique projection.
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Figure 4: a/ Eigenvalue of A as a function of ¢ (N4SID algorithm 1 (*) and 2 (0)). b/
Deterministic zero as a function of ¢ (N4SID algorithm 1 (*) and 2 (0)). ¢/ Calculated
(*) and estimated (o) bias on the deterministic zero as a function of ¢ (N4SID algorithm
2). d/ Calculated (*) and estimated (o) bias on D as a function of ¢ (N4SID algorithm
2). e/ Stochastic zero as a function of ¢ (N4SID algorithm 1 (*) and 2 (0)). f/ Standard
deviation of A as a function of j (N4SID algorithm 1).
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Singular Values
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Figure 5: Order decision based on the dominant singular values.
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