
Weighted Sums of Random Kitchen Sinks: Replacing
minimization with randomization in learning

Ali Rahimi Benjamin Recht
Intel Research Berkeley Caltech IST

Berkeley, CA Pasadena, CA

Abstract

Randomized neural networks are immortalized in this well-known AI Koan:

In the days when Sussman was a novice, Minsky once came to him as he sat
hacking at the PDP-6.

“What are you doing?” asked Minsky. “I am training a randomly wired
neural net to play tic-tac-toe,” Sussman replied. “Why is the net wired ran-
domly?” asked Minsky. Sussman replied, “I do not want it to have any precon-
ceptions of how to play.”

Minsky then shut his eyes. “Why do you close your eyes?” Sussman asked
his teacher. “So that the room will be empty,” replied Minsky. At that moment,
Sussman was enlightened.

We analyze shallow random networks with the help of concentration of measure
inequalities. Specifically, we consider architectures that compute a weighted sum
of their inputs after passing them through a bank of arbitrary randomized nonlin-
earities. We identify conditions under which these networks exhibit good classi-
fication performance, and bound their test error in terms of the size of the dataset
and the number of random nonlinearities.

1 Introduction

In the earliest days of artificial intelligence, the bottom-most layer of neural networks consisted
of randomly connected “associator units” that computed random binary functions of their inputs
[1]. These randomized shallow networks have largely been superceded by optimally, or nearly
optimally, tuned shallow architectures such as weighted sums of positive definite kernels (as in
Support Vector Machines), or weigted sums of weak classifiers (as in Adaboost). But recently,
architectures that randomly transform their inputs have been resurfacing in the machine learning
community [2, 3, 4, 5], largely motivated by the fact that randomization is computationally cheaper
than optimization. With the help of concentration of measure inequalities on function spaces, we
show that training a shallow architecture by randomly choosing the nonlinearities in the first layer
results in a classifier that is not much worse than one constructed by optimally tuning the non-
linearities. The main technical contributions of the paper are an approximation error bound (Lemma
1), and a synthesis of known techniques from learning theory to analyze random shallow networks.

Consider the problem of fitting a function f : X → R to a training data set of m input-output pairs
{xi, yi}i=1...m, drawn iid from some unknown distribution P (x, y), with xi ∈ X and yi ∈ ±1. The
fitting problem consists of finding an f that minimizes the empirical risk

Remp[f] ≡ 1
m

m∑
i=1

c(f(xi), yi). (1)

The loss c(y, y′) penalizes the deviation between the prediction f(x) and the label y. Popular choices
for c are the hinge loss, max(0, 1 − yy′), used in the Support Vector Machine [6], the exponential

1

loss, e−yy
′
, used in Adaboost [7, 8], and the quadratic loss, (y − y′)2, used in matching pursuit [9]

and regularized least squares classification [10].

Similarly to kernel machines and Adaboost, we will consider functions of the form f(x) =∑∞
i=1 α(wi)φ(x;wi) or f(x) =

∫
α(w)φ(x;w) dw, where feature functions φ : X × Ω → R,

parameterized by some vector w ∈ Ω, are weighted by a function α : Ω → R. In kernel machines,
the feature functions φ are the eigenfunctions of a positive definite kernel k, and in Adaboost they
are typically decision trees or stumps. Adaboost [8, 7] and matching pursuit [11, 9] find approximate
empirical risk minimizer over this class of functions by greedily minimizing over a finite number of
scalar weights α and parameter vectors w jointly:

minimize
w1, . . . , wK ∈ Ω

α ∈ A

Remp

[
K∑
k=1

φ(x;wk)αk

]
. (2)

But it is also possible to randomize over w then minimize over α. Rather than jointly optimizing
over α and w, the following algorithm first draws the parameters of the nonlinearities randomly
from a pre-specificied distribution p. Then with w fixed, it fits the weights α optimally via a simple
convex optimization:

Algorithm 1 The Weighted Sum of Random Kitchen Sinks fitting procedure.
Input: A dataset {xi, yi}i=1...m of m points, a bounded feature function |φ(x;w)| ≤ 1, an integer
K, a scalar C, and a probability distribution p(w) on the parameters of φ.

Output: A function f̂(x) =
∑K
k=1 φ(x;wk)αk.

Draw w1, . . . , wK iid from p.
Featurize the input: zi ← [φ(xi;w1), . . . , φ(xi;wK)]>.
With w fixed, solve the empirical risk minimization problem

minimize
α∈RK

1
m

m∑
i=1

c
(
α>zi, yi

)
(3)

s.t. ‖α‖∞ ≤ C/K. (4)

In practice, we replace the constraint with a quadratic regularizer (see Section 4). Then when c is
the quadratic loss, the minimization (3) is simple linear least squares. When c is the hinge loss, it
amounts of fitting a linear SVM to a dataset of mK-dimensional feature vectors.

Algorithm 1 is appealing for several reasons. First, it can be implemented in a few lines of MATLAB
code even for complex feature functions φ, whereas fitting nonlinearities with Adaboost requires
much more care. This allows experimenting with feature functions that do not admit simple fitting
procedures. Second, the algorithm is fast: it is between one and four orders of magnitude faster than
Adaboost and obtains similar or better test error. One might expect to tune the sampling distribution
p for each dataset, but in practice, the same sampling distribution can be used for all datasets if the
coordinates of the data are first zero-meaned and rescaled to unit variance. A downside for applica-
tions where testing time is crucial, Algorithm 1 requires roughly ten times as many nonlinearities as
Adaboost to achieve the same test error, even though its training is still orders of magnitude faster.

Formally, we show that Algorithm 1 returns a function that has low true risk. The true risk, R[f], of
a function f is its expected loss on as-yet-unseen test points generated from the training distribution:

R[f] ≡ E
(x,y)∼P

c(f(x), y), (5)

The following theorem states that with very high probability, Algorithm 1 returns a function whose
true risk is near the lowest true risk attainable by an infinite-dimensional class of functions Fp
defined below:
Theorem 1 (Main result). Let p be a distribution on Ω, and let φ satisfy supx,w |φ(x;w)| ≤ 1.
Define the set

Fp ≡
{
f(x) =

∫
Ω

α(w)φ(x;w) dw
∣∣∣∣ |α(w)| ≤ Cp(w)

}
. (6)

2

Suppose c(y, y′) = c(yy′), with c(yy′) L-Lipschitz. Then for any δ > 0, if the training data
{xi, yi}i=1...m are drawn iid from some distribution P , Algorithm 1 returns a function f̂ that satis-
fies

R[f̂]− min
f∈Fp

R[f] ≤ O
((

1√
m

+
1√
K

)
LC
√

log 1
δ

)
(7)

with probability at least 1 − 2δ over the training dataset and the choice of the parameters
w1, . . . , wK .

The set Fp is quite rich. It consists of functions whose weights α(w) decays more rapidly than the
given sampling distribution p. For example, when φ(x;w) are sinusoids with frequency w, Fp is the
set of all functions whose Fourier transforms decay faster than C p(w). The proof of the theorem
provides explicit values for the constants in the big O notation.

2 Proof of the Main Theorem

Algorithm 1 returns a function that lies in the random set

F̂w ≡

{
f(x) =

K∑
k=1

αkφ(x;wk)
∣∣∣∣ |αk| ≤ C

K

}
. (8)

The bound in the main theorem can be decomposed in a standard way into two bounds:

1. An approximation error bound that shows that the lowest true risk attainable by a function
in F̂w is not much larger than the lowest true risk attainable in Fp (Lemma 2).

2. An estimation error bound that shows that the true risk of every function in F̂w is close to
its empirical risk (Lemma 3).

The following Lemma is helpful in bounding the approximation error:
Lemma 1. Let µ be a measure on X , and f∗ a function in Fp. If w1, . . . , wK are drawn iid from p,
then for any δ > 0, with probability at least 1− δ over w1, . . . , wK , there exists a function f̂ ∈ F̂w
so that √∫

X

(
f̂(x)− f∗(x)

)2

dµ(x) ≤ C√
K

(
1 +

√
2 log 1

δ

)
. (9)

The proof relies on Lemma 4 of the Appendix, which states that the average of bounded vectors in
a Hilbert space concentrates towards its expectation in the Hilbert norm exponentially fast.

Proof. Since f∗ ∈ Fp, we can write f∗(x) =
∫

Ω
α(w)φ(x;w) dw. Construct the functions fk =

βkφ(·;wk), k = 1 . . .K, with βk ≡ α(ωk)
p(ωk) , so that E fk = f∗. Let f̂(x) =

∑K
k=1

βk

K φ(x;ωk) be the

sample average of these functions. Then f̂ ∈ F̂w because |βk/K| ≤ C/K. Also, under the inner
product 〈f, g〉 =

∫
f(x)g(x) dµ(x), ‖βkφ(·;wk)‖ ≤ C. The claim follows by applying Lemma 4

to f1, . . . , fK under this inner product.

Lemma 2 (Bound on the approximation error). Suppose c(y, y′) is L-Lipschitz in its first argument.
Let f∗ be a fixed function in Fp. If w1, . . . , wK are drawn iid from p, then for any δ > 0, with
probability at least 1− δ over w1, . . . , wK , there exists a function f̂ ∈ F̂w that satisfies

R[f̂] ≤ R[f∗] +
LC√
K

(
1 +

√
2 log 1

δ

)
. (10)

Proof. For any two functions f and g, the Lipschitz condition on c followed by the concavity of
square root gives

R[f]−R[g] = E c(f(x), y)− c(g(x), y) ≤ E |c(f(x), y)− c(g(x), y)| (11)

≤ L E |f(x)− g(x)| ≤ L
√

E(f(x)− g(x))2. (12)

The lemma then follows from Lemma 1.

3

A standard result from statistical learning theory states that for a given choice of w1, . . . , wK the
empirical risk of every function in F̂w is close to its true risk.

Lemma 3 (Bound on the estimation error). Suppose c(y, y′) = c(yy′), with c(yy′) L-Lipschitz. Let
w1, · · · , wK be fixed. If {xi, yi}i=1...m are drawn iid from a fixed distribution, for any δ > 0, with
probability at least 1− δ over the dataset, we have

∀f∈F̂w
|R[f]−Remp[f]| ≤ 1√

m

(
4LC + 2|c(0)|+ LC

√
1
2 log 1

δ

)
. (13)

Proof sketch. By Hölder, the functions in F̂w are bounded above byC. The Rademacher complexity
of F̂w can be shown to be bounded above by C/

√
m (see the Appendix). The theorem follows by

results from [12] which are summarized in Theorem 2 of the Appendix.

Proof of Theorem 1. Let f∗ be a minimizer of R over Fp, f̂ a minimizer of Remp over F̂w (the
output of the algorithm), and f̂∗ a minimizer of R over F̂w. Then

R[f̂]−R[f∗] = R[f̂]−R[f̂∗] + R[f̂∗]−R[f∗] (14)

≤ |R[f̂]−R[f̂∗]|+ R[f̂∗]−R[f∗]. (15)

The first term in the right side is an estimation error: By Lemma 3, with probability at least
1 − δ, |R[f̂∗] − Remp[f̂∗]| ≤ εest and simultaneously, |R[f̂] − Remp[f̂]| ≤ εest, where εest
is the right side of the bound in Lemma 3. By the optimality of f̂ , Remp[f̂] ≤ Remp[f̂∗].
Combining these facts gives that with probability at least 1 − δ, |R[f̂] − R[f̂∗]| ≤ 2εest =

2√
m

(
4LC + 2|c(0)|+ LC

√
1
2 log 1

δ

)
.

The second term in Equation (15) is the approximation error, and by Theorem 1, with probability at

least 1− δ, it is bounded above by εapp = LC√
K

(
1 +

√
2 log 1

δ

)
.

By the union bound, with probability at least 1−2δ, the right side of Equation (15) is bounded above
by 2εest + εapp.

3 Related Work

Greedy algorithms for fitting networks of the form (2) have been analyzed, for example, in [7, 11, 9].
Zhang [13] analyzed greedy algorithms and a randomized algorithm similar to Algorithm 1 for fitting
sparse Gaussian processes to data, a more narrow setting than we consider here. He derived bounds
on the performance by casting these methods as stochastic descent.

Approximation error bounds such as that of Maurey [11][Lemma 1], Girosi [14] and Gnecco and
Sanguineti [15] rely on random sampling to guarantee the existence of good parameters w1, . . . , wk,
but they require access to the representation of f∗ to actually produce these parameters. These ap-
proximation bounds cannot be used to guarantee the performance of Algorithm 1 because Algorithm
1 is oblivious to the data, and therefore f∗, when it generates the parameters. Lemma 2 differs from
these bounds in that it relies on f∗ only to generate the weights α1, . . . , αK , but it remains oblivious
to f∗ when generating the parameters, sampling them from p instead. Furthermore, because F̂w is
smaller than the classes considered by [11, 15], the approximation error rate in Lemma 1 matches
those of existing approximation error bounds.

4 Experiments

We empirically demonstrate the benefits of random featurization in this section. For more empirical
examples, see [2, 3, 4, 5].

We compared a simplified version of Algorithm 1 where the constraint (4) was replaced by a
quadratic penalty on α against Adaboost on three classification problems: The adult dataset

4

0 100 200 300 400 500 600 700 800 900 1000
14

16

18

20

22

24

26

weak learners (K)

%
 e

rr
or

Adaboost
RKS

0 100 200 300 400 500 600 700 800 900 1000

10
−1

10
0

10
1

10
2

weak learners (K)

tr
ai

ni
ng

+
te

st
in

g
tim

e
(s

ec
on

ds
)

Adaboost
RKS

14 15 16 17 18 19 20 21 22 23 24

10
−1

10
0

10
1

10
2

% error

tr
ai

ni
ng

+
te

st
in

g
tim

e
(s

ec
on

ds
)

Adaboost
RKS

0 50 100 150 200 250 300 350 400
10

12

14

16

18

20

22

24

26

28

30

weak learners (K)

%
 e

rr
or

Adaboost
RKS

0 50 100 150 200 250 300 350 400

10
0

10
1

10
2

10
3

weak learners (K)

tr
ai

ni
ng

+
te

st
in

g
tim

e
(s

ec
on

ds
)

Adaboost
RKS

10 12 14 16 18 20 22 24 26 28 30

10
0

10
1

10
2

10
3

% error

tr
ai

ni
ng

+
te

st
in

g
tim

e
(s

ec
on

ds
)

Adaboost
RKS

0 100 200 300 400 500 600 700
6

8

10

12

14

16

18

20

weak learners (K)

%
 e

rr
or

Adaboost
RKS

0 100 200 300 400 500 600 700
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

weak learners (K)

tr
ai

ni
ng

+
te

st
in

g
tim

e
(s

ec
on

ds
)

Adaboost
RKS

6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

% error

tr
ai

ni
ng

+
te

st
in

g
tim

e
(s

ec
on

ds
)

Adaboost
RKS

Figure 1: Comparisons between Random Kitchen Sinks and Adaboosted decision stumps on adult
(first row), activity (second row), and KDDCUP99 (third row). The first column plots test error
of each classifier as a function of K. The accuracy of Random Kitchen Sinks catches up to that of
Adaboost as K grows. The second column plots the total training and testing time as a function
of K. For a given K, Random Kitchen Sinks is between two and three orders of magnitude faster
than Adaboost. The third column combines the previous two columns. It plots testing+training time
required to achieve a desired error rate. For a given error rate, Random Kitchen Sinks is between
one and three orders of magnitude faster than Adaboost.

5

has roughly 32,000 training instances. Each categorical variable was replaced by a binary indi-
cator variable over the categories, resulting in 123 dimensions per instance. The test set consists of
15,000 instances. KDDCUP99 is a network intrusion detection problem with roughly 5,000,000 127-
dimensional training instances, subsampled to 50,000 instances. The test set consists of 150,000 in-
stances. activity is a human activity recognition dataset with 20,0000 223-dimensional instance,
of which about 200 are irrelevant for classification. The test set constists of 50,000 instances. The
datasets were preprocessed by zero-meaning and rescaling each dimension to unit variance. The
feature functions in these experiments were decision stumps φ(x;w) = sign(xwd

− wt), which
simply determine whether the wdth dimension of x is smaller or greater than the threshold wt. The
sampling distribution p for Random Kitchen Sinks drew the threshold parameter wt from a normal
distribution and the coordinate wd from a uniform distribution over the coorindates. For some ex-
periments, we could afford to run Random Kitchen Sinks for largerK than Adaboost, and these runs
are included in the plots. We used the quadratic loss, but find no substantial differences in quality
under the hinge loss (though there is degradation in speed by a factor of 2-10). We used MATLAB
optimized versions of Adaboost and Random Kitchen Sinks, and report wall clock time in seconds.

Figure 1 compares the results on these datasets. Adaboost expends considerable effort in choosing
the decision stumps and achieves good test accuracy with a few of them. Random Kitchen Sinks
requires more nonlinearities to achieve similar accuracies. But because it is faster than Adaboost, it
can produce classifiers that are just as accurate as Adaboost’s with more nonlinearities in less total
time. In these experiments, Random Kitchen Sinks is almost as accurate as Adaboost but faster by
one to three orders of magnitude.

5 Discussion and Conclusions

These experiments show that by selecting many random nonlinearities, one can achieve the same
accuracy as a greedy algorithms that carefully selects the nonlinearities in significantly less training
time. This result is consistent with the interpretation that the role of the nonlinearities in a shallow
network is to transform the inputs so that they are linearly separable by the upper layer of the
network. Lemma 1 and the experiments point out that random featurization is an effective way
to find such a transformation. Various hardness of approximation lower bounds for fixed basis
functions exist (see, for example [11]). The guarantee in Lemma 1 avoids running afoul of these
lower bounds because it does not seek to approximate every function in Fp simultaneously, but
rather only the true risk minimizer with high probability.

It may be surprising that Theorem 1 holds even when the feature functions φ are nearly orthogo-
nal. The result works because the importance sampling constraint |α(w)| ≤ Cp(w) ensures that
a feature function does not receive a large weight if it is unlikely to be sampled by p. When
the feature functions are highly linearly dependent, better bounds can be obtained because any
f(x) =

∫
α(w)φ(x;w) can be rewritten as f(x) =

∫
α′(w)φ(x;w) with |α′|/p ≤ |α|/p, improving

the importance ratio C. This intuition can be formalized via the the Rademacher complexity of φ, a
result which we leave for future work.

The convergence rate for Adaboost [7] is exponentially fast in K, which at first appears to be much
faster than 1/

√
K. However, the base of the exponent is the minimum weighted margin encountered

by the algorithm through all iterations, a quantity that is difficult to bound a priori. This makes a
direct comparison of the bounds difficult, though we have tried to provide empirical comparisons.

A Exponentially Fast Concentration of Averages towards the Mean in a
Hilbert Space

Lemma 4. Let X = {x1, · · · , xK} be iid random variables in a ball H of radius M centered
around the origin in a Hilbert space. Denote their average by X = 1

K

∑K
k=1 xk. Then for any

δ > 0, with probability at least 1− δ,

∥∥X− EX
∥∥ ≤ M√

K

(
1 +

√
2 log 1

δ

)
. (16)

6

Proof. We use McDiarmid’s inequality to show that the scalar function f(X) =
∥∥X− EX X

∥∥ is
concentrated about its mean, which shrinks as O(1/

√
K).

The function f is stable under perturbation of its ith argument. Let X̃ = {x1, · · · , x̃i, · · · , xK}
be a copy of X with the ith element replaced by an arbitrary element of H. Applying the triangle
inequality twice gives

|f(X)− f(X̃)| = |‖X− EX‖ − ‖X̃− EX‖| ≤ ‖X− X̃‖ ≤ ‖xi − x̃i‖
K

≤ 2M
K

. (17)

To bound the expectation of f , use the familiar identity about the variance of the average of iid
random variables

E
∥∥X− EX

∥∥2
=

1
K

(
E ‖x‖2 − ‖Ex‖2

)
, (18)

in conjunction with Jensen’s inequality and the fact that ‖x‖ ≤M to get

E f(X) ≤
√

E f2(X) =
√

E
∥∥X− EX

∥∥2 ≤ M√
K
. (19)

This bound for the expectation of f and McDiarmid’s inequality give

Pr
X

[
f(X)− M√

K
≥ ε
]
≤ Pr

X

[
f(X)− E f(X) ≥ ε

]
≤ exp

(
−Kε

2

2M2

)
(20)

To get the final result, set δ to the right hand side, solve for ε, and rearrange.

B Generalization bounds that use Rademacher complexity

One measure of the size of a class F of functions is its Rademacher complexity:

Rm[F] ≡ E
x1,··· ,xm
σ1,··· ,σm

[
sup
f∈F

1
m

m∑
i=1

σif(xi)

]
.

The variables σ1, · · · , σm are iid Bernouli random variables that take on the value -1 or +1 with
equal probability and are independent of x1, . . . , xm.

The Rademacher complexity of F̂w can be bounded as follows. Define S ≡{
α ∈ RK

∣∣ ‖α‖∞ ≤ C
K

}
:

Rm[F̂w] = E
σ,X

sup
α∈S

∣∣∣∣∣ 1
m

m∑
i=1

σi

(
K∑
k=1

αkφ(xi;ωk)

)∣∣∣∣∣ = E
σ,X

sup
α∈S

∣∣∣∣∣
K∑
k=1

αk
1
m

m∑
i=1

σiφ(xi;ωk)

∣∣∣∣∣
(21)

≤ E
σ,X

C

K

K∑
k=1

∣∣∣∣∣ 1
m

m∑
i=1

σiφ(xi;ωk)

∣∣∣∣∣ ≤ E
X

C

K

K∑
k=1

√√√√E
σ

(
1
m

m∑
k=1

σiφ(xi;ωk)

)2

(22)

= E
X

C

K

K∑
k=1

√√√√E
σ

1
m2

m∑
k=1

φ2(xi;ωk) ≤ C

K

K∑
k=1

√
1
m

(23)

≤ C√
m
, (24)

where the first inequality follows by Hölder, the second by the concavity of square root, the third by
the fact that conditioned on ω, Eσ σiφ(xi;ω)σjφ(xj ;ω) = 0 when i 6= j, and the fourth follows by
the boundedness of φ.

The following theorem is a summary of the results from [12]:

7

Theorem 2. Let F be a class of bounded functions so that supx |f(x)| ≤ C for all f ∈ F , and
suppose c(y, y′) = c(yy′), with c(yy′) L-Lipschitz. Then with probability at least 1− δ with respect
to training samples {xi, yi}m drawn from a probabilisty distribution P on X × {−1,+1}, every
function in F satisfies

R[f] ≤ Remp[f] + 4LRm[F] +
2|c(0)|√

m
+ LC

√
1

2m
log 1

δ . (25)

References

[1] H. D. Block. The perceptron: a model for brain functioning. Review of modern physics,
34:123–135, January 1962.

[2] Y. Amit and D. Geman. Shape quantization and recognition with randomized trees. Neural
Computation, 9(7):1545–1588, 1997.

[3] F. Moosmann, B. Triggs, and F. Jurie. Randomized clustering forests for building fast and
discriminative visual vocabularies. In Advances in Neural Information Processing Systems
(NIPS), 2006.

[4] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in
Neural Information Processing Systems (NIPS), 2007.

[5] W. Maass and H. Markram. On the computational power of circuits of spiking neurons. Journal
of Computer and System Sciences, 69:593–616, December 2004.

[6] E. Osuna, R. Freund, and F. Girosi. Training support vector machines: an application to face
detection. In Computer Vision and Pattern Recognition (CVPR), 1997.

[7] R. E. Schapire. The boosting approach to machine learning: An overview. In D. D. Denison,
M. H. Hansen, C. Holmes, B. Mallick, and B. Yu, editors, Nonlinear Estimation and Classifi-
cation. Springer, 2003.

[8] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of
boosting. Technical report, Dept. of Statistics, Stanford University, 1998.

[9] L. K. Jones. A simple lemma on greedy approximation in Hilbert space and convergence
rates for projection pursuit regression and neural network training. The Annals of Statistics,
20(1):608–613, March 1992.

[10] R. Rifkin, G. Yeo, and T. Poggio. Regularized least squares classification. Advances in Learn-
ing Theory: Methods, Model and Applications, NATO Science Series III: Computer and Sys-
tems Sciences, 190, 2003.

[11] A.R. Barron. Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information Theory, 39:930–945, May 1993.

[12] P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research (JMLR), 3:463–482, 2002.

[13] T. Zhang. Approximation bounds for some sparse kernel regression algorithms. volume 14,
pages 3013–3042, December 2002.

[14] F. Girosi. Approximation error bounds that use VC-bounds. In International Conference on
Neural Networks, pages 295–302, 1995.

[15] G. Gnecco and M. Sanguineti. Approximation error bounds via Rademacher’s complexity.
Applied Mathematical Sciences, 2(4):153–176, 2008.

8

