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Abstract

In this paper, we examine the role of feature selection in face recognition from the perspective of

sparse representation. We cast the recognition problem as finding a sparse representation of the test image

features w.r.t. the training set. The sparse representation can be accurately and efficiently computed by

`1-minimization. The proposed simple algorithm generalizes conventional face recognition classifiers

such as nearest neighbors and nearest subspaces. Using face recognition under varying illumination and

expression as an example, we show that if sparsity in the recognition problem is properly harnessed, the

choice of features is no longer critical. What is critical, however, is whether the number of features is

sufficient and whether the sparse representation is correctly found. We conduct extensive experiments to

validate the significance of imposing sparsity using the Extended Yale B database and the AR database.

Our thorough evaluation shows that, using conventional features such as Eigenfaces and facial parts,

the proposed algorithm achieves much higher recognition accuracy on face images with variation in

either illumination or expression. Furthermore, other unconventional features such as severely down-

sampled images and randomly projected features perform almost equally well with the increase of

feature dimensions. The differences in performance between different features become insignificant as

the feature-space dimension is sufficiently large.

Index Terms

Face Recognition, Feature Selection, Eigenface, Laplacianface, Fisherface, Randomface, Sparse

Representation, `1-Minimization, Validation and Outlier Rejection.

I. INTRODUCTION

Human faces are arguably the most extensively studied object in image-based recognition.

This is partly due to the remarkable face recognition capability of the human visual system [1],

and partly due to numerous important applications for automatic face recognition technologies.

In addition, technical issues associated with face recognition are representative of object recog-

nition in general. A central issue in the study of object recognition has been the question of

which features of an object are the most important or informative for recognition. Due to the

special geometric shape and appearance of the face, instead of using fixed filter banks (e.g.,

downsampling, Fourier, Gabor, wavelets) that are effective for analyzing stationary signals such

as textures, the dominant approaches choose to construct facial features adaptively based on the

given images, via techniques such as Eigenfaces [2], Fisherfaces [3], Laplacianfaces [4], and
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Fig. 1. (a). Original face image. (b). 120-D representations in terms of four different features (from left to right): Eigenfaces,

Laplacianfaces, down-sampled (12 × 10 pixel) image, and Randomfaces (see Section V for precise description). We will

demonstrate that all these features contain almost the same information about the identity of the subject and give similarly

good recognition performance.

their variants [5], [6] (see Figure 1 for examples), as well as facial parts or components [7]

(see Figure 10 for examples). The features extracted using such filters or masks are thought to

be more relevant to face recognition, allowing reasonable recognition performance with simple,

scalable classifiers such as nearest neighbor (NN) [8] and nearest subspace (NS) [9] (i.e.,

minimum distance to the subspace spanned by images of each subject).

However, with so many proposed features but so little consensus about which feature are better

or worse, practitioners lack guidelines to decide which features to use. In the face recognition

community, there has been enormous effort and emphasis on finding the “optimal” features.

This quest may have obscured other important factors that can help clarify the role of feature

selection in the overall recognition process. For instance, the performance variation of different

features may be due in part to the choice of classifiers (e.g., NN or NS), or in part to the choice

in the range of feature dimension. The performance of conventional features in conjunction with

these classifiers has been generally unsatisfactory, far below human face recognition capability.

Frustration with this state of affairs has led researchers to resort to nonlinear features and kernel

methods [10], [11]. Nevertheless, it is still possible that those simple conventional features already

contain sufficient information for accurate recognition and we have simply not employed pertinent

tools to harness such information.

In this paper, we cast object recognition as finding a sparse representation of a given test

image w.r.t. the training images of multiple objects:

We represent the test image as a linear combination of the fewest training images

possible, out of the entire training set.
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If the test image is indeed an image of one of the subjects in the training database, this linear

combination will only involve training images of that subject. Such a representation is naturally

sparse: only a small fraction of the coefficients are nonzero.1 Such a sparse representation can

be effectively computed via `1-minimization [14]. We propose an extremely simple classifica-

tion algorithm for face recognition based on the representation computed. Experimental results

convincingly demonstrate the key role of sparsity in recognition: the algorithm achieves high

recognition rates on both the Extended Yale B database and the AR database, significantly

boosting the performance of popular face features such as Eigenfaces and facial parts.

a) Global versus local approach: Notice, however, that we are proposing to compute the

sparsest representation in terms of all the training images. Computing such a global representation

has several advantages over local (one image or subject at a time) methods such as NN and

NS. The first is in validation, or outlier rejection: if the most compact representation in terms

of the whole training set involves images from several classes, the test image is not likely to

be a typical sample from any one of those classes. For face recognition, this is equivalent to

asking “Does the most compact representation treat this image as a generic face or as the face

of a single individual in the training dataset?” (see Section IV). The second advantage is in

identification: sparse representation is similarly discriminative for identification of a (validated)

test image within the subjects in the dataset. It selects out of all the training images a few that

most compactly represent the test image and hence naturally avoids the problem with under-

fitting or over-fitting (see Section III for more explanation). Through analysis and experiments,

we will justify the superiority of this global scheme over local methods such as NN and NS, in

both validation and identification.

b) Efficient computational tools: Casting recognition as a (globally) sparse representation

problem also allows us to leverage powerful tools from the emerging mathematical theory of

compressed sensing [15]. For example, while finding the sparsest representation is an NP-hard

problem that does not even allow efficient approximation [16], for our problem of interest it

1The sparsity described here differs from the sparse features proposed in [12] for object detection or in [13] for image

representation. We are concerned with sparsity of the representation (coefficients), whereas those works deal with spatial locality

of the basis or features.
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can be computed efficiently and exactly, by `1-minimization.2 Although computing a global

representation in terms of all of the training images may seem computationally extravagant, with

an appropriate choice of optimization algorithm the complexity becomes linear in the number of

training samples [17], just as with NN and NS. Furthermore, compressed sensing offers a new

perspective on feature selection: it suggests the number of features is much more important than

the details of how they are constructed. As long as the number of features is large enough, even

randomly chosen features are sufficient to recover the sparse representation [14], [15].

c) Feature selection in the new context: Thus, we are compelled to re-examine feature

selection in face recognition from this new perspective and try to answer the following question:

To what extent does the selection of features still matter, if the sparsity inherent in the

recognition problem is properly harnessed?

Our experiments will show that the performances with conventional features (e.g., Eigenfaces,

Laplacianfaces) converge as the number of features used increases, as predicted by the theory of

sparse representation and compressed sensing [15]. It should therefore come as no surprise that

similarly high recognition rates can be achieved using the same number of down-sampled pixels

or even completely random features, which we call Randomfaces (see Figure 1 for an example).

For example, consider 12 × 10 down-sampled images, as shown in Figure 1. Our experiments

will show that using such severely down-sampled images as features, our algorithm can still

achieve a recognition rate as high as 92.1% over the Extended Yale B database (see Figure

3). Such performance arguably surpasses humans’ ability to recognize down-sampled images –

humans typically require about 16× 16 pixels even for familiar faces [1].

d) What we do not do: In this paper, we assume the face images have been cropped

and normalized. We only consider face recognition of frontal views, and we do not consider

pose variations. So our conclusions on feature selection only apply to the frontal case. Feature

selection for face recognition with pose variation, or 3D-model based face recognition, or face

detection/alignment can be rather different problems. It remains an open problem whether the

proposed new framework will have any implications on those problems too.

2Whereas many of the results in compressed sensing pertain to random matrix ensembles, we work with very specific matrices

(determined by the training dataset). We will verify the validity of these results in this deterministic setting.
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e) Relation to the companion paper: In this paper, we do not deal with occluded or

corrupted test face images but that is the topic of a companion paper [18]. Although both

papers deal with sparse solutions, the breakdown point of the proposed method is much more

likely to be reached in the case of occluded images. Thus, a more careful characterization of

the breakdown point is given in the companion paper.

II. PROBLEM FORMULATION AND SOLUTION

A. Recognition as a Linear Sparse Representation

In this paper, we consider face recognition with frontal face images from k individuals that have

been properly cropped and normalized. Each image is of the size w×h and can be viewed as a

point in the space Rm with m = w×h. The images of the same face under varying illumination

or expressions have been shown to span an (approximately) low-dimensional linear subspace

in Rm, called a face subspace [3], [19]. Although the proposed framework and algorithm can

apply to the situation where the training images of each subject have a multi-modal or nonlinear

distribution (Section III discusses this issue in detail), for ease of presentation, let us first assume

that the training images of a single subject do span a subspace. This is the only prior knowledge

about the training images we will be using in our solution.3

Let us stack the ni images associated with subject i as vectors vi,1, vi,2, . . . ,vi,ni
∈ Rm and

assume these vectors are sufficient to span the i-th face subspace: Any new test image of the

same subject, stacked as a vector y ∈ Rm, can be represented as a linear superposition of the

training examples associated with Subject i:

y = αi,1vi,1 + αi,2vi,2 + · · ·+ αi,ni
vi,ni

, (1)

for some scalars αi,j ∈ R, j = 1, · · · , ni.

Collect all the n
.
= n1 + · · ·+ nk training images as column vectors of one matrix:

A
.
= [v1,1, v1,2, . . . ,v1,n1 , v2,1, . . . ,vk,nk

] ∈ Rm×n. (2)

3We actually do not need to know whether the linear structure is due to varying illumination or expression. Thus, we do

not need to use domain-specific knowledge such as an illumination model [20] to eliminate the variability in the training and

testing images.
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Then ideally the test image y of subject i can be represented in terms of all of the images in

the training set as

y = Ax0 ∈ Rm, (3)

where x0 = [0, · · · , 0, αi,1, αi,2, . . . , αi,ni
, 0, . . . , 0]T ∈ Rn is a coefficient vector whose entries

are mostly zero except those associated with the i-th subject. We therefore exploit the following

simple observation: A valid test image can be sufficiently represented using only the training

images of the same subject. This representation is naturally sparse if the number of subjects k

is reasonably large.

As the entries of the vector x0 encode the identity of the test image y, it is tempting to

attempt to obtain it by solving the linear system (3). This linear system of equations is global,

involving the entire training set. The reader may wonder if a global approach is really necessary,

given that there is a sparse representation in terms of just the training images of one subject.

We will see that the global approach has advantages over local methods such as NN and NS

in discriminating between subjects in the training set (Section III) and in rejecting invalid test

images (i.e., outliers) (Section IV). These advantages come without an increase in the order

of growth of the computation: as we will see, the complexity remains linear in the number of

training samples.

If the system (3) is under-determined (m < n for A ∈ Rm×n), its solution is not unique.

Traditionally a solution is chosen with minimum `2-norm:

(P2) min ‖x‖2 subject to y = Ax. (4)

Similarly, if the system is over-determined (m > n), one often seeks the least-squares solution

by minimizing ‖y − Ax‖2.4

However, these approaches fail to address two important properties of the recognition problem:

1) The data are very high-dimensional. For instance, for a 640 × 480 grayscale image,

the dimension m is on the order of 105, while we normally have only a few samples

per subject. Such small sample size only exacerbates “the curse of dimensionality” that

4A solution we would also discourage in the companion paper [18].
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plagues high-dimensional statistics [21], and in particular face recognition [10].5 Aside

from the computational cost of solving such large systems of equations, the least-squares

(or minimum `2-norm) solution can exhibit severe bias if the system is not properly

regularized [22]. This degeneracy phenomenon noticeably hinders recognition methods

such as nearest neighbor and nearest subspace (see Table IV in Section VI).

2) The desired solution is sparse. The ratio of the nonzero entries in x0 is only ni

n
≈ 1

k
: For

instance, if k = 20, only 5% of the entries of x0 should be nonzero. The more sparse the

recovered x is, the easier it will be to accurately determine the identity of the test image

y. Unfortunately, the minimum `2-norm solution of the equation y = Ax is generally

non-sparse, and can be very far from the true sparse solution in (3) when the system is

under-determined or there is a large error in y [23]–[25].

B. Sparse Solution in a Reduced Dimension

To tackle the above difficulties, people typically seek methods that 1) reduce the data dimension

m to d� m and 2) explicitly compute the sparse representation of y in the lower-dimensional

space. We will see that these two goals are complementary: Appropriately enforcing sparsity

renders the outcome less dependent on the details of dimension reduction.

In the computer vision literature, numerous dimension reduction methods have been inves-

tigated for projecting high-dimensional face images to low-dimensional feature spaces. One

class of methods extracts holistic face features, such as Eigenfaces [2], Fisherfaces [3], and

Laplacianfaces [4]. Another class of methods tries to extract significant partial facial features

(e.g., eye corners) [1], [26]. For such face features, the projection from the image space to the

feature space can be represented as a matrix R ∈ Rd×m with d� m. Applying R to both sides

of equation (3) yields:

ỹ
.
= Ry = RAx0 ∈ Rd. (5)

After projection, the dimension d of the feature space usually becomes smaller than n. Hence,

the system of equations (5) is under-determined, and the solution x is not unique. Nevertheless,

5“The curse of dimensionality” as a phase has been used in different areas with different meanings. We use it here to emphasize

two major barriers associated with face recognition: The imagery data are high-dimensional, and the global sparse representation

is also high-dimensional.
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the desired x0 should still be sparse. Under very mild conditions on Ã = RA, the sparsest

solution to the system of equations is indeed unique [23]. In other words, the desired x0 is the

unique solution to the following optimization problem:

(P0) min ‖x‖0 subject to ỹ = Ãx, (6)

where ‖·‖0 denotes the `0-norm, which simply counts the number of nonzero entries in a vector.

Solving (P0) is NP-hard and even difficult to approximate by polynomial-time algorithms [27]:

In the general case, no known procedure for finding the sparsest solution is significantly more

efficient than exhausting all subsets of the entries for x.

C. Sparse Solution via `1-Minimization

Recent development in the emerging compressed sensing theory [23]–[25] reveals that if

the solution x0 sought is sparse enough, the combinatorial problem (P0) is equivalent to the

following `1-minimization problem:

(P1) min ‖x‖1 subject to ỹ = Ãx. (7)

This problem can be solved in polynomial time by standard linear programming or quadratic

programming methods [28]. Even more efficient methods are available when the solution is

known to be very sparse. For example, homotopy algorithms recover solutions with k nonzeros

in O(k3 + n) time, linear in the size of the training set [17].

Figure 2 gives a geometric interpretation (essentially due to [29]) of why minimizing the

`1-norm recovers sparse solutions. Let Cα denote the `1-ball (or cross-polytope) of radius α:

Cα
.
= {x : ‖x‖1 ≤ α} ⊂ Rn. (8)

In Figure 2, the unit `1-ball C1 is mapped to the polytope P
.
= Ã · C1 ⊂ Rd consisting of all ỹ

that satisfy ỹ = Ãx for some x whose `1-norm is ≤ 1.

The geometric relationship between Cα and the polytope Ã · Cα is invariant to scaling. That

is, if we scale Cα, its image under Ã is also scaled by the same amount. Geometrically, finding

the minimum `1-norm solution x1 to (P1) is equivalent to expanding the `1-ball Cα until the

polytope Ã · Cα first touches ỹ = Ãx0. The value of α at which this occurs is exactly ‖x1‖1.

Now suppose that ỹ = Ãx0 for some sparse x0. We wish to know when solving (P1) correctly

recovers x0. This question is easily resolved from the geometry of Figure 2: Since x1 is found
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x0

Rd

Ã

Rn

C1
Ã · C1

ỹ = Ãx0

Fig. 2. Geometry of the sparse solution via `1-minimization. The `1-minimization determines in which facet of the polytope

Ã ·C1 the point ỹ lies, and then ỹ is represented as a linear combination of the vertices of that facet, with the coefficients x0.

by expanding both Cα and P = Ã · Cα until a point of P touches ỹ, the `1-minimizer x1 must

generate a point Ãx1 on the boundary of P .

Thus x1 = x0 if and only if the point Ã(x0/‖x0‖1) lies on the boundary of P . For the

example shown in Figure 2, it is easy to see that `1-minimization recovers all x0 with only one

nonzero entry. This equivalence holds because all of the vertices of C1 map to points on the

boundary of P .

If Ã maps all k-dimensional faces of C1 to faces of P , the polytope P is referred to as

(centrally) k-neighborly [29]. From the above, we see that (P1) recovers all x0 with ≤ k + 1

nonzeros iff P is k-neighborly. This condition is surprisingly common: the results of [15] show

that even random matrices (e.g., uniform, Gaussian, and partial Fourier) are highly neighborly

and therefore admit sparse solution by `1-minimization.

Unfortunately, there is no known algorithm for efficiently verifying the neighborliness of

a given polytope P . The best known algorithm is combinatorial and therefore only practical

when the dimension n is moderate [30]. When n is large, it is known that with overwhelming

probability, the neighborliness of a randomly chosen polytope P is loosely bounded between:

c · n < k < n/3 (9)

for some small constant c > 0 (see [23], [29]). In other words, in general, as long as the number

of nonzero entries of x0 is a small fraction of the dimension n, `1-minimization will recover

x0. This is precisely the situation in face recognition: the support of the desired solution x0
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is a fixed fraction of the number of training images; the more subjects there are, the smaller

the fraction. In Section VI, our experimental results will verify the ability of `1-minimization to

recover sparse representations for face recognition, suggesting that the data-dependent features

popular in face recognition (e.g., Eigenfaces) may indeed give highly neighborly polytopes P .

Since real images are noisy, it may not be possible to express the (features of) the test image

exactly as a sparse superposition of (features of) the training images. To model noise and error

in the data, one can consider a stable version of (5) that includes a noise term with bounded

energy ‖z‖2 < ε:

ỹ = Ãx0 + z ∈ Rd. (10)

It has been shown that in this case a sparse near solution can be found via the following program:

Theorem 1 (Minimal `1-Norm Near Solution [14]): Consider an under-determined system (10)

with a large dimension d and ‖z‖2 < ε. Let x1 denote the solution to the following problem:

(P ′
1) min ‖x‖1 subject to ‖ỹ − Ãx‖2 ≤ ε. (11)

Then with overwhelming probability, there exist ρ > 0 and ζ > 0 such that for all sparse x0

with ‖x0‖0 ≤ ρd,

‖x1 − x0‖2 ≤ ζε. (12)

The minimization problem (11) can be efficiently solved via convex optimization [28] (see

Section VI for our algorithm of choice).

D. Classification from Sparse Coefficients

Ideally, the nonzero entries in the estimate x will all be associated with the columns in Ã

from a single subject, and we can easily assign the test image y to that subject. However, due

to noise, the nonzero entries may be associated with multiple subjects (see Figure 3). Many

classifiers can resolve this problem. For instance, we can simply assign y to the subject with

the single largest entry of x. However, such heuristics do not harness the subspace structure

associated with face images. To better harness this structure, we instead classify y based on how

well the coefficients associated with all training images of each subject reproduce y.

For each subject i, define its characteristic function δi : Rn → Rn which selects the coefficients

associated with the i-th subject. For x ∈ Rn, δi(x) ∈ Rn is a new vector whose only nonzero
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entries are the entries in x that are associated with subject i, and whose entries associated with

all other subjects are zero. We then set

identity(y) = arg min
i

ri(y), where ri(y)
.
= ‖ỹ − Ã δi(x)‖2. (13)

That is, we assign y to the subject whose associated coefficients, δi(x), give the best approxi-

mation to y. Algorithm 1 below summarizes the complete recognition procedure.

Algorithm 1 (Recognition via Sparse Representation)
1: Input: a matrix of training images A ∈ Rm×n for k subjects, a linear feature transform

R ∈ Rd×m, a test image y ∈ Rm, and an error tolerance ε.

2: Compute features ỹ = Ry and Ã = RA, and normalize ỹ and columns of Ã to unit length.

3: Solve the convex optimization problem (P ′
1):

min ‖x‖1 subject to ‖ỹ − Ãx‖2 ≤ ε.

4: Compute the residuals ri(y) = ‖ỹ − Ã δi(x)‖2 for i = 1, . . . , k.

5: Output: identity(y) = arg mini ri(y).

Example 1 (`1-Minimization versus `2-Minimization): To illustrate how Algorithm 1 works,

we randomly select half of the 2, 414 images in the Extended Yale B database as the training

set, and the rest for testing. In this example, we choose R to simply be the down-sampling

filter that sub-samples the images from 192 × 168 to size 12 × 10. The pixel values of the

down-sampled image are used as features, and hence the feature space dimension is d = 120.

Figure 3 top illustrates the sparse coefficients recovered by Algorithm 1 for a test image from

Subject 1. The figure also shows the features and original images that correspond to the two

largest coefficients. As we see, the two largest coefficients are both associated with training

samples from Subject 1. Figure 3 bottom plots the residuals w.r.t. the 38 projected coefficients

δ(xi), i = 1, 2, . . . , 38. With 12 × 10 down-sampled images as features, Algorithm 1 achieves

an overall recognition rate of 92.1% across the Extended Yale B database (see Section VI).

For comparison, Figure 4 top shows the coefficients of the same image features given by the

conventional `2-minimization (4), and Figure 4 bottom shows the corresponding residuals w.r.t.

the 38 subjects. The coefficients are much less sparse than those given by `1-minimization (in
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Fig. 3. Top: Recognition with 12 × 10 down-sampled images as features. The test image y belongs to Subject 1. The values

of the sparse coefficients recovered from Algorithm 1 are plotted on the right together with the two training examples that

correspond to the two largest sparse coefficients. Bottom: The residuals ri(y) of a test image of Subject 1 w.r.t. the projected

sparse coefficients δi(x) by `1-minimization. The ratio between the magnitudes of the two smallest residuals is about 1:8.6.

Figure 3), and the dominant coefficients are not associated with Subject 1 either. As a result,

the smallest residual in Figure 4 is not at Subject 1.

III. RELATIONSHIPS TO NEAREST NEIGHBOR AND NEAREST SUBSPACE

The above example illustrates `1-minimization’s superior ability to recover the desired sparse

representation, compared to `2-minimization. One may notice that the use of all the training

images of all subjects to represent the test image goes against the conventional classification

methods popular in face recognition literature and existing systems. These methods typically

suggest using residuals computed from “one training image at a time” or “one subject at a time”

to classify the test image. The representative methods include:

1) The nearest neighbor (NN) classifier: Assign the test image y to subject i if the smallest

distance from y to the nearest training image of subject i

ri(y) = min
j=1,...,ni

‖ỹ − ṽi,j‖2 (14)
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Fig. 4. Top: Coefficients from `2-minimization, using the same test image as Figure 3. The recovered solution is not sparse

and hence less informative for recognition (large coefficients do not correspond to training images of this test subject). Bottom:

The residuals of the test image from Subject 1 w.r.t. the projection δi(x) of the coefficients obtained by `2-minimization. The

ratio between the magnitudes of the two smallest residuals is about 1:1.3. The smallest residual is not associated with Subject

1.

is the smallest among all subjects.6

2) The nearest subspace (NS) classifier (e.g., [31]): Assign the test image y to subject i if

the distance from y to the subspace spanned by all images Ai = [vi,1, . . . ,vi,ni
] of the

subject i:

ri(y) = min
xi∈Rni

‖ỹ − Ãixi‖2 (15)

is the smallest among all subjects.

Clearly, NN seeks the best representation in terms of just a single training image,7 while NS

seeks the best representation in terms of all the training images of each subject.

6Another popular distance metric for the residual is the `1-norm distance ‖ · ‖1. This is not to be confused with the `1-

minimization in this paper.
7Alternatively, a similar classifier KNN considers K nearest neighbors.
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A. Relationship to Nearest Neighbor

Let us first assume that a test image y can be well-represented in terms of one training image,

say vi (one of the columns of A):

ỹ = ṽi + zi (16)

where ‖zi‖2 ≤ ε for some small ε > 0. Then according to Theorem 1, the recovered sparse

solution x to (11) satisfies

‖x−wi‖2 ≤ ζε

where wi ∈ Rn is the vector whose i-th entry is 1 and others are all zero, and ζ is a constant

that depends on Ã. Thus, in this case, the `1-minimization based classifier will give the same

identification for the test image as NN.

On the other hand, test images may have large variability due to different lighting conditions or

facial expressions, and the training sets generally do not densely cover the space of all possible

images (we will see in the next section that this is the case with the AR database). In this

case, it is unlikely that any single training image will be very close to the test image, and

nearest-neighbor classification may perform poorly.

Example 2: Figure 5 shows the `2-distances between the down-sampled face image from

Subject 1 in Example 1 and each of the training images. Although the smallest distance is

correctly associated with Subject 1, the variation of the distances for other subjects is quite

large. As we will see in Section VI, this inevitably leads to inferior recognition performance

when using NN (only 71.6% in this case, comparing to 92.1% of Algorithm 1).8

Fig. 5. The `2 distances (logarithmic scale) between the test image and the training images in Example 1.

8Other commonly used distance metrics in NN such as `1-distance give results similar to Figure 5.
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B. Relationship to Nearest Subspace

Let us now assume that a test image y can be well-represented as a linear combination of the

training images Ai of subject i:

ỹ = Ãixi + zi (17)

where ‖zi‖2 ≤ ε for some small ε > 0. Then again according to Theorem 1, the recovered

sparse solution x to (11) satisfies

‖x−wi‖2 ≤ ζε

where wi ∈ Rn is a vector of the form [0, . . . , 0, xT
i , 0, . . . , 0]T (if wi is the unique solution that

satisfies ‖ỹ − Ãwi‖2 < ε). That is,

δi(x) ≈ wi and ‖δj(x)‖ < ζε for all j 6= i. (18)

We have

‖ỹ − Ãδi(x)‖2 ≈ ‖zi‖2 ≤ ε, ‖ỹ − Ãδj(x)‖2 ≈ ‖ỹ‖2 � ε for all j 6= i. (19)

Thus, in this case, the `1-minimization based classifier will give the same identification for

the test image as NS. Notice that for j 6= i, δj(x) is rather different from xj computed from

minxj
‖ỹ − Ajxj‖2. The norm of δj(x) is bounded by the approximation error (18) when y

is represented just within class j, whereas the norm of xj can be very large as face images

of different subjects are highly correlated. Further notice that each of the xj is an optimal

representation (in the 2-norm) of y in terms of some (different) subset of the training data,

whereas only one of the {δj(x)}kj=1 computed via `1-minimization is optimal in this sense; the

rest have very small norm. In this sense, `1-minimization is more discriminative than NS, as is

the set of associated residuals {‖ỹ − Ãδj(x)‖2}kj=1.

Example 3: Figure 6 shows the residuals of the down-sampled features of the test image in

Example 1 w.r.t. the subspaces spanned by the 38 subjects. Although the minimum residual is

correctly associated with Subject 1, the difference from the residuals of the other 37 subjects

is not as dramatic as that obtained from Algorithm 1. Compared to the ratio 1:8.6 between the

two smallest residuals in Figure 3, the ratio between the two smallest residuals in Figure 6 is

only 1:3. In other words, the solution from Algorithm 1 is more discriminative than that from

NS. As we will see Section VI, for the 12 × 10 down-sampled images, the recognition rate of

NS is lower than that of Algorithm 1 (91.1% versus 92.1%).
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Fig. 6. The residuals of the test image in Example 1 w.r.t. the 38 face subspaces. The ratio between the magnitudes of the two

smallest residuals is about 1:3.

Be aware that the subspace for each subject is only an approximation to the true distribution

of the face images. In reality, due to expression variations, specularity, or alignment error, the

actual distribution of face images could be nonlinear or multi-modal. Using only the distance to

the entire subspace ignores information about the distribution of the samples within the subspace,

which could be more important for classification. Even if the test image is generated from a

simple statistical model: ỹ = Ãixi + zi with xi and zi independent Gaussians, any sufficient

statistic (for the optimal classifier) depends on both ‖xi‖2 and ‖zi‖2, not just the residual ‖zi‖2.

While the `1-based classifier is also suboptimal under this model, it does implicitly use the

information in xi as it penalizes xi that has a large norm – the `1-minimization based classifier

favors small ‖zi‖2 as well as small ‖xi‖1 in representing the test image with the training data.

Furthermore, using all the training images in each class may over-fit the test image. In the

case when the solution xi to

ỹ = Ãixi + zi subject to ‖zi‖2 < ε

is not unique, the `1-minimization (7) will find the sparsest xs
i instead of the least-squares

solution x2
i = (ÃT

i Ãi)
†ỹ. That is, the `1-minimization will use the smallest number of sample

images necessary in each class to represent the test image, subject to a small error. To see why

such an solution xs
i respects better the actual distribution of the training samples (inside the

subspace spanned by all samples), consider the two situations illustrated in Figure 7.

In the figure on the left, the training samples have a nonlinear distribution within the subspace.

For the given positive test sample “+,” only two training samples are needed to represent it well
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Fig. 7. A sparse solution within the subspace spanned by all training samples of one subject. Left: the samples exhibit a

nonlinear distribution within the subspace. Right: the samples lie on two lower-dimensional subspaces within the subspace

spanned by all the samples.

linearly. For the other negative test sample “-,” although it is inside the subspace spanned by

all the samples, it deviates significantly from the sample distribution. In the figure on the right,

the training samples of one subject are distributed on two lower-dimensional subspaces. This

could represent the situation when the training images contain both varying illuminations and

expressions. Again, for a positive test sample “+,” typically a small subset of the training samples

are needed to represent it well. But if we use the span of all the samples, that could easily over-fit

negative samples that do not belong to the same subject. For example, as we have shown in

Figure 3, although Subject 1 has 32 training examples, the test image is well represented using

less than 5 large coefficients. In other words, l1-minimization is very efficient in harnessing

sparse structures even within each face subspace.

From our discussions above, we see that the `1-minimization based classifier works under a

wider range of conditions than NN and NS combined. It strikes a good balance between NN and

NS: To avoid under-fitting, it uses multiple (instead of the nearest one) training images in each

class to linearly extrapolate the test image, but it uses only the smallest necessary number of

them to avoid over-fitting. For each test image, the number of samples needed is automatically

determined by the `1-minimization, because in terms of finding the sparse solution x, the `1-

minimization is equivalent to the `0-minimization. As a result, the classifier can better exploit

the actual (possibly multi-modal and nonlinear) distributions of the training data of each subject

and is therefore likely to be more discriminative among multiple classes. These advantages of

Algorithm 1 are corroborated by experimental results presented in Section VI.
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IV. VALIDATION OF THE TEST IMAGE

Validation is a problem closely related to but different from identification. Given a test image,

before we identify which subject it is, we first need to decide if it is a valid image of one of the

subjects in the dataset. The ability to detect and then reject invalid test images, also known as

“outliers,” is crucial for a recognition system to work in a real-world situation: the system can

be given a face image of a subject that is not in the dataset, or an image that is not a face at all.

In the NN or NS paradigm, the residuals ri(y) are also used for validation, in addition to

identification. That is, the algorithm accepts or rejects a test image based on how small the

smallest residual is. However, each residual ri(y) is computed without any knowledge of images

of other subjects in the training dataset and only measures similarity between the test image and

each individual subject. In the sparse representation paradigm, the residuals ri(y) are computed

globally, in terms of images of all subjects. In a sense, it can potentially harness the joint

distribution of all subjects for validation.

From Algorithm 1, in addition to the residuals ri(y), we also obtain the coefficients x.

We contend that the coefficients x are better statistics for validation than the residuals. Let

us first see an example. We randomly select an irrelevant image from Google, and down-

sample it to 12 × 10. We then compute the sparse representation of the image against the

same training data as in Example 1. Figure 8 top plots the obtained coefficients, and bottom

plots the corresponding residuals. Compared to the coefficients of a valid test image in Figure

3, notice that the coefficients x here are not concentrated on any one subject and instead spread

widely across the entire training set. Thus, the distribution of the estimated sparse coefficients

x contains important information about the validity of the test image: A valid test image should

have a sparse representation whose nonzero entries concentrate mostly on one subject, whereas

an invalid image has sparse coefficients spread widely among multiple subjects.

To quantify this observation, we define the following measure of how concentrated the coef-

ficients are on a single subject in the dataset:

Definition 1 (Sparsity Concentration Index): Suppose x is the sparse solution to either (P1)

(7) or (P ′
1) (11). The sparsity concentration index (SCI) of x is defined as

SCI(x)
.
=

k ·maxi ‖δi(x)‖1/‖x‖1 − 1

k − 1
∈ [0, 1]. (20)

Obviously, when SCI = 1, the test image is represented using only images from a single subject,
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Fig. 8. Top: The sparse coefficients for an invalid test image w.r.t. the same training data set from Example 1. The test

image is a randomly selected irrelevant image. The values of the sparse coefficients recovered from Algorithm 1 are plotted on

the right. Bottom: The residuals of the invalid test image w.r.t. the projection δi(x) of the sparse representation computed by

`1-minimization. The ratio between the magnitudes of the two smallest residuals is about 1:1.2.

and when SCI = 0, the sparse coefficients are spread evenly over all classes. Thus, we choose

a threshold τ ∈ (0, 1) and accept a test image as valid if

SCI(x) ≥ τ, (21)

and reject as invalid otherwise.

Unlike NN or NS, this new rule completely avoids the use of the residuals ri(y) for validation.

Notice that in Figure 8, even for a non-face image, with a large training set, the smallest residual

of the invalid test image is not so large at all. Rather than relying on a single statistic for both

validation and identification, our approach separates the information required for these tasks:

the residuals for identification and the sparse coefficients for validation. In a sense, the residual

measures how well the representation approximates the test image; and the sparsity concentration

index measures how good the representation itself is, in terms of localization.

Another benefit of this approach is improved validation performance against generic face

images. A generic face might be rather similar to some of the subjects in the dataset and
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may have small residuals w.r.t. their training images. Using residuals for validation more likely

leads to a false positive. But a generic face is unlikely to pass the new validation rule as a

good representation of it typically requires contribution from images of multiple subjects in the

dataset. Thus, the new rule can better judge whether the test image is a generic face or the

face of one particular subject in the dataset. In Section VI-C we will demonstrate that the new

validation rule outperforms the NN and NS methods, with as much as 10–20% improvement in

verification rate for a given false accept rate (see Figure 11).

V. FEATURE SELECTION AND RANDOMFACES

With Algorithm 1 in place, the remaining question is how the choice of the feature transform

R affects its recognition performance. Obviously, R affects the performance through the matrix

Ã = RA’s ability to recover sparse solutions via `1-minimization. When the number of non-zero

entries in x increases beyond a critical value, `1-minimization no longer always finds the correct,

sparse x0. This value is called the equivalence breakdown point of Ã [23]. Different Ã’s have

different breakdown points. Although there is no known closed-form formula nor polynomial-

time algorithm to determine the breakdown point of a given matrix, in our context the large

number of subjects typically ensures us that the algorithm operates well below the breakdown

point. Therefore, the sparse solution x will not depend so much on the chosen transformation

R and subsequently, the recognition rate of Algorithm 1 will be similar for different features

(either using fixed filter banks or adaptive bases).

For extant face recognition methods, it is known that increasing the dimension of the feature

space generally improves the recognition rate, as long as the feature distribution does not

become degenerate [10]. However, degeneracy is no longer an issue for our algorithm since

`1-minimization properly regularizes linear regression [22]. We can use very high-dimensional

feature spaces with little concern about degeneracy. In addition, it is easy to show that the

breakdown point of Ã increases with d [15], [25]. As we will demonstrate in Section VI, the

performance of our algorithm improves gracefully as d increases. The optimization problem (P1)

or (P ′
1) can be efficiently solved by linear programming or convex optimization, allowing us to

experiment with feature space dimensions up to d = 12, 000.

Algorithm 1’s ability to handle high-dimensional features allows us to observe an important

phenomenon about feature selection, which is unique in the framework of sparse representation.
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Theoretical results of [15], [25] have shown that if the signal x is sparse, then with overwhelm-

ing probability, it can be correctly recovered via `1-minimization from any sufficiently large

dimension d of linear measurements ỹ. More precisely, if x has k � n nonzeros, then

d ≥ 2k log(n/d) (22)

random measurements are sufficient for sparse recovery with high probability [32]. This surpris-

ing phenomenon has been dubbed the “blessing of dimensionality” [15], [21]. Thus, one should

expect to see similarly good recognition performance from Algorithm 1 even with randomly

selected facial features:

Definition 2 (Randomfaces): Consider a transform matrix R ∈ Rd×m whose entries are in-

dependently sampled from a zero-mean normal distribution and each row is normalized to unit

length. These row vectors of R can be viewed as d random faces in Rm.

Random projection has been previously studied as a general dimensionality reduction method

for numerous clustering problems [33]–[35], as well as for learning nonlinear manifolds [36],

[37]. Regardless of whether the estimated signal is sparse or not, random projection has the

following advantages over classical methods such as principal component analysis (PCA) and

linear discriminant analysis (LDA):

1) The computation of a random matrix R does not rely on a specific (good) training set,

i.e., it is data independent.

2) A random matrix is extremely efficient to generate, even in very high-dimensional feature

spaces.

These advantages make random projection an very promising approach to dimensionality reduc-

tion in many practical applications of face recognition. For instance, a face-recognition system

for access control may not be able to acquire in advance a complete database of all subjects of

interest, and the subjects in the database may change dramatically over time. When there is a

new subject added to the database, there is no need for recomputing the random transformation

R.

One concern about random projection is its stability, i.e., for an individual trial, the selected

features could be bad [38]. Our experiments in Section VI show that for face recognition this is

usually not a problem as long as the number of features, d, is sufficiently large. Nevertheless, one
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can always ensure higher stability by aggregating the results from multiple random projections.

We next outline one simple scheme to do so.

In Algorithm 1, the classification of a test sample y depends on the residuals ri, i = 1, . . . , k,

w.r.t. the k classes. When the projection matrix R is randomly generated, we seek a robust

estimate of the residuals ri by using an ensemble of Randomface matrices Rj, j = 1, . . . , l.

Define rj
i as the residual of the test image w.r.t. the i-th class using the projection matrix Rj in

Algorithm 1, then the empirical average of the i-th residual over l projections is

E[ri] =
1

l

∑
j=1,...,l

rj
i . (23)

Hence the identity of y can be assigned as

identity(y) = arg min
i

E[ri]. (24)

The optimal membership estimate corresponds to the minimum average residual using the sparse

representations over l randomly generated projection matrices R.

The modified algorithm is summarized as Algorithm 2. The improvement of this algorithm

over Algorithm 1 will be demonstrated in Section VI.

Algorithm 2 (Recognition via an Ensemble of Randomfaces)
1: Input: a matrix of training images A ∈ Rm×n for k subjects, a test image y ∈ Rm, and an

error tolerance ε.

2: Generate l random projection matrices R1, . . . , Rl ∈ Rd×m,

3: for all j = 1, . . . , l do

4: Compute features ỹ = Rjy and Ã = RjA, normalize ỹ and columns of Ã to unit length.

5: Solve the convex optimization problem (P ′
1):

min ‖x‖1 subject to ‖ỹ − Ãx‖2 ≤ ε.

6: Compute rj
i (y) = ‖ỹ − Ã δi(x)‖2, for i = 1, . . . , k.

7: end for

8: For each class i, E[ri]← mean{r1
i , . . . , r

l
i}.

9: Output: identity(y) = arg mini E[ri].
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VI. EXPERIMENTAL VERIFICATION

In this section, we quantitatively verify the performance of Algorithm 1 and Algorithm 2 using

two public face databases, namely, the Extended Yale B database [39] and the AR database [40].

The `1-minimization in our algorithm is based on the “`1-magic” MATLAB toolbox at: http:

//www.acm.caltech.edu/l1magic/. The MATLAB implementation of our algorithms

only takes a few seconds to classify one test image on a typical 3G Hz PC.

We compare the two algorithms with two classical algorithms, namely, nearest neighbor

(NN) and nearest subspace (NS), discussed in the previous section. We denote the results from

Algorithm 2 on Randomface ensembles as “E-Random” in this section (five random projection

matrices are used to compute the average). For all the experiments, the error distortion ε for

Algorithm 1 and Algorithm 2 is set to be ε = 0.05.

A. Boosting the Performance of X-Face Features

We first test our algorithms using several conventional holistic face features, namely, Eigen-

faces, Laplacianfaces, and Fisherfaces. We compare their performance with two unconventional

features: Randomfaces and down-sampled images.

1) Extended Yale B Database: The Extended Yale B database consists of 2,414 frontal-face

images of 38 individuals. The cropped and normalized 192 × 168 face images were captured

under various laboratory-controlled lighting conditions. To fairly compare the performance, for

each subject, we randomly select half of the images for training (i.e., about 32 images per

subject), and the other half for testing. The reason for randomly choosing the training set is to

make sure that our results and conclusions will not depend on any special choice of the training

data.

We chose to compute the recognition rates with the feature space dimensions 30, 56, 120,

and 504, respectively. Those numbers correspond to the dimensions of the down-sampled image

with the ratios 1/32, 1/24, 1/16, and 1/8, respectively.9 Notice that Fisherfaces are different from

the other features because the maximal number of valid Fisherfaces is one less than the number

9We cut off the dimension at 504 as the implementation of Eigenfaces and Laplacianfaces reaches the memory limit of

MATLAB. Although our algorithm persists to work far beyond on the same computer, 504 is already sufficient to reach all our

conclusions.
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TABLE I

RECOGNITION RATES OF ALGORITHM 1 (OR 2) ON THE EXTENDED YALE B DATABASE. THE BOLD NUMBERS INDICATE

THE BEST AMONG ALL FEATURES.

Dimension (d) 30 56 120 504

Eigen [%] 86.5 91.63 93.95 96.77

Laplacian [%] 87.49 91.72 93.95 96.52

Random [%] 82.6 91.47 95.53 98.09

Downsample [%] 74.57 86.16 92.13 97.1

Fisher [%] 86.91 N/A N/A N/A

E-Random [%] 90.72 94.12 96.35 98.26

TABLE II

RECOGNITION RATES OF NEAREST NEIGHBOR (LEFT) AND NEAREST SUBSPACE (RIGHT) ON THE EXTENDED YALE B

DATABASE. THE BOLD NUMBERS INDICATE THE BEST AMONG ALL FEATURES.

Dimension (d) 30 56 120 504

Eigen [%] 74.32 81.36 85.50 88.40

Laplacian [%] 77.13 83.51 87.24 90.72

Random [%] 70.34 75.56 78.79 79.04

Downsample [%] 51.69 62.55 71.58 77.96

Fisher [%] 87.57 N/A N/A N/A

Dimension (d) 30 56 120 504

Eigen [%] 89.89 91.13 92.54 93.21

Laplacian [%] 88.98 90.39 91.88 93.37

Random [%] 87.32 91.47 93.87 94.12

Downsample [%] 80.78 88.15 91.13 93.37

Fisher [%] 81.94 N/A N/A N/A

of classes k [3], which is 38 in our case. As a result, the recognition result for Fisherfaces is

only available at dimension 30 in our experiment.

The subspace dimension for the NS algorithm is 9, which has been mostly agreed upon in

the literature for processing facial images with only illumination change.10 Tables I and II show

the recognition rates for the X-face features.

These recognition rates shown in Table II are consistent with those that have been reported in

the literature, although some reported on different databases or with different training subsets.

10We have experimented with other subspace dimensions that are either less or greater than 9, and they eventually led to a

decrease in performance.
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Fig. 9. The seven training images of an individual in the AR database.

For example, He et. al. [4] reported the best recognition rate of 75% using Eigenfaces at 33

dimension, and 89% using Laplacianfaces at 28 dimension on the Yale face database, both using

NN. In [31], Lee et. al. reported 95.4% accuracy using the NS method on the Yale B database.

2) AR Database: The AR database consists of over 4,000 frontal images for 126 individuals.

For each individual, 26 pictures were taken in two separate sessions. These images include more

facial variations including illumination change, expressions, and facial disguises comparing to the

Extended Yale B database. In the experiment, we chose a subset of the dataset consisting of 50

male subjects and 50 female subjects. For each subject, 14 images with only illumination change

and expressions were selected11: The seven images from Session 1 for training, and the other

seven from Session 2 for testing. The images are properly cropped with dimension 165× 120,

and all converted to grayscale. We selected four feature space dimensions: 30, 54, 130, and 540,

which correspond to the down-sample rations 1/24, 1/18, 1/12, and 1/6, respectively. Because

the number of subjects is 100, results for Fisherfaces are only given at dimension 30 and 54.

This database is substantially more challenging than the Yale database, since the number of

subjects is now 100 but the training images is reduced to seven per subject: Four neutral faces

with different lighting conditions and three faces with different expressions (see Figure 9 for an

example).

For NS, since the number of training images per subject is seven, any estimate of the face

subspace cannot have dimension higher than 7. We chose to keep all seven dimensions for NS

in this case. Tables III and IV show the recognition rates for the X-face features.

Based on the results on the Extended Yale B database and the AR database, we draw the

11Please refer to the companion submission [18] for our proposed treatment enforcing the sparsity constraint in the presence

of (facial) image occlusion.
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TABLE III

RECOGNITION RATES OF ALGORITHM 1 (OR 2) ON THE AR DATABASE. THE BOLD NUMBERS INDICATE THE BEST AMONG

ALL FEATURES.

Dimension (d) 30 54 130 540

Eigen [%] 71.14 80 85.71 91.99

Laplacian [%] 73.71 84.69 90.99 94.28

Random [%] 57.8 75.54 87.55 94.7

Downsample [%] 46.78 67 84.55 93.85

Fisher [%] 86.98 92.27 N/A N/A

E-Random [%] 78.54 85.84 91.23 94.99

TABLE IV

RECOGNITION RATES OF NEAREST NEIGHBOR (LEFT) AND NEAREST SUBSPACE (RIGHT) ON THE AR DATABASE. THE

BOLD NUMBERS INDICATE THE BEST AMONG ALL FEATURES.

Dimension (d) 30 54 130 540

Eigen [%] 68.10 74.82 79.26 80.54

Laplacian [%] 73.10 77.11 83.83 89.70

Random [%] 56.65 63.66 71.39 74.96

Downsample [%] 51.65 60.94 69.24 73.68

Fisher [%] 83.40 86.84 N/A N/A

Dimension (d) 30 54 130 540

Eigen [%] 64.09 77.11 81.97 85.12

Laplacian [%] 65.95 77.54 84.26 90.27

Random [%] 59.23 68.24 79.97 83.26

Downsample [%] 56.22 67.67 76.97 82.12

Fisher [%] 80.26 85.84 N/A N/A

following conclusions:

1) In general for both the Yale database and AR database, the best performance of Algorithm

1 and Algorithm 2 consistently outperforms the other two classical methods NN and NS

at each individual feature dimension, and by a large margin. By imposing sparsity via `1-

minimization, the recognition rates of all features improve and converge gracefully when

the feature dimension increases, for both the Yale and AR databases. More specifically,

the best recognition rate for the Yale database via `1-minimization is 98.3%, compared to

90.7% using NN and 94% using NS; the best rate for the AR database via `1-minimization

is 95%, compared to 89.7% for NN and 90% for NS.
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2) In Table I and Table III, the experiments have successfully verified that when sparsity is

properly harnessed, highly accurate recognition can be achieved even with the “uncon-

ventional” down-sampled images or Randomface features. For example in Table III, the

performance of the down-sampled image features gracefully increased from 46.8% at 30-

D to 93.9% at 540-D. In comparison, the same features only achieve 73.7% for NN and

82.1% for NS at 540-D, when such sparsity constraint is not utilized.

3) The results corroborate the theory of compressed sensing, which suggests that d ≈ 128,

according to equation (22), random linear measurements should be sufficient for sparse

recovery in the Yale database, while d ≈ 88 random linear measurements should suffice

for sparse recovery in the AR database [32]. Beyond these dimensions, the performances

of various features in conjunction with `1-minimization converge, with a single randomly

chosen projection performing the best (98.1% recognition rate on Yale, 94.7% on AR).

4) Algorithm 2 further enhances the performance of Randomfaces. For all feature dimensions

on the Yale database and the highest two dimensions on the AR database, Randomface

ensembles achieve the highest accuracy over all other facial features.

5) From the results of NN and NS in Table II and Table IV, the choice of a good combination

of features and classifiers indeed makes some difference. For example, NS outperforms

NN in most cases on both databases. The Fisherface features excel in almost all low-

dimensional facial feature spaces for NN and NS, while it is the Laplacianfaces that

achieve the highest accuracy in higher-dimensional feature spaces.

B. Partial Face Features

There have been extensive studies in both human vision and computer vision literature about

the effectiveness of partial features in recovering the identity of a human face, e.g., see [1], [26].

As a second set of experiments, we test Algorithm 1 on the following three partial facial features:

nose, right eye, and mouth & chin. We use the Extended Yale B database for the experiment and

the training and test datasets are the same as the experiment in subsection VI-A.1. See Figure

10 for a typical example of the extracted features.

Notice that the dimension d of either feature is larger than the number of training samples

(n = 1, 207), and the linear system (5) to be solved becomes over-determined. Nevertheless, we

apply the same Algorithm 1 anyway to encourage sparsity of the solution. The results in Table
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Fig. 10. Illustration of the three partial features. Left: Nose. Middle: Right eye. Right: Mouth & chin.

TABLE V

LEFT: EXAMPLE OF RIGHT-EYE (RE) FEATURE AND RIGHT-FACE (RF) FEATURE. RIGHT: RECOGNITION RATES OF

ALGORITHM 1, NN, AND NS ON THE EXTENDED YALE B DATABASE.

Features Nose Right Eye Mouth & Chin

Dimension (d) 4,270 5,040 12,936

Algorithm 1 [%] 87.32 93.7 98.32

NS [%] 83.68 78.62 94.37

NN [%] 49.21 68.77 72.66

V again show that the proposed algorithm achieves much better recognition rates than both NN

and NS, which again demonstrate the significance of imposing the sparsity constraint in face

recognition. These experiments also shows the scalability of the proposed algorithm in working

with features of over 104 dimensions.

C. Receiver Operating Characteristics

In this experiment, we verify how Algorithm 1, together with the outlier rejection rule (21)

given in Section IV, can effectively detect and reject invalid testing images. Conventionally, the

two major indices used to measure the accuracy of outlier rejection are the false acceptance

rate (FAR) and the verification rate (VR). False acceptance rate calculates the percentage of test

samples that are accepted and wrongly classified. Verification rate is one minus the percentage of

valid test samples that are wrongfully rejected. A good recognition system should achieve high
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verification rates even at very low false acceptance rates. Therefore, the accuracy and reliability

of a recognition system are typically evaluated by the FAR-VR curve (sometimes it is loosely

identified as the receiver operating characteristic (ROC) curve).

In this experiment, we only use the more challenging AR dataset – more subjects and more

variability in the testing data make outlier rejection a more relevant issue. The experiments are

run under two different settings. The first setting is the same as in subsection VI-A.2: 700 training

images for all 100 subjects and another 700 images for testing. So in this case, there is no real

outliers. The role of validation is simply to reject test images that are difficult to classify. In the

second setting, we remove the training samples of every third of the subjects and add them into

the test set. That leaves us 469 training images for 67 subjects and 700 + 231 = 931 testing

images for all 100 subjects. So about half of the test images are true outliers.12 We compare

three algorithms: Algorithm 1, NS, and NS. To be fair, all three algorithms use exactly the same

features, 504-dimensional eigenfaces.13

Figure 11 shows the FAR-VR curves obtained under the two settings. Notice that Algorithm

1 significantly outperforms NS and NN, as expected. In our companion paper [18], we have also

computed the ROC curves for the Extended Yale B dataset using the entire image as feature.

We observe there that the validation performance of Algorithm 1 improves much further with

the full image whereas the other methods do not – their performance saturates when the feature

dimension is beyond a few hundred.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we have contended both theoretically and experimentally that exploiting sparsity

is critical for high-performance face recognition. With sparsity properly harnessed, the choice

of features becomes less important than the number of features used (in our face recognition

example, approximately 100 are sufficient to make the difference negligible). Furthermore, when

the number of features are large enough (from our experiments, approximately 500), even

randomly generated features or severely down-sampled images are just as good as conventional

face features such as Eigenfaces and Fisherfaces. This revelation almost goes against conventional

12More precisely, 462 out of the 931 test images belong to subjects not in the training set.
13Notice that according to Table III, among all 504-D features, eigenfaces are in fact the worst for our algorithm. But we use

it anyway as this gives a baseline performance for our algorithm.
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Fig. 11. The FAR-VR curves (in red color) of Algorithm 1 using Eigenfaces. They are compared with the curves of NS and

NN using Eigenfaces. Left: 700 images for all 100 subjects in the training, no real outliers in the 700 test images. Right: 469

images for 67 subjects in the training, about half of the 931 test images are true outliers.

wisdom, but is strongly corroborated by the emerging mathematical theory of compressed sensing

[15], [32].

Notice that in this paper, we never explicitly use any illumination model to reduce the effect of

lighting on the faces, unlikely the methods that use quotient or self-quotient images [20], [41].

In a related study, we have verified empirically that using self-quotient images improves our

algorithm only slightly, suggesting that our algorithm can already handle illumination without

any preprocessing. The linear representation model (3) is the only assumption that we made

about the relationship between the test image and the training images. As we see from the

results on the AR database, this model apparently works well with variation in facial expression

too.

The conclusions drawn in this paper apply to any object recognition problems where the linear

feature model (5) is valid or approximately so. However, for face recognition with pose variation,

the linear model may no longer be accurate. Most existing solutions have therefore relied on

nonlinear kernel methods that render nonlinear face structures linearly separable [10], [26], [42].

Yet practitioners are faced with similar over-fitting problems in even higher-dimensional kernel

spaces. We believe the proposed classification framework via `1-minimization may also provide

new solutions for such kernel-based methods. Furthermore, in the companion paper [18], we have

demonstrated how sparsity also plays a crucial role in face recognition when the test images are
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severely corrupted and occluded.
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