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Abstract

With the introduction of consumer light field cameras, light field
imaging has recently become widespread. However, there is an
inherent trade-off between the angular and spatial resolution, and
thus, these cameras often sparsely sample in either spatial or an-
gular domain. In this paper, we use machine learning to mitigate
this trade-off. Specifically, we propose a novel learning-based ap-
proach to synthesize new views from a sparse set of input views.
We build upon existing view synthesis techniques and break down
the process into disparity and color estimation components. We
use two sequential convolutional neural networks to model these
two components and train both networks simultaneously by mini-
mizing the error between the synthesized and ground truth images.
We show the performance of our approach using only four corner
sub-aperture views from the light fields captured by the Lytro Illum
camera. Experimental results show that our approach synthesizes
high-quality images that are superior to the state-of-the-art tech-
niques on a variety of challenging real-world scenes. We believe
our method could potentially decrease the required angular reso-
lution of consumer light field cameras, which allows their spatial
resolution to increase.

Keywords: view synthesis, light field, convolutional neural net-
work, disparity estimation

Concepts: •Computing methodologies→ Image manipulation;
Computational photography;

1 Introduction

Light fields provide a rich representation of real-world scenes,
enabling exciting applications such as refocusing and viewpoint
change. Generally, they are obtained by capturing a set of 2D
images from different views [Levoy and Hanrahan 1996; Wilburn
et al. 2005] or using a microlens array [Adelson and Wang 1992;
Ng et al. 2005; Georgiev et al. 2006]. The early light field cam-
eras required custom-made camera setups which were bulky and
expensive, and thus, not available to the general public. Recently,
there has been renewed interest in light field imaging with the in-
troduction of commercial light field cameras such as Lytro [2016]
and RayTrix [2016]. However, because of the limited resolution of
the sensors, there is an inherent trade-off between angular and spa-
tial resolution, which means the light field cameras sample sparsely
in either the angular or spatial domain. For example, Pelican cam-
eras [Pelican Imaging 2016] have an array of 2× 2 cameras.

To mitigate this problem, we propose a learning-based approach to
synthesize novel views from a sparse set of input views captured
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Figure 1: We propose a learning-based approach to synthesize
novel views from a sparse set of input views captured with a con-
sumer light field camera. We capture a light field with angular reso-
lution of 8×8 using a Lytro Illum camera and use only the four cor-
ner sub-aperture images as our input. Our learning-based method
is able to handle the occlusion boundaries between the flower and
the background and produce a plausible image which is comparable
to the ground truth image. We show comparison against state-of-
the-art approaches in Fig. 7. The figures throughout the paper are
best seen by zooming in to the electronic version of the paper.

using consumer light field cameras. Inspired by the recent success
of deep learning in a variety of applications, such as image denois-
ing [Burger et al. 2012], super-resolution [Dong et al. 2014], and
deblurring [Sun et al. 2015], we propose to use convolutional neu-
ral networks (CNN) to predict novel views using the sparse input
views and the position of the novel view in the light field. However,
the major challenge is that training a single end-to-end CNN for
this task is difficult, producing novel views that are quite blurry, as
shown in Fig. 6.

Existing view synthesis approaches [Chaurasia et al. 2011; Chaura-
sia et al. 2013; Wanner and Goldluecke 2014] typically first esti-
mate the depth at the input views and use it to warp the input images
to the novel view. They then combine these images in a specific
way (e.g., by weighting each warped image [Chaurasia et al. 2013])
to obtain the final novel view image. To make the learning more
tractable, we build upon these methods and break down the task
into disparity1 and color estimation components. The main contri-
bution of our work is to use machine learning to model these two
components and train both models by directly minimizing the error
between the synthesized and ground truth images. In our system,

1Because of the regularity of camera positions in structured light fields,
depth and disparity are closely related and we use them interchangeably.
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Figure 2: This scene demonstrates a seahorse statue in front of a car (on the right) and a street. The method of Wanner and Goldluecke [2014]
takes the estimated disparity at the input views and synthesizes images at novel views. We compare our approach against this method using
several state-of-the-art light field disparity estimation methods as its input. We use only four corner images of a light field captured with a
Lytro Illum camera as the input and synthesize one of the middle views with all these techniques. Although these disparity estimation methods
produce reasonable disparity maps, they are not specifically designed for view synthesis. Furthermore, Wanner and Goldluecke’s method
assumes the images to be ideal, while, in practice, the images captured with commercial light field cameras often contain noise and suffer
from optical distortions. Therefore, these methods produce results with tearing, ghosting, and other artifacts. Our method, however, learns to
handle these inaccuracies and produces disparities that are suitable for this application. As a result, we generate high-quality images without
disturbing artifacts that are superior to other methods, both visually and numerically in terms of PSNR (dB) and structural similarity (SSIM).
Larger SSIM values show better perceptual quality. Note that only our method is able to reconstruct the highlight and the dark structure in
the green and blue insets, respectively. See Fig. 10 for comparison of the estimated disparities.

we use two sequential CNNs for estimating the disparity and the
final pixel colors. Since our disparity estimation CNN is trained to
directly minimize the synthesis error, our estimated disparities are
more suitable for this application than existing disparity estimation
techniques [Wanner and Goldluecke 2012; Tao et al. 2013; Wang
et al. 2015; Jeon et al. 2015] (see Fig. 10). Moreover, since we
train our system on the light fields generated by consumer light field
cameras, it learns to model the noise and other inaccuracies of these
cameras. Therefore, our method produces better results than the
state-of-the-art optimization-based approach of Wanner and Gold-
luecke [2014], as shown in Fig. 2.

We demonstrate the performance of our approach using only the
four corner sub-aperture views from 8× 82 light fields captured by
the Lytro Illum camera (see Fig. 1). Experimental results demon-
strate that our method outperforms state-of-the-art schemes on chal-
lenging cases. Our method is two orders of magnitude faster than
the recent learning-based DeepStereo method of Flynn et al. [2016],
taking only 12.3 seconds to synthesize an image from four input
views of size 541 × 376. Our system could potentially be used to
decrease the required angular resolution of current cameras, which
allows their spatial resolution to increase. Another application of
our approach is to increase the baseline of current cameras and use
our method on a subset of four angular views to synthesize the in
between views. In summary, we make the following contributions:

• We present the first machine learning approach for view syn-
thesis using consumer light field cameras. Our system con-
sists of disparity and color estimation components which we
model using two sequential CNNs. Note that although CNNs
have been recently used for light field super-resolution [Yoon
et al. 2015] and depth estimation [Heber and Pock 2016],
these methods are not able to directly synthesize novel views
at arbitrary locations.

• The output of our first network is disparity and typically we
would need ground truth disparities to train this network.

2The actual angular resolution of the Lytro Illum cameras is 14 × 14.
However, the three views from each side are usually black, and thus, we use
only the eight middle views in our implementation.

However, we show how to train both networks simultaneously
by directly minimizing the error between the synthesized and
ground truth images.

• Since we train our disparity estimator in this way, our dispari-
ties are suitable for the view synthesis application. To the best
of our knowledge, our method is the first to propose a disparity
estimator which is specifically designed for this application.

2 Related Work

The problem of the light field’s limited resolution has been ex-
tensively studied in the past and several powerful methods for in-
creasing the resolution in both angular [Levin and Durand 2010;
Shi et al. 2014; Wanner and Goldluecke 2014] and spatial [Bishop
et al. 2009; Cho et al. 2013] domains have been proposed. For
brevity, we only focus on the approaches that are designed for an-
gular super-resolution. We start by reviewing the algorithms that
specifically work for light fields and then explain the approaches
that perform view synthesis for general scenes and objects.

Light Field Super-resolution – Levin and Durand [2010] use a
prior based on the dimensionality gap to reconstruct the full 4D
light field from a 3D focal stack sequence. Shi et al. [2014] leverage
sparsity in the continuous Fourier spectrum to reconstruct a dense
light field from a 1D set of view points. Schedl et al. [2015] re-
construct a full light field using multidimensional patches from a
sparse set of input views. These methods require the input samples
to be captured with a specific pattern and are not able to synthesize
novel views at arbitrary positions. Marwah et al. [2013] propose a
dictionary-based approach to reconstruct light fields from a coded
2D projection. However, their method requires the light fields to be
captured in a compressive way.

Mitra and Veeraraghavan [2012] introduce a patch-based approach
where they model the light field patches using a Gaussian mixture
model. However, this method is not robust against noise, and strug-
gles on low-quality images taken with commercial light field cam-
eras. Zhang et al. [2015] propose a phase-based approach to re-
construct light fields. However, their method is limited since it is
designed for a micro-baseline stereo pair. Moreover, their approach



is iterative, which is often slow and prevents its usage in practice.
Yoon et al. [2015] perform spatial and angular super-resolution on
light fields using convolutional neural networks (CNN). However,
their method can only increase the resolution by a factor of two,
and is not able to synthesize views at arbitrary locations. Layered
patch-based synthesis has been proposed by Zhang et al. [2016] for
various light field editing applications. Although they show impres-
sive results for applications like hole-filling and reshuffling, their
approach has limited performance for view synthesis and is not able
to handle challenging cases as shown in Fig. 9.

Recently, Wanner and Goldluecke [2014] proposed an optimization
approach to reconstruct images at novel views from an input light
field. Given the depth estimates at the input views, they reconstruct
novel views by minimizing an objective function which maximizes
the quality of the final results. Although their method produces
reasonable results on dense light fields, for sparse input views, it
often produces results with tearing, ghosting, and other artifacts as
shown in Fig. 2. We believe this is because of two main reasons.
First, they estimate the disparity at the input views as a preprocess,
independently of the view synthesis process. However, even state-
of-the-art light field disparity estimation techniques [Wang et al.
2015; Jeon et al. 2015] are not typically designed to maximize the
quality of synthesized views, and thus, they are not suitable for this
application. Second, Wanner and Goldluecke’s method assumes
that the images are captured under ideal conditions. However, in
practice, the images from consumer light field cameras are usually
noisy and suffer from optical distortions.

View Synthesis for Scenes – View synthesis has a long history in
both vision and graphics. One category of approaches [Eisemann
et al. 2008; Goesele et al. 2010; Chaurasia et al. 2011; Chaurasia
et al. 2013] synthesizes novel views of a scene in a two-step pro-
cess. These methods first estimate the depth at the input views and
use the depth to warp the input images to the novel view. They then
produce the final image by combining these warped images. These
approaches typically use multi-view stereo algorithms (e.g., PMVS
by Furukawa et al. [2010]) to estimate depth and are not suitable
for light fields with a narrow baseline. In our system, we also have
depth and color estimation components. However, unlike these ap-
proaches, we use machine learning to model these two components.
Furthermore, inspired by Fitzgibbon et al.’s approach [2003], we
train both our disparity and color estimation models by directly
minimizing the appearance error.

Another common approach is to synthesize images without explic-
itly estimating the geometry. For example, Mahajan et al. [2009]
propose to move the gradients in the input images along a spe-
cific path to reconstruct the image at a novel view. Shechtman et
al. [2010] propose a patch-based optimization framework to recon-
struct images at novel views. However, these approaches are not
able to utilize all the information available in light fields since they
work on only two input images.

DeepStereo – Flynn et al. [2016] has recently proposed a deep
learning method to perform view synthesis on a sequence of images
with wide baselines. They first project the input images on multi-
ple depth planes. They then estimate the pixel color and weight of
the image at each depth plane from these projected images. Finally,
they compute a weighted average of the estimated pixel colors to
obtain the final pixel color. Comparing to this approach, our sys-
tem has several key differences. First, our method is specifically
designed for light fields, which have much narrower baselines and
more regular camera positions. Second, unlike their approach, our
system explicitly estimates the disparity which could potentially be
used in other applications. Finally, our system is significantly faster
than their method (several minutes vs. seconds). This shows the
efficiency of our system, validating more practical usage.

View Synthesis for Objects – Since the recent release of large
datasets of 3D shape models, synthesizing object views from a

single image has become popular. Kholgade et al. [2014] trans-
fer texture from the corresponding 3D model to render novel views
of an object. However, manual annotation is required to specify
the corresponding 3D model and its placement in the image. Su et
al. [2014] resolve this limitation by selecting several similar models
in the dataset and then interpolating between them. However, these
methods heavily rely on the retrieval process and become vulnera-
ble when a similar model cannot be found.

Recently, several algorithms have approached this problem by uti-
lizing deep learning. Dosovitskiy et al. [2015] train a CNN which
can render images of chairs once a graphics code containing the
rendering details is given. Yang et al. [2015] expand this work
and decode the implicit rendering information from the input im-
age instead of representing it explicitly as the graphics code. They
then apply the desired transformation and render the new view.
Tatarchenko et al. [2015] also adopt a similar approach, but do not
explicitly decouple the identity and the pose. Zhou et al. [2016]
train a CNN to estimate appearance flow which is then used to
warp the input image to the novel view. These methods are specifi-
cally designed to work on objects and do not work well on general
scenes. Furthermore, they only use a single image, and thus, are not
able to utilize all the images in light fields.

3 Proposed Learning-Based Algorithm

Given a sparse set of input views Lp1 , · · · , LpN and the position
of the novel view q, our goal is to estimate the image at the novel
view Lq . Formally, we can write this as:

Lq = f(Lp1 , · · ·LpN , q), (1)

where pi and q refer to the (u, v) coordinates of the input and novel
view, respectively. Here, f is a function which defines the rela-
tionship between the input views and the novel view. This relation-
ship is typically very complex as it requires finding connections
between all the input views, and collecting appropriate information
from each image based on the position of the novel view. Inaccu-
racies such as noise and optical distortions in consumer light field
cameras further add to the complexity of this relationship.

Therefore, we propose to learn this relationship. Inspired by the
recent success of deep learning in a variety of applications, we pro-
pose to use convolutional neural networks (CNN) as our learning
model. A straightforward way to do so is to directly model the
function f with a CNN. In this case, the CNN takes the input views
as well as the position of the novel view and outputs the image at the
novel view. However, as shown in Fig. 6, this naı̈ve solution often
produces blurry results. This is mainly due to the fact that the re-
lationship is complex and requires the network to find connections
between distant pixels, which makes the training difficult.

We make the training more tractable by following the pipeline of
existing view synthesis techniques [Chaurasia et al. 2011; Chaura-
sia et al. 2013] and breaking the system down into disparity and
color estimation components. Our main contribution is to use ma-
chine learning to model each component and train both models si-
multaneously by minimizing the error between the synthesized and
ground truth images (see Sec. 3.3). In our system, we first estimate
the disparity at the novel view from a set of features extracted from
the sparse set of input views:

Dq = gd(K), (2)

where Dq is the estimated disparity at the novel view, K repre-
sents a set of features including the mean and standard deviation
of warped images at different disparity levels (see Sec. 3.1). More-
over, gd defines the relationship between the input features and the
disparity which we model using a CNN. The estimated disparity is
then used to warp the input images to the novel view. Specifically,
we perform a backward warp by sampling the input images based



on the disparity at the novel view (see Eq. 4). Finally, we estimate
the image at the novel view using a set of input features including
all the warped images, the estimated disparity, and the position of
the novel view:

Lq = gc(H), (3)

where H represents our feature set and gc defines the relationship
between these features and the final image. The overview of our
system is shown in Fig. 3. In the next sections we describe the
disparity estimator (Eq. 2) and the color predictor (Eq. 3) in detail.

3.1 Disparity Estimator

The goal of this component is to estimate the disparity at the novel
view Dq . For every pixel of the novel view image, this disparity
points to the corresponding pixel in each input view:

L̄pi(s) = Lpi [s+ (pi − q)Dq(s)] , (4)

where s is a vector containing the pixel position in the x and y
directions. Moreover, pi and q are also vectors containing the posi-
tion of input and novel views in the u and v directions. Here, L̄pi
is the image obtained by backward warping the input view Lpi us-
ing the disparity Dq . If the disparity is accurate, it will point to the
correct pixel in the input images, and thus, all the warped images
would have the same color at each pixel. However, the disparity is
not known a priori and we need to estimate it first.

To estimate the disparity, we first warp (backward) all the input
images to the novel view using a set of predefined disparity levels
d1, · · · , dL as follows:

L̄dl
pi(s) = Lpi [s+ (pi − q) dl] , (5)

where i ∈ {1, · · · , N} and l ∈ {1, · · · , L}. In our implementation
we use L = 100 disparity levels in the range [−21, 21] pixels. We
use ideas from the depth estimation approach of Tao et al. [2013],
which is also the core of other recent techniques [Wang et al. 2015;
Tao et al. 2015], to extract a set of features from these warped im-
ages. Specifically, we compute the mean and standard deviation of
all the warped input images at each disparity level as follows:

Mdl(s) =
1

N

N∑
i=1

L̄dl
pi(s) (6)

V dl(s) =

√√√√ 1

N − 1

N∑
i=1

(L̄
dl
pi(s)−Mdl(s))2.

We generate our input features by concatenating the mean
and standard deviation for all the disparity levels K =
{Md1 , V d1 , · · · ,MdL , V dL} (see Fig. 4). Since we use 100 dis-
parity levels, our feature vector has 200 channels.

As discussed earlier, all the warped input views have photo-
consistency for the correct disparity level. Therefore, existing tech-
niques [Tao et al. 2013; Wang et al. 2015] typically select the dis-
parity level that has the minimum standard deviation and maximum
mean contrast. Since the obtained disparity from this process is
usually noisy, these methods use an optimization scheme to regular-
ize the disparity. Although these approaches produce high-quality
disparity maps, they are not specifically designed for the view syn-
thesis application. Therefore, as shown in Fig. 10, they often have
artifacts around the occlusion boundaries which are important re-
gions for synthesizing high-quality images.

We avoid this problem using a learning system to estimate the opti-
mal disparity map from the input features. As discussed in Sec. 3.3,
we train our system by minimizing the error between the estimated
and ground truth novel view images. Note that one may train the
disparity estimator by minimizing the error between the estimated
and ground truth disparities. However, we avoid this alternative

since it has two main drawbacks. First, training in this way requires
a database of the light fields with their corresponding ground truth
disparities which is difficult to obtain. Second, if the final goal is
to synthesize novel views, the disparity does not need to always be
accurate. For example, a constant color region can be easily recon-
structed even with inaccurate disparity.

As our model, we use a deep CNN, consisting of four convolutional
layers with decreasing kernel sizes as depicted in Fig. 5. All the
layers with the exception of the last layer are followed by a rectified
linear unit. Next, we explain our color predictor component.

3.2 Color Predictor

The goal of this component is to estimate the final color using the
disparity, estimated by the first CNN. The estimated disparity can
be used to simply warp the input views to the novel view using
Eq. 4. Existing view synthesis techniques [Chaurasia et al. 2011;
Chaurasia et al. 2013; Wanner and Goldluecke 2014] have a spe-
cific way of combining these warped images and generating the
final image. For example, Chaurasia et al. [2013] obtain the final
image by computing the weighted average of all the warped images.
However, these approaches are usually simple and do not properly
model the relationship between the warped and final synthesized
images which is complex because of occlusion.

In contrast, we propose to learn this relationship. We estimate the
final image from a set of input features including all the warped
images, the estimated disparity, and the position of the novel view.
Specifically, our feature vector is H = {L̄p1 , · · · , L̄pN , Dq, q}.
Note that the disparity is useful to detect the occlusion boundaries
and collect appropriate information from the warped images near
these regions. Moreover, the position of the novel view can poten-
tially be used to weight a particular image more in reconstructing
the novel view. For example, if q is close to p1, L̄p1 should be
heavily used in reconstructing the novel view at position q. Al-
though we do not explicitly model the occlusion, our system learns
to reconstruct the final image by relying on the images with valid
information in the occluded regions.

Here, we use a similar deep network as in Fig. 5 with different
number of inputs and outputs. In this case, our input has 3N + 3
channels and the output is an RGB image which has 3 channels. In
the next section, we discuss the details of training our system.

3.3 Training

In order to synthesize high-quality images that are close to the
ground truth, we train the networks by minimizing the L2 distance
between the synthesized and ground truth images:

E =

3∑
k=1

(L̂q,k − Lq,k)2, (7)

where the summation is over the RGB channels, Lq,k is the ground
truth image at the novel view, and L̂q,k is our estimated image
which is obtained by Eqs. 2 and 3. In order to use a gradient de-
scent based technique to minimize our energy function, we need to
compute the derivative of the error in Eq. 7 with respect to both
networks’ weights, i.e., ∂E/∂wd and ∂E/∂wc, where wd and wc

are vectors and refer to all the weights of the disparity and color
estimator networks, respectively.

Since the color predictor network directly outputs the synthesized
image, ∂E/∂wc can be easily computed as in standard backpropa-
gation [Rumelhart et al. 1986]. For ∂E/∂wd, we use the chain rule
to break down the derivative into three terms as follows:

∂E

∂wd
=

3∑
k=1

[
∂E

∂L̂q,k

∂L̂q,k

∂Dq

]
∂Dq

∂wd
. (8)
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Figure 3: Our system consists of disparity estimator and color predictor components which we model using two sequential CNNs. In our
system, we first extract a set of features from the sparse input views. We then use the first CNN to estimate the disparity at the novel view. We
then use this disparity to warp (backward) all the input views to the novel view. Our second CNN uses all the warped images along with a
few other features to generate the final image.
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Figure 4: We show our mean and standard deviation features for
a single disparity level on the SEAHORSE scene. This particular
disparity level is correct for the foreground. As a result, the sea-
horse in the mean image is sharp, while the background is blurry.
Moreover, the standard deviation is small on the seahorse and is
large on the background. Our network learns to use these features
to estimate the correct disparity for each pixel.
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Figure 5: Our disparity estimator network consists of four con-
volutional layers with decreasing kernel sizes. All the layers are
followed by a rectified linear unit (ReLU). Our color predictor net-
work has a similar architecture with different number of input and
output channels. We only used convolutional layers to operate on
images with any size. We empirically found that this architecture
properly models both our components and is reasonably fast.

Since our error is quadratic, the first term can be easily calcu-
lated. The last term is the derivative of the disparity estimation net-
work’s output with respect to its weights which can be calculated
as usual [Rumelhart et al. 1986]. The middle term is the derivative
of the final image with respect to the estimated disparity. Note that
the disparity is used to generate a set of features H (see Sec. 3.2).
These features are then used by the color estimator network to pro-
duce the final image. Therefore, we have:

∂L̂q,k

∂Dq
=

3N+3∑
t=1

∂L̂q,k

∂Ht

∂Ht

∂Dq
, (9)

where the summation is over the individual channels of the feature
vector. Here, the first term is the derivative of the color predictor
network’s output with respect to its input and is straightforward to
calculate. For the second term, we need to investigate each channel
separately. The first 3N channels of our input feature vector H are
the warped images, and thus, ∂Ht/∂Dq is basically the derivative
of the warping function in Eq. 4. Fortunately, since we use bicubic
interpolation to compute the color values, this function is differen-
tiable. For simplicity of the implementation, we numerically cal-
culate this gradient. The feature at the next channel H3N+1 is the

Input Views Ground TruthSingle CNN Ours

Figure 6: We compare our approach against single CNN architec-
ture. We show an inset of the FLOWER 1 and ROCK scenes on the
top and bottom rows, respectively. One CNN is not able to model
the complex relationship between the input images and the novel
view image, and thus, produces results with ghosting and other ar-
tifacts. In contrast, our system containing two sequential CNNs is
able to properly model the relationship and produce high-quality
results which are comparable to the ground truth. Comparison of
all the synthesized views can be found in the supplementary video.

estimated depth and its derivative is equal to one. Finally, the last
two channels are the position of the novel view which are indepen-
dent of the disparity, and thus, their gradient is equal to zero.

At every iteration of the training, we use these gradients to update
both networks’ weights in the opposite direction of the gradients.
We used a set of 100 light fields captured with the Lytro Illum cam-
era in our training set. To handle a diverse test set, we ensured our
training set contained a variety of different scenes including bicy-
cles, cars, trees, and foliage (see supplementary materials). We cap-
tured most of these images ourselves, and obtained some of them
from Raj et al.’s dataset [2016]. These light fields have angular
resolution of 8 × 8 from which we only used the four corner sub-
aperture images as our input. For each light field, we randomly
selected four novel view positions from the original 8× 8 grid. For
each novel view position we extracted a set of features (see Eq. 6)
and used the original captured image at that position as the ground
truth image.

Since training on the full images is slow, we extracted patches of
size 60 × 60 with a stride of 16 pixels from the full images. This
resulted in over 100,000 patches which we used to train our system.
Note that for every input patch, our system outputs a patch of size
36×36 (reduced size is due to convolutions). These output patches
are then compared to the ground truth patches and the error at each
pixel is backpropagated to train the networks. Therefore, in prac-
tice, we had more than 100,000,000 examples which we found to be
sufficient to properly train both networks. We used mini-batches of
size 20 to have the best trade-off between speed and convergence.
We randomly initialized our networks’ weights using the Xavier ap-
proach [Glorot and Bengio 2010] and trained our system using the
ADAM solver [Kingma and Ba 2014], with β1 = 0.9, β2 = 0.999,
and a learning rate of 0.0001.
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Figure 7: We compare our approach against the method of Wanner and Goldluecke [2014] using several state-of-the-art light field disparity
estimation methods as its input. For each scene, we also show our estimated disparity, where regions with darker color are closer to the
camera. The PSNR and structural similarity (SSIM) values are listed below each result. Note that some artifacts are hard to see in still
images, and thus, we refer the readers to also view the supplementary video.
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Figure 8: Comparison of our approach against other methods on a challenging scene. The leaves have thin structures and the scene contains
a significant number of occluded regions which makes the problem difficult. Our approach produces a reasonable result that is better than
other methods. See the video comparison in our supplementary video materials.

Wanner Tao Wang Jeon Ours
PSNR (dB) 30.47 34.33 32.78 34.02 37.50

SSIM 0.861 0.954 0.946 0.952 0.970
Table 1: Comparison of our approach against other methods. The
PSNR and SSIM values are averaged over 30 test scenes.

4 Results

We implemented our approach in MATLAB and used MatCon-
vNet [Vedaldi and Lenc 2015] for implementing our networks. All
the results shown here are generated on light fields captured with
a Lytro Illum camera. The angular resolution of the captured light
fields is 8× 8 from which we only use the four corner sub-aperture
images as our input to generate the full light field. Note that our
approach can generate any in-between views. However, we only
generate the 8 × 8 views to be able to compare them against the
ground truth images. Here, we only show one synthesized image
(5, 5) for each scene, but videos showing all the views can be found
in the supplementary video.

Comparison Against a Single Network – We begin by comparing
to the result of modeling the process using a single CNN in Fig. 6.
Here, the network directly models the relationship between the in-
put images and the novel view (see Eq. 1). However, the relation-
ship is complex and requires the network to often connect distant
pixels, which makes the training difficult. As a result, when com-
pared to our architecture containing two sequential CNNs, the result
of the single CNN is blurry and contains artifacts. For example, the
single CNN is not able to connect the pixels of the white truck in
the input views, and thus, generates a result with ghosting artifacts.

Comparison Against Other Approaches – Next, we compare our
method against Wanner and Goldluecke’s approach [2014]. They
first compute the disparity for each input view using an existing
technique. They then use the disparities within an optimization
framework to obtain the novel view by minimizing an objective
function. We adopt several state-of-the-art light field disparity esti-
mation methods to generate the disparities required for Wanner and
Goldluecke’s method. Specifically, we use the approaches by Wan-
ner and Goldluecke [2012], Tao et al. [2013], Wang et al. [2015],
and Jeon et al. [2015]. We evaluate the results numerically, in terms
of PSNR and structural similarity (SSIM) [Wang et al. 2004]. SSIM
produces a value between 0 and 1, where 1 indicates perfect percep-
tual quality with respect to the ground truth.

Table 1 shows the average PSNR and SSIM values for all the meth-
ods on 30 test scenes. To properly evaluate our system on challeng-
ing cases, we used images of foliage and flowers in about half of

our test set. Note that we had completely separate training and test
sets and none of the test scenes were part of the training set (see
supplementary materials). As seen, our approach produces results
that are significantly better than other methods. We show four of
these scenes in Fig. 7. The FLOWER 1 scene demonstrates a flower
in front of a truck, a building, and a tree (on the right). The flower
and the leaves have complex structure which makes it hard for the
other approaches to accurately estimate the disparity at the bound-
aries. Therefore, their results often contain artifacts around the oc-
clusion boundaries. However, our approach produces a plausible
result which is reasonably close to the ground truth image. Note,
for example, that only our approach is able to properly reconstruct
the truck’s roof (green inset) and the highlight (blue inset).

Next, we examine the CARS scene showing a tree branch in front
of a street. Despite the simplicity of the scene, other approaches
often are not able to accurately estimate the disparity around the
boundaries of the branch from only four input images. There-
fore, their result contains tearing artifacts which can be specifically
seen in the blue inset. Moreover, the method of Wanner and Gold-
luecke [2014], which is used to synthesize the novel view, does not
model the inaccuracies of consumer light field cameras which usu-
ally appear as discoloration in the results (see the colorful pixels in
the red inset). Note that only our approach is able to reconstruct all
the details around the occlusion boundaries such as the thin vertical
line in the red inset.

The FLOWER 2 scene contains a flower with complex structure in
front of a street. Our method produces a reasonable result that is
better than other approaches. Note that only our method is able to
faithfully reconstruct the challenging area between the flower stem
and petal (blue inset). Finally, the ROCK scene is difficult for all the
other approaches. They often are not able to accurately estimate
the disparity around the boundaries of the rock which results in
tearing artifacts. Meanwhile, we produce better results than the
other methods relative to the ground truth.

Overall, all the other approaches show tearing, ghosting, and other
artifacts around the occlusion boundaries which are important ar-
eas for the view synthesis application. The main reason is that
these methods are not specifically designed for this application, and
thus, they often have inaccuracies around these boundaries. More-
over, Wanner and Goldluecke’s approach [2014], which is used for
generating the novel views, assumes the images are captured under
ideal conditions, while this is not the case for consumer light field
cameras. Our method, on the other hand, produces plausible results
which are reasonably close to the ground truth. Numerically, our
results are significantly better than the other approaches.
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of Zhang et al. [2016] on the SEAHORSE scene. The inset shown
here is a bigger version of the red inset in Fig. 2.
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Figure 10: We compare our estimated disparity with other ap-
proaches. The darker color indicates regions that are closer to the
camera. Although some of the other techniques produce disparity
with higher quality than ours, they are often inaccurate around the
occlusion boundaries. Our approach produces a reasonable dis-
parity and is more accurate in the occlusion boundaries which are
important regions for view synthesis.

We compare our method against other approaches on a challeng-
ing scene in Fig. 8. This scene contains a significant number of
occluded regions which are generally difficult for view synthesis.
Therefore, even our approach fails to synthesize a high-quality im-
age in the difficult regions (see Fig. 12). However, our result is
reasonable overall and significantly better than all the other ap-
proaches. Note that the leaves have thin structure and only our
approach is able to properly reconstruct them without introducing
artifacts in the background (green and blue insets).

We also compare our approach against the recent method of Zhang
et al. [2016] in Fig. 9. Note that their approach needs some user
interaction, while ours is fully automatic. Moreover, their method
requires the center view, and thus, uses five input images (instead
of four). Nevertheless, even with user interaction, their approach
is not able to properly decompose the scene into different depth
layers, resulting in tearing artifacts.

Timing – Our method takes around 12.3 seconds to generate a
novel view from four input images of resolution 541 × 376 on an
Intel quad-core 3.4 GHz machine with 16 GB of memory and a
GeForce GT 730 GPU. Specifically, it takes 5.5 seconds to extract
the features, 5.1 seconds to evaluate the disparity estimation net-
work, 0.2 seconds for warping the four input images to the novel
view, and 1.5 seconds to evaluate the color predictor network.

Analyzing Our System – We evaluate the effect of each component
in our system. Figure 10 compares our estimated disparity against
other approaches for the SEAHORSE scene (shown in Fig. 2). Al-
though the disparities produced by some of the other approaches
have higher quality than ours, their disparity often has artifacts

Input Views Warped Images

Our Disparity Our Final Image Ground Truth

Input Views Warped Images

Our Disparity Our Final Image Ground Truth

Figure 11: We evaluate the effect of our color predictor network.
On the top, we show an inset of the FLOWER 1 scene containing
a leaf in the foreground covering part of a tree trunk in the back-
ground. On the bottom, we show an inset of the CARS scene. Al-
though our disparity captures the boundaries correctly, some of the
warped images contain invalid information because of occlusion.
For example, the leaf in the left input views on the top set blocks
part of the tree trunk and the highlight which should be visible
in the novel view. Therefore, as shown by the red arrows, the left
warped images contain artifacts in these regions. Our color predic-
tor network produces high-quality results by collecting appropriate
information from all the warped images.

around the occlusion boundaries which are the most important re-
gions for view synthesis. For example, these methods are not able
to appropriately estimate the disparity of the background at the mid-
dle of the green inset, or the boundaries of the seahorse snout in the
red inset. As a result, they often produce artifacts in these regions
which can be seen in our supplementary video.

Our method, on the other hand, can produce a reasonable disparity
in these regions. Note that our method does not always produce
accurate disparity. However, our inaccuracies usually happen in the
regions that are not important for view synthesis. For example, part
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Figure 12: We show our result for an inset of the LEAVES scene.
Our approach fails to correctly estimate the disparity in the area be-
tween the leaves. In this case, none of the warped images have the
post in between the leaves which is visible in the ground truth im-
age. Since our color predictor estimates the final image from these
warped images, it fails to produce a high-quality image. However,
our result is still more plausible than other methods.
of the seahorse snout is incorrectly detected as background in our
disparity (white region in left part of the red inset). However, this is
a constant color region, and thus, this inaccuracy does not affect the
quality of the synthesized results (see Fig. 2). This is due to the fact
that we train our disparity estimator network by directly minimiz-
ing the error between the synthesized and ground truth images. In
the future, it would be interesting to combine our learning scheme
with the ideas from the existing disparity estimation approaches to
generate a more accurate disparity.

Next, we evaluate the effect of our color predictor network in
Fig. 11. Here, we show an inset of the FLOWER 1 and CARS scenes
on the top and the bottom, respectively. We use the estimated dis-
parity at the novel view to warp all the input views to the novel
view. Due to occlusion, these warped images often contain arti-
facts, as indicated by the red arrows. Our color predictor network
properly detects these regions and produces a high-quality image
by collecting appropriate information from the warped images.

Denoising Effect – Since we use all the input views to generate
the novel views, our results are generally less noisy compared to
the ground truth images. We refer the readers to our supplementary
video to see this effect. This could potentially be useful for captur-
ing light fields in low light conditions where noise is an issue.

Limitations – Our color predictor network generates the final im-
age using the warped images. Therefore, in cases where none of
the warped images contain valid information, our approach is not
able to produce high-quality results. One of these cases is shown in
Fig. 12 for the LEAVES scene. Here, our approach fails to synthe-
size the post in between the leaves and produces tearing artifacts.
However, our result is considerably better than other approaches.

Moreover, as shown in the supplementary video, our method can
be used for extrapolation. However, since we specifically train our
networks for interpolation, our extrapolation results have generally
lower quality. Nevertheless, our method still produces better results
than other approaches.

Finally, although in this paper we focused on light fields obtained
by consumer cameras, we believe a similar architecture can be
adapted for unstructured light fields with larger disparities. How-
ever, as with any learning-based techniques, our system needs to be
retrained to be able to properly work for these cases.

5 Conclusions and Future Work

We have presented a novel learning-based approach for synthesiz-
ing novel views from a sparse set of input views captured with a

consumer light field camera. Our system consists of disparity and
color estimator components which we model using two sequential
convolutional neural networks. We show the result of our approach
on a variety of scenes using only the four corner sub-aperture im-
ages captured with a Lytro Illum camera. Experimental results
show that our method outperforms state-of-the-art approaches.

In the future, we would like to investigate the possibility of using
our system for generating high dynamic range light fields from a set
of views with different exposures. Moreover, it would be interest-
ing to extend our system to work with any number of input views.
We are also interested in improving the speed of our algorithm to
possibly work at interactive rates or even real-time. Finally, there
is potential to use our system along with light field compression
schemes [Tong and Gray 2003; Girod et al. 2003] to increase the
compression ratio by, for example, generating the novel views from
a sparse set and compressing the differences.
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