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Fig. 1. The goal of our approach is to produce a high-quality texture map given the geometry of an object as well as a set of input images and their
corresponding camera poses. A small subset of our input images as well as the rough geometry, obtained using the KinectFusion algorithm, are shown on the
left. Since the estimated geometry and camera poses are usually inaccurate, simply projecting the input images onto the geometry and blending them produces
unsatisfactory results with ghosting and blurring artifacts. We handle the inaccuracies of the capturing process by proposing a novel patch-based optimization
system to synthesize aligned images. Here, we show different views of an object rendered using OpenGL with the texture map generated using our system.
Our approach produces high-quality texture maps and outperforms state-of-the-art methods of Waechter et al. [2014] and Zhou and Koltun [2014].

Image-based texture mapping is a common way of producing texture maps

for geometric models of real-world objects. Although a high-quality texture

map can be easily computed for accurate geometry and calibrated cameras,

the quality of texture map degrades significantly in the presence of inaccura-

cies. In this paper, we address this problem by proposing a novel global patch-

based optimization system to synthesize the aligned images. Specifically, we

use patch-based synthesis to reconstruct a set of photometrically-consistent

aligned images by drawing information from the source images. Our opti-

mization system is simple, flexible, and more suitable for correcting large

misalignments than other techniques such as local warping. To solve the

optimization, we propose a two-step approach which involves patch search

and vote, and reconstruction. Experimental results show that our approach

can produce high-quality texture maps better than existing techniques for

objects scanned by consumer depth cameras such as Intel RealSense. More-

over, we demonstrate that our system can be used for texture editing tasks

such as hole-filling and reshuffling as well as multiview camouflage.
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1 INTRODUCTION

Modeling real-world objects is an important problem with a variety

of applications including video games, virtual reality, and anima-

tions. Geometry reconstruction has been the subject of extensive

research and many powerful algorithms have been developed [Seitz

et al. 2006]. With the availability of consumer depth cameras to the

public, ordinary users are now able to produce geometric models of

objects using techniques like KinectFusion [Newcombe et al. 2011].

However, reproducing the full appearance of real-world objects

also requires reconstructing high-quality texture maps. Image-

based texture mapping is a common approach to produce a view-

independent texture map from a set of images taken from different

viewpoints. However, this is a challenging problem since the ge-

ometry and camera poses are usually estimated from noisy data,

and thus, are inaccurate. Moreover, the RGB images from consumer

depth cameras typically suffer from optical distortions which are not

accounted for by the camera model. Therefore, naïvely projecting

and combining the input images produces blurring and ghosting

artifacts, as shown in Fig. 2.

We observe that we can overcome most of the inaccuracies by

generating an aligned image for every input image. Our method

builds upon the recent work by Zhou and Koltun [2014] that pro-

poses an optimization system to correct the misalignments using

local warping. Although this approach handles small inaccuracies, it

fails to produce high-quality results in cases with large inaccuracies

and missing geometric features because of the limited ability of local

warping in correcting misalignments (see Figs. 1, 2 and 4).

Inspired by the recent success of patch-based methods in image

and video editing tasks, we propose a novel global patch-based opti-

mization system to synthesize aligned images. Our energy function

combines our two main desirable properties for the aligned images;

1) include most of the information from the original input images,

and 2) preserve the photometric consistency of the projection. By

ACM Transactions on Graphics, Vol. 36, No. 4, Article 106. Publication date: July 2017.



106:2 • S. Bi et al.

Geometry

Reference

SimplifiedReference

In
ac

cu
ra

te
 G

eo
m

et
ry

In
ac

cu
ra

te
 C

am
er

a 
Po

se
s

Ours Noisy Naive Waechter Zhou Ours Ground truth
Fig. 2. We generate 24 input views by rendering a synthetic textured bunny from different viewpoints and artificially add inaccuracies by simplifying the
geometry and adding noise to the camera poses. We compare our approach against state-of-the-art methods as well as naïvely projecting and combining the
images. Waechter et al.’s approach [2014] selects a single view per face by solving a complex optimization system to reduce the artifacts around the face
boundaries. However, their results contain visible seams because of large inaccuracies in the geometry and camera poses. Zhou and Koltun [2014] tackle the
inaccuracies of the geometry by using local warping to align the input images, but fail to properly register the images and produce unsatisfactory results.
Moreover, when the camera poses are significantly inaccurate, their system converges to a local minimum, and thus, their results suffer from ghosting and
blurring artifacts. Our approach is more flexible and can properly synthesize aligned images that when combined produce artifact-free texture in both cases.

optimizing our proposed energy function, we simultaneously maxi-

mize the local similarity of the aligned and input images and ensure

the consistency of all the aligned images and the texture map.

Our system draws information from the source images in a patch-

based manner, and thus, is flexible and able to handle large inaccu-

racies. Moreover, our method handles cases with missing geometric

features (see Fig. 4) by synthesizing the missing content, while

the existing warping-based [Zhou and Koltun 2014] and graph-cut

based [Waechter et al. 2014] techniques are not able to do so. Fi-

nally, in contrast to Zhou and Koltun’s approach, we perform the

optimization in the image domain which makes the performance

of our system independent of the complexity of the geometry. In

summary, we make the following contributions:

• We introduce the first patch-based optimization sys-

tem for view-independent image based texture mapping

(Sec. 3.1). Our method corrects misalignments by synthe-

sizing aligned images which can then be used to produce a

single view-independent texture map.

• We propose a simple iterative two-step approach to effi-

ciently solve our energy equation (Sec. 3.2).

• We demonstrate that our approach produces better results

than existing techniques (Sec. 5). Furthermore, we show

other applications of our system (e.g., texture hole-filling)

which are not possible to do with the current methods.

2 RELATED WORK

Reproducing the full appearance of a real-world object from a set

of images has been the subject of extensive research. Image-based

rendering approaches [Buehler et al. 2001; Hedman et al. 2016] repro-

duce the appearance of an object by generating a view-dependent

texture map [Debevec et al. 1996]. However, these methods are only

able to provide the ability to navigate an object with the lighting

condition of the input photographs. Therefore, they cannot be used

for applications where the goal is to use the scanned object in a

new environment with different lightings. Moreover, since these

approaches do not produce a globally consistent texture map, they

are typically not used in gaming, augmented reality, and animations.

View-independent texture mapping approaches like our own, pro-

duce a single consistent texture map from a set of images captured

from different viewpoints, which can then be rendered with different

lightings.1 The main challenge of these methods is addressing the

inaccuracies in the capturing process. Several methods have been

presented to register the images to the geometry in a semi-automatic

way [Franken et al. 2005; Ofek et al. 1997; Pighin et al. 1998] or auto-

matically by, for example, optimizing color consistency [Bernardini

et al. 2001; Pulli and Shapiro 2000], aligning image and geometric

features [Lensch et al. 2001; Stamos and Allen 2002], and maximiz-

ing the mutual information between the projected images [Corsini

et al. 2013, 2009]. While these methods are effective at addressing

the camera calibration inaccuracies, they are not able to handle

inaccurate geometry, and optical distortions in RGB images which

are common problems of consumer depth cameras.

A small number of approaches have been proposed to tackle

general inaccuracies. We categorize these approaches in two classes

and discuss them in the following two subsections.

2.1 Single View Selection

Instead of blending the projected input images, which could gen-

erate blurry results because of misalignments, these approaches

select only one view per face. To avoid visible seams between the

boundaries of each face, they typically solve a discrete labeling

problem [Lempitsky and Ivanov 2007; Sinha et al. 2008; Velho and

Sossai Jr. 2007; Waechter et al. 2014].

For example, the state-of-the-art method of Waechter et al. [2014]

solves a conditional random field energy equation, consisting of two

terms: a data term which favors views that are closer to the current

1Note that, the final textures in this case still have the original lighting condition.
However, this problem can be addressed by applying intrinsic decomposition on the
source images and using albedo to generate the texture maps.
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Fig. 3. Here, the goal is produce a high-quality texture map, using the rough geometry as well as two source views, shown on the left. We illustrate the
texture mapping process from a novel view, shown with the blue camera. Because of the inaccuracies in the geometry, camera poses, and optical distortions of
the source images, the projected source images to view i , S1(xi�1) and S2(xi�2), are typically misaligned. For example, the inset shows that the position of
“ar” and “gr” in the two projected source images is different. Therefore, combining (averaging in this case) these projected source images produces a texture
map, Mi , with blurring and ghosting artifacts. We propose to handle this misalignment problem by synthesizing a target image for every source image in a
way that the projected target images are photometrically consistent. To reconstruct each target image, we keep the overall visual appearance of the source
image, but move its content to correct the misalignments. Note the difference in position of “gr” and “ar” in the source and target images. In this case, since
the projected images are aligned, we are able to produce a ghost-free high-quality texture map.

face and are less blurry, and a smoothness term which penalizes

inconsistencies between adjacent faces. However, as shown in Fig. 2,

even this approach is not able to handle the large inaccuracies in

challenging cases, producing visible seams in the final texture map.

2.2 Image Alignment

The approaches in this category directly handle the inaccuracies

by aligning the input images. Tzur and Tal [2009] propose to es-

timate local camera projection for each vertex of the geometry

to handle inaccuracies from calibration, geometry, etc. However,

their approach requires user interaction to produce plausible results.

Aganj et al. [2010] address misalignment by finding matching SIFT

features in different views and warping the input images, while oth-

ers [Dellepiane et al. 2012; Eisemann et al. 2008] perform warping

using optical flow. These methods do not minimize the distortion

globally and work on a pair of images, and thus, are sub-optimal.

Gal et al. [2010] assigns each triangle to one input image and finds

the optimum shift for each triangle to remove the seams, but their

optimization is computationally expensive.

The recent work of Zhou and Koltun [2014], which our method

builds upon, solves an optimization system to find optimum camera

poses as well as non-rigid corrections of the input images, simul-

taneously. They use local warping to perform non-rigid alignment

and propose an alternating optimization to minimize their objective

function. However, the local warping is not able to correct large

misalignments and it produces results with ghosting and blurring

artifacts in challenging cases, as shown in Fig. 2. To avoid this prob-

lem, we propose a different optimization system with a more flexible

mechanism for non-rigid alignment than local warping.

2.3 Patch-Based Synthesis

Our approach is inspired by the recent success of patch-based synthe-

sis methods in a variety of applications such as hole-filling [Wexler

et al. 2007], image retargeting and editing [Barnes et al. 2009;

Simakov et al. 2008], morphing [Shechtman et al. 2010], HDR re-

construction [Kalantari et al. 2013; Sen et al. 2012], and style trans-

fer [Bénard et al. 2013; Jamriška et al. 2015]. Patch-based synthesis

has been shown to be particularly successful in applications where

finding correspondences between two or multiple images (e.g., mor-

phing and HDR reconstruction) is difficult. In our application, the

synthesized aligned images need to be consistent with respect to the

object’s geometry, and thus, direct application of patch-based syn-

thesis to our problem does not work. We address this challenge by

proposing a novel patch-based energy equation which incorporates

the geometry into the formulation.

3 ALGORITHM

The goal of most image-based texture mapping approaches is to pro-

duce a high-quality view-independent texture map using a set of N
source images, S1, · · · , SN , taken from different viewpoints. These

methods usually assume that the object’s approximate geometry

and rough camera poses (i.e., extrinsic and intrinsic parameters)

of all the source images are already estimated using existing tech-

niques [Newcombe et al. 2011; Seitz et al. 2006]. Once the texture

map is created, the object with a view-independent texture can be

rendered from any novel views.

A simple way to produce a texture map is to project the source

images onto the geometry and combine all the projected images.

Ideally, these projected images are photometrically consistent, and

thus, combining them produces a high-quality texture map. How-

ever, in practice, because of the inaccuracies, the projected images

are typically misaligned. Therefore, this simple approach produces

texture maps with ghosting artifacts.

We show this problem in Fig. 3 (top row) for a casewith two source

images S1 and S2. To observe the misalignment problem, we project

the source images to a novel view i . Note that, projection from a

source image Sj to a novel view i can be performed by remapping

the source image’s pixel colors, Sj (y). Here, y is the projection of

the pixels from image i to j. Formally, we can write this as:

y = Pj (Gi (x)),
where x is the pixel position on image i , Gi projects a pixel on image

i to the global 3D space, and Pj projects a 3D point to the image j.
In this paper, for clarity and simplicity of the notation, we use xi
and xi�j to denote the pixels on image i and the pixels projected

from image i to j, respectively. In this case, y = xi�j and Sj (xi�j )
is the result of projecting source image Sj to view i . See Table 1 for
the complete list of notation used in this paper.
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S1, . . . , SN source images (input)

T1, . . . , TN target (aligned) images (output)

M1, . . . , MN texture at different views (output)

xi pixel position on image i

xi�j pixel position projected from image i to j

Tj (xi�j ) RGB color of the j th target image at pixel xi�j , i.e.,

the result of projecting target j to camera i

Table 1. Notation used in the paper.

As shown in Fig. 3 (top row), because of the inaccuracies in the

estimated geometry and camera poses, the projected source images,

S1(xi�1) and S2(xi�2), are misaligned. Therefore, the texture map

generated by the simple projection and blending approach contains

ghosting artifacts (rightmost column). Here,Mi refers to the final

globally consistent texture map, seen from camera i . Note that,Mj

is reconstructed from all the source images, and thus, is different

from the projected source images.

To overcome this misalignment problem, we propose to synthesize

an aligned (target) image, Ti , for every source image, Si . As shown
in Fig. 3, the targets are reconstructed by moving the content of the

source images to correct the misalignment. As a result, all the target

images are photometrically consistent, and thus, projecting them

onto the geometry and combining them produces a high-quality

result. In the next section, we explain our patch-based optimization

system to synthesize these target images.

3.1 Patch-Based Energy Function

Our main observation is that to produce a high-quality texture map,

the target images should have two main properties: 1) each target

image should be similar to its corresponding source image, and 2)
the projected target images should be photometrically consistent.

Our goal is to propose a global energy function which codifies these

two main properties.

To satisfy the first property we ensure that each target image

contains most of the information from its corresponding source

image in a visually coherent way. To do so, we use bidirectional

similarity (BDS) as proposed by Simakov et al. [2008]. This is a

patch-based energy function which is defined as:

EBDS(S,T ) =
1

L
(
∑
s⊂S

min
t ⊂T

D(s, t)
︸������������︷︷������������︸
completeness

+α
∑
t ⊂T

min
s⊂S

D(s, t)
︸������������︷︷������������︸

coherence

), (1)

where α is a parameter defining the ratio of these two terms, s and
t are patches from the source S and target T images respectively,

and D is the sum of squared differences of all the pixel values of the

patches s and t in RGB color space. Moreover, L is the number of

pixels in each patch, e.g., L = 49 for a 7 × 7 patch.

Here, the first term (completeness) ensures that every source

patch has a similar patch in the target and vice versa for the second

term (coherence). The completeness term measures howmuch infor-

mation from the source is included in the target, while the coherence

term measures if there are any new visual structures (artifacts) in

the target image. Minimizing this energy function ensures that most

of the information from the source is included in the target image

in a visually coherent way. In our implementation, we set α = 2 to

give more importance to the coherence term.

Source Geometry
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Fig. 4. This scene demonstrates a chair and a green marker on top. Because
of the inaccuracies of the consumer depth camera, the marker’s geometry
is not reconstructed. In this case, the texture from the marker should not
appear in the final texture map. The method of Waechter et al. [2014] selects
one of the source images for each triangle in the geometry. Since the marker
exists in all the source images, this method incorrectly places it in the
final texture. Zhou and Koltun [2014] align the source images by locally
warping them. Therefore, they are not able to remove the marker from the
aligned images, resulting in ghosting artifacts. Our patch-based approach
synthesizes the target images, and thus, only includes valid information
from the source images. Therefore, we are able to remove the marker from
the source images and produce an artifact-free result.

Note that, Eq. 1 is defined for a single pair of source and target

images. To enforce the similarity property for all the images, we

extend this equation as:

E1 =
N∑
i=1

EBDS(Si ,Ti ). (2)

Patch-based synthesis is more flexible than local warping [Zhou

and Koltun 2014], and thus, is more suitable to handle large inaccura-

cies in the geometry and the camera poses. Furthermore, while local

warping inherently preserves the visual coherency, it includes all

the information from the source in the aligned (target) image which

is not desirable in our application. If the geometric model does not

contain specific features, the regions corresponding to these fea-

tures should not be included from the source images in the texture

map. Therefore, this method produces results with blurring and

ghosting artifacts in these regions, as shown in Fig. 4. Waechter et

al.’s method [2014] selects one view per face and can avoid ghosting

artifacts in this case. However, this approach is not able to remove

the texture corresponding to the missing feature, since it exists in

all the source images. Note that, missing geometric features occur in

most cases with significantly inaccurate geometry (Fig. 9), which is

why the existing techniques poorly handle these challenging cases.

Although the similarity of the target and source images is a nec-

essary condition for generating a high-quality texture map, it is

not sufficient, as shown in Fig. 5. Therefore, we need to enforce the

second property by ensuring the consistency of the target images.

This constraint can be implemented in several ways. For example,

we can enforce the consistency by ensuring that the projected tar-

get images are close to the current target, i.e., Tj (xi�j ) = Ti (xi ).
This constraint can be formally written as the �2 distance between
Tj (xi�j ) and Ti (xi ) and be minimized in a least square sense.

Alternatively, the constraint can be enforced by ensuring the

consistency of the current target and average of all the projected

targets, i.e., 1/N ∑N
j=1Tj (xi�j ) = Ti (xi ). Similarly, we can enforce

the texture at view i to be consistent with the projected target

images, i.e., Tj (xi�j ) = Mi (xi ), to enforce the constraint. Since

all the target images will be consistent with each other and the

final texture map after optimization, these different approaches
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Fig. 5. We evaluate the effect of enforcing our main properties with the
two terms in Eq. 5. Only optimizing the first term ensures that the target
image contains most of the information of the source image. However, since
the consistency constraint is not enforced, the final texture is not consistent
with the target image. On the other hand, by only optimizing the second
term, the consistency constraint is enforced, and thus, the target image
and the final texture are photometrically consistent. However, the target
image has ghosted content which does not appear in the source image. Our
full approach optimizes both terms and ensures that the targets contain
source contents and are consistent. Therefore, only our full approach is able
to produce a high-quality texture map.

result in similar optimum target images. However, to be able to

utilize alternating optimization (see Sec. 3.2), we use the last strategy

(Tj (xi�j ) = Mi (xi )) and write our consistency energy equation as:

EC ({Tj }Nj=1,Mi ) = 1

N

∑
xi

N∑
j=1

w j (xi�j )
(
Tj (xi�j ) −Mi (xi )

)2
, (3)

where the first summation is over all the pixel positions xi on image

i . Here, the weightw j enforces the constraint to be proportional to

the contribution of the jth projected target image. In our implemen-

tation, w j = cos(θ )2/d2, where θ is the angle between the surface

normal and the viewing direction at image j and d denotes the dis-

tance between the camera and the surface.2 This weight basically

gives smaller weight to the cameras that look at the surface at a

grazing angle and are further away from the object. Minimizing this

energy function ensures that all the target images are consistent

with the final texture map viewed from camera i . We extend this

equation to enforce the consistency constraint for all the images as:

E2 =
N∑
i=1

EC ({Tj }Nj=1,Mi ) (4)

To satisfy our two properties, we propose the complete objective

function to be the weighted summation of E1 and E2:

E = E1 + λE2, (5)

where λ defines the weight of the consistency term and we set

it to 0.1 in our implementation. Optimizing our proposed patch-

based energy function produces target images that contain most

of the information from the source images, are visually coherent,

and preserve the consistency of the projection. Once the optimum

target images,Ti , are obtained, they can be used to produce a single

consistent texture in different ways. For example, this can be done

2We use the interpolated normal and vertex from the fragment shader.

... ...

Project and Blend
Eq. 10

Source Images Target Images

Patch Search
and Vote

Geometry

Stage 1 - Alignment Stage 2 - Reconstruction

Fig. 6. Our approach synthesizes aligned images (target) by optimizing
Eq. 5. We propose to optimize this energy function with a two-step approach.
During alignment, patch search and vote is performed between the source
and target images to obtain new targets. Note that, while the source and
target images are similar, the target image is reconstructed by moving the
source content to ensure alignment. In the reconstruction stage, the target
images are projected on the geometry and combined (Eq. 10) to produce the
texture at different views. The two steps of alignment and reconstruction
are continued iteratively and in multiple scales until convergence.

by first projecting all the target images to the geometry. After this

process, each vertex receives a set of color samples from different

target images. The final color of each vertex can then be obtained

by computing the weighted average of these color samples.3

We evaluate the effect of each term in our optimization system

in Fig. 5. Optimizing the first term alone produces aligned images

that have the same visual appearance as the source images, but are

not consistent. Optimizing the second term produces consistent

target images, but they contain information that does not exist in

the source images. Optimizing our proposed full energy function

produces a high-quality texture map by enforcing both properties.

3.2 Optimization

To efficiently optimize our energy function in Eq. 5, we propose

an alternating optimization approach which simultaneously solves

for the target images,T1, · · · ,TN , and the texture at different views,

M1, · · · ,MN . Specifically, we minimize our energy function by al-

ternating between optimizing our two sets of variables. We initialize

the targets and textures with their corresponding source images,

i.e., Ti = Si andMi = Si . We then iteratively perform our two steps

of alignment and reconstruction until convergence. The overview

of our algorithm is given in Fig. 6. Below, we explain our two steps:

1) Alignment. In this stage, we fix M1, · · · ,MN and minimize

Eq. 5 by finding optimumT1, · · · ,TN . This is done using an iterative

search and vote process similar to Simakov et al. [2008]. In the first

step, we perform a patch search process, as proposed by Simakov

et al., to find the patches with minimum D(s, t) (see Eq. 1), where
D is the sum of squared differences. In the next step, we perform

the voting process to obtain T1, · · · ,TN that minimize Eq. 5 given

the calculated patches in the previous step. Note that, as we will

discuss next, there is a key difference between our and the original

voting [Simakov et al. 2008] which is because of our additional

consistency constraint, EC .
For the sake of clarity, we explain our voting by first discussing

each term of Eq. 5 separately.

3We can generate the global texture with either the target images, Ti , or the textures,
Mi , as they are very similar after optimization.
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First (Similarity) Term: We start by rewriting the BDS energy

function (E1) using the obtained patches during search as done in

Simakov et al. [2008]:

E1(i, xi ) = 1

L

[
U∑
u=1

(
su (yu ) −Ti (xi )

)2
+ α

V∑
v=1

(
sv (yv ) −Ti (xi )

)2]
.

(6)

where E1(i, xi ) refers to the error E1 for a specific camera i and pixel
xi . Here, su and sv are the source patches overlapping with pixel xi
of the target for the completeness and coherence terms, respectively.

Moreover, yu and yv refer to a single pixel in su and sv , respectively,

corresponding to the xth
i

pixel of the target image. Finally,U and V
refer to the number of patches for the completeness and coherence

terms, respectively. Note that, most of these variables are a function

of the current pixel, xi , but we omit this dependence for simplicity

of the notation. See the original paper by Simakov et al. [2008] for

the derivation of this equation. To obtain Ti ’s that minimize the

above equation, we need to differentiate the error with respect to

the unknown color Ti (xi ) and set it equal to zero which results in:

Ti (xi ) =
1
L

U∑
u=1

su (yu ) + α
L

V∑
v=1

sv (yv )
U
L +

αV
L

. (7)

Here, the target is obtained by computing a weighted average

of the pixel colors of a set of source patches, overlapping with the

x
th
i

pixel of the target image. Note that, although the normaliza-

tion terms, 1/L, cancel out, we keep them here to be able to easily

combine this equation with the next term (Eq. 8) in Eq. 9.

Second (Consistency) Term: The first term is the standard voting

process, as proposed by Simakov et al., and basically draws infor-

mation from the source image to reconstruct the targets. Our key

difference lies in the second term which enforces the consistency

constraint by ensuring that the target images are close to the tex-

tures. As shown in the Appendix, the targets minimizing the second

term in Eq. 5 can be calculated as:

Ti (xi ) =
1
N wi (xi )

N∑
k=1

Mk (xi�k )

wi (xi )
. (8)

Again, although the weights, wi (xi ), cancel out, we keep them

in this equation for clarity, when combining the two terms in Eq. 9.

Here, each target is computed by averaging the current texture maps

from different views. This is intuitive as the constraint basically

enforces the aligned image to be as close as possible to the textures.

Combined Terms: Intuitively, the targets solving the combined

terms should be reconstructed by drawing information from the

source images, while staying similar to the textures. Since the two

terms are combined with a λ factor (see Eq. 5), the combined so-

lution can be computed by separately adding the numerator and

denominator of the terms in Eqs. 7 and 8 as:

Ti (xi ) =
1
L

U∑
u=1

su (yu ) + α
L

V∑
v=1

sv (yv ) + λ
N wi (xi )

N∑
k=1

Mk (xi�k )
U
L +

αV
L + λwi (xi )

. (9)

As can be seen, the final updated target is a weighted average of

the result of regular voting (Eq. 7) and the average of all the current

Single iteration Multiple iterations
Fig. 7. We show that a single iteration of search and vote produces results
that are very similar to those with multiple iterations.

texture maps (Eq. 8). This means that the consistency term basically

enforces our updated targets to remain close to the current textures.

This energy function is minimized by iteratively performing the

search and vote process until convergence. These iterations work

by using the updated targets after voting as the input to the search

process in the next iteration. We empirically found that only one

iteration of search and vote is sufficient to obtain high-quality results,

as shown in Fig. 7.

2) Reconstruction. In this step, we fix T1, · · · ,TN and produce

optimum texture at different views,M1, · · · ,MN , to minimize Eq. 5.

Since the textures only appear in the second term (EC ), which is

quadratic, the optimal textures can be easily obtained as follows:

Mi (xi ) =
∑N
j=1w j (xi�j )Tj (xi�j )∑N

j=1w j (xi�j )
. (10)

This is our texture generation equation which basically states that

the optimum texture is obtained by computing a weighted average

of all the projected targets. In case the targets are misaligned, which

is usually the case at the beginning of the optimization, this process

produces textures with ghosting and blurring. The next iteration

of the alignment process will then try to reduce the misalignment

between the targets, which consequently results in a texture map

with fewer artifacts after reconstruction.

We continue this process of alignment and reconstruction it-

eratively until convergence. As is common with the patch-based

approaches [Barnes et al. 2009; Wexler et al. 2007], we perform this

process at multiple scales to avoid local minima and speed up the

convergence (see Sec. 4). Note that the iterations here are done

between our two main stages of alignment and reconstruction. We

also have an inner iteration between the search and vote process at

every alignment stage. However, as discussed, we found that only

one iteration of search and vote is sufficient during alignment.

Once converged, our algorithm produces the aligned images,

T1, · · · ,TN , as well as the optimum texture at different views,

M1, · · · ,MN , which will be very similar. Since our target images

are consistent, a single global texture can be obtained by projecting

all the target images on the geometry and averaging their color

samples to obtain the final color at each vertex.

4 IMPLEMENTATION DETAILS

Capturing input data. We use an Intel RealSense R200 camera

to capture our input RGB-D sequences. This camera records depth

and color sequences with a resolution of 628 × 468 and 1920 × 1080,

respectively, both at 30 fps. To minimize the color variations, we

use fixed exposure and white balancing. We estimate the geom-

etry and the camera poses of each frame using the KinectFusion

algorithm [Izadi et al. 2011]. Note that, this approach estimates the
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camera pose of the depth frames and we also assign these estimated

camera poses to the corresponding color frames.4

Keyframe Selection. To reduce the number of our input images,

we select a subset of images with a greedy approach similar to Zhou

and Koltun’s method [2014]. Specifically, given a set of already

selected key frames, we use the method of Crete et al. [2007] to find

a frame with the lowest blurriness in the interval of (t , 2t ) after the
last selected key frame. In our implementation, t varies between 30

to 60 frames depending on the scene.

Alignment. To accelerate the search process, we use the Patch-

Match algorithm of Barnes et al. [2009] with the default parameters

and patch size of 7. Moreover, to avoid the target images deviating

significantly from the source images, we limit the search to a small

window of size 0.1
√
w × h, wherew and h are the width and height

of the source.

Multiscale Optimization. We solve our energy function in Eq. 5 by

performing the optimization in multiple scales. Specifically, we start

by downsampling all the source images to the coarsest scale. We

first initialize the targets,T1, · · · ,TN , and the textures,M1, · · · ,MN ,

with the low resolution source images and perform the alignment

and reconstruction stages iteratively until convergence. We then

upsample all the targets and textures to the resolution of the next

scale and perform our two stages iteratively at this new scale. Note

that, instead of upsampling the sources from the coarser scale, we

directly downsample the original high resolution source images to

the current scale. This allows the system to inject high frequency

details into the targets and textures. We continue this process for all

the finer scales to obtain the final targets at the finest scale. In the

coarsest scale, the input image has 64 pixels in the smaller dimension

and we have a total of 10 scales with scaling factor of 9
√
x/64, where

x is the smaller dimension of the original source images. We perform

50 iterations of alignment and reconstruction at the coarsest scale

and decrease it by 5 at each finer scale.

As shown in Fig. 8, this multiscale approach is necessary to avoid

local minima, and consequently, produce high-quality results. Intu-

itively, our optimization system aligns the global structures in the

coarser scales and recovers the details in the finer scales. A video

demonstrating the convergence of our algorithm at multiple scales

can be found in the supplementary video.

5 RESULTS

We implemented our framework in MATLAB/C++ and compared

against the state-of-the-art approaches by Eisemann et al. [2008],

Waechter et al. [2014] and Zhou and Koltun [2014]. We used the

authors’ code for Waechter et al. and Eisemann et al.’s approaches,

but implemented the method of Zhou and Koltun ourself since

their source code is not available online. Note that, for Eisemann

et al.’s approach, we use the implementation for static scenes and

generate view-independent textures to have a fair comparison. We

demonstrate the results by showing one or two views of each object,

and videos showing the texture mapped objects from different views

can be found in the supplementary video. Note that, our scenes are

4One may obtain the color camera poses by applying a rigid transformation to the
depth camera poses, but this strategy would not significantly help for two reasons: 1)
the shutters of the depth and color cameras are not perfectly synchronized, and 2) our
depth and color cameras are close to each other, and thus, they have similar poses.

Single Scale Multiscale
Fig. 8. The energy function in Eq. 5 has a large number of local minima.
By minimizing this energy function at the finest scale, there is a significant
possibility of getting trapped in one of these local minima. Similar to other
patch-based approaches, we perform the optimization at multiple scales to
produce high-quality results, as shown on the right.

generally more challenging than Zhou and Koltun’s scenes. This

is mainly because of the fact that we casually capture our scenes

under typical lighting conditions, and thus, our geometries have

lower accuracy. We have tested our method on the Fountain scene

from Zhou and Koltun’s paper and are able to produce comparable

results, as shown in Fig. 14 (Aligned Target).

Figure 9 compares our approach against other methods on six

challenging objects, and the estimated geometry for these objects

is shown in Fig. 10. The Truck is a challenging scene with a com-

plex geometry which cannot be accurately captured with consumer

depth cameras. Eisemann et al. [2008] works on a pair of images

and corrects misalignments using optical flow without optimizing a

global energy function, which is suboptimal. Therefore, theirmethod

produces blurry textures as their warped images typically contain

residual misalignments. Waechter et al. [2014] select one view per

face by solving an optimization system to hide the seams between

adjacent faces. However, their method is not able to produce satis-

factory results in this case, since they assign inconsistent textures to

some of the adjacent faces because of significant inaccuracies. Note

the tearing artifacts at the top inset and the distorted bear face at

the bottom inset. Moreover, the local warping in Zhou and Koltun’s

approach [2014] is not able to correct significant misalignment in

this case, caused by inaccurate geometry (see Fig. 10). Therefore,

their results suffer from ghosting and blurring artifacts. Our method

synthesizes aligned target images and is able to produce high-quality

texture maps with minimal artifacts.

None of the other approaches are able to handle the Gun scene.

Specifically, note that only our approach is able to reconstruct the

thin black structure at the bottom inset. Because of inaccuracies in

optical flow estimation, Eisemann et al.’s approach produces results

with tearing artifacts. It is worth noting that the method ofWaechter

et al. performs color correction to fix the color variations between

adjacent faces. Since in this case the images are significantly mis-

aligned, adjacent faces may have inconsistent textures. Therefore,

the color correction introduces discoloration which is visible in the

two insets. Next, we examine the House scene, which has a complex

geometry. Waechter et al. produce tearing artifacts, while Eisemann

et al. and Zhou and Koltun’s results demonstrate ghosting artifacts.

This is mainly due to the complexity of this scene and the inaccuracy

of the geometry (see Fig. 10). On the other hand, our method is able

to produce high-quality results on this challenging scene.

The top inset of the Backpack scene shows a region with a fairly

smooth geometry. However, Eisemann et al.’s method is still not able

to properly align the images and generates blurry textures.Moreover,

Waechter et al.’s method generates results with tearing artifacts due
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Fig. 9. We compare our approach against the state-of-the-art algorithms of Eisemann et al. [2008], Waechter et al. [2014] and Zhou and Koltun [2014]. We
also demonstrate the result of naïvely projecting all the images and averaging them for comparison. Other approaches are not able to handle these challenging
scenes and produce results with tearing, discoloration, blurring, and ghosting artifacts. On the other hand, we generate artifact-free high-quality results.

to incorrect camera poses. Although Zhou and Koltun’s method

corrects most of themisalignments in this case, their result is slightly

blurrier than ours. The bottom inset shows a region from the side

of the backpack with a complex geometry. In this region, Waechter

et al.’s method demonstrates discoloration artifacts, while Zhou

and Koltun and Eisemann et al.’s approaches produce results with

ghosting artifacts. Similarly, none of the other methods are able to

properly reconstruct the textures on the sides of the Pillow, a region

with complex geometry. It is worth mentioning that Waechter et

al.’s approach also produces discoloration artifacts in the underside

of the pillow (see supplementary video). Finally, only our method

properly reconstructs the eye and heart at the top inset and the blue

and brown structures at the bottom insets of the Cow scene.

We compare our method against other approaches on the Human

scene in Fig. 11. This scene is particularly challenging for all the

methods since the subject was moving during the capturing process.

While all the other approaches produce results with ghosting and

blurring artifacts, our method properly handles all the inaccuracies

and generates a high-quality texture.
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Fig. 10. Estimated geometry for the objects in Fig. 9.

Eisemann Waechter Zhou OursOurs
Fig. 11. Comparison against other approaches on a challenging scene.

OursNaiveSource Waechter ZhouEisemann
Fig. 12. We show a small inset on the side of the toy house in the House
scene (see Fig. 9). The input images are significantly misaligned as can be
seen by the blurriness of the Naïve approach. Our method is able to correct
the misalignments and produce a plausible result. However, our patch-
based approach is not able to always preserve the semantic information.
For example, our method produces a result, where the single hole is broken
down into two separate pieces. Other approaches are able to produce results
with a single hole, but they suffer from tearing and blurring artifacts.

Limitation. The main limitation of our approach is that patch-

based synthesis generally produces plausible results, but in some

cases is not able to preserve the semantic information, as shown

in Fig. 12. Here, although our approach corrects the significant

misalignments and produces plausible results, it is unable to preserve

the structure of the hole (see the source inset).

6 OTHER APPLICATIONS

In this section, we discuss several applications of our patch-based

system including texture hole-filling and reshuffling as well as mul-

tiview camouflage. Note that, although patch-based synthesis has

been previously used for image hole-filling and reshuffling [Barnes

et al. 2009; Simakov et al. 2008], these methods are not suitable in

our application because of lack of consistency.

6.1 Texture Hole-filling

In some cases, the texture of a real-world object may contain un-

wanted regions (holes) that we wish to fill in. One example of this

Image hole-filling of different views [Wexler et al. 2007]

Combining Zhou

Zhou + WexlerWexler Ours
Aligned Target

with Mask

Hp
Ip

Aligned Target

Fig. 13. We first use our system to synthesize aligned target images, one of
which shown on the top left. We then mark the unwanted region (the sticker
on the pillow) as the hole and project it to all the other views to obtain holes
in other targets. The top row shows three views of the hole-filled results
using the traditional patch-based synthesis [Wexler et al. 2007] to fill in the
hole at each target image independently (we project the results to the same
view for better comparison). Although the hole-filled results at each view are
plausible, combining them produces texture with ghosting artifacts because
of their inconsistencies. Aligning the hole-filled images using the method
of Zhou and Koltun [2014] only slightly reduces the blurriness. Our method
completes the holes in different targets in a photometrically consistent way,
and thus, is able to produce artifact-free results.

case is shown in Fig. 13, where the sticker on the pillow is not de-

sired and should be removed from the final texture map. To do so,

we begin by synthesizing aligned target images using our system.

We then mark the hole region (shown in blue) in one of the aligned

target images. This region can be simply projected to the other

views to generate the hole in all the targets. These marked regions

basically divide each target image into hole Hi and input Ii (the
region outside the hole).

Here, the goal is to fill in the holes, Hi , by drawing information

from each input, Ii , while preserving the photometric consistency

of the filled holes. This is very similar to the main properties of

our energy function in Eq. 5, and thus, our system can be used to

perform the hole-filling process. Note that, this problem is related

to multi-view hole-filling which has been proposed in a few recent

techniques [Baek et al. 2016; Thonat et al. 2016], but we present a

way to perform this task using our texture mapping framework.

We do this by setting the sources to the inputs, Si = Ii , and the

targets to the holes, Ti = Hi in Eq. 5. In this case, our optimization

draws information from the sources (regions outside the holes) to fill

in the targets (holes) in a consistent way. This is done by performing

the patch search from the regions outside the hole to the holes

and voting these patches to reconstruct only the hole regions. For

initialization, instead of using the sources, we smoothly fill in the

holes from the boundary pixels using MATLAB’s roifill function. We

also omit the completeness term in the BDS energy term (see Eq. 1)

which is responsible for bringing most of the information from the

source to the target images. Note that, while this is a requirement

for alignment, it is not necessary for hole-filling since we only need

partial information from the inputs to fill in the holes.

We compare our approach to patch-based image hole-

filling [Wexler et al. 2007] in Fig. 13. Although performing the

hole-filing separately can produce plausible results at each view
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Fig. 14. We show one of the aligned target images on the left. Here, the
goal is to plausibly copy the regions in red to the desired locations which
are marked with yellow. We first use Simakov et al. [2008] to perform
the reshuffling process for this target image. We then project the yellow
masks to the other targets and use our hole-filling system to fill in the
projected yellow masks. Performing the hole-filling independently for each
target image produces inconsistent hole-filled results, which consequently
produces textures with ghosting artifacts. Simply projecting the reshuffled
result from one target to the other targets has problems at grazing angles.
Our method is able to produce consistent results across different views and
generate high-quality textures.

(top row), combining them generates a texture with ghosting arti-

facts (bottom row - left) because of their inconsistency. The method

of Zhou and Koltun [2014] can be used to align the hole-filled images

at different views (bottom row - middle). However, the final texture

still contains ghosting artifacts since the inconsistencies cannot be

corrected with warping. Our method is able to produce consistent

hole-filled results in different views, and consequently, generate

high-quality hole-filled texture.

It is worth noting that we do not hole-fill the geometry. Therefore,

our method can only fill in texture holes, if their underlying geome-

try is not complex, like the one in Fig. 13. Extending our system to

also fill in geometries is an interesting topic for future research.

6.2 Texture Reshuffling

As shown in Fig. 14, our method can also be used to copy parts of a

texture (marked with red masks) to other regions within the texture

(marked with yellow). Again before starting the reshuffling process

we synthesized aligned targets using our system. We then mark

some regions in one of the target images (reshuffling target) and the

goal is to replicate them in a plausible way in the desired locations

(yellow masks in Fig. 14). Moreover, the synthesized contents at the

new locations of the reshuffling target need to be consistent with

all the other target images.

To do this, we first perform the single image reshuffling [Simakov

et al. 2008] and synthesize a replica of the regions of interest in

the new locations. Note that, this process is performed exactly like

Simakov et al. [2008] and only on the reshuffling target. At this

point, the other targets are not consistent with this target image in

the areas where the reshuffling is performed (yellow regions).

We address this issue, by first projecting the yellow masks to the

other targets. We then use our described hole-filling system to fill in
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Fig. 15. We show three views of a camouflaged box generated by our
approach and Owens et al.’s method[2014]. Comparing to Owens et al.’s
technique, we are able to produce a reasonable texture map.

the projected yellowmasks in other targets. Note that here we do not

modify the reshuffling target and it is only used to force the other

targets to produce consistent content in the regions defined with

the yellow mask. Formally speaking, this means that we remove the

EBDS term corresponding to the reshuffling target in Eq. 5.

This process produces targets that are consistent with the reshuf-

fling target, as shown in Fig. 14. Again, the textures produced by hole-

filling each target separately using Wexler et al.’s approach [2007]

contain ghosting artifacts. Moreover, projecting the content of the

yellowmask from the reshuffling target to the other targets produces

blurriness. Our method produces high-quality results.

6.3 Multiview Camouflage

Our method could also be used to camouflage a 3D object from

multiple viewpoints. Here, the input is a set of images of a scene and

the geometry of a 3D object that needs to be artificially inserted into

the scene and camouflaged. This is done by producing a consistent

texture map for the geometry to make it invisible from different

viewpoints. This problem can be viewed as image-based texture

mapping for a highly inaccurate geometry, where the geometry of

the scene is modeled with the 3D object. We compare the result

of our technique for camouflaging a box against Owens et al.’s

method [2014] in Fig. 15. Note that, their approach is specifically

designed for this application and is limited to camouflaging boxes.

Therefore, their approach produces high-quality results in this case.

In comparison, our framework is able to handle this additional

application and produce reasonable results. Moreover, our method

is not limited to boxes and is able to handle any other objects (see

supplementary video).

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel global patch-based opti-

mization system for image-based texture mapping. We correct the

misalignments caused by the inaccuracies in the geometry, camera

poses, and optical distortions of the input images, by synthesiz-

ing an aligned image for each source image. We propose to do

this using a novel patch-based energy function that reconstructs

photometrically-consistent aligned images from the source images.

To solve our energy function efficiently, we propose a two step

approach involving a modified patch search and vote followed by

a reconstruction stage. We show that our patch-based approach is
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effective in handling large inaccuracies and outperforms state-of-

the-art approaches. Moreover, we demonstrate other applications

of our system such as texture editing and multiview camouflage.

In the future, it would be interesting to extend our system to di-

rectly correct the inaccuracies of the geometry and camera poses, in

addition to producing the aligned images. Moreover, we would like

to investigate the possibility of using our system for wide baseline

view interpolation, where information from a set of images need to

be combined to produce consistent novel view images.

APPENDIX

Here, we discuss the derivation of Eq. 8, which computes the targets

that minimize the second term of Eq. 5. To start, we rewrite E2 as:

E2 =
1

N

N∑
k=1

∑
xk

N∑
j=1

w j (xk�j )
(
Tj (xk�j ) −Mk (xk )

)2
. (11)

To compute the optimum targets, we first need to differentiate the

error with respect to each target as:

∂E2
∂Ti (xi )

=
∂
∑N
k=1

∑
xk

wi (xk�i )
(
Ti (xk�i ) −Mk (xk )

)2
∂Ti (xi )

, (12)

where we remove the normalization factor, since it does not affect

the optimum result. Moreover, since we differentiate with respect

to the ith target, we set j = i . Here, for each k , the summation is

over all pixels of image k . Since we take the derivative with respect

to the ith target, we should backproject each term from k to i . By
ignoring the effect of interpolation in the projection, we have:

∂E2
∂Ti (xi )

=
∂
∑N
k=1

∑
xi
wi (xi )

(
Ti (xi ) −Mk (xi�k )

)2
∂Ti (xi )

, (13)

where we used the fact that xi�k�i = xi . By taking the derivative in

the above equation and setting it equal to zero,Ti ’s can be calculated
as defined in Eq. 8. Note that, since the derivative is with respect

to a single pixel of the target image xi , we remove the summation

over all pixels before taking the derivative.
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