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Abstract. Post streams from public social media platforms such as
Instagram and Twitter have become precious but noisy data sources
to discover what is happening around us. In this paper, we focus on the
problem of detecting and presenting local events in real time using social
media content. We propose a novel framework for real-time city event
detection and extraction. The proposed framework first applies bursty
detection to discover candidate event signals from Instagram and Twitter
post streams. Then it integrates the two posts streams to extract features
for candidate event signals and classifies them into true events or noise.
For the true events, the framework extracts various information to sum-
marize and present them. We also propose a novel method that combines
text, image and geolocation information to retrieve relevant photos for
detected events. Through the experiments on a large dataset, we show
that integrating Instagram and Twitter post streams can improve event
detection accuracy, and properly combining text, image and geolocation
information is able to retrieve more relevant photos for events. Through
case studies, we also show that the framework is able to report detected
events with low spatial and temporal deviation.
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1 Introduction

With the growing popularity of mobile devices and applications, more and more
people are sharing their moments with their friends and the public through
mainstream social media platforms such as Facebook (Instagram) and Twitter.
A recent report1 shows that Instagram now has more than 200 Million monthly-
active-users (MAU) and these users upload more than 1.5 billion photos and
videos per month. Twitter has even larger traffic and popularity, 255 Million
MAUs and 15 billion tweets per month.

Although a dominating proportion of posts from such social media platforms
are about users’ personal life [19], such as emotional feeling, opinions, food, travel
and even self-portraits, there are still considerable amount of posts recording
1 http://jennstrends.com/instagram-statistics-for-2014/
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what are happening in our city. A user may upload photos of a fashion show
to her Instagram account, or talk about emergency or crime on Twitter. These
valuable social media posts have made it possible for researchers and developers
to accurately detect and present local events in real time. Such techniques will
benefit various users, ranging from government officers, journalists, to tourists
and residents, etc. For example, a system quickly reporting fire or car accidents
can help the local police to make a timely response to the emergency; detecting
entertaining events in real time and representing them to nearby tourists or
residents can provide opportunities in social engagement.

However, the problem of detecting and representing local events in real time
from social media data streams remains challenging. First, event-related social
media data are sparse, although the volume of posts from any popular social
media platform is large. Second, most current research focuses on Twitter [2],
while there are various types of social media platforms which can potentially
contribute to the detection problem. However, the problem to choose or combine
multiple data sources to detect events is challenging due to the heterogeneity of
posts from different data sources. Third, after detecting events, to represent
events with the most relevant posts is still challenging due to the noisy posts
stream with heterogeneous content including image, text and geolocation.

To address these challenges, we propose a novel framework in this paper. This
framework first detects candidate event signals from Instagram and Twitter post
streams, and then extract features to classify whether an event signal is a true
event or noise. Finally, it summarizes the detected event by retrieving relevant
photos and topics and then estimating the occurrence time and location. Besides
the proposed framework, our contributions also include that we analyze different
methods to integrate Instagram and Twitter post streams, and experimentally
show that they improve the detection accuracy. To our best knowledge, we are
the first to integrate Instagram and Twitter posts to detect events in real time.
For event summarization, we propose a method to retrieve relevant photos, which
utilizes image content, text and geolocation information. Finally, we conduct case
studies to show that our framework has low spatial and temporal deviation for
detected events.

The rest of this paper is constructed as follows. Section 2 reviews the previous
works. In Section 3, we formally define the local event detection problem. We
introduce the detailed methodology and our system framework in Section 4. We
analyze and discuss our experiment results in Section 5, and conclude our work
in Section 6.

2 Related Work

There have been plenty of research regarding detecting events or news. They
can be categorized according to several aspects, including types of events, data
sources and methods [2].

Prior to detecting events from social media streams, [12][13][14][16] detect
events from traditional media data. As a seminar work to this problem, [16]
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uses an infinite-state automaton to model the term frequency in documents, and
considers the burst, for example, the significant change in term frequency, as
potential events. [13][14] detect events by modeling feature burst with spectral
analysis and Gaussian mixture respectively. [12] heuristically identifies bursty
terms and then groups these terms to discover potential events. Since all of
them use information which has been existing for long time as data sources,
their systems can hardly produce events in real time.

The introduction of social media platform brings new opportunities and chal-
lenges to the problem of event detection, and plenty of methods have been pro-
posed. Inspired by the idea of detecting bursty feature, EDCoW [33] uses wavelet
theory to model the signal of words and capture their bursts to detect events.
[28] monitors bursty topics instead of unigram or tweet-segments [21]. Simi-
larly, [7] detects events by discovering trending topics. Modeling trending topics
can produce real-time detection, however, it is not applicable to our scenario
of detecting and locating events since trending topics are usually weak signals
for small scale event, and it has large error to estimate the location of trending
topics [1][15][17]. Other than detecting the trending topics, based on influential
theories of emotions, [32] automatically assigns a single tweet with an emotional
label which is neutral or comes from one of the 6 Ekman’s emotions. Then they
monitor the sudden change of tweets’ emotions in countries as the signals to
detect events. All of the above works consider burst of certain features as sig-
nals of potential events. They model different bursty features including n-gram,
terms, topics and emotions, and the common idea behind is absorbed into our
framework.

Some detection frameworks are specific-event driven, that is, assigning a spe-
cific event type to each detection task. TEDAS [22] was proposed to detect crime
and disaster related events from twitter stream. Earthquake center and typhoon
trajectory have been successfully estimated in [30]. Besides disasters, [11][20] use
twitter posts to detect local festivals by monitoring the movements of crowds.
Twitterstand [31] classifies tweets as news and non-news to detect news events.
Different from these methods, our proposed framework is not restricted to any
event type.

Considering the data source, most of the previous works collect data from
Twitter posts [11][20][22]. We put two data collectors in Instagram and Twitter
monitoring and collecting useful information from the live post streams from
these two social media platforms. Our previous work [35] uses Instagram posts
to detect events with high accuracy. Unlike them, in this paper we use the posts
from both of the two popular OSNs together to detect events.

After detecting events, retrieving relevant content to represent existing events
is a challenging problem. Focusing on Twitter content, [3][5] extracts tweets and
topics for known events. [25] generates a journalistic summary of a sport event
using status updates from Twitter. Including Twitter, [4] retrieves social media
content across YouTube and Flickr for existing events. In [9], photo tags are used
to detect events and then retrieve photos based on tags to represent an event. It
does not use the rich image content but heavily rely on user generated tags that
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are not always reliable [27]. Although the work in [27] combines photo content
and tags to detect events, it needs to discover landmarks first and then detect
events around the landmarks. To be different, our work does not rely on land-
mark discovery, thus we can detect more general events. As to retrieving images,
most existing methods rank images based on certain similarity measurements to
a specific query, a keyword or image. In large scale applications, approximate
nearest neighbor algorithms and hashing method [18][24] are widely explored.
However, these methods are not directly applicable to our problem since we do
not have a specific query. Instead, our query is an entire event that consists of
noisy photos, text and geolocations. In our system, we observe that for a true
event, the images that are relevant to it usually share common patterns. While
other irrelevant images are considered as noise, which are usually independent
and randomly distributed.

3 Problem Definition

Following [32][35], we define an event as a real world activity that occurs during
time period T within a geographical area L. To detect such events in real time,
we define a framework as follows. The framework takes the real-time streams of
posts from Instagram and Twitter as the input. The system is expected to output
detected events in sequence. For each detected event, we extract its related con-
tent namely the set of related images, topics (a set of keywords), the estimated
occurrence location, and the estimated occurrence time.

4 System Framework and Methodology

In this section we introduce our architecture, each component and methods. The
system framework is shown in Figure 1. Given a fixed geographical region L from
which we want to detect events in real time, first we distribute event sensors over
the entire region. Each event sensor is designed to be independently responsible
for discovering events in a single sub-region l. In other words, we divide the entire
region, i.e. New York City in this paper, into k sub-regions, L = {l1, ..., lk}. For
each sub-region l, we allocate an event sensor, which has three components,
Event Signal Discovery, Event Signal Classification and Event Summarization.
Although more advanced methods that divide an entire region to sub-regions
according to topic distribution [1][17] or population density [20] might improve
the overall performance, in this paper we do not focus on this problem, and we
divide the entire New York City into N × M grids of equal size.

The architecture of our system is shown in figure 1. The Event Signal Dis-
covery component takes the input of Instagram and Twitter data streams in real
time and outputs candidate event signals. The Event Signal Classification com-
ponent takes candidate event signals as input, extracts various features for them,
and finally outputs event signals which are classified as true events. The Event
Summarization component selects the most relevant content, including photos
and text to represent the event. Besides, it produces the estimated occurrence
location and time of the event.
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Fig. 1. Architecture of our system framework

4.1 Event Signal Discovery

The Event Signal Discovery component contains 3 sub-components, data stream
collector, time series estimator and bursty detector. The motivation behind fol-
lows the general idea of modeling bursts [16] of certain features as potential
events. Unlike other papers which model the sudden change of emotions [32],
the movements of crowds [20] or the trending topics/terms/n-grams [21][33][7],
we adopt the method in [34][35] which considers the abnormal increase of social
media posts as the potential signal of events. This is because we observe that
the change in the number of posts is sensitive to event occurrence, especially to
the occurrence of small-scale local events.

The data stream collectors keep collecting posts from Twitter and Instagram
in real time. We only collect posts containing geo-location information. In order
to find bursty signals, an event sensor monitors the change in the number of
posts in a sub-region l. A time series of the post number is constructed for l. We
use t to denote the time, and vl(t) denotes the post number at l and within t.
In practice, t stands for a time period and its window length in our experiments
is 15 minutes.

The time series estimator is implemented by Gaussian Process Regressor
(GPR) [29]. We use GPR due to its great performance in modeling various time
series data such as stock prices [29]. Due to limited space, the detail of GPR is
available in our previous work [35].

Once the GPR model is built on the historical data, it is able to predict the
number of posts at l during t, as v̂l(t) for any given t. When the data stream
collector gathers the true number of posts in a sub-region l at t, we compare the
actual number of posts, i.e. vl(t), with the predicted number of posts, i.e. v̂l(t).
If there is a large deviation between these two numbers, this signal is marked
as a potential event signal. Following bursty detection, we are only interested
in when the predicted number of posts is larger than the actual number of
posts. Typically, we define an abnormality score as [v̂l(t)−vl(t)]/σ̂(t). σ̂(t) is the
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predictive standard deviation given by GPR. It indicates the confidence of the
prediction and a smaller ˆσ(t) indicates stronger confidence. If the abnormality
score in sub-region l during time t exceeds a given threshold, the Event Signal
Discovery component outputs a candidate event e(l, t) that stands for the set of
all the Instagram and Twitter posts that are posted during time t and within
location l.

4.2 Event Signal Classification

Once Event Signal Discovery component produces a candidate event signal e(l, t),
the Event Signal Classification component first extracts features from e(l, t) and
classifies it as true or false by a supervised learning model. Since a candidate
event signal (shortened as candidate event) e(l, t) is a set of Instagram and
Twitter posts bounded by location l and time t, we can extract various types of
features from them. Based on these features, the classifier determines whether
e(l, t) represents a true event or not. Note that, even if there is an event at
location l and time t, not all the posts in e(l, t) is related to that event. Thus we
will choose relevant posts to represent the event which is discussed in Section
4.3. At this step, we focus on extracting robust features from the Instagram and
Twitter post streams.

Feature Fusion. Before design specific features for candidate events, we first
model the fusion of Instagram and Twitter posts. We previously assume when the
number of total posts (including Instagram and Twitter) bounded by location l
and time t suddenly increases, some event e(l, t) may happen. However, we do
not know which data source, Instagram or Twitter, records this event, or both.
This is caused by the heterogeneity of Instagram and Twitter posts and users.
Although they are both popular social media, their users have different habits
and interests. Instagram is more about recording personal life and daily activity
while Twitter is considered as an influential news media [19]. Thus, it is expected
that some events are recorded by only one data source while some are recorded
by both. We can either extract features from Instagram posts or Twitter posts
only, or from both of them. In this paper, we consider two methods to fuse two
data sources for feature extraction and classification.

The first fusion method is to integrate Instagram and Twitter posts at data
level, i.e. before feature extraction. In this way, we need to consider a Twitter
post and a Instagram post as homogeneous. For each event signal e(l, t), we
extract its features vector xe from all the posts during time period t within
location l. This method mitigates the sparsity problem of geo-tagged posts, and
it is expected to benefit the classification of small-scale events with a few of posts
in total.

The second method is to integrate Instagram and Twitter posts at feature
level, i.e. after separate feature extraction. We extract feature vector xI

e from
Instagram posts and extract feature vector xT

e from Twitter posts respectively,
and then concatenate them to form the final feature vector xe. Note that by
this method, the size of feature vector xe is nearly doubled compared to the first
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method. The benefit of this method is that, we can extract different features
from Twitter and Instagram, and further incorporate other inhomogeneous data
sources.

Feature Extraction. To represent an event signal e(l, t), we extract four types
of features from all the posts bounded by l and t, namely topic features, emo-
tional features, spatial features and social features. Formally, we use Pe =
{p1, ..., pn} to denote the set of posts associated with the event e(l, t) and
n = |Pe|. Note that, here we do not extract feature from a single post, instead,
we extract features from the set of posts Pe associated to event signal e(l, t).

First we extract five topic features from posts’ text, i.e. photo captions and/or
tweets. We first build a background topic distribution θB for location l. We use
word unigram language model to represent the topic distribution of the back-
ground posts, i.e. all the posts during last 24 hours within l. We also build the
event topic distribution θE for all the posts in Pe in the same way. We calculate
(1) the total number of words that are in θE but missing in θB . A novel word,
which has never appeared before, may indicate something new. We calculate
(2) the average KL-divergence [KL(θB ||θE) + KL(θE ||θB)]/2. We expect that
the topic distribution changes when there are true events. We also compute (3)
average number of hashtags in pi, (4) the average text length of pi and (5) the
average frequency of the 3 most frequent words in Pe.

The second type is emotional features. Inspired by [32] in which the authors
experimentally prove when there are large event occurring, user emotions on
Twitter change. In order to capture emotional changes, we compute the num-
ber of emotion-related punctuations and words from Pe: (1-2) the number of
exclamations and question marks respectively and (3-8) the total number of
words from Pe categorized to each of the six Ekman’s emotions [32] respectively.
Similar to topic features, we construct a background emotion-related word and
punctuation count vector EB , and take the deviation between EB and the (1-8)
features as the (9-16) features, indicating the change of emotion with location l
and time t.

The third type is geolocation features. They are (1) mean and (2) standard
deviation of pairwise post geo-distance, i.e. dist(pi, pj)∀pi, pj ∈ Pe; and (3) the
entropy [35] of the spatial distribution of all posts in Pe. The intuition behind
these features is that we observe that when there is an event, the event-related
posts tend to form a cluster. Similarly, we also compute these features from the
background posts, and take the corresponding difference from (1-3) features as
(4-6) features.

The fourth class includes a social feature. We compute the average number
of mentioned users, i.e. @Alex of all posts in Pe. We finally extract 28 features
of four categories in total. We also normalize the topic and emotional features
by text length.



What Is New in Our City? A Framework for Event Extraction 23

Fig. 2. Five sampled Instagram photos from a detected Knicks NBA game event in
NYC. From journalists’ perspective, the first three images are considered representative
to summarize the event. Although the last two images were uploaded at the stadium
and their captions are also about game, they are not informative for describing this
event. Typically, the forth photo has a user privacy issue.

4.3 Event Summarization

In this section, we introduce our methods to summarize a detected event. A
candidate event signal that consists of a number of Instagram and Twitter posts
bounded by time period t and location l is classified as a true event or not.
Provided that the classifier in Section 4.2 judges an event signal is a true event,
we still do not know what the event is, a concert or a car crash, because the
event classifier in this framework is designed to be general, i.e. independent of
event type or scale.

Therefore we summarize an event from 4 aspects: topics, photos, occurrence
location and occurrence time. Extracting topics from user generated posts is well
studied [3][4][5][8]. Thus it is not our focus in this paper, and we use existing
methods to select keywords from tweets and photo captions as the topics of
an event. Besides, it is straightforward to estimate the occurrence location and
time of an event in our framework. Due to their simplicity, the methods are
discussed together with performance in the experiments, Section 5.4. Here we
only cover the method we proposed to retrieve relevant photos for a detected
event. Since tweets are seldom associated with photos, we only retrieve photos
from Instagram posts to represent an event.

We need to retrieve photos because not all the Instagram post bounded by
time period t and Location l are related to that event. For example, an Instagram
photo was uploaded near a fire accident event, but the image content is about
beers. Besides, we observe that users frequently upload self-portraits or food in
events, which are not helpful for other users to understand the event. Moreover,
some photos involve user privacy issue as shown in Figure 2. Therefore, we need
to select relevant and representative photos to visually summarize an event. For
simplicity, we name them event-related photos.

Our proposed method is based on the following observations. We observe that
event-related photos usually share similar image content. For example, photos
related to a fire accident usually record smoke, fire or the police. We also observe
similarity of text associated to event-related photos. For example, users are likely
to use “fire” or “smoke” to describe the photo related to a fire. Besides image
content and text, most events occur in a fixed place, such as NBA matches, thus
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event-related photos tend to geographically form a cluster in the event center.
Different from event-related photos, we observe that, for most noisy photos,
their image content and text share very limited similarity to each other, and
they are not necessarily close to the geographic center. However, we also observe
outliers. For example, a user uploads a photo of her food during a NBA game
and write a caption “A wonderful NBA game! # Knicks!” to the photo. In this
example, when we compute the relevance score of the photo by only considering
its geolocation and/or text, we find many popular text algorithms consider this
photo highly relevant to the event. But when we compute its relevance score
based on image content, the relevance diminishes.

Inspired by the above observations, for each photo x in an event e, we indi-
vidually compute the image content relevance score (to the event e) given the
image content of x only, as sc(x, e), the text relevance score given the text of
x only, as st(x, e), and the geolocation relevance score given the geolocation of
x only, as sl(x, e). Note that, here Pe denotes the set of photos associated to
event e, and thus x ∈ Pe. After that, we linearly combine the three individual
relevance scores into the finalized relevance score s(x, e) in Eq (1) that denotes
how the photo x is overall relevant to the event e.

s(x, e) = acsc(x, e) + atst(x, e) + alsl(x, e) (1)

ac, at and al are the weights for the three independent relevance scores.
Conventionally, we specify ac +at +al = 1 and at, ac, al ≥ 0. The weights are the
marginal effects of individual relevance score contributed to the overall relevance
score. Intuitively, the larger a weight is, the larger positive impact that the
corresponding single relevance score has on selecting event-related photos. Since
we model retrieving event-related photos as an unsupervised ranking problem,
the choices of ac, at and al are discussed through experiments. We introduce the
models to compute the three individual relevance scores as follows.

Image Content Relevance Model. To compute the image relevance score
function sc(x, e), we use color histogram and GIST features [26] as image descrip-
tor. These two image features are known for effectively describing discriminative
scene characteristics. Our image relevance ranking method is adapted from an
unsupervised image outlier removal method [23].

For a detected event e, its corresponding posts set is denoted as Pe =
{xi‖xi ∈ R

d, i = 1, 2, ..., n}. Since each post is always associated with an image,
here we use the same notation for a post (x) and its image (x in vector space).
For each image xi, we learn a scoring function s(xi) to manifest its relevance to
the event:

min
s∈H,yi∈{t+,t−}

n∑

i=1

(s(xi) − yi)2 + αsT Ls − 2β

n − n−
∑

yi>0

s(xi) (2)

Note that, the value of s(xi) is exactly the image relevance score sc(x, e) in
Eq (1). n− is the number of posts which is considered as irrelevant to the events,
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L is the graph Laplacian matrix, computed from the k nearest neighbor graph.
We construct the neighborhood graph G by defining the affinity matrix W as:

Wij =
{

exp(−dist(xi,xj)
σ2 ), if xi ∈ Nk(xj) or xj ∈ Nk(xi)

0 , otherwise
(3)

dist(, ) is the Euclidean distance, Nk(xi) is the set of k-nearest neighbors
of xi, and σ is the bandwidth parameter. L in Eq (2) is the graph Laplacian
matrix of G, computed as L = D − W , where D is a diagonal matrix with
diagonal elements defined as Dii =

∑n
j=1 Wij . α and β are two model parameters

balancing the regularization of graph Laplacian term and the effect of pushing
the average positive example away from the margin.

During optimization, we do not have any label supervision on whether an
image is event-related or not, therefore we are essentially solving an unsuper-
vised learning problem: yi is unknown in our optimization problem. As suggested
by Eq (2), we treat yi as a variable which is softly labeled as t+ or t− during opti-
mization. Following the experiment results in [23], we dynamically set (t+, t−) as

(
√

n−
n−n− ,

√
n−n−

n− ), where n− is updated in each iteration. Eq (2) is minimized
by alternating optimization: iterating between fixing y to minimize s and fixing
s to minimize y, until convergence. The first subproblem, fixing y to minimize
s is achieved by solving a constrained eigenvalue problem with a closed form
solution. The other subproblem, fixing s to minimize y, is achieved via sorting
and sweeping cut to find an optimal threshold. Throughout our experiment, the
similarity between any two posts is measured in Gaussian kernel space. Finally,
we use the score s(xi) as the image content relevance score for images xi, i.e.
sc(x, e).

Text and Relevance Model. We directly use the method in [3][5] to compute
the relevance score of a photo’s text to the event. For each photo’s text, we
represent it by a character n-gram language model where each photo’s text is
converted to a large and sparse vector. Then we compute the textual centroid
ct of these photos as ct = 1

n

∑n
i=1 xi where xi denotes the i-th photo’s text (in

vector space) of the event. According to [3][5], the text relevance of a photo x
to the event e could be computed by the closeness of x to the centroid ct. Thus,
we compute st(x, e) as the cosine similarity between x and ct.

Geolocation Relevance Model. Each photo is associated with a coordinate
(u, v) which denotes its latitude and longitude respectively. Similarly, we com-
pute the geographical centroid cl of the event as ( 1

n

∑n
i=1 ui,

1
n

∑n
i=1 vi) where

ui and vi respectively denote the latitude and longitude of the i-th photo of the
event. Thus, the geolocation relevance score sl(x, e) can be computed by the
earth surface distance between x and cl.

Interpretations and Advantages. In the above method, we extract image,
text and geolocation features from a photo and the event to compute the three
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relevance scores separately, and finally linearly combine them into the overall rel-
evance score. An alternative method is not to compute the individual relevance
scores separately. Instead, it extracts the same image, text and geolocation fea-
tures but concatenates all the three feature vectors into a longer feature vector,
and then apply a unified model to assign relevance score to the photo given its
event. However, such a unified model has problems caused by the heterogeneous
characteristics of image, text and geolocation information. First, the dimensions
of the three feature vectors are largely different. An efficient text representation
is n-gram model which transfers a piece of text to a large and sparse feature vec-
tor. However, the geolocation information is efficiently represented as a feature
vector in two dimensions only. Thus, if we just simply concatenate them with-
out robust feature selection, the geolocation information is easily overwhelmed
in such feature space. Second, the hypotheses of relevance (or similarity or close-
ness) are semantically different in the three aspects. In modeling the relevance
of image content, many previous researches find the similarity between photos
defined in Gaussian kernel space is proper. While in modeling geolocation close-
ness, the earth surface distance is naturally the best. Thus, it is not ideal to
model all the three types of information in a unified distance space.

5 Experiments

In this section, we first introduce the dataset and parameter setting. Then we
evaluate event detection accuracy by Instagram and Twitter post streams. We
also evaluate the event-related photo retrieval. Finally, we sample detected true
events to evaluate the temporal latency and spatial accuracy by case studies.

5.1 Dataset and Setting

We use Twitter APIs and Instagram APIs to crawl geo-tagged posts in New
York City. Each crawled Instagram post (shortened as photo) is associated with
an image, a text, a pair of coordinates, created time and other information. Each
crawled tweet is associated with a non-empty text, a pair of coordinates, created
time and other information. From 2012-12 to 2014-06, we collected 12, 453, 448
geo-tagged tweets and 31, 188, 195 geo-tagged photos.

Event Classification Annotation. We use crowdsourcing to accomplish this
labeling task: given an event signal e = (le, te) and its associated posts, it is
labeled based on whether there is a true event during time period te within
location le. We first used Amazon Mechanical Turk to label the discovered event
signals and then invited three journalists from a local newsroom in New York
city to calibrate the labeling to guarantee our dataset is as correct as possible.
We sampled 1945 events signals with associated posts to label. As a result, we get
1084 events signals with valid and confident labeling. Among them, 477 events
signals are labeled as true events while the other 607 are labeled as false events
(noise).
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ImageRelevanceAnnotation.Toevaluate our proposed relevant photo retriev-
ing method, we randomly select 153 true events which contain at least 8 photos2.
For each event,we label all its photos (if thenumberof photos inanevent exceeds 35,
we sample 35 photos).We tried to use a third-party crowdsourcing to label, but find
out their correctness is largely belowour expectation.Thereforewe trained an inde-
pendent user, and ask the user to label whether a photo is relevant to a given event
based on these criteria, 1 for relevant, 0.5 for partially relevant and 0 for irrelevant.
For example, we consider self-portraits and food as irrelevant. We also give the user
the location and time information and topics of the event to facilitate labeling. On
average, an event has 24.7 photos, and 39.4% of its photos are labeled as relevant,
5.8% are partially relevant and the rest, i.e. 54.8% are irrelevant.

Parameter Setting. To monitor the entire New York City, we divide NYC into
25 ∗ 25 sub-regions (0.45 square kilometers for each geo-region). We also turned
the window size t in Gaussian Process Regressor to be 15 minutes. A reasonably
long time interval will lead to large detecting latency while a tiny interval will
cause the decrease of the detection accuracy since there may be very few posts
during a tiny time interval. The experiments on the choice of these parameters
are in our previous work [35].

5.2 Detection Accuracy

In this section, we evaluate the performance of Event Signal Classification. Before
extract text-related features, we preprocess posts’ text by NLTK [6]. We remove
stopwords, non-English characters and urls. We also separate capitalized and
concatenated words, such as from “ILoveThisGame” to “I”, “love”, “this” and
“game”. Then we use 10-fold cross-validation to evaluate the effectiveness of
feature extraction and fusion with standard classifiers. To avoid the variance
caused by different classifiers, we run all the experiments with three popular and
representative supervised classifiers, Support Vector Machine (SVM), Logistic
Regression (LR) and Random Forest (RF).

We show the evaluation (on test data) to the event signal classifiers with
different settings in Table 1. In the setting of the Instagram-only method, we
discard all Twitter posts. We only extract features from Instagram posts and
train all the three classifiers with Instagram data. Then we discard all Instagram
posts but extract features and train the classifiers from Twitter data only, as the
Twitter-only method. From Table 1, we can find that if we just use a single data
source to classify the candidate events, Instagram data outperforms Twitter
data. Furthermore, we evaluate the event classifiers on integrated data with
two fusion methods. We find that the classifiers trained with the two fusion
methods, no matter in data-level or feature-level, both outperform the classifiers
trained on a single data source. We investigate results in detail and conclude this
2 In some special cases, we find there is more than one true event simultaneously recorded

inacandidate event signal.Weconsider themas true eventsbutdonot label theirphotos
to avoid ambiguity.
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Table 1. Event Signal Classification Results

Features Classifier Precision Recall F score Overall Accuracy

Instagram-only
SVM 0.833 0.740 0.784 82.01%
LR 0.855 0.719 0.781 82.28%
RF 0.793 0.780 0.786 81.36%

Twitter-only
SVM 0.845 0.675 0.751 80.25%
LR 0.815 0.681 0.742 79.15%
RF 0.761 0.719 0.739 77.67%

Data-level Fusion
SVM 0.876 0.755 0.811 84.50%
LR 0.866 0.759 0.809 84.22%
RF 0.830 0.849 0.839 85.70%

Feature-level Fusion
SVM 0.883 0.746 0.809 84.50%
LR 0.856 0.774 0.813 84.31%
RF 0.835 0.836 0.836 85.51%

improvement is caused by the following reasons. First, although we have plenty of
geo-tagged posts, in certain sub-regions, we still encounter severe data sparsity
problem. Either fusion method brings us more valuable data to mitigate this
problem. Second, small-scale events whose weak signals are easily overwhelmed in
noisy content. But when we find the weak signals in both data sources, our system
are more confident to detect them. Due to the limited length, the evaluation of
feature importance is not included. In short, by investigating the weights in
Logistic Regression, topic and spatial features are far more discriminative than
the emotional and social features.

5.3 Relevant Photo Retrieval

To evaluate the efficiency of the relevant photo retreiving method in Eq (1), we
use Normalized Discounted Cumulative Gain (NDCG@k) in Eq (4) as the metric.
For each event, we rank its photos decreasingly by overall relevance scores in Eq
(1), and then compute NDCG@k for the ranking.

NDCGk =
1
zn

k∑

i=1

2ri − 1
log2(i + 1)

(4)

zn is a normalization factor. ri is the actual relevance score of the ranked
i-th photo, and it is given by our labeler, 1, 0.5 or 0. k is a free parameter to
control the number of ranked photos to compute NDCG@k. To reduce the vari-
ance caused by k, we compute the NDCG@k for k from 1 to 10. We compare
the combined relevance model in Eq (1) with three baselines, image content rel-
evance model, text relevance model and geolocation relevance model introduced
in Section 4.3. As shown in Table 2, we have the following observations. First,
among all the three baselines, the relevance model based on text information
works the best. Second, the combination of all the three single relevance models
constantly performance better than any of the three single relevance models.
Third, by grid search, we empirically find that around (ac, at, al) = (14 , 1

2 , 1
4 ),
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Table 2. NDCG@k of Relevance Models over k

Relevance Model
NDCG@k

k=1 2 3 4 5 6 7 8 9 10

Image Content 0.517 0.505 0.495 0.486 0.476 0.465 0.459 0.451 0.445 0.439

Text 0.516 0.547 0.558 0.563 0.572 0.568 0.565 0.562 0.556 0.548

Geolocation 0.334 0.342 0.355 0.366 0.383 0.393 0.402 0.404 0.406 0.405

Combined 0.652 0.656 0.642 0.639 0.629 0.622 0.612 0.598 0.593 0.582

the combined relevance score reaches the maximal on our labeled dataset. This
implies the importance of each factor’s contribution to the overall relevance.

5.4 Spatial and Temporal Deviation

In this paper we focus on local event detection in real time, thus we also evaluate
the detecting deviation of spatial and temporal factors of events. The detecting
deviation of the spatial factor of an event is the geographical distance between the
coordinates where the event actually occurred and the coordinates our framework
estimated for the event. Similarly, the detecting deviation of the temporal factor
of an event is the time period between when the event actually occurred and
the time our framework estimated for the event. However, since it is expensive
to manually collect accurate spatial and temporal information of an event, we
choose 20 events to evaluate their spatial deviation, and 5 events to evaluate
their temporal deviation as case study.

We first evaluate spatial deviation of detected events. Many events are held
dynamically in a wide region, e.g. New Year parade in China town and marathon,
thus we are unable to track all the areas associated with that event. Therefore
we only consider events that take place in a fixed area, such as fire accident
and basketball games. For each event, we find the name of the associated place,
and then take the coordinates of the associated place from Google Maps as the
actual event coordinates, in a pair of longitude and latitude. On the other hand,
our system calculates the geographic center of of all Instagram and Twitter
posts related to that event, as the estimated coordinates of the event. More
specifically, the estimated longitude is the arithmetic mean of the longitudes
of all related posts, the same for estimated latitude. Then a spatial deviation,
i.e. spherical distance, is calculated between the estimated coordinates and the
actual coordinates of an event. On average the estimated coordinates of these
20 events are 104.46 meters far from their actual coordinates with a standard
deviation of 37.75. Table 3 shows the results for 5 example events.

Similarly, here we evaluate the temporal deviation of detected events. To
acquire the exact knowledge of when events occurred, we manually check with
websites, the police or news reports for their actual occurrence time. Meanwhile,
we take the time of the earliest post among all posts related to that event as the
estimated time. We report the time interval between actual time and estimated
time of an event as its temporal deviation. Table 4 shows the results of 5 detected
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Table 3. Spatial Deviation of Detected Events

Event Name Actual Location (lat, lon) Deviation(m)

NBA Knicks Game 40.750733, -73.992743 63.1

Trey Songz Concert 40.751222, -73.994749 109.7

Christmas Eve 40.758250, 73.981217 173.1

Fire Accident 40.750369, 73.992726 106.2

Car Crash 40.739061, -74.001488 78.1

Table 4. Temporal Deviation of Detected Events
Event Name Date Estimated Time Actual Time Time Interval

NBA Knicks game Nov 30 2012 19:11pm 19:30pm 19 mins in advance

Boxing Cotto vs Trout Dec 01 2012 20:07pm 21:00pm 53 mins in advance

Fire in West Village Nov 17, 2013 10:40am 10:26am 14 mins later

Fire in 34st Mar 27, 2014 08:44am 08:35am 9 mins later

Car Crash Feb 12 2014 08:26am 05:45am 3 hours later

events as examples. We can find that “NBA Knick Game” and “Boxing: Cotto
vs Trout”, which are two planned events, are detected prior to the actual event
time. This is because as more people arrived to the stadium in advance and
started to post about the coming events, our system detected the local unusual
increasing trends before the game actually started. For “Fire in West Village”,
“Fire in 34 St”, which are two emergencies, our event responded 14 minutes and 9
minutes after the events happened respectively. Notice that for the “Car Crash”
event, our system responded 3 hours later. This failure is probably because it
happened at 5:45AM, when most of local residents were still sleeping. In this
case, few related posts can be detected at the early stage of this event.

6 Conclusion and Future Work

In this paper, we proposed a general framework for real-time event detection from
Instagram and Twitter post streams. Our proposed system uses three compo-
nents to discover and classify the events. Then we can extract high-level knowl-
edge from detected events. Extensive experiments on NYC social media data
show the promising results. Based on our general framework, a lot of future
work can be investigated to potentially boost the performance. For example, we
plan to further study how to adaptivity divide sub-regions in the city based on
their topic distributions [10]. Also, more sophisticated feature fusion approaches
for event knowledge extraction can be investigated.
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