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ABSTRACT
Failure is always an option; in large-scale data management sys-
tems, it is practically a certainty. Fault-tolerant protocols and com-
ponents are notoriously difficult to implement and debug. Worse
still, choosing existing fault-tolerance mechanisms and integrating
them correctly into complex systems remains an art form, and pro-
grammers have few tools to assist them.

We propose a novel approach for discovering bugs in fault-tolerant
data management systems: lineage-driven fault injection. A lineage-
driven fault injector reasons backwards from correct system out-
comes to determine whether failures in the execution could have
prevented the outcome. We present MOLLY, a prototype of lineage-
driven fault injection that exploits a novel combination of data lin-
eage techniques from the database literature and state-of-the-art
satisfiability testing. If fault-tolerance bugs exist for a particular
configuration, MOLLY finds them rapidly, in many cases using an
order of magnitude fewer executions than random fault injection.
Otherwise, MOLLY certifies that the code is bug-free for that con-
figuration.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed Databases

Keywords
fault-tolerance; verification; provenance

1. INTRODUCTION
Fault tolerance is a critical feature of modern data management

systems, which are often distributed to accommodate massive data
sizes [2, 12, 20, 24, 28, 55, 80]. Fault-tolerant protocols—many of
which, including atomic commit [33,75], leader election [31], pro-
cess pairs [34] and data replication [4, 76, 79], were pioneered by
the database research community—are experiencing a renaissance
in the context of these modern architectures.

With so many mechanisms from which to choose, it is tempting
to take a bottom-up approach to data management system design,
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enriching new system architectures with well-understood fault tol-
erance mechanisms and henceforth assuming that failures will not
affect system outcomes. Unfortunately, fault-tolerance is a global
property of entire systems, and guarantees about the behavior of
individual components do not necessarily hold under composition.
It is difficult to design and reason about the fault-tolerance of indi-
vidual components, and often equally difficult to assemble a fault-
tolerant system even when given fault-tolerant components, as wit-
nessed by recent data management system failures [16, 57] and
bugs [36, 49].

Top-down testing approaches—which perturb and observe the
behavior of complex systems—are an attractive alternative to veri-
fication of individual components. Fault injection [1,26,36,44,59]
is the dominant top-down approach in the software engineering
and dependability communities. With minimal programmer in-
vestment, fault injection can quickly identify shallow bugs caused
by a small number of independent faults. Unfortunately, fault in-
jection is poorly suited to discovering rare counterexamples in-
volving complex combinations of multiple instances and types of
faults (e.g., a network partition followed by a crash failure). Ap-
proaches such as Chaos Monkey [1] explore faults randomly, and
hence are unlikely to find rare error conditions caused by complex
combinations of failures. Worse still, fault injection techniques—
regardless of their search strategy—cannot effectively guarantee
coverage of the space of possible failure scenarios. Frameworks
such as FATE [36] use a combination of brute-force search and
heuristics to guide the enumeration of faults; such heuristic search
strategies can be effective at uncovering rare failure scenarios, but,
like random search, they do little to cover the space of possible
executions.

An ideal top-down solution for ensuring that distributed data
management systems operate correctly under fault would enrich the
fault injection methodology with the best features of formal com-
ponent verification. In addition to identifying bugs, a principled
fault injector should provide assurances. The analysis should be
sound: any generated counterexamples should correspond to mean-
ingful fault tolerance bugs. When possible, it should also be com-
plete: when analysis completes without finding counterexamples
for a particular input and execution bound, it should guarantee that
no bugs exist for that configuration, even if the space of possible
executions is enormous.

To achieve these goals, we propose a novel top-down strategy for
discovering bugs in distributed data management systems: lineage-
driven fault injection (LDFI). LDFI is inspired by the database lit-
erature notion of data lineage [17,25,35,45,62,89], which allows it
to directly connect system outcomes to the data and messages that
led to them. LDFI uses data lineage to reason backwards (from ef-
fects to causes) about whether a given correct outcome could have



failed to occur due to some combination of faults. Rather than gen-
erating faults at random (or using application-specific heuristics), a
lineage-driven fault injector chooses only those failures that could
have affected a known good outcome, exercising fault-tolerance
code at increasing levels of complexity. Injecting faults in this tar-
geted way allows LDFI to provide completeness guarantees like
those achievable with formal methods such as model checking [39,
63,85,86], which have typically been used to verify small protocols
in a bottom-up fashion. When bugs are encountered, LDFI’s top-
down approach provides—in addition to a counterexample trace—
fine-grained data lineage visualizations to help programmers un-
derstand the root cause of the bad outcome and consider possible
remediation strategies.

We present MOLLY, an implementation of LDFI. Like fault in-
jection, MOLLY finds bugs in large-scale, complex distributed sys-
tems quickly, in many cases using an order of magnitude fewer exe-
cutions than a random fault injector. Like formal methods, MOLLY
finds all of the bugs that could be triggered by failures: when a
MOLLY execution completes without counterexamples it certifies
that no fault-tolerance bugs exist for a given configuration. MOLLY
integrates naturally with root-cause debugging by converting coun-
terexamples into data lineage visualizations. We use MOLLY to
study a collection of fault-tolerant protocols from the database and
distributed systems literature, including reliable broadcast and com-
mit protocols, as well as models of modern systems such as the
Kafka reliable message queue. MOLLY quickly identifies 7 criti-
cal bugs in 14 fault-tolerant systems; for the remaining 7 systems,
it provides a guarantee that no invariant violations exist up to a
bounded execution depth, an assurance that state-of-the-art fault
injectors cannot provide.

1.1 Example: Kafka replication
To ground and motivate our work, we consider a recently-discovered

bug in the replication protocol of the Kafka [2] distributed message
queue. In Kafka 0.80 (Beta), a Zookeeper service [41]—a strongly
consistent metadata store—maintains and publishes a list of up-to-
date replicas (the “in-sync-replicas” list or ISR), one of which is
chosen as the leader, to all clients and replicas. Clients forward
write requests to the leader, which forwards them to all replicas in
the ISR; when the leader has received acknowledgments from all
replicas, it acknowledges the client.

If replication is implemented correctly (and assuming no Byzan-
tine failures) a system with three replicas should be able to survive
one (permanent) crash failure while ensuring a “stable write” in-
variant: acknowledged writes will be stably stored on a non-failed
replica. Kingsbury [49] demonstrates a vulnerability in the repli-
cation logic by witnessing an execution in which this invariant is
violated despite the fact that only one server crashes.

In brief, the execution proceeds as follows: two nodes b and c
from a replica set {a, b, c} are partitioned away from the leader a
and the Zookeeper service; as a result, they are removed from the
ISR. a is now the leader and sole member of the quorum. It accepts
a write, acknowledges the client without any dissemination, and
then crashes. The acknowledged write is lost.

The durability bug—which seems quite obvious in this post-hoc
analysis—illustrates how difficult it can be to reason about the com-
plex interactions that arise via composition of systems and multiple
failures. Both Zookeeper and primary/backup replication are indi-
vidually correct software components, but multiple kinds and in-
stances of failures (message loss failure followed by node failure)
result in incorrect behavior in the composition of the components.
The problem is not so much a protocol bug (the client receives an
acknowledgment only when the write is durably stored on all repli-

cas) as it is a dynamic misconfiguration of the replication proto-
col, caused by a (locally correct) view change propagated by the
Zookeeper service. Kingsbury used his experience and intuition to
predict and ultimately witness the bug. But is it possible to encode
that kind of intuition into a general-purpose tool that can identify a
wide variety of bugs in fault-tolerant programs and systems?

1.2 MOLLY, a lineage-driven fault injector
Given a description of the Kafka replication protocol, we might

ask a question about forward executions: starting from an initial
state, could some execution falsify the invariant? This question
gives us very little direction about how to search for a counterexam-
ple to the invariant. Instead, LDFI works backwards from results,
asking why a given write is stable in a particular execution trace.
For example, a write initiated by (and acknowledged at) the client
is stable because (among other reasons) the write was forwarded to
a (correct) node b, which now stores the write in its log. It was for-
warded to b by the leader node a, because b was in a’s ISR. b was
in the ISR because the Zookeeper service considered b to be up and
forwarded the updated view membership to a. Zookeeper believed
b to be up because a received timely acknowledgment messages
from b. Most of the preceding events happened due to determinis-
tic steps in the protocol. However, certain events (namely commu-
nication) were uncertain; in a different execution, they might not
have succeeded. These are precisely the events we should explore
to find the execution of interest: due to a temporary partition that
prevents timely acknowledgments from b and c, they are removed
from the ISR, and the rest is history.

LDFI takes the sequence of computational steps that led to a
good outcome (the outcome’s lineage) and reasons about whether
some combination of failures could have prevented all “support”
for the outcome. If it finds such a combination, it has discovered
a schedule of interest for fault injection: based on the known out-
come lineage, under this combination of faults the program might
fail to produce the outcome. However, in most fault-tolerant pro-
grams multiple independent computations produce the important
outcomes; in an alternate execution with failures, a different com-
putation might produce the good outcome in another way. As a
result, LDFI alternates between identifying potential counterexam-
ples using lineage and performing concrete executions to confirm
whether they correspond to true counterexamples.

Figure 1 outlines the architecture of MOLLY, an implementation
of LDFI. Given a distributed program and representative inputs,
MOLLY performs a forward step, obtaining a outcome by perform-
ing a failure-free concrete evaluation of the program. The hazard
analysis component then performs a backward step, extracting the
lineage of the outcome and converting it into a CNF formula that
is passed to a SAT solver. The SAT solutions—failures that could
falsify all derivations of the good outcome—are transformed into
program inputs for the next forward step. MOLLY continues to ex-
ecute the program over these failure inputs until it either witnesses
an invariant violation (producing a counterexample) or exhausts
the potential counterexamples (hence guaranteeing that none exist
for the given input and failure model). To enable counterexample-
driven debugging, MOLLY presents traces of buggy executions to
the user as a collection of visualizations including both a Lamport
diagram [53] capturing communication activity in the trace and lin-
eage graphs detailing the data dependencies that produced interme-
diate node states.

The remainder of the paper is organized as follows. In Section 2,
we describe the system model and the key abstractions underlying
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Figure 1: The MOLLY system performs forward/backward alternation: for-
ward steps simulate concrete distributed executions with failures to pro-
duce lineage-enriched outputs, while backward steps use lineage to search
for failure combinations that could falsify the outputs. MOLLY alternates
between forward and backward steps until it has exhausted the possible fal-
sifiers.

LDFI. Section 3 provides intuition for how LDFI uses lineage to
reason about possible failures, in the context of a game between a
programmer and a malicious environment. Section 4 gives details
about how the MOLLY prototype was implemented using off-the-
shelf components, including a Datalog evaluator and a SAT solver.
In Section 5, we study a collection of protocols and systems using
MOLLY, and measure MOLLY’s performance both in finding bugs
and in guaranteeing their absence. Section 7 discusses limitations
of the approach and directions for future work.

2. SYSTEM MODEL
Even in the absence of faults, distributed protocols can be buggy

in a variety of ways, including sensitivity to message reordering
or wall-clock timing. To maintain debugging focus and improve
the efficiency of LDFI, we want to specifically analyze the effect of
real-world faults on program outcomes. In this section, we describe
a system model—along with its key simplifying abstractions—that
underlies our approach to verifying fault-tolerant programs. While
our simplifications set aside a number of potentially confounding
factors, we will see in Section 5 that MOLLY is nevertheless able to
identify critical bugs in a variety of both classical and current pro-
tocols. In Section 7, we reflect on the implications of our focused
approach, and the class of protocols that can be effectively verified
using our techniques.

2.1 Synchronous execution model
A general-purpose verifier must explore not only the nondeter-

ministic faults that can occur in a distributed execution (such as
message loss and crash failures), but also nondeterminism in order-
ing and timing with respect to delivery of messages and schedul-
ing of processes. Verifying the resilience of a distributed or paral-
lel program to reordering is a challenging research problem in its
own right [5, 52, 70, 74]. In that vein of research, it is common to
make a strong simplifying assumption: assume that all messages
are eventually delivered, and systematically explore the reordering
problem [78, 82].

We argue that for a large class of fault-tolerant protocols, we
can discover or rule out many practically significant bugs using
a dual assumption: assume that successfully delivered messages
are received in a deterministic order, and systematically explore
failures. To do this, we can simply evaluate an asynchronous dis-

tributed program in a synchronous simulation. Of course any such
simplification forfeits completeness in the more general model: in
our case, certain bugs that could arise in an asynchronous execution
may go unnoticed. We trade this weaker guarantee (which never-
theless yields useful counterexamples) for a profound reduction in
the number of executions that we need to consider, as we will see
in Section 5. We discuss caveats further in Section 7.

2.1.1 Failure specifications
LDFI simulates failures that are likely to occur in large-scale dis-

tributed systems, such as (permanent) crash failures of nodes, mes-
sage loss and (temporary) network partitions [11,27,32]. Byzantine
failures are not considered, nor are crash-recovery failures, which
involve both a window of message loss and the loss of ephemeral
state. Verifying recovery protocols by modeling crash-recovery
failures is an avenue of future work.

To ensure that verification terminates, we bound the logical time
over which the simulation occurs. The notion of logical time—
often used in distributed systems theory but generally elusive in
practice—is well-defined in our simulations due to the synchronous
execution abstraction described above. The internal parameter EOT
(for end-of-time) represents a fixed logical bound on executions;
the simulation then explores executions having no more than EOT
global transitions (rounds of message transmission and state-changing
internal events).

If the verifier explored all possible patterns of message loss up to
EOT, it would always succeed in finding counterexamples for any
non-trivial distributed program by simply dropping all necessary
messages. However, infinite, arbitrary patterns of loss are uncom-
mon in real distributed systems [10,11]. More common are periods
of intermittent failure or total partition, which eventually resolve
(and then occur again, and so on). LDFI incorporates a notion of
failure quiescence, allowing programs to attempt to recover from
periods of lost connectivity. In addition to the EOT parameter, a
second internal parameter indicates the end of finite failures (EFF)
in a run, or the logical time at which message loss ceases. MOLLY
ensures that EFF < EOT to give the program time to recover from
message losses. If EFF = 0, MOLLY does not explore message
loss—this models a fail-stop environment, in which processes may
only fail by crashing.

A failure specification (Fspec) consists of three integer parame-
ters 〈EOT, EFF, Crashes〉; the first two are as above, and the third
specifies the maximum number of crash failures that should be ex-
plored. For example, a failure specification of 〈6, 4, 1〉 indicates
that executions of up to 6 global transitions should be explored,
with message loss permitted only from times 1-4, and zero or one
node crashes. A crashed node behaves in the obvious way, ceas-
ing to send messages or make internal transitions. A set of failures
is admissible if it respects the given Fspec: there are no message
omissions after EFF and no more than Crash crash failures.

In normal operation, MOLLY sets the Fspec parameters automat-
ically by performing a sweep. First, EFF is set to 0 and EOT is in-
creased until nontrivially correct executions 1 are produced. Then
EFF is increased until either an invariant violation is produced—
in which case EOT is again increased to permit the protocol to
recover—or until EFF = EOT − 1, in which case both are in-
creased by 1. This process continues until a user-supplied wall
clock bound has elapsed, and MOLLY reports either the minimal
parameter settings necessary to produce a counterexample, or (in
the case of bug-free programs) the maximum parameter settings
explored within the time bound. In some cases (e.g., validating
1Executions in which no messages are sent are typically vacuously
correct with respect to invariants.



protocols in a fail-stop model), users will choose to override the
sweep and set the parameters manually.

2.2 Language
LDFI places certain requirements on the systems and languages

under test. The backwards step requires clearly identified pro-
gram outputs, along with fine-grained data lineage [21,50] that cap-
tures details about the uncertain communication steps contributing
to the outcome. The forward step requires that programs be exe-
cutable with a runtime that supports interposition on the commu-
nication mechanism, to allow the simulator to drive the execution
by controlling message loss and delivery timing. Languages like
Erlang [9] and Akka [68] are attractive candidates because of their
explicit communication, while aspect-oriented programming [47]
could be used with a language such as Java to facilitate both trace
extraction and communication interposition. Backwards slicing
techniques [66] could be used to recover fine-grained lineage from
the executions of programs written in a functional language.

For the MOLLY prototype, we chose to use Dedalus [7], a declar-
ative, rule-based, executable logic language based on Datalog. Datalog-
based distributed programming languages have generated consider-
able interest both in the theoretical [3,8,42] and systems [37,46,56,
65] research communities; protocol implementations in these lan-
guages often resemble pseudocode specifications. Dedalus satisfies
all of the requirements outlined above. Data lineage can be ex-
tracted from logic program executions via simple, well-understood
program rewrites [50]. More importantly, Dedalus (and similar
languages) abstract away the distinction between events, persistent
state and communication (everything is just data and relationships
among data elements) and make it simple to identify redundancy of
computation and data in its various forms (as we will see in Sec-
tion 3). A synchronous semantics for Dedalus, consistent with the
synchronous execution assumption described in Section 2.1, was
proposed by Interlandi et al. [42]

All state in Dedalus is captured in relations; computation is ex-
pressed via rules that describe how relations change over time.
Dedalus programs are intended to be executed in a distributed fash-
ion, such that relations are partitioned on their first attribute (their
location specifier). Figure 2 shows a simple broadcast program
written in Dedalus. Line 1 is a deductive rule, and has the same in-
tuitive meaning as a Datalog rule: it says that if some 2-tuple exists
in bcast, then it also exists in log. Lines 2-3 are inductive rules,
describing a relation between a particular state and its successor
state. Line 2, for example, says that if some 2-tuple exists in node
at some time t, then that tuple also exists in node at time t + 1
(and by induction, forever after). Both are local rules, describing
computations that individual nodes can perform given their inter-
nal state and the current set of events or messages. By contrast, the
rule on lines 4-5 is a distributed rule, indicating an uncertain deriva-
tion across process boundaries. It expresses a simple multicast as a
join between a stream of events (bcast) and the persistent relation
node. Note that the conclusion of the rule—a log tuple—exists
(assuming that a failure does not occur) at a different time (strictly
later) than its premises, as well as at a different place (the address
represented by the variable Node2).

2.3 Correctness properties
A program is fault-tolerant (with respect to a particular Fspec)

if and only if its correctness assertions hold for all possible com-
binations of admissible failures. Distributed invariants are com-
monly expressed as implications of the form precondition →
postcondition; an invariant violation is witnessed by an execution
in which the precondition holds but the postcondition does not. For

1 log(Node, Pload) :- bcast(Node, Pload);
2 node(Node, Neighbor)@next :- node(Node, Neighbor);
3 log(Node, Pload)@next :- log(Node, Pload);
4 log(Node2, Pload)@async :- bcast(Node1, Pload),
5 node(Node1, Node2);

Figure 2: simple-deliv, a Dedalus program implementing a best-effort
broadcast.

1 missing_log(A, Pl) :- log(X, Pl), node(X, A), notin log(A, Pl) ;
2 pre(X, Pl) :- log(X, Pl), notin crash(_, X, _) ;
3 post(X, Pl) :- log(X, Pl), notin missing_log(_, Pl) ;

Figure 3: A correctness specification for reliable broadcast. Correctness
specifications define relations pre and post; intuitively, invariants are al-
ways expressed as implications: pre → post. An execution is incorrect
if pre holds but post does not, and is vacuously correct if pre does not
hold. In reliable broadcast, the precondition states that a (correct) process
has a log entry; the postcondition states that all correct processes have a log
entry.

example, the agreement invariant for a consensus protocol states
that if an agent decides a value, then all agents decide that value.
The Kafka stable write invariant described in Section 1.1 states that
if a write is acknowledged, then it exists on a correct (non-crashed)
replica.

To support this pattern, MOLLY automatically defines two built-
in meta-outcomes of programmer-defined arity, called pre and post.
MOLLY users may express correctness assertions by defining these
special relations—representing abstract program outcomes—as “views”
over program state. If meta-outcomes are not defined, all persis-
tent relations are treated as outcomes. This is acceptable for some
simple protocols, such as naive reliable delivery (as we will see in
Section 3); for more complex protocols, meta-outcomes should be
used in order to mask unnecessary details. For example, a delivery
protocol that suppresses redundant retries via message acknowl-
edgments requires a meta-outcome that masks the exact number of
ACKs and exposes only the contents of the log relation. Similarly,
a consensus protocol is intended to reach some decision, though the
decision it reaches may be different under different failures, so its
meta-outcome should abstract away the particular decision.

Figure 3 shows a meta-outcome for reliable delivery, capturing
the basic agreement requirement: if a correct node delivers a mes-
sage, then all correct nodes receive it. Line 1 defines a missing
log entry as one that exists on some node but is absent from an-
other. Line 2 defines the precondition: a log entry exists on a cor-
rect (non-crashed) node. If pre does not hold, then the execution
is vacuously correct. Line 3 defines the postcondition: no node is
missing the log entry. If pre holds but post does not, the in-
variant is violated and the lineage of these meta-outcomes can be
presented to the user as a counterexample.

To run MOLLY, a user must provide a program along with con-
crete inputs, and indicate which relations define the program’s out-
comes—by default, using pre and post as defined above. We
now turn to an overview of how MOLLY automates the rest of the
bug-finding process.



3. USING LINEAGE TO REASON ABOUT
FAULT-TOLERANCE

What a faint-heart! We must work outward from the
middle of the maze. We will start with something sim-
ple.
– Thomasina, in Arcadia [77].

One of the difficult truths of large-scale services is that if some-
thing can go wrong, eventually it will. Hence a reliable fault tol-
erance solution needs to account for unlikely events. A useful lens
for efficiently identifying events (likely or otherwise) that could
cause trouble for a fault-tolerant program is to view protocol im-
plementation as a game between a programmer and an adversary.
In this section, we describe the LDFI approach as a repeated game
(a match) in which an adversary tries to “beat” a protocol devel-
oper under a given system model. Of course, the end goal is for the
developer to harden their protocol until it “can’t lose”—at which
point the final protocol can truly be called fault tolerant under the
model. We show that a winning strategy for both the adversary
(played by MOLLY) and the programmer is to is to use data lin-
eage to reason about the redundancy of support (or lack thereof)
for program outcomes.

To play a match, the programmer and the adversary must agree
upon a correctness specification, inputs for the program and a fail-
ure model (for example, the adversary agrees to crash no more than
one node, and to drop messages only up until some fixed time). In
each round of the match the programmer submits a distributed pro-
gram; the adversary, after running and observing the execution, is
allowed to choose a collection of faults (from the agreed-upon set)
to occur in the next execution. The program is run again under the
faults, and both contestants observe the execution. If the correct-
ness specification is violated, the programmer loses the round (but
may play again); otherwise, the adversary is allowed to choose an-
other set of failures and the round continues. If the adversary runs
out of moves, the programmer wins the round.

3.1 A match: reliable broadcast protocols
For this match, the contestants agree upon reliable broadcast as

the protocol to test, with the correctness specification shown in Fig-
ure 3. Input is a single record bcast(A, data)@1, along with
a fully-connected node relation for the agents {A,B,C}—i.e.,
Node A attempts to broadcast the payload “data” to nodes B and
C. The adversary agrees to inject message loss failures no later than
logical time 2, and to crash at most one server (EFF=2, Crashes=1).
In Figures 4,6 and 7, we represent the lineage of the outcomes (the
final contents of log) as directed graphs, such that a record p has
an edge to record q if p was used to compute q. Within each graph
(which shows all supports for all outcomes), we highlight an in-
dividual support of the outcome (log(B, data)@4). Uncertain
steps in the computations (i.e. messages) are shown as dashed lines.
As we will see in Section 4, a message omission failure can be en-
coded with a Boolean variable of the form O(Sender,Receiver,SenderTime).
For each lineage diagram, we show a falsifier: a propositional for-
mula representing a set of failures that could invalidate the high-
lighted support. Let’s play!

3.1.1 Round 1: naive broadcast
The programmer’s first move is to submit the naive broadcast

program simple-deliv presented in Figure 2. Figure 4a shows the
lineage of three outcomes (the contents of the log relation on all
nodes at time 4) for the failure-free execution of the program.

The adversary can use this representation of outcome lineage to
guide its choice of failures to inject. To falsify an outcome (say
log(B, data)) the adversary can simply “cut” the dotted line—
that is, drop the message A sent to B at time 1. In the next exe-
cution, the adversary injects this single failure and the property ex-
pressed in Figure 3 is violated. The adversary wins the first round.

3.1.2 Round 2: retrying broadcast
The programmer was defeated, but she too can learn something

from the lineage graph and the counterexample in Figure 4a. The
adversary won Round 1 easily because simple-deliv has no redun-
dancy: the good outcome of interest is supported by a single mes-
sage. A fault-tolerant program must provide redundant ways to
achieve a good outcome; in the context of this game, one of those
“ways” must be out of the reach of the adversary. The program-
mer makes an incremental improvement to simple-deliv by adding
a rule for bcast that converts it from an ephemeral event true at one
logical time to a persistent relation that drives retransmissions:

bcast(N, P)@next :- bcast(N, P);

Instead of making a single attempt to deliver each message, this
program (henceforth called retry-deliv) makes an unbounded num-
ber of attempts. Intuitively, this alteration has made the reliable de-
livery protocol robust to a certain class of nondeterministic failures—
namely, message omissions—by ensuring that messages exhibit re-
dundancy in time.

Figure 4b shows the outcome lineage for an execution of retry-
deliv. This time, while the adversary has more difficulty choosing a
move, the winning strategy once again involves reasoning directly
about outcome lineage. Since A makes an unbounded number of
attempts 2 to send the log message to B and C, no finite pat-
tern of omissions can falsify either outcome. The weakness of
the retry-deliv algorithm is its asymmetry: the responsibility for
redundant behaviors falls on A alone—this is easy to see in Fig-
ure 4b, in which all transmissions originate at node A. The adver-
sary, perceiving this weakness, might first attempt to immediately
crash A. If it did so, this would result in a vacuous counterexam-
ple, since the delivery invariant is only violated if some but not all
agents successfully delivery the message. In Section 4, we’ll see
how MOLLY avoids exploring such vacuously correct executions.
However, causing A to crash after a successful transmission to one
node (say C) but not the other is sufficient to falsify one outcome
(log(B, data)). Exploring this potential counterexample via
a concrete execution reveals the “true” counterexample shown in
Figure 4b. The adversary wins again.

3.1.3 Round 3: redundant broadcast
Reviewing the counterexample and the lineage of the failure-free

execution, the programmer can see how the adversary won. The
problem is that retry-deliv exhibits redundancy in time but not in
space. Each broadcast attempt is independent of the failure of other
attempts, but dependent on the fact thatA remains operational. She
improves the protocol further by adding another line:

bcast(N, P)@next :- log(N, P);

Now every node that has a log entry assumes responsibility for
broadcasting it to all other nodes. As Figure 6 reveals, the behavior
of all nodes is now symmetrical, and the outcomes have redundant

2These are finite executions, so the number of attempts is actually
bounded by the EOT (4 in these figures) in any given execution.
However, since the adversary has agreed to not drop messages after
time 2, the program is guaranteed to make more attempts than there
are failures.
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Figure 4: Outcome lineage and counterexample traces. Both should be read from top to bottom: note that time moves upwards in the lineage diagrams, which
are used to reason backwards from outcomes to causes, and downwards in the counterexamples. Message transmissions are shown as dotted lines.

1. In the lineage diagram for simple-deliv, the unique support for the outcome log(B, data) is shown in bold; it can be falsified (as in the counterex-
ample) by dropping a message from A to B at time 1 (O(A,B,1)).

2. Note that in retry-deliv—which exhibits redundancy in time—all derivations of log(B, data)@4 require a direct transmission from nodeA, which
could crash (as it does in the counterexample). One of the redundant supports (falsifier: O(A,B,2)) is highlighted.

3. The lineage diagram for classic-deliv reveals redundancy in space but not time. In the counterexample, amakes a partial broadcast which reaches b but
not c. b then attempts to relay, but both messages are dropped. A support (falsifier: O(A,C,1) ∨O(C,B,2)) is highlighted.

support both in space (every correct node relays messages) and time
(every node makes an unbounded number of attempts). The adver-
sary has no moves and forfeits; at last, the programmer has won a
round.

3.1.4 Round 4: finite redundant broadcast
In all of the rounds so far, the adversary was able to either choose

a winning move or decide it has no moves to make by consid-
ering a single concrete trace of a failure-free simulation. This is
because the naive variants that the programmer supplied—which
exhibit infinite behaviors—reveal all of their potential redundancy
in the failure-free case. A practical delivery protocol should only
continue broadcasting a message while its delivery status is un-
known; a common strategy to avoid unnecessary retransmissions is
acknowledgment messages. In Round 4, the programmer provides
the protocol ack-deliv shown in Figure 5, in which each agent re-
tries only until it receives an ACK.

The failure-free run of ack-deliv (Figure 7) exhibits redundancy
in space (all sites relay) but not in time (each site relays a finite
number of times and ceases before EOT when acknowledgments
are received). The adversary perceives that it can falsify the out-
come log(B, data) by dropping the message A sent to B at
time 1, and either the message A sent to C at time 1 or the mes-
sage C sent to B at time 2 (symbolically, O(A,B,1) ∧ (O(A,C,1) ∨
O(C,B,2))). It chooses this set of failures to inject, but in the subse-
quent run the failures trigger additional broadcast attempts—which
occur when ACKs are not received—and provide additional sup-
port for the outcome. The adversary gets as many chances as it
likes, but each time At each round the adversary “cuts” some edges

and injects the corresponding failures; in the subsequent run new
edges appear. Eventually it gives up, when the agreed-upon failure
model permits no more moves. The programmer wins again.

3.1.5 Round 5: “classic” broadcast
For the final round, the programmer submits a well-known reli-

able broadcast protocol originally specified Birman et al. [61]:
(At a site receiving message m)
if message m has not been received already
send a copy of m to all other sites [...]
deliver m [...]

This protocol is correct in the fail-stop model, in which processes
can fail by crashing but messages are not lost. The programmer has
committed a common error: deploying a “correct” component in an
environment that does not match the assumptions of its correctness
argument.

The classic broadcast protocol exhibits redundancy in space but
not time; in a failure-free execution, it has infinite behaviors like the
protocols submitted in Rounds 2-3, but this redundancy is vulnera-
ble to message loss. The adversary, observing the lineage graph in
Figure 4c, immediately finds a winning move: drop messages from
A to B at time 1, and from C to both A and B at time 2.

3.2 Hazard analysis
In the game presented above, both players used the lineage of

program outcomes to reason about their next best move. The role
of the programmer required a certain amount of intuition: given the



1 ack(S, H, P)@next :- ack(S, H, P);
2 rbcast(Node2, Node1, Pload)@async :- log(Node1, Pload),
3 node(Node1, Node2), notin ack(Node1, Node2, Pload);
4 ack(From, Host, Pl)@async :- rbcast(Host, From, Pl);
5 rbcast(A, A, P) :- bcast(A, P);
6 log(N, P) :- rbcast(N, _, P);

Figure 5: Redundant broadcast with ACKs.
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Figure 6: Lineage for the redundant broadcast protocol redun-deliv, which
exhibits redundancy in space and time. A redundant support (falsifier:
O(A,C,1) ∨O(C,B,2)) is highlighted. The lineage from this single failure-
free execution is sufficient to show that no counterexamples exist.

lineage of an outcome in a failure-free run and a counterexample
run, change the program so as to provide more redundant support of
the outcome. The role of the adversary, however, can be automated:
MOLLY is an example of such an adversary.

Instead of randomly generating faults, the adversary used lin-
eage graphs to surgically inject only those faults that could have
prevented an outcome from being produced. As we observed in
the game, data lineage from a single execution can provide multi-
ple “supports” for a particular outcome. We saw evidence of this
in the Kafka replication protocol as well: a stable write may be
stable for multiple reasons, because it exists on multiple replicas,
each of which may have received multiple transmissions—hence
the lineage describing how the write got to each replica is a sepa-
rate support, sufficient in itself to produce the outcome.

A lineage-driven fault injector needs to enumerate all of the sup-
ports of a target outcome, and devise a minimal set of faults (consis-
tent with the failure model) that falsifies all of them. Because each
individual support can be falsified by the loss of any of its con-
tributing messages (a disjunction), LDFI can transform the graph
representation into a CNF formula that is true if all supports are fal-
sified (a conjunction of disjunctions) and pass it to an off-the-shelf
SAT solver. Each satisfying assignment returned by the solver is
a potential counterexample—it is sufficient to falsify all the sup-
port of the outcome of which the lineage-driven fault injector is
aware, given a particular concrete execution trace. Note that these
potential counterexamples comprise the only faults that it needs to
bother considering, precisely because if those faults do not occur it
knows (because it has a “proof”) that the program will produce the
outcome!

As we saw in the case of ack-deliv, given the faults in a potential
counterexample the program under test may produce the outcome
in some other way (e.g., via failover logic or retry). MOLLY con-
verts the faults back into inputs, and performs at least one more for-
ward evaluation step; this time, either the program fails to produce
the outcome (hence we have a true counterexample) or it produces
the outcome with new lineage (i.e., the program’s fault-tolerance
strategy worked correctly), and we continue to iterate.

MOLLY automates this process. It collects lineage to determine
how outputs are produced in a simulated execution, and transforms
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Figure 7: Lineage for the finite redundant broadcast protocol ack-deliv,
which exhibits redundancy in space in this execution, but only reveals re-
dundancy in time in runs in which ACKs are not received (i.e., when failures
occur). The message diagram shows an unsuccessful fault injection attempt
based on analysis of the lineage diagram: drop messages from A to B at
time 1, from C to B at time 2, and then crash C. When these faults are
injected, ack-deliv causes A to make an additional broadcast attempt when
an ACK is not received.

this lineage into a CNF formula that can be passed to a solver. If the
formula is unsatisfiable, then no admissible combination of faults
can prevent the output from being produced; otherwise, each sat-
isfying assignment is a potential counterexample that must be ex-
plored. As we will see in Section 5, MOLLY’s forward / back-
ward alternation quickly either identifies a bug or guarantees that
none exist for the given configuration. When a bug is encoun-
tered, MOLLY presents visualizations of the outcome lineage and
the counterexample trace, which as we saw are a vital resource to
the programmer in understanding the bug and improving the fault-
tolerance of the program.

4. THE MOLLY SYSTEM
In this section, we describe how we built the MOLLY prototype

using off-the-shelf components including a Datalog evaluator and
a SAT solver.

4.1 Program rewrites
To simulate executions of a Dedalus program, we translate it into

a Datalog program that can be executed by an off-the-shelf inter-
preter. To model the temporal semantics of Dedalus (specifically
state update and nondeterministic failure) we rewrite all program
rules to reference a special clock relation. We also add additional
rules to record the lineage or data provenance of the program’s out-
puts.

4.1.1 Clock encoding and Dedalus rewrite
Due to the synchronous execution model and finiteness assump-

tions presented in Section 2, we can encode the set of transitions
that occur in a particular execution—some of which may fail due



to omissions or crashes—in a finite relation, and use this relation
to drive the execution. We define a relation clock with attributes
〈From, To, SndTime〉. To model local state transitions in induc-
tive (@next) rules, we ensure that clock always contains a record
〈n, n, t〉, for all nodes n and times t < EOT. Executions in which
no faults occur also have a record 〈n,m, t〉 for all pairs of nodes n
and m. To capture the loss of a message from node a to node b at
time t (according to a’s clock), we delete the record 〈a, b, t〉 from
clock. To be consistent with the EFF parameter, this deletion can
only occur if t ≤ EFF. Finally, to model a fail-stop crash of a node
a at time t, we simply delete records 〈a, b, u〉 for all nodes b and
times u ≥ t.

We also rewrite Dedalus rules into Datalog rules. For all rela-
tions, we add a new integer attribute T ime (as the last attribute),
representing the logical time at which the record exists. To rewrite
the premises of a rule, we modify each rule premise to reference the
T ime attribute and ensure that all premises have the same T ime
attribute and location specifier (this models the intended temporal
semantics: an agent may make conclusions from knowledge only if
that knowledge is available in the same place, at the same time). To
rewrite the conclusion of a rule, we consider the Dedalus temporal
annotations:

Example 1 Deductive rules have no temporal an-
notations and their intended semantics match that of
Datalog, so they are otherwise unchanged.

log(Node, Pload) :- bcast(Node, Pload);
↓

log(Node, Pload, Time) :- bcast(Node, Pload, Time);

Example 2 Inductive rules—which capture local state
transitions—are rewritten to remove the @next anno-
tation and to compute the value of T ime for the rule’s
conclusion by incrementing the SndT ime attribute ap-
pearing in the premises.

node(Node, Neighbor)@next :- node(Node, Neighbor);
↓

node(Node, Neighbor, SndTime+1) :- node(Node,
Neighbor, SndTime),clock(Node, Node, SndTime);

Example 3 Asynchronous rules—representing un-
certain communication across process boundaries—are
rewritten in the same way as inductive rules. Note
however that because the values of To and From are
distinct, the transition represented by a matching record
in clock might be a failing one (i.e., it may not exist in
clock).

log(Node2, Pload)@async :-
bcast(Node1, Pload),
node(Node1, Node2);

↓
log(Node2, Pload, SndTime+1) :-

bcast(Node1, Pload, SndTime),
node(Node1, Node2, SndTime),
clock(Node1, Node2, SndTime);

4.1.2 Lineage rewrite
In order to interpret the output of a concrete run and reason about

fault events that could have prevented it, we record per-record data
lineage capturing the computations that produced each output.

We follow the provenance-enhanced rewrite described by Kohler
et al [50]. For every rule, the rewrite produces a new “firings”
relation that captures bindings used in the rule’s premises.

For every rule r in the given (rewritten from Dedalus as de-
scribed above) Datalog program, we create a new relation rprov
(called a “firings” relation) and a new rule r′, such that

1. r′ has the same premises as r,

2. r′ has rprov as its conclusion, and

3. rprov captures the bindings of all premise variables.

For example, given the asynchronous rule in Example 3, MOLLY
synthesizes a new rule:

log1prov(Node1, Node2, Pload, SndTime) :-
bcast(Node1, Pload, SndTime),
node(Node1, Node2, SndTime),
clock(Node1, Node2, SndTime);

Rules with aggregation use two provenance rules, one to record
variable bindings and another to perform aggregation. This pre-
vents the capture of additional bindings from affecting the grouping
attributes of the aggregation. For example:
1 r(X, count<Z>) :- a(X, Y), b(Y, Z)
2 ↓
3 rbindings(X, Y, Z) :- a(X, Y), B(Y, Z)
4 rprov(X, count<Z>) :- rbindings(X, _, Z)

4.2 Proof tree extraction
We query the firings relations to produce derivation graphs for

records [81]. A derivation graph is a directed bipartite graph con-
sisting of rule nodes that correspond to rule firings, and goal
nodes that correspond to records. There is an edge from each goal
node to every rule firing that derived that tuple, and an edge from
each rule firing to the premises (goal nodes) used by that rule. The
lineage graphs in Section 3 (Figures 3a-7) are abbreviated deriva-
tion graphs, in which goal nodes are represented but rule nodes are
hidden.

To construct the derivation graph for a record r, we query the
firings relations for rules that derive r. For each matching firing,
we substitute the bindings recorded in the firing relation into the
original rule to compute the set of premises used by that rule firing,
and recursively compute the derivation graphs for each of those
premises. Note that each rule node represents a firing of a rule
with a particular set of inputs; it is possible for a single outcome to
have multiple derivations via the same rule, each involving different
premises.

Each derivation graph yields a finite forest of proof trees. Each
proof tree corresponds to a separate, independent support of the
tree’s root goal (i.e., its outcome). Given a proof tree, we can de-
termine which messages were used by the proof’s rule firings; the
loss of any of these messages will falsify that particular proof.

4.3 Solving for counterexamples
Given a forest of proof trees, a naive approach to enumerating

potential counterexamples is to consider all allowable crash fail-
ure and message omissions that affect messages used by proofs.
This quickly becomes intractable, since the set of fault combina-
tions grows exponentially with EFF.

Instead, we use the proof trees to perform a SAT-guided search
for failure scenarios that falsify all known proofs of our goal tu-
ples. For each goal, we construct a SAT problem whose variables
encode crash failures and message omissions and whose solutions
correspond to faults that falsify all derivations in the concrete exe-
cution.

Each proof tree is encoded as a disjunction of the message omis-
sions (O(from,to,time)) and crash failures (C(node,time)) that can
individually falsify the proof. By taking the conjunction of these
formulas, we express that we want solutions that falsify all deriva-
tions. For example,

(O(a,c,2) ∨ C(a,2) ∨ C(a,1)) ∧ (O(b,c,1) ∨ C(b,1))



corresponds to a derivation graph that represents two proofs, where
the first proof can be falsified by either dropping messages from a
to c at time 2 or by a crashing at some earlier time, and the second
proof can be falsified by b crashing or the loss of its messages sent
at time 1.

If the resulting SAT problem is unsatisfiable, then there exists
at least one proof that cannot be falsified by any allowable combi-
nation of message losses and crash failures—hence the program is
fault-tolerant with respect to that goal! Otherwise, each SAT solu-
tion represents a potential counterexample that must be explored.

We solve a separate SAT problem for each goal tuple, and the
union of the SAT solutions is the set of potential counterexamples
that we must test—each potential counterexample corresponds to
a “move” of the adversary in the game presented in Section 3. If
the user has defined correctness properties using the built-in pre
and post meta-outcomes defined in Section 3, we perform an ad-
ditional optimization. Each meta-outcome is handled as above, and
a potential counterexample is reported for each set of faults that
falsifies a record in post unless those faults also falsify the corre-
sponding record in pre. We need not explore such faults, as they
would result in a vacuously correct outcome with respect to that
property.

The algorithm described above is presented formally in the Ap-
pendix (Section B), along with proofs of the soundness and com-
pleteness of LDFI.

5. EVALUATION
In this section, we use MOLLY to study a variety of fault-tolerant

protocols from the database and distributed systems literature, as
well as components of modern systems. We then measure the per-
formance of MOLLY along two axes: its efficiency in discovering
bugs, and its coverage of the combinatorial space of faults for bug-
free programs.

5.1 Case Study: Fault-tolerant protocols
We implemented a collection of fault-tolerant distributed pro-

grams in Dedalus, including a family of reliable delivery and atomic
commitment protocols and the Kafka replication subsystem de-
scribed in Section 1.1. We analyze them with MOLLY and describe
the outcomes.

MOLLY automatically produces Lamport diagrams [53], like those
shown in Section 3, to help visualize the message-level behavior
of individual concrete executions and to enable counterexample-
driven debugging. In each diagram, solid vertical lines represent
individual processes; time moves from top to bottom. Messages
between processes are shown as diagonal lines connecting process
lines; lost messages are shown as dashed lines. Vertices represent
events and are numbered to reflect global logical time; if a pro-
cess crashes, its node contains the string “CRASHED.” When it
comes time to debug systems to discover (and ultimately remedy)
the cause of an invariant violation, MOLLY produces lineage dia-
grams similar to those shown in Section 3.

5.1.1 Commit Protocols
We used Dedalus to implement three commit protocol variants

from the database literature, which were developed and extended
over a period of about five years [15, 33, 75]. As we would hope,
MOLLY immediately confirmed the known limitations of these pro-
tocols, and produced concrete counterexamples both for non-terminating
executions and for executions in which conflicting decisions are
made.

For all commit protocols, we specify two invariants as implica-
tions between pre- and postconditions:

Agent a Agent a Coordinator Agent d
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Figure 8: A blocking execution of 2PC. Agents a, b and d successfully
prepare (p) and vote (v) to commit a transaction. The coordinator then
fails, and agents are left uncertain about the outcome—a violation of the
termination property.

• Agreement: If an agent decides to commit (respectively,
abort), then all agents decide to commit (abort).

• Termination: If a transaction is initiated, then all agents de-
cide either commit or abort for that transaction.

Molly automatically identified the limitations of early commit
protocols that subsequent work attempted to correct. Figure 8 illus-
trates the well-known blocking problem associated with two-phase
commit (2PC) [33]. If the coordinator process fails after preparing
a transaction, the system is left in a state in which the transaction
outcome is unknown but all agents are holding locks waiting for
the outcome (a violation of the termination property).

The collaborative termination protocol (CTP) [15] attempts to
ameliorate the blocking problem by augmenting the 2PC protocol
so as to allow agents who suspect that the coordinator has failed
to exchange their knowledge about the outcome. It is well-known,
however, that although CTP allows more executions to terminate, it
has blocking executions under the same failure assumptions as clas-
sic 2PC. MOLLY discovered a counterexample after a single for-
ward/backward execution—due to space limitations, the diagram
is omitted.

Three-phase commit [75] solves the blocking problem—under
the assumption of a connected and synchronous network—by adding
an additional protocol round and corresponding agent state. It uses
simple timeouts as a failure detector; depending on the state a coor-
dinator or agent is in when a timeout fires, that site can unilaterally
determine the transaction outcome. Hence there are no “blocking”
states.

If we relax the assumption of a connected network by allowing
finite message failures, however, MOLLY discovers bad executions
such as the one shown in Figure 9. In this case, message losses
from the coordinator to certain agents (a and b) cause the agents
to conclude that the coordinator has failed. Since they are in the
canCommit state, they decide to roll forward to commit. Mean-
while the coordinator—which has detected that agent d (who orig-
inally agreed to commit) has failed—has decided to abort. This
outcome is arguably worse than blocking: due to the incorrectness
of the failure detector under message omissions, agents have now
made conflicting decisions, violating the agreement property.

As we saw in the case of classic-deliv in Section 3, the bad ex-
ecution results from deploying a protocol in an environment that
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Figure 9: An incorrect run of three-phase commit in which message loss
causes agents to reach conflicting decisions (the coordinator has decided to
abort (a), but the two (non-crashed) agents have decided to commit (c)).
This execution violates the agreement property.

violates the assumptions of its correctness guarantee—an all-too-
common hazard in composing systems from individually-verified
components.

5.1.2 Other fault-tolerant protocols
We used MOLLY to study other agreement protocols, including

Paxos [54] and the bully leader election protocol [31]. As we dis-
cuss in Section 7, desirable termination properties of such proto-
cols are difficult to verify due to their sensitivity to asynchrony.
Nevertheless we are able to validate their agreement properties by
demonstrating that no counterexamples are found for reasonable
parameters (as noted in Figure 13).

Flux [73] is a replica synchronization protocol for streaming
dataflow systems based on the process pairs [34] fault-tolerance
strategy. Flux achieves fault-tolerance by ensuring that a pair of
replicas receives the same message stream without loss, duplica-
tion or reordering; at any time, should one replica fail, the other
can take over. Despite its succinct specification, Flux is considered
to be significantly more complicated than alternative fault-tolerance
strategies for streaming systems, because of the interaction between
the protocol’s granularity (tuple-at-a-time) and the various com-
binations of failures that can occur during operation [87]. Using
MOLLY, we were able to certify that Flux is resilient to omission
and crash failures up to a significant depth of execution (see Fig-
ure 13). To the best of our knowledge, this effort represents the
most thorough validation of the Flux protocol to date.

5.1.3 Kafka replication bug
To reproduce the Kafka replication bug described in Section 1.1,

we provide a single durability invariant:
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Figure 10: The replication bug in Kafka. A network partition causes b
and c to be excluded from the ISR (the membership messages (m) fail to
reach the Zookeeper service). When the client writes (w) to the leader a,
it is immediately acknowledged (a). Then a fails and the write is lost—a
violation of durability.

• Durability: If a write is acknowledged at the client, then it
is stored on a correct (non-crashed) replica.

MOLLY easily identified the bug. Figure 10 shows the same
counterexample described by Kingsbury. A brief network parti-
tion isolates two of the replicas (b and c) from a and the Zookeeper
service, and a is elected as the new leader (assuming it is not the
leader already). Because a believes itself to be the sole surviving
replica, it does not wait for acknowledgments before acknowledg-
ing the client. Then a crashes, violating the durability requirement.

In reproducing this durability bug, we relied heavily on MOLLY’s
ability to model different components of a large-scale system at dif-
ferent levels of specificity. We focused first on the primary/backup
replication protocol logic, which we implemented in significant de-
tail (roughly a dozen LOC in Dedalus). Based on the intuition
that the bug lay at the boundary of the replication protocol and the
Zookeeper service and not in the service itself, we sketched the
Zookeeper component and the client logic, ignoring details such
as physical distribution (we treat the Zookeeper cluster as a single
abstract node) and the underlying atomic broadcast protocol [43].
Had this model failed to identify a bug, we could subsequently have
enriched the sketched specifications.

5.2 Measurements
A lineage-driven fault injector must do two things efficiently:

identify bugs or provide a bounded guarantee about their absence.
In this section, we measure MOLLY’s efficiency in finding coun-
terexamples for 7 buggy programs, compared to a random fault
injection approach. We then measure how quickly it covers the
combinatorial space of possible faults for bug-free programs.

Figure 12 lists the buggy protocols and (minimal) parameter set-
tings for which MOLLY found a counterexample, The table lists
the protocol size (in lines of code), the number of concrete ex-
ecutions explored before the counterexample was found, and the
elapsed time. In order to factor apart the impact of the abstrac-
tions presented in Section 2 from that of the pruning performed by
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Figure 11: For the redun-deliv and ack-deliv protocols, we compare the
number of concrete executions that MOLLY performed to the total number
(Combinations) of possible failure combinations, as we increase EOT and
EFF.

hazard analysis, we also implemented a random fault injector for
MOLLY. In random mode, MOLLY chooses failure combinations
at random and avoids the overhead of SAT and lineage extraction.
Figure 12 also shows the average number of executions (exe) and
average execution time (wall, in seconds) before the random fault
injector discovered a counterexample (averages are from 25 runs).

The performance of random fault injection reveals the signifi-
cance of LDFI’s abstractions in reducing the search space: for all of
the (buggy) protocols we studied, random fault injection eventually
uncovered a counterexample. In the case of relatively shallow fail-
ure scenarios, the random approach performed competitively with
the hazard analysis-based search. In more complex examples—in
particular the Kafka bug—MOLLY’s hazard analysis outperforms
random fault injection by an order of magnitude.

Even more compelling than its rapid discovery of counterexam-
ples is MOLLY’s reduction of the search space for bug-free pro-
grams. A random strategy may find certain bugs quickly, but to
guarantee that no bugs exist (given a particular set of parameters)
requires exhaustive enumeration of the space of executions, which
is exponential both in EFF and in the number of nodes in the sim-
ulation. By contrast, MOLLY’s hazard analysis is guaranteed to
discover and explore only those failures that could have invali-
dated an outcome. Figure 13 compares the space of possible ex-
ecutions (Combinations) that would need to be explored by an ex-
haustive strategy to the number of concrete executions (exe) per-
formed by MOLLY (providing 100% coverage of the relevant exe-
cution space), for a number of bug-free protocol implementations.
In all cases, we report the maximum parameter values reached by
the sweep procedure given a 120 second time bound.

Figure 11 plots the growth in the number of concrete executions
considered as the EFF is increased, for the ack-deliv and redun-
deliv protocols presented in Section 3, against the upper bound (the
number of possible failure combinations for that Fspec) on a log-
linear scale. It illustrates the impact of redundancy in individual
executions on the pruning strategy. By revealing massive redun-
dancy in every run, redun-deliv protocol allows MOLLY to rule
out an exponentially larger set of potential counterexamples in each
backward step.

6. RELATED WORK
In this section, we compare LDFI to existing techniques for test-

ing and verifying fault-tolerant distributed systems.

Program LOC EOT EFF Combinations exe
redun-deliv 7 11 10 8.07× 1018 11
ack-deliv 5 8 7 3.08× 1013 673
paxos-synod 33 7 6 4.81× 1011 173
bully-le 11 10 9 1.26× 1017 2
flux 41 22 21 6.20× 1076 187

Figure 13: MOLLY guarantees the absence of counterexamples for cor-
rect programs for a given configuration. For each bug-free program, we
ran MOLLY in parameter sweep mode for 120 seconds without discover-
ing a counterexample. We show the highest parameter settings (Fspec) ex-
plored within that bound, the number of possible combinations of failures
(Combinations), and the number of concrete executions MOLLY used to
cover the space of failure combinations (Exe).

Model checking [30, 39, 48, 63, 64, 85, 86] is a widely used tech-
nique for systematically checking distributed systems for violations
of correctness properties. Model checkers can provide guarantees
that no bad executions are possible by exhaustively checking all
program states reachable from a set of initial states. Model check-
ing is ideally suited to specifying and exhaustively testing individ-
ual components (particularly protocols) of distributed systems. For
practical distributed systems—systems that run for long periods of
time, and are built from a variety of components—this state space
is often too large to exhaustively explore. Some attempts to man-
age this complexity include abstraction refinement [13, 23], run-
ning model checkers concurrently with execution to detect possible
invariant violations in the local neighborhood [84], and heuristic
search ordering of the state space [85]. LDFI sidesteps the state ex-
plosion problem by asking a simpler, more targeted question: given
a class of good outcomes, can some combination of faults prevent
them? The complexity of this problem depends on the depth of the
lineage of the good outcomes rather than on the size of the global
state space.

Fault injection frameworks [1, 26, 36, 44] interpose on the exe-
cution of distributed programs to explore the consequences of mul-
tiple failures on specific outcomes. Fault injection techniques typ-
ically use either a random [1, 59] or heuristic [26, 36] strategy to
explore the space of possible failures. FATE and DESTINI [36]
has been used to reproduce dozens of known bugs in cloud soft-
ware, as well as to discover new ones. Like MOLLY, it uses Datalog
as a specification language; unlike MOLLY, it uses a combination
of brute force and heuristic search to explore failure combinations.
MOLLY takes a more complete approach, providing assurances that
no bugs exist for particular configurations and execution bounds.

LDFI focuses specifically on the effects of faults on outcomes,
and is compatible with a variety of other techniques that address
orthogonal issues. At a high level, MOLLY’s alternating execution
strategy resembles concolic execution [72], which similarly alter-
nates between calls to a concrete evaluator and a symbolic solver.
As we discuss in Section 7, concolic testing and other symbolic
execution approaches (e.g. Klee [18]) are ideal for discovering
bad inputs, and hence are complementary to LDFI. When verify-
ing individual components, LDFI can be used as a complemen-
tary approach to model checkers such as Chess [64], which focus
strictly on nondeterminism in interleavings. Like test generation
approaches such as execution synthesis [88], MOLLY “explains”
bugs, albeit at a higher level of abstraction: via data and depen-
dencies rather than stepwise program execution. Unlike execution
synthesis, MOLLY does not require a priori knowledge of bugs, but
discovers them.

Like reverse data management [60], LDFI uses provenance to
reason about what changes to input relations would be necessary to
produce a particular change in output relations (“how-to” queries).



Program Counterexample LOC EOT EFF Crashes Combinations Random Molly
exe wall exe wall

simple-deliv Figure 4a 4 4 2 0 4.10× 1003 4.08 0.16 2 0.12

retry-deliv Figure 4b 5 4 2 1 4.07× 1004 75.24 1.28 3 0.12

classic-deliv Figure 4c 5 5 3 0 2.62× 1005 116.16 1.81 5 0.24
2pc Figure 8 16 5 0 1 24 5.48 0.31 2 0.22
2pc-ctp 25 8 0 1 36 8.56 1.04 3 1.01

3pc Figure 9 24 9 7 1 2.43× 1026 40.60 6.24 55 9.60

Kafka Figure 10 18 6 4 1 1.85× 1025 1183.12 133.30 38 3.74

Figure 12: MOLLY finds counterexamples quickly for buggy programs. For each verification task, we show the minimal parameter settings (EOT, EFF
and Crashes) to produce a counterexample, alongside the number of possible combinations of failures for those parameters (Combinations), the number of
concrete program executions MOLLY performed (exe) and the time elapsed in seconds (wall). We also measure the performance of random fault injection
(Random), showing the average for each measurement over 25 runs.

When the submitted Dedalus program is logically monotonic [5,
58], LDFI answers how-to queries using positive why provenance [21];
otherwise LDFI must also consider the why-not provenance [40]
of negated rule premises (e.g., “an acknowledgment was not re-
ceived”). Systems such as Artemis [38] address the why-not prob-
lem (for monotonic queries) as a special case of what-if analysis,
and ask what new (perhaps partially-specified) tuples would need to
be added to a database to make a missing tuple appear. First-order
games [51, 69] use a game-theoretic execution strategy to answer
why-not queries. Wu et al. [83] describe a practical approach to
answering why-not queries for software-defined networks (SDNs).
LDFI can be viewed as a narrow version of the “how-to” prove-
nance problem, restricted to considering deletions on a single dis-
tinguished input relation (the clock), in the presence of possibly
non-monotonic queries. Many of the why-not provenance tech-
niques discussed above could assist in implementing LDFI—this is
a promising avenue for future work.

7. DISCUSSION AND FUTURE WORK
To conclude our discussion, we reflect on some of the limitations

of the MOLLY prototype, as well as directions for future work. Our
narrow focus on the fault-tolerance of distributed systems allowed
us to significantly simplify the verification task, but these simplify-
ing abstractions come with tradeoffs.

It is clearly impractical to exhaustively explore all possible in-
puts to a distributed system, as they are unbounded in general. We
have assumed for the purposes of this discussion that the program
inputs—including the execution topology—are given a priori, ei-
ther by a human or by a testing framework. However, our ap-
proach is compatible with a wide variety of techniques for explor-
ing system inputs, including software unit testing, symbolic execu-
tion [18, 72] and input generation [6, 22].

LDFI assumes that the distributed protocols under test are “in-
ternally deterministic” (i.e., deterministic modulo the nondetermin-
ism introduced by the environment). It leverages this assumption—
common in many fault-tolerant system designs [71]—to provide its
completeness guarantee: if some execution produces a proof tree
of an outcome, any subsequent execution with the same faults will
also. While MOLLY can be used to find bugs in fundamentally
non-deterministic protocols like anti-entropy [67] or randomized
consensus [14], certifying such protocols as bug-free will require
additional research.

The pseudo-synchronous abstraction presented in Section 2—
which made it possible to discover complex bugs by rapidly explor-
ing multiple heterogeneous failures—does come at a cost. For an
important class of fault-tolerant distributed algorithms (e.g., those
that attempt to solve consensus), an abstraction that factors apart

partial failure and asynchrony is fundamentally incomplete, be-
cause these algorithms are required to (attempt to) distinguish be-
tween delay and failure [19, 29]. For example, when we verify an
algorithm like Paxos [54] (described in Section 5), the conclusion
that Paxos is tolerant to a particular set of failures does not imply
that Paxos terminates in all executions. Relaxing the synchronic-
ity abstraction is an avenue of future work, but Section 5 provides
evidence that the tradeoff is worthwhile.

MOLLY automates the role of the adversary in the game pre-
sented in Section 3. But what about the role of the programmer? In
future work, it would be interesting to explore using the backwards
reasoning approach of LDFI to assist in fault-tolerant program syn-
thesis. Given a distributed program with a fault-tolerance bug, it
seems possible to use the lineage of its failure-free run (along with
a counterexample) to effectively guide the search through program
transformations that provide additional redundant support of the
program outcome. Similar techniques should also facilitate adapt-
ing existing fault-tolerant algorithms (like the classic-deliv proto-
col) to new failure assumptions.

8. CONCLUSION
Fault tolerance code is hard to test in a controlled environment,

yet likely to fail catastrophically at scale unless it is fully debugged.
Ad hoc approaches like random fault injection are easy to integrate
with real-world code but unable to provide bullet-proof assurances.
LDFI presents a middle ground between pragmatism and formal-
ism, dictated by the importance of verifying fault tolerance in spite
of the complexity of the space of faults. LDFI works with exe-
cutable code, though it requires that code to be written in a lan-
guage that meets the requirements outlined in Section 2.2.

By walking this middle ground, LDFI and MOLLY offer signif-
icant benefits over the state of the art in three dimensions. First,
LDFI provides radical improvements in the efficiency of fault in-
jection by narrowing down the choice of relevant faults to inject.
Second, LDFI enables MOLLY to provide useful software engi-
neering tools, illustrating tricky fault-tolerance bugs with concrete
traces complete with auto-generated visualizations of root causes
(lineage diagrams) and communication visualizations (Lamport di-
agrams). Finally, LDFI makes it possible to formally “bless” code
as being correct up to a significant depth of execution, something
that is infeasible with traditional fault injection techniques.
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APPENDIX
A. ALTERNATIVE APPROACHES

Figure 14 places LDFI in the feature space of existing tools that
identify bugs in large-scale distributed systems. It is worthwhile
to note that two of the key features not provided by LDFI—input
generation and testing of interleavings—are provided by existing
tools that are compatible with LDFI. A remaining area for inves-
tigation is achieving the benefits of LDFI for source code imple-
mented in a widely-used language: Section 2.2 discusses alterna-
tive approaches.

B. COMPLETENESS
LDFI provides a completeness guarantee unattainable by other

state-of-the-art fault injection techniques: if a program’s correct-
ness specification can be violated by some combination of failures
(given a particular execution bound), LDFI discovers that combi-
nation; otherwise it reports that none exists. In this section, we
provide a formalization and proof for that claim.

Algorithm 1 LDFI
Require: P is a Datalog¬ program produced by rewriting a Dedalus pro-

gram
Require: E is an EDB including clock facts
Require: g ∈ P(E) is a goal fact
1: function LDFI(P, E, g)
2: R← provenance-enhanced rewrite of P
3: G ← RGG(R, E, g)
4: ϕ← clocks(g,G )
5: if ϕ is satisfiable then
6: while there are more satisfying models of ϕ do
7: A← the next model of ϕ
8: D ← {clock(f, t, l) ∈ E|A |= Of,t,l ∨ (A |= Cf,l′ ∧
l′ < l)}

9: if g /∈ P(E \D) then
10: Yield D
11: end if
12: end while
13: else
14: return ∅
15: end if
16: end function

Section 4.1.1 described how a (distributed) Dedalus program can
be rewritten into a fragment of Datalog¬, whose execution may be
simulated by an off-the-shelf Datalog evaluator. Given two Data-
log relations p and q, we write p P−→ q if and only if there exists a
rule r in P such that p is the relation of a subgoal in r and q is the
relation in the head (we omit the P when the context is clear). We

write P−→
+

to denote the transitive closure of P−→. We assume that
submitted Dedalus programs are stratifiable [81]; that is, no predi-
cates depend negatively on themselves, directly or transitively. It is
easy to see that the rewrite procedure produces stratified Datalog¬
programs. In particular, the only change that rewriting makes is to
introduce the clock relation on the right-hand-side of some rules.
Since clock never appears on the left-hand-side of a rule, the rewrite
does not introduce any new transitive cyclic dependencies.

A fact is a predicate symbol all of whose arguments are con-
stants; e.g., log(A, “data”). We write relation(f) to
indicate the predicate name of a fact f . For example, if f =
log(A, “data”) then relation(f) = log. We are specifi-
cally interested in the set of EDB facts C ≡ {c ∈ E|relation(c) =
clock} Each such fact c ∈ C (henceforth called clock facts) is of
the form clock(from, to, time) and intuitively represents
connectivity from computing node from to node to at time time
on from’s local clock. Recall that in the Dedalus to Datalog¬
rewrite, every “asynchronous” rule is rewritten to include clock
as a positive subgoal. For convenience we use a named field nota-
tion (as in SQL): given a clock fact c we write c.from to indicate
the value in the first column of c; similarly with to and time (the
second and third columns, respectively).

Given a stratifiable Datalog¬ programP and an extensional database
(EDB) E (a set of base facts comprising the program’s input), we
write P(E) to denote the (unique) minimal model of P over E .
The model P(E) ⊇ E is itself a set of facts. Lineage analysis op-
erates over a derivation graph [50, 81], a bipartite rule/goal graph
G = (R ∪ G,E), where G is a set of goal facts and R is a set of
rule firings [50]. An edge (x, y) ∈ E associates either

1. a goal x with a rule y used to derive it, or

2. a rule firing x with a subgoal y that provided bindings.

We write RGG(P, E) to represent the rule/goal graph produced by
executing program P over input E .
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Figure 14: Overview of approaches to verifying the fault-tolerance of distributed systems.

LDFI constructs boolean formulae and passes them to a SAT
solver. Given a model A returned by a solver and a formula ϕ,
we write A |= ϕ if ϕ is true in A. We are concerned with the
truth values of a set of propositional variables {Ofrom,to,time ∪
Cfrom,time} such that from,to are drawn from the domain of lo-
cations (the first attribute of every fact, and in particular the clock
relation) and time consists of integers less than EOT . Recall that
Ofrom,to,time represents message loss from node from to node
to at time time, whileCfrom,time represents a (permanent) crash
failure of node from at time time.

We model failures in distributed systems as deletions from the
EDB clock relation. By construction, such deletions affect pre-
cisely the (transitive) consequences of async Dedalus rules, and
match intuition: message loss is modeled by individual deletions
(a loss of connectivity between two endpoints at a particular logi-
cal time), while crash failures are modeled by batch deletions (loss
of connectivity between some endpoint and all others, from a par-
ticular time onwards).

Definition A fault set is a set of factsD ≡ {f ∈ E|relation(f) =
clock}

Given a program P , an EDB E and a distinguished set of “goal”
relation names G (in the common case, G ≡ {post}), we identify
a set of goal facts F = {g ∈ P(E)|relation(g) ∈ G}. For each
goal fact g ∈ F , we wish to know whether there exists a fault set
which, if removed from E , prevents P from producing g.

Definition A falsifier of a goal fact g is a fault set D such that
g ∈ P(E), but g /∈ P(E \ D). A falsifier is minimal if there does
not exist a falsifier D′ of g such that D′ ⊂ D.

LDFI identifies potential falsifiers of program goals by inspect-
ing the data lineage of concrete executions. We may view a lineage-
driven fault injector as a function from a program, an EDB and a
goal fact to a set of fault sets; we write LDFI(P, E , g) to denote the
(possibly empty) set of fault sets that LDFI has determined could
falsify a goal fact g produced by applying the Datalog¬ program P
to the EDB E .

A lineage-driven fault injector is sound if, whenD ∈ LDFI(P, E , g),
D is indeed a falsifier of g. Soundness is trivially obtained by the
forward/backward execution strategy: for any potential counterex-
amples, LDFI performs a concrete execution (Algorithm 1, Line 9)
to determine if the set of omissions constitutes a correctness viola-
tion, and outputs D only if g /∈ P(E \D).

To prove completeness, we present the LDFI system discussed
in Section 4 formally in Algorithm 1. Most of the work of LDFI
is performed by the recursive function clocks defined in Algo-
rithm 2, which operates over derivation graphs and returns a boolean
formula whose satisfying models represent potential counterexam-
ples. Given a node n in the graph G (either a rule node or a goal

node, as described above), clocks returns a formula whose satis-
fying models intuitively represent faults that could prevent n from
being derived. If n is a clock fact (Line 4 of Algorithm 2), then
clocks returns a disjunction of boolean variables representing
conditions (losses and crashes) that could remove this fact from the
EDB; if n is a non-clock leaf fact, clocks simply returns true
(Line 7). Otherwise, n is either a rule node or a non-leaf goal. If
n is a rule node, then all of its child (goal) nodes were required to
cause the rule to fire; invalidating any of them falsifies the rule—
hence to invalidate n, we take the disjunction of the formulae that
invalidate its children (Line 24). By contrast, if n is a non-leaf
positive goal, then each of its (rule) children represents an alterna-
tive derivation of n via different rules—to invalidate n, we must
invalidate all of its alternative derivations: hence we consider the
conjunction of the formulae that invalidate its children (Line 20).

The last case to consider is if n is a negative goal: that is, some
rule fired because (among other reasons) a particular fact did not
exist (e.g., a retry was triggered because a timeout fired and there
was no log of an acknowledgment message). The derivation graph
RGG(P, E) does not explicitly represent the reasons why a partic-
ular tuple does not exist. There are a variety of options for explor-
ing why-not provenance, as we discuss in the related work. The
MOLLY prototype currently offers three alternatives to users. The
first is to ignore the provenance of negated goals—this is clearly
acceptable for monotonic programs, and can be useful for quickly
identifying bugs, but is incomplete. The second is similar to the ap-
proach used by Wu et al. [83] to debug software-defined networks,
which uses surrogate tuples to stand in for facts that do not hold at
a particular time and location. This approach seems to work well
in practice. Finally, we support an optimized version of the con-
servative approach described in detail in the completeness proof
below: we consider as possible causes of a negated goal tuple g
any tuples in the model P(E) 1.) from which relation(g) is
reachable via an odd number of negations (based on static analysis
of the program), and 2.) whose timestamp is less than or equal to
the timestamp of g.

For the purposes of the proof we consider a conservative over-
approximation of the set of possible causes for the nonexistence of
a fact. Line 17 enumerates the set of (positive) facts z such that
relation(n) is reachable from relation(z). clocks then
invokes itself recursively and returns the disjunction of the falsify-
ing formulae for all such goals r. The intuition is that since we
do not know the exact reason why a fact does not exist, we over-
approximate the set of possible causes by considering any fact z
that could reach n (based on a static analysis of the dependency
relation →) as one which, if made false, could cause n to appear
and falsify a derivation that required n to be absent. The attentive
reader will observe that falsifying z can only make n true if n de-
pends negatively on z—therefore we could further constrain the set



of facts enumerated in Line 17 of Algorithm 2 to include only those
z from which n is reachable via an odd number of negations. Be-
cause LDFI is sound, it is always safe to over-approximate the set
of possible falsifiers, so for simplicity of presentation we omit this
optimization from the proof.

We first establish a lemma regarding the behavior of Algorithm 2.

LEMMA B.1. Given a programP , EDB E , their derivation graph
G = RGG(P, E), and a goal fact g ∈ P(E), if D is a mini-
mal falsifier of g, then there exists a model A of the boolean for-
mula clocks(g,G ) such that for every f ∈ D, either A |=
(Of.from,f.to,f.time or A |= Cf.from,t for some t such that t ≤
f.time.

PROOF. Proof is by induction on the structure of G .
Base case: g is a leaf goal. We assume the antecedent: D is a

minimal falsifier of g. Consider any f ∈ D. Because D is min-
imal, it must be the case that without f , g cannot be derived by
P over E . So if g is a leaf goal, it must be the case that g =
f . So clocks(g,G ) = (Of.from,f.to,f.time ∨

∨f.time
t=0 (Cf.from,t)

and its satisfying models are exactly those that make true either
Of.from,f.to,f.time or any Cf.from,t with t ≤ f.time.

Inductive case 1: g is a rule. By the inductive hypothesis,
Lemma B.1 holds for all subformulae clocks(g′,G ) such that
(g, g′) ∈ E. Line 24 returns the disjunction of the subformulae;
since Lemma B.1 for each, it surely also holds for their disjunc-
tion (any model of one of the subformulae is a model of the whole
disjunction).

Inductive case 2: g is a non-leaf goal. We consider two cases:
If g is positive, consider all subformulae clocks(r,G ) such

that (g, r) ∈ E—call those subformulae ϕ,ψ, [. . .]. By the in-
ductive hypothesis, there exist models A,B, [. . .] such that A |=
ϕ,B |= ψ, [. . .], and for all f ∈ D, either A |= Of.from,f.to,f.time

or A |= Cf.from,t) for some t such that t ≤ f.time, and similarly
for B, [. . .], etc.

We must now show that there necessarily exists a model Z such
that Z |= ϕ∧ψ∧[. . .] and for all f ∈ D, either Z |= Of.from,f.to,f.time

or Z |= Cf.from,t). Note that by construction, ϕ,ψ, [. . .] contain
only the boolean connectives and (∧) and or (∨): in particular,
they do not contain negation. Hence it cannot be the case that their
conjunction is unsatisfiable. We construct Z by making true every
propositional variable that is true in any of the A,B, [. . . ]. Observe
that Z |= ϕ, since all variables true in A are true in Z and ϕ does not
contain negation—similarly for ψ, [. . .]. Hence Z |= ϕ∧ψ ∧ [. . .].

Finally, if g is negative, then C (Line 17) is the enumeration
of the z ∈ G such that g is (statically) reachable from z based

on P−→
+

. Note that if g has only positive support (no predicate

z′ such that z′ P−→
+

g appears as a negative subgoal in a rule),
then no falsifiers of “not g” exist—EDB deletions cannot cause
new facts to appear except in the presence of negation—and so the
lemma holds vacuously. However, it is possible that g depends
negatively (specifically, via an odd number of negations) on some

(positive) z: if z were to disappear, then g could be derived. C
over-approximates this set of positive facts using the (static) re-

lation P−→
+

; for each, clock obtains a falsifying formula for z
(which by the inductive hypothesis satisfies the lemma). If a fal-
sifier of g exists, it must be a falsifier of one of the z. Hence (by
a similar argument to the inductive case 1 above) the lemma holds
for the disjunction of the z ∈ Cs.

THEOREM B.2. Completeness of LDFI: Given a program P ,
and EDB E , for every minimal falsifier D of goal fact g ∈ P(E),
there exists a D′ ∈ LDFI(P, E , g) such that D′ is a falsifier of g
and D ⊆ D′.

PROOF. By Lemma B.1, there is a model A of the boolean for-
mulae denoted by clocks(g,G ) such that, for every f ∈ D, ei-
ther A |= Of.from,f.to,f.time or A |= Of.from,t for some t such
that t ≤ f.time. Algorithm 1 enumerates all satisfying models:
one of them is A. As seen in Line 8, for every f ∈ D′ there is a
fact clock(f.from, f.to, f.time) in the falsifier corresponding
to model A returned by LDFI.

Algorithm 2 Clocks algorithm

Require: G = (R ∪G,E) is a bipartite rule-goal graph.
Require: n ∈ (R ∪G)
1: function CLOCKS(n,G )
2: if n ∈ G then . n is a goal
3: if ¬∃r(r ∈ R ∧ (n, r) ∈ E) then . n is a leaf
4: if relation(n) = clock then
5: if n.time < EFF then
6: ϕ← new bool: On.from,n.to,n.time

7: else
8: ϕ← false
9: end if

10: ψ←
n.time∨
i←0

new bool:Cn.from,i

11: return (ϕ ∨ ψ)
12: else
13: return true . Ignore non-clock leaves
14: end if
15: else . n is a non-leaf goal
16: if n is negative then . n was a negated subgoal

17: C ← {z ∈ G|relation(z) P−→
+
relation(n)}

18: return
∨

z∈C
clocks(z,G )}

19: else
20: return

∧
(n,r)∈E

clocks(r,G )}

21: end if
22: end if
23: else if n ∈ R then . n is a rule
24: return

∨
(n,g)∈E

clocks(g,G )}

25: end if
26: end function
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