Krivine’s abstract machine and the Au-calculus

(an overview)

Olivier LAURENT
Preuves, Programmes et Systémes
CNRS — Université Paris VII
UMR 7126 — Case 7014
175, rue du Chevaleret — 75013 Paris - FRANCE
Olivier.Laurent@pps. jussieu.fr

September 17, 2003

Abstract

After a presentation of Krivine’s abstract machine for the pure and simply typed A-calculi,
we show how an extension of the instructions for the manipulation of stacks leads to Parigot’s
Ap-calculus. Using a typing system for the machine, we derive the typing rules for the simply
typed Ap-calculus.

Keywords : A-calculus, A\u-calculus, Krivine’s abstract machine (KAM), classical logic, control
operators.

Introduction

M. Parigot introduced the Au-calculus [14] as an extension of the A-calculus allowing to extend
the Curry-Howard correspondence to classical logic, in the spirit of Griffin’s ideas [8]. His work is
based on a proof theoretical approach in the study of natural deduction with many conclusions.
We propose to show how it is possible to define and describe the Ay-calculus with more operational
considerations. We will use Krivine’s abstract machine (KAM) [10] as computational framework,
presented in a first step as an abstract machine for the A-calculus. The definition of a typing system
for the machine allows to control some properties of the machine: stopping states, termination, ...
In a second step, we extend the machine with instructions for the manipulation of stacks which
appear to correspond precisely to the Au-calculus and which give enough expressive power to encode
control primitives (like call/cc, continuations, ...). The typing system of the machine allows then
to derive the typing rules of the simply typed Au-calculus. So that Parigot’s Au-calculus is entirely
rebuilt from Krivine’s abstract machine.

We can almost say that none of the ideas introduced in this paper is due to the author. These
are common ideas (very well known by M. Parigot and J.-L. Krivine themselves) that have never
been written in details, as far as we know. Our goal is to give an alternative presentation of the
Ap-calculus with respect to Parigot’s one [14], that can be used by people with a basic knowledge
in A-calculus.



1 The M-calculus

We are just going to recall some elements of A-calculus in order to introduce some notations and
to present the results we will use. For a more precise and complete introduction to the A-calculus,
see [1, 11].

1.1 The language

Let AVar be a denumerable set of variables called the A-variables and denoted z, y, z, ..., the
A-terms are given by:
t u= z | Azt | ()t

we will use the notation (¢)¢1 ..., for (((£)t1)...)tn.

Remark: These kinds of notations with brackets around the function of an application are par-
ticularly natural for Krivine’s Abstract Machine since (£)t1 ... %, will be an instruction which first
builds the stack t;...¢, and then executes t.

The A-construction is a binder for the A-variable z. The free variables of a term (denoted by
x € t) are thus defined by:

e z has a unique free variable z;
e the free variables of Ax.t are those of t except x;
e the free variables of (t)u are those of ¢ and u.

Terms are used up to a-equivalence for bound variables.
The (S-reduction is the only computation rule and can be applied anywhere in a A-term:

(Az.t)u —5 t["/4]

where t[*/;] is the usual capture-avoiding substitution of variables by A-terms defined by: z[*/,] =

u, y[* /] =y if x £y, (O)["/2] = @E["/)H[" /2] and (Ay.t)[*/2] = Ay.(¢[*/z]) where y is chosen
not free in v and z (using a-equivalence).

Lemma 1 (Reduction and free variables)

Ift gt and x is free in t' then x is free in t.

Instead of the general -rule, we will be interested in a restriction called the weak head reduction:
a redex can be reduced only if it is just under some applications. That is, we only reduce redexes
of the shape ((Az.t)u)uy...u,. A weak head normal form is a normal form for this particular
reduction procedure, that is a A-term of the shape (z)u;...u, (in this case = is called its head
variable) or Ax.t.

1.2 Simple types
Given a set of ground types (o, ...), the simple types are generated by:
A = o0 | L | A=A

with the convention A - B — C = A — (B — (). The atoms o or L are denoted by X. Any
simple type can be written in a unique way in the shape A = A; — --- — A, — X. The constant
1 can be considered as a particular ground type and will be used later.



A typing context I is a finite set of pairs (z, A), denoted by x : A, where each A-variable appears
at most once. A typing judgment has the shape I' F ¢ : A. The typing rule we are using for the
simply typed A-calculus are:

var Fl_tB lam Fl_t'A—>B Al_U'A app

z:AFx: A F'\{z:A}FXzt: A— B FUAF (H)u:B

where I'\ {z : A} is not defined if I' contains = : B with A # B, and I' U A is not defined if I'
contains z : A and A contains z : B with A # B (we also use I',z : A for T U {z : A}).

The typing system we present doesn’t allow to declare unused variables (which is not the
case with a var-rule like T,z : A + x : A). This requires to give a refined statement for the
subject reduction property (proposition 1) but gives more informative typing judgments as stated
by lemma, 2 or lemma 5. Moreover, this makes the typing system of section 2.2 easier to understand.

Lemma 2 (Typing context and free variables)
IfT -t : A is derivable, then T' contains exactly one typing declaration for each free variable of t.

Lemma 3 (Substitution)
IfTyz:BFt:Aand At u: B are derivable and T'U A is defined, then T U A F t[*/,] : A.

Proposition 1 (Subject reduction)
IfT Ft: A is derivable and t —g t', then I" = t' : A is derivable where I' is the subset of T’
containing only the typing declarations for the free variables of t'.

Proposition 2 (Strong normalization)
IfT' -t : A is derivable, there is no infinite sequence of reductions starting from t.

2 Krivine’s abstract machine

Instead of the usual interpretation of the reduction of the A-calculus as a rewriting system, we
will interpret the constructions of the A-calculus as instructions of an abstract machine: Krivine’s
abstract machine (or KAM).

2.1 Definitions and properties

In order to define the states of the KAM, we need the following mutually inductive definitions:

e An environment e is a partial function with finite domain from AVar to the set of closures
(or equivalently a finite set of pairs (z,c)).

e A closure cis a pair (t,e) of a A-term and an environment (at this stage, there is no particular
requirement on the fact e must (or not) give values for the free variables of ¢, some additional
constraints will be required by typing in section 2.2, see comment page 8).

e A stack m is a finite sequence of closures.
e A state is a triple (¢, e, 7) (or equivalently a pair (¢, 7)).

Informally, a A-term requires some information to define the value of its free variables, and this
information is given by the environment in a closure. A stack is an evaluation context.
We define the following notations:



() is the empty environment;

if e is an environment, e(x) is the closure associated with z in e;

e+ (z = ¢) is the environment obtained by modifying the value associated with = in e (or by
defining it if e(z) was undefined), which is ¢ in the new environment;

¢ is the empty stack;

¢ :: w is the stack obtained by pushing ¢ on 7.

Expansion of states. We can transform any A-term ¢ into a state (¢, 0, ¢) of the machine.
The converse is also possible:

e if c = (t,e) is a closure with e = {(z1,¢1),..., (zn,cn)}, the A-term ¢ or t{e} is given by the
corresponding substitutions ¢[“' /4, ..., /2. ];
o if m=1cy:: - ¢py e is astack, T is the sequence of M\-terms ¢ ... ¢,.

If s=(t, e, m) is a state of the machine, the ezpansion of s is s = (t{e})7.

Transitions. The transitions of the machine give the evolution of states with the idea that the
A-term in the state is the set of instructions and defines the transition to be applied:

push

((tu, e, m) (t,e, (ue)um)

deref (t,e, ) where e(z) = (t,¢€)

If none of the transitions can be applied, the machine stops and the last state is the result of the
computation. There are two reasons for the machine to stop:

e in a (pop) transition if the stack is empty;
e in a (deref) transition if the variable is not defined in the environment.

In section 2.2, we will see how we can control these stopping cases by some typing constraints.

Intuitive properties. We first give some intuitions about the properties of the KAM, which will
be made more formal in the sequel.

e In a closure (¢,¢), we can modify in e the value associated with any variable not free in ¢
without modifying computation (lemma 4).

e We can replace any closure (¢,¢e) by (¢t{e}, ) without modifying computation.

e The computation of the KAM realizes the weak head reduction of A-terms.



Example 1 (Computation of a -redex)
The evaluation of a S-redex in the KAM starts by:

( Azt)u e , )
LN ( Azt e , (u,e)um )
— 5 ( t e+ (z=(ue) T )

and during the evaluation of ¢, each time the variable z arrives in head position, a (deref) transition
is used to evaluate u (this corresponds to the substitution of z by u given by the S-reduction).

Lemma 4 (Non-free variables)

If (t,e) is a closure appearing in the state s and if s' is obtained by replacing (t,e) by (t,e+(x = c)) in
s with © not free in t, the A-terms that will appear in “instruction position” during the computation
of s’ in the KAM are the same as for the computation from s.

PrROOF: We consider the following relation on states: s < s if s’ is obtained from s by replacing
some closures (t,e) of s by (t,e + (z = ¢)) with z not free in .

We show that if s ———— s; and s < s’ then 8" ———— s} with s; < . We consider

each possible transition for s ———— s; with s = (ty, eg, m) and s’ = (4o, e, 7 ):

us o = (Up)vg en s = (Ug €p Vp,€p) 1 Mp) and 8§ — > S§; WI Sy =
push) If t , th , , , d s | with s}
(ug , ey, (vo,ep) = mp). Since s < ', the difference between ey and e can only be
some additional declarations for variables not free in (ug)vy and the same for m and =,
so that s1 < ).
(pop) If tg = Ay.ug then my = ¢ :: 71 so that s = (ug , eo + (y = co) , ™), T = ¢ = 7
and st = (ugp, ey +(y =cy) , 7). Up to a-equivalence, we can assume that y is no
d s} o+ (y 0 ). Upt ival that y i t
declared in ey and ef, and from s < s’ we easily deduce s < ).

(deref) If tgo = y and ep(y) = (t1,e1) then ef(y) is defined to be some (#|,¢}) and s; =
(t1, e1, mo), sy = (), €, m). Since y is free in y, the difference between (¢, e;)
and (¢}, €}) can only concern declarations in e; and €| (and moreover for variables not
free in t; and #}) thus ¢, = ¢}, and we then get s; < 5.

We thus have that if s 81 > Sp, --- is the sequence

of states of the execution of the KAM with starting state s then the sequence of states with
starting state s’ is ' il > S - with s; < s} for

every 7. This entails that the term of the state s; is the same as the term of the state s;. O

Example 2 (n-reduction)
The n-reduction of the A-calculus is defined by:

Ae.(t)yr —, ifx ¢t
This reduction is realized by the KAM, except if the starting stack is empty:
( M.(t)r , e , € )

is a stopping state (this will be refined by typing, see after corollary 4.1).



If the stack is non-empty, the computation leads to ¢:

( Az.(t)x e , cum )
—2 s ( Bz, et(z=0c) , T )
LN ( t , e+ (r=¢) , (r,e+(xr=0c)um )

and the machine computes as for (¢, e, ¢ :: ) by lemma 4. This is very similar to what appends
for B-reduction.

Example 3 (Q2)
We use the standard notation § = Az.(z)z:

( (0)5 0 , e )
e s 0 , (5,0) )

—22 5 ( (x)z , z=(60) , e )
e e=(0,0) , (z,z=(5,0) )
dore o5 0  (mz=(5,0) )
pop

and the computation does not terminate.

We have described a relation between states and A-terms through the expansion of states and
we can extend this relation to the computational part of the two worlds.

Proposition 3 (Simulation)
If an execution of the machine goes from the state s to the state s', the \-term 5 reduces by weak
head reduction to s'. This simulation is strict in the case of (pop) transitions: if s P

then s —g s'.
PrROOF: We consider each case of transition:

(push) If the starting state is s = ((t)u , e, m), we have 5 = ((t)u{e})™ = (t{e})u{e}r which
is exactly s’ with ' = (¢, e, (u,e) :: 7), no reduction is required.

(pop) If the starting state is s = (Az.t , e, ¢ = m), we have 5 = (A\z.t{e})cm and s’ =
(t,et+(z=c), m) with s' = (t{e+ (z = )})7 = (t{e}[*/s])7. This allows to conclude
since (Az.t{e})cm reduces by one step of weak head reduction to (t{e}[*/s])T.

(deref) If the starting state is s = (. , e, 7) with e(z) = (,€’), we have 5 = (z{e})7 = (t{'})7
and ' = (t, ¢, m) with s’ = (t{e'})7, and no reduction is required. O

Corollary 3.1 (Weak head normal form) N
If the KAM starts from the state s and stops in the state s', then s' is the weak head normal form
of 5.

ProOF: Using proposition 3, we know that s reduces to s' by weak head reduction. We just have
to show that if the KAM stops in the state s', s’ is a weak head normal form. We have two
possible cases:



o ' =(Xzu, e, e), so that s = Az.ufe} is a weak head normal form;
e s’ =(z, e, n) with e(z) undefined, so that s = (z{e})T = ()7 is a weak head normal
form. O

In particular, if the starting state is (¢, ), €) and the stopping state is (u , e, w), (u{e})T
is the weak head normal form of .

2.2 Typing

In order to type the machine, we first introduce simple stack types:
P =46 | T | AAP

where o is a simple ground type and A is a simple type. The notation & suggests a kind of duality
between simple types and simple stack types which is made explicit in the remark after the typing
rules.

To the previously defined typing judgments for A-terms I' - ¢ : A, we add:

e typing judgments for closures: T Fc105 ¢ A, where I is a typing context for the free variables
of ¢ (that is free in the A-term of ¢ and not defined in the environment of ¢) and A is a simple
type for the A-term of c;

e typing judgments for environments: I' Fepy € : {E}, where I' is a typing context for the free
variables of e (that is free in a closure of e) and = is a typing context for the variables defined
in e;

e typing judgments for stacks: T' Fgpack 7 : P, where T is a typing context for the free variables

of  (that is free in a closure of 7) and P is a simple stack type;

e typing judgments for states: I' Fgrate S, where I' is a typing context for the free variables of
s (that is free in the closure of s or in the stack of s).

The typing rules for environments, closures, stacks and states are:

- ey e: {E} Al c: A 't A Abeye: {E}
Feav 0+ {} TUA ey e+ (1= 0) : {Z,2: A} (T\E)UA Foros (he) : A

- - I'hFeos ¢t A Abgtack m: P
Fstack €10 Fstack € T TUA Fgpack (cxm) : AANP

[ Felos (Be) 1 A — - = Ay = X AFgack T: AN NA, AN X
FUAl_State (t, e, 71')

with X=if X=cand X=TifX=1.

Remark: This last rule can be defined in a slightly different way if we introduce an explicit “du-
ality” between simple types and simple stack types by o+ =&, L+ =T and (A — B)t = AA B,

[ Feios (B€) 0 A A Foraer m: AL
FUAl_State (t, e, 7T>




This idea of a duality between terms and stacks can be thought of as a key ingredient of the
computational interpretations of classical logic. It appears in Parigot’s proof of strong normalization
for the Ap-calculus [15] and in Krivine’s classical realizability [12], it is related to the duality
between call-by-name and call-by-value computations [18, 3], it can be related with the duality of
linear logic [4], ...

We can now make more formal the intuitive descriptions of the meanings of typing judgments
we have given before the rules.

Definition 1 (Free variables)
We extend the notion of free variable to environments, closures, stacks and states:

o If e ={(z1,c1),...,(zpn,cn)}, the free variables of e are the free variables of ¢y, ..., ¢;.

e If ¢ = (t,e), the free variables of ¢ are the free variables of ¢ not defined in e and the free
variables of e.

o If m=1¢y::--- ¢, :: g, the free variables of 7 are the free variables of ¢, ..., ¢,.

e If s=(t, e, m), the free variables of s are the free variables of the closure (¢, e) and the free
variables of 7.

It is not very natural to consider closures with free variables, since the intuition behind a closure
is a closed object containing exactly the declarations required for the free variables of the A-term.
In fact these free variables in closures (or states) should be considered as constants more than
variables and this gives a very easy way to enrich the language with ground type constants since
they are treated just like variables.

Lemma 5 (Typing judgments and free variables)
Derivable typing judgments declare exactly the free variables:

o IfT' Feny € : {E} is derivable, then T' contains exactly one typing declaration for each free
variable of e and = contains exactly one typing declaration for each variable declared in e.

o IfT Fe1os ¢ @ A is derivable, then T' contains exactly one typing declaration for each free
variable of c.

o If I Fgtack ™ : P is derivable, then I' contains exactly one typing declaration for each free
variable of m.

o IfI" Fgtate S 45 derivable, then I' contains exactly one typing declaration for each free variable

of s.

ProOOF: We prove all the results together by induction on the size of the typing derivation. We
consider each possible case of a last rule:

o If we derive epy 0 : {}, 0 contains no declaration and no free variable.

o If wederive TUA Feppe+(z=c): {E,2: A} from [ bepy e: {E} and A 105 €@ A, the
defined variables of e + (z = ¢) are those of e, contained in = by induction hypothesis,
and z. The free variables of e + (z = c¢) are those of e, contained in T' by induction
hypothesis, and those of ¢, contained in A by induction hypothesis.



o If we derive (I' \ ) UA Fcios (f,e) : Afrom I' F ¢ : A and A Fepy e : {E}, the free
variables of (¢,e) are the free variables of ¢ not defined in e contained in I' \ E and the
free variables of e contained in A.

o If we derive Fgpack €: 0 Or Fgiack €: T, € has no free variable.

o If we derive ' U A Fgpack (c:im) : AAP from I Feyos €0 A and A Fggacx 7 2 P, the free
variables of (¢ :: ) are the free variables of ¢ contained in I" and those of 7 contained in

A.

o If we derive T U A Fgtate (t, e, ) from T Fepos (f,€) 1 A and A Fgpaex ™ : AL, the
free variables of (¢, e, 7) are the free variables of (¢,e) contained in T" and those of 7
contained in A. O

The typing rules we have given for the KAM are compatible with the typing rules for terms
through the expansion of states.

Lemma 6 (Typing and expansion)
If T Fgtate S 18 derivable, there exists an atom X such that T' + 5 : X is derivable where T is the
subset of I' containing only the typing declarations for the free variables of 3.

PrROOF: We first prove, by induction on the size of e, that if T F¢105 (£,€) : A then TV - t{e} : A.
From T" Fe10s (¢, €) : A we can deduce I' = (I} \ E) UTy with T’y F¢: A and T'y Fepy e : {E}.
If e =0, t{e} = t and T'y and = are empty so that T' - t{e} : A. If e = ¢ + (xz = ¢),
we have I'y = T, UTY and E = Z')z : B with I} Fepy € @ {E'} and ') Fe10s ¢+ B. We
can deduce (I'y \ ') UTY Feios (£,€') : A and by induction hypothesis A F t{e'} for the
correct subset A of (I'; \ E') UTY,. If z is not free in ¢, this is enough to conclude, otherwise
t{e} = t{e'}[*/.] and by induction hypothesis Ty Fe10s ¢ : B entails A’ ¢ : B with A’ € T
so that (A\ {z: B})UA'F t{e/}[?/,] : A by lemma 3 since A contains x : B.

If T Fgpate s is derivable with s = (¢, e, 7), we have [' = 'y UT'y with T’y Fey0s (£,€) 1 A1 —
oo =5 A, = X and To Fapace m: A1 A+~ AA, A X, this entails 7 = ¢; 2 -+ - iz ¢, :: € with, for
each 1 <i<m, A;Fcios ¢ : A; and 'y = Ay U---UA,. By the result we have just shown,
we get I') Ft{e} : Ay - -+ - A, — X and, for each 1 < i < n, Al I ¢ : A;, leading to
DUA U UALF (H{e})ér ... én 0 X with (H{e})ér ... 6, =3 m

Proposition 4 (Subject reduction)
The evaluation of the KAM preserves typing, i.e. if T' Fgiate (t, €, m) is derivable and if the
following transition is valid:

<t7677r> E— (tlvelaﬂ-l>
then T Fgiase (', €, ©') where T is the subset of T' containing only the typing declarations for
the free variables of (t', €', 7).

PROOF: If T Fgtate (¢, €, m) is derivable, we must have I' = (T'; \E) UT2 UT'3 with I'y F¢: A,
Ty Fenv €: {2} and I's Fgpack ™ : AL, We look at each possible transition:

(push) We have t = (')u, this entails I') =T UT] with T} ¢ : B - Aand 'Y - u : B, and
we can derive:



MbEwu:B I'y Fenv €: {E}
Fll F t, :B— A FQ l_env e: {E} (1—1/1/ \ E) U FQ I_vzzlos (U, 6) : B F3 l_stack e AJ_

(TY\Z) UT2 Feros (H,e) : B— A (TY\ E)UT2 UT3 Fepack ((u,€) :: ) : BA AL
(TH\E) UMY\ E)UTUT3 Fgtate (¢, €, )

with (T \E)U (TY\ ) = (T UTY)\ 2 =T \ = and the free variables of s and s’ are
1 1 1 1
the same.
(pop) We havet = zt', A=B— C,I'y =T\ {z: B} and T} ' : C. Moreover 7 = ¢ :: 7,
thus T3 = T4 UTY with T Fe1os ¢: B and T Fgpack 7 : O and we can derive:

I'y Fenv €: {E} i bFeosc: B
et C PoUTl Fenve+ (z=c¢): {E,z: B}
(CI\E)UT2UT, Feros (He+ (z=0¢)): C I Fstack ™ ct
(T \E)UToUT, UTY Fopate (', €, 7')

and the free variables of s and s’ are the same.

(deref) We have t = z, thisentails Ty =z : Aand e = ey + (z = (¢, €’)). From 'y Feny €9 + (2 =
(t',€¢')) : {E}, we deduce 'y = TLUTY and E = E',z : A with T') Feny e : {E'} and
') Felos (H,€) 1 A, and we can derive:

I Feos (€)1 A D3 Fotack 72 AT
FIQI U 1—‘3 l_state (tl ) 6, ) 7TI>

By lemma 5, I’ UT'3 contains exactly the typing declarations from I' for the free variables
of (t', ¢, 7). O

Corollary 4.1 (Termination)
If T Fgtate s is derivable, the KAM, starting from the state s, stops in a state (x , €' | ©') where x
is the head variable of the weak head normal form of 3.

PrOOF: We first show that the machine stops, which means that we can’t have an infinite sequence
of transitions from s. We define the size |¢| of a term ¢ to be its number of symbols, the size
le| of an environment e to be the sum of the sizes of its closures and the size of a closure
(t,e) to be |t| + |e|]. We remark that we can’t have an infinite sequence of transitions (push)
and (deref) because the value of (|e|, |t|) (ordered in lexicographic order) is strictly decreasing
in such a sequence. So that an infinite sequence of transitions of the machine contains an
infinite number of transitions (pop). According to proposition 3, each (pop) transition from
$1 to so corresponds to a step of weak head reduction from s to $3, but by lemma 6 the term
s associated with the first state is typable so that, by strong normalization for the simply
typed A-calculus (proposition 2), it can’t have an infinite sequence of reductions.

/ /

Let s’ be the stopping state, it is either (Az.u , € , €) or (z , € , ©') (see page 4) but
the first case is rejected by proposition 4 since it must be typable and ¢ is not typable of a
type A A P. This entails, s' = (z, ', 7') with z not declared in ¢’ and by corollary 3.1,
(z{e'})n’ = (z)n' is the weak head normal form of s so that z is the head variable of this
weak head normal form. O

10



In particular, the machine never stops because the A-term is Az.t and the stack is empty (in
example 2, the stack cannot be empty).

A natural particular case of the previous corollary is s = (¢, (), €), and we can wonder what
result we get if ¢ is closed and Fggate (£, 0, €). In fact, we get a contradiction! If Fgpae (£, 0, €)
is derivable, the KAM ends with a state (z , ', 7'}, but this is not possible because z cannot be
defined in ¢’ (otherwise the machine doesn’t stop) and for Fgiate (2, € , ) to be derivable, z
must be defined in ¢’. We can give a direct proof that Fggate (£, (0, €) is never derivable: if it is,
the last rules have the shape:

Ft: A Fenv 0 : {}
I_clos (t, Q)) tA l_stack €. AL
l_state (ta wa 6>

This entails A = o or A = L, otherwise Fgyack € : A* is not derivable, but in this case ¢ : A is
not derivable.

There are two interpretations of this remark. First, using our discussion about free variables in
closures and states, we can restrict ourselves to A-terms containing constants (with ground types)
and with a reduction leading to such a constant. Second, we can liberalize the typing rule for € by:

}_stack € P

with any simple stack type P, but in this case we get back the stopping configuration of a (pop)
transition that we cannot apply because the stack is empty. So that typing doesn’t give anymore
a control on the stopping configurations.

3 KAM and control

3.1 Extension of the machine

If we look at a state of the KAM as a pair of a closure and a stack, the transitions we have seen
interpret the instructions given by A-terms as operations on closures: stocking a closure on the
stack (push), naming a closure in the environment (pop) and reading back a closure from its name
in the environment (deref).

In this spirit, it is natural to try to extend our set of instructions (thus our constructions of
terms) in order to define operations on stacks: naming a stack in the environment (save) and
reading back a stack from its name in the environment (restore).

Given a denumerable set pVar of variables, denoted by a, £, ..., called the p-variables and used
in the machine as names for the stacks, we extend the language of terms with two new constructions:

t o=z | Azt | ()t | pat | [aft

The p-construction is a binder for the p-variable @ and [a]t introduces a free occurrence of «. This
leads to the following definition of the free p-variables of a term ¢:

e 1z doesn’t contain any free u-variable;
e the free py-variables of Az.t are those of ¢;
e the free p-variables of (t)u are those of ¢ and u;

e the free p-variables of pa.t are those of ¢ except «;

11



e the free p-variables of [a]t are those of ¢ together with a.

Terms are used up to a-equivalence for both bound A-variables and bound pu-variables.

An environment will now be a pair of partial functions with finite domain from AVar to closures
and from pVar to stacks (or equivalently a finite set of pairs (z,c) and (o, 7)).

This allows to extend the KAM with the two new transitions:

save

(pat,e, 1)y —— (t,e+(a=m), €)

> restore

([a]t, e, € (t,e, m) where e(a) =7

These transitions add two new stopping cases for the KAM:
e in a (restore) transition if the stack is not empty;
e in a (restore) transition if the variable is not defined in the environment.

It would be possible to define the (restore) transition with a non-empty starting stack by just
discarding it. However this generalized transition can be simulated by replacing [a]t with ud[alt
(0 ¢ t) and our transitions appear as more atomic operations.

Lemma 7 (Non-free variables)

If (t,e) is a closure appearing in the state s and if s’ is obtained by replacing (t,e) by (t,e + (o =
7)) in s with o not free in t, the \-terms that will appear in “instruction position” during the
computation of s’ in the KAM are the same as for the computation from s.

Proor: We follow the proof of lemma 4 with the same notations, and we extend the relation
s < s’ by allowing new declarations for non-free p-variables. Since the transitions (push),
(pop) and (deref) ignore the definitions of p-variables in the environment, we just study the
two remaining transitions:

(save) If tg = ppB.up (we assume ( not in ey and e, using a-equivalence) then s; = (ug , eg +
(B=m), e)and 8 ———— s} with s} = (ug, ef + (8 =mp) , €) so that s1 < 5.

(restore) If to = [Blug and eg(B) = m then s; = (ug , eg , m1) and e(B) is defined because
B is free in [Blug and s < s’ so that s ———— s} with s} = (ug , e, ) (where

ep(B) = m}). Since f is free in [Blug, we easily verify that s; < ).
We conclude as for lemma 4. O

Example 4 (push/save)

As shown in example 1, the S-reduction corresponds, in the KAM, to an interaction between the
(push) instruction which adds a closure on the stack and the (pop) instruction which reads a closure
from the stack. We now have a new instruction which reads the stack: the (save) instruction, and
we are going to look at the interaction between (push) and (save).

( (pat)u e , e )
LN (  pat e , (u,e) e )
e ( t , e+ (a=(ue)e) e )

12



We denote by 4 the sequence u; ...u, and by 7z the stack (ug,e) -+ (up,e) :: €. Since (save)
acts on the whole stack, we have the more general behavior:

(ot . e . oe )
h

(———)" ( pat e , Ta )
bane ( t , e+ (a=mz) , € )

but this example is not local in the following sense: it requires an empty starting stack and it looks
at an arbitrarily long sequence of terms in the application. The local case would correspond to the
starting state ((pa.t)u , e, m):

( (pat)u e ’ ™)
push ( pa.t , e , (’U,, 6) o >
S (b et (a=(ue) ) e )

As for the B-reduction, we want to find a term ¢ with the same behavior as (ua.t)u to define a
reduction rule. If we continue the execution of the KAM described just above for ( (ua.t)u , e, 7),
each time we arrive to some term [«]v, we have to restore the stack (u,e) :: m which corresponds
to the evaluation of (v)u with the stack m, that is to the evaluation of [a](v)u where o = 7 is in
the environment.

Consider t' to be ua.t[[o‘}(”)“/[a]v] where t[[a](”)“/[a]v] is obtained by substituting any sub-term
of t starting by [a], thus of the shape [a]v for some v, by the term [a](v)u (see section 4.1 for a
formal definition of this notion of substitution). We have:

( ua.t[[o‘}(”)“/[a]v] , e , T )
&) ( t[[a](’v)u/[a]v] , e+ (a = 7'() , € >
According to the previous discussion, the evaluations of (¢t , e + (o = (u,e) = m) , ) and

(t[[a](”)“/[a}v] , e+ (=), ¢) are almost the same: in the first case, each time we have a [a]v, we
evaluate v with the stack (u,e) :: 7 and in the second case, each time we have a [a]v, it has been
substituted by [a](v)u and we evaluate (v)u with the stack m, that is v with a stack (u,€’) :: .

Example 5 (save/restore)
Putting together the two instructions g« and [«] continues the computation in the same conditions
except that the stack is memorized in the environment with name a:

( npalalt € ;)
s (o)t , et(a=m) , e )
restore ( + et (Ot _ 71') - >

3.2 Control primitives

To establish a relation between the stack manipulations in the KAM and control operators, we will
show how to simulate an extension of the A-calculus with “jumping” primitives in the extended
KAM.

13



We consider the following toy extension of the A-calculus:
t == x | Azt | (t)t | labelk:t | gotokwitht

Since we don’t want to give the detailed operational semantics of this language and we just want
to be informal in this section, the reader can have a look at [6, 20] for more formal presentations
of this kind of extensions of the A-calculus with control primitives.

The idea is the following: if we want to compute label k : ¢ in a context C, we start the
computation of ¢ in the context C, and if we arrive to some goto k with u, we stop the execution
and we start the computation of u in the context C.

We define an embedding of this language in the language of instructions of the KAM:

z = T
E = Azt
(t)u = (t)u .
label k:t = (MNf.pa[a(f)Az.uda]z) Akt
goto kwithu = (k)u

We can compare the execution of label k : ¢ with the execution of the KAM for the correspond-
ing term label k : ¢ (this very particular case where we use a unique label defined at top level, can
be encoded with both exceptions and continuations even if they usually differ [13, 16]).

( (Mf.pala(f)Az.pila]z) Nkt e , s

push ( Af.pala](f) Az ud[a]x , e , (Mk.t,e) m
v ( palo](f)Az.pudlo)z : e+ (f = (MkZe) : ™
| [a](f)A\z.pd]a]z , et (f=0kte)+(a=7) , £
L (f)Az.pdlalz , e+ (f=0kde)+(a=1) | m
push f L et (f=0kEe))+(a=n) . (Ozudldz,e) =
dere] ( k.t , e . Oz.pdla)z,e) =m
P, 7 . e+ (k= (Ozpdalz,e)) ™

where €/ = e+(f = (Mk.t,e))+(a = 7). According to lemmas 4 and 7, we can replace (Az.ud[a]z, ')
with (Az.udla]z, a = 7).

Using the idea that the stack represents the current context of evaluation, this shows that in
order to compute label k : ¢, we compute £ in the same context (with some appropriate upgrade of
the environment). If ¥ never occurs during the computation of ¢, the computations of label k : ¢
and t are the same, this corresponds to the case where no jump to k is used in ¢. If k appears

14



during the computation of #, the instruction (k)u appears in the KAM:

( wE ey ’ o)
push < k ’ eo R (ﬂ, 60) T >
deref < )\xué[a]x : a=T , (ﬂ, 60) ) >

—— ( pdlele a=m)+ (z = (u,e)) ’ T )
save < [a]x ’ (01 — ﬂ-) + (x = (ﬂ, ey)) + (6 = 7T0) R € >

restore ( T , (a=m)+ (z=(u,e)) + (§ =mp) T )
deref —
S Z ’ "

which means that we stop the evaluation of ¢, and we start the execution of u in the initial context
m as for label k : t.

4 The A\u-calculus

We are going to move from the KAM to a term language with rewriting, based on the instruction
language of the machine with pa and [«]. This language is a very small variant of M. Parigot’s
Ap-calculus [14] (as given in [9]).

4.1 The language

We have already defined the term language in section 3.1 with its two binders A for the A-variables
and p for the p-variables. We now give the corresponding reduction rules, extending S-reduction
with a rule for the p binder (as suggested in example 4):

(petyu =, pat{d /]

The substitution ¢[[*(®)v /[a]v] is one of the key ingredients of the Ap-calculus, some intuitions have
been given in example 4 and it is formally defined as follows:

o]t el)
gt [lelw)u

Yu
o)) if B #

a|v

gl = [Ol](t[[“](“)“/ ajol
[1ago] = [BIGE® /141,)
Example 6 (u-substitution)

With the definition of the new substitution:

Af-uBled(F)ud (B ud[aa[ O [120,] = Af.pplal ((f)nd (B Az pdla) (2)u)u

x[[a](v)U/ )=z
(Az.t)[ K”)“/ o] = Az ( [a v “/[a »]) with z ¢ u using a-equivalence
((tt'ﬂakwu/qu = (¢ / DT /oy,
(uB-1)] /[a]v] = 1. ([0 /[a}v]) with f # «a and ¢ u using a-equivalence
[
[

)
)
[l
([e]?)
([617)

15



In the spirit of n-reduction, we can also add two other reduction rules:

Bluat —, 17/a]
palalt  —y t ifadt

We will use the notation v — v for u =g v or u —, v or u —, v.

Proposition 5 (Church-Rosser property)
Ift =% uw and t =" v, there exists a Au-term w such that u —=* w and v —* w.

PROOF: See [14] slightly corrected in [17] for example. O

Example 4 shows how the KAM simulates the p-reduction: the difference between (¢, e+ (o =
(u,e) = ), ) and (t[[a](”)“/[a}v] , e+ (e = m) , ) occurs in the execution when some [a]v
appears as the current instruction. In the first case, the stack (u,e) :: 7 is restored and execution
continues with v. In the second case, we have in fact [a](v)u and the stack 7 is restored but
after one transition u is pushed on the stack and execution continues with v leading to the same
computation.

Example 7 (p-reduction)
The KAM simulates the p-reduction if the starting state has an empty stack and contains a decla-
ration for the variable § in the environment:

( [Blpat |, e+ (B=m) € )
restore ( pat e+ (B =m) , T )
save ( ¢ , e_l_(ﬁzﬂ-)-l-(a:ﬂ') , € >

Example 8 (#-reduction)
The simulation of the #-reduction corresponds to the particular case of example 5 where « ¢ t:

( nalalt € ;)
2 (o)t , et(a=7) , € )
restore ( + et (Ot _ 71') - >

and, according to lemma 7, the computation follows on like with the state (¢, e, 7).

Due to the modification of the definition of environments, we have to extend the notion of
expansion of states:

o ifc= (t,e) is a closure with e = {Lxl,cl), R (xn,crﬁ, (a1, m1)y -+, (Qm, T™m) }, the Ap-term ¢
or t{e} is % /gy, o, o [, J1OIOITE /g s Tl T,

The weak head reduction of the Ap-calculus allows to reduce redexes (for the -, p- or p-
reductions) under applications but also under some pa constructions at the beginning of the term
followed by some [a] with @ bound. This means that the redex r can be reduced in ¢ only if ¢ has
the shape:

pon . pom[Br] - [Be] (r)un - up

with n,k,p > 0 and g € {aq,..., 0} for 1 <j <k.
A weak head normal form is a normal form for this reduction procedure, that is a Au-term of
one of the following shapes:

16



o pay...pap[B]. .. [Be]lv]t with n > 0, & > 0, 1, ..., B bound and + free, in this case v is
called the head p-variable of the weak head normal form;

o pov ... pog 1] [Be)([Y]E)ur ... up with n > 0, kK > 0, p > 0 and fi, ..., B bound, in this
case vy is called the head p-variable;

o pov ... pog[B1] ... [Br](z)ur ... up withn >0, k>0, p>0and S, ..., B bound, in this case
z is called the head A-variable;

o pay ... pap[B]. .. [Be]Az.t with n >0, k> 0 and S, ..., B bound, and we don’t define head
variables in this case.

Proposition 6 (Simulation)

If an execution of the machine goes from the state s to the state s', the A\u-term 5 reduces by
weak head reduction to a term w such that s' is obtained by removing some po and [a] in the
beginning of w. This simulation is strict in the case of (save) transitions with a non-empty stack:

if s —2° 5 &' and the stack of s is not empty then 5 =y .

PROOF: We look at the two new transitions:

(save) If the starting state is s = (pa.t , e, ), we have s = (ua.t{e})m which reduces to
ua.t{e}[[a}(”)”/[a}v] (by n steps if m contains n closures) and s’ = (t, e+ (e =7) , €)
with ¢’ = t{e + (@ = )} = t{e}[[a}(”)%/[a}v], and the difference is a po in the beginning.

(restore) If the starting state is s = ([a]t , e, e) with e(a) = 7, we have 5 = ([a]t){e} =
[a](t{e})T and s’ = (t, e, w) with s’ = (t{e})7, and the difference is a [@] in the
beginning. O

Corollary 6.1 (Weak head normal form) N
If the KAM starts from the state s and stops in the state s', then s' is the weak head normal form
of § (up to some pa and [ in the beginning).

ProOOF: Using proposition 6, we know that s reduces to s by weak head reduction (up to some
pa and [o] in the beginning). We just have to show that if the KAM stops in the state s, s’
is a weak head normal form. We have two new possible cases with respect to corollary 3.1:

o ' =([oJu, e, m) with w # ¢, so that s' = ([a]u’)7 (for some ) is a weak head normal

form;
o s = ([eJu, e, e) with e(e) undefined, so that s' = [a](u{e}) is also a weak head
normal form. O

4.2 Simple types

Our goal is to build a typing system for the Ap-calculus out of the KAM, starting with an intuitive
typing of the machine. We look at the following sequence:

(pblolt . a=r o)
save ( [O[]t ’ (O{ — ﬂ./) + (5 = 7'(') , € >
restore < " : (Ot — ﬂ./) + (/B = 71') , 7 >



Let A be the type of ¢, the last state tells us that 7' must have type A-. To ensure the coherence
of the environment, the type of @ must be in correspondence with the type of 7', and if we want
to type p-variables with simple types, the only natural candidate is A. The middle state entails
that [«]t must have an atomic type since the corresponding stack is empty, we make the particular
choice of L for this purpose, so that if ¢ has type A and « has type A, [«]t has type L, this can be
summarized by the informal judgments:

t: A ]
[a]t: Land a: A

the typing declaration for « is required in the second judgment since « is free in [«]t.
Let B be the type of 3, according to the middle state, 7 has type B, this entails in the first
state that pfS[a]t must have type B. We summarize it by:

t:1Land 5:B
up.t: B

If we try to compare these informal rules with the (lam) rule written in the same way:

z:Aandt: B
Ae.t: A— B

we can see that the type of z appears negatively in the type of ¢ which justifies logically the fact
that the typing declaration for z in a typing judgment of the A-calculus appears on the left-hand
side of . Whereas the types of the py-variables in our informal rules appear in positive occurrence
in the type of the term, this leads us to put typing declarations for u-variables in the right-hand
side of the -, and to introduce typing judgments of the shape:

mu

lam

x1: A, xn t Ap bt Al g i By, .. o s By, or FHt:A|A
The formal typing rules for pa and [a] follow from these remarks:
'Fi:AlA 'Ht: LA -
PkHlalt: L] AU{a: A} LEpat: A|A\{a: A}

Due to these rules, the atom 1 has now a different status from o, ...

Lemma 8 (Typing context and free variables)
IfT-t: A| A is derivable, then T' contains ezactly one typing declaration for each free A-variable
of t and A contains ezxactly one typing declaration for each free p-variable of t.

Example 9 (Call/cc and Peirce’s law)
The Ap-term we have studied in section 3.2 is typable of type ((4A — B) — A) — A:

z:AFz: A o
z:AF[alz:L|a: A .
z:AFudla)z:Bla: A
f:(A=>B)—=AFf:(A—B)— A| e FAz.pdla)z: A— Bla: A laam
f:(A=B)—= Ak (f)Az.pudla]z : A a: A o
f: (A= B)—= AL [o(f)Ae.pifa)z: L|a: A
f:(A—= B)—= AF pafa](f) z.udla]z : A
FAf.pala](f)Az.udla)z : (A — B) - A) - A

mu

mu

lam

18



The Curry-Howard correspondence gives the relation between typing derivations in the simply
typed A-calculus and intuitionistic logic. T. Griffin [8] has discovered that control operators in
programming languages can be typed with classical (not intuitionistically provable) formulas, al-
lowing to extend the Curry-Howard correspondence to classical logic. A lot of work followed this
idea in particular the introduction of the Ap-calculus [14] (but also [6, 7, 4]). The A-terms corre-
spond to proofs in intuitionistic natural deduction and the previous derivation shows that Au-terms
correspond to derivations in classical logic (since intuitionistic logic with Peirce’s law is classical
logic).

Lemma 9 (Substitution)
IfTHt:A|Aja:B—Cand T Fu: B | A" are derivable and T UT" and A U A" are defined,
then TUT' = ¢[0)/ 1 A|AUA a: C.

Proposition 7 (Subject reduction)

IfT -t: A| A is derivable and t — t', then T' = &' : A | A" is derivable where T (resp. A')
is the subset of T' (resp. A) containing only the typing declarations for the free A-variables (resp.
p-variables) of t'.

PROOF: See [14]. O

Proposition 8 (Strong normalization)
IfTFt: A| A is derivable, there is no infinite sequence of reductions starting from t.

PROOF: See [15]. O

4.3 Types for the KAM

We extend all the typing judgments with a context in the right-hand side and typing judgments
for environments become I' Fepy € : {E | ©} | A where O contains typing declarations for the
pu-variables defined in e.

The unique new rule is the following one:

Fhewe: {20} A I Fopack m: AL | A/
FTUMFenwe+ (a=m):{E]|0,a: A} | AUA'

the other ones are extended in the natural way with right-hand side contexts.

Lemma 10 (Typing and expansion)

If T Fgtate s | A is derivable, there exists an atom X such that T' +3: X | A’ is derivable where T
(resp. A') is the subset of T (resp. A) containing only the typing declarations for the free A-variables
(resp. p-variables) of s.

PROOF: As for lemma 6, we first prove the closure case: if I Fc105 (£,€) : A | A is derivable, then
I+ t{e} : A| A’. We use the same notations so that I'y H¢: A | Ay and I'y Fepy € : {2 ]
©} | Ag, and we just prove the case e = €' + (a = m). From 'y Fepy e : {E | O} | Ay we
can deduce I'y = TH UTY, Ay = ALUAS and © = O, : B with Ty Fepy € : {E ] ©'} | Af
and T Fopack m: B | Ay, fr=¢; -~ ¢y meand B=B; = --- = B, — X, we
have for each 1 < i < n, I"Q"i Felos Ci @ By | A’Q”i with T') = F’2’,1 U---u I"Q”n and by induction
hypothesis I'y’; - ¢; : B; | Ay’;. By induction hypothesis we can deduce from I'y ¢ : A | Ay
and T, Fepy € : {E | ©'} | AL that ¥ F ¢{e’} : A | II (for some ¥ C (T'; \ ) UTY and for
some IT C (A1 \ ©) UAL). If « is not free in ¢ this is enough to conclude and if « is free in
t, T=T',a: B so that SUTY + t{e'}[T/ 1.]: A|T'U{a: X} UAY by lemma 9.

If T Fstate S | A is derivable with s = (¢, e, 7 ), we easily conclude with the closure case. O

19



Proposition 9 (Subject reduction)
The evaluation of the KAM preserves typing, i.e. if I' Fgpate (t, e, m) | A is derivable and if the
following transition is valid:

<t7677r> EE— (tlvelaﬂ-l>

then T bgate (', €, ') | A" where T' (resp. A') is the subset of T' (resp. A) containing only the
typing declarations for the free A-variables (resp. p-variables) of (t', €', 7).

PrOOF: U T Fgpate (t, e, m) | A is derivable, we must have I' = (I'y \ £) UT's U '3 and
A= (A1\®)UA2UA3 withI'y Ht: A | A1, Tobeny e {E | @} | Agand I's Fgpack - At | As.
The proof for the transitions (push), (pop) and (deref) is almost the same as for proposition 4,
and we just give the two other cases:

(save) We have t = pa.t’, this entails Ay = A} \ {a: A} with 'y H ¢ : L | Al, and we can
derive:

FQ l—enve:{E | @} | AQ Fg Fstackﬂ':AJ‘ | Ag
e L] A DoUTgbFenwe+ (a=m): {E|0,a: A} | Ay UA3

(T1\E) UT2UT3 Feros (thet+ (@=m): L| (A \(OU{a:A}))UA UA;  Fasacke:T|

(C1\Z) UL UT; Fovate (£, e+ (=), e) | (A} \ (OU{a: A}))UA,UA;

with A1\ (OU{a: A}) = (A \ {a: A})\ O =A;\ O and s and s’ have the same free
variables.
(restore) We have t = [a]t’ and m = ¢, this entails Ay = A},a: Band A= 1, and I'; and Aj are

empty with T'y - ¢ : B | A]. Moreover e = ¢y + (o = 7') so that Ty = TL UTY, Ay =
AL UAY and © = @', : B with Ty Feny €9 : {2 | 0’} | AL and TY Fgtacx 7' @ B | Al
and we can derive:

Fll—t,:B|A,1 Fgl—envet{5|®}|A2

(T1\E) UTy Feros (H,€) : B| (AL \O)UAy T4 bgrac ' : BT | A

(T1\E) U Fggate (', e, ") | (A1 \ O)U Ay

and s and s’ have the same free \-variables and their free u-variables can only differ on
aifad¢t. O

Corollary 9.1 (Termination)

If T Fgtate 8 | A is derivable, the KAM, starting from the state s, stops in a state (x , ¢ , 7')
where x is the head \-variable of the weak head normal form of § or in a state {[au , €, ) where
a is the head p-variable of the weak head normal form of 5.

ProoF: We first show that the machine stops. The size |e| of an environment e is now the sum
of the sizes of its closures plus the sum of the sizes of its stacks, and the size |s| of a stack s
is the sum of the sizes of its closures (with |¢| = 0). The transitions which don’t correspond
to a reduction step of the term associated to the state are: (push), (deref), (restore) and also
(save) when the stack is empty, but we can’t have an infinite sequence of such transitions since
they decrease the value of (Je|, [t|). We can deduce that an infinite sequence of transitions of
the machine contains an infinite number of transitions (pop) and (non-degenerated) (save) so

20



that, with proposition 6, the term associated with the starting state would have an infinite
sequence of reductions contradicting lemma 10 and proposition 8.

Let s’ be the stopping state, it can be:

e (A\z.u, ¢, e), impossible by proposition 9 since it must be typable and ¢ is not typable
of a type AA P.

o (z, ¢, n') with z not declared in ¢ and (z{e’})n’ = (z)', so that, by corollary 6.1, =
is the head A-variable of the weak head normal form of 5.

o ([aJu, €, n') with 7’ # &, impossible by proposition 9 since it must be typable and
7! # € is not typable of type T.

e ([a]u, €, &) with @ not declared in ¢’ and « is the head p-variable of [a](u{e'}). O

In particular, the machine never stops because the Ap-term is [«]t and the stack is not empty,
the L type ensures that in this case the stack is empty.

A more technical presentation of Krivine’s abstract machine as an evaluation machine for the
Ap-calculus has been given by P. de Groote [5] and a similar work has been carried out in the call-
by-value case by G. Bierman [2]. A reconstruction of Krivine’s abstract machine for the Au-calculus
through its continuation semantics has been described by T. Streicher and B. Reus [19], going in
the opposite direction of our presentation.

Acknowledgments

I would like to thank P. Baillot, C. Berline, C. Fouqueré and J. Vauzeilles who read earlier versions
of this work and of course the anonymous referees. The comments of all of them helped me to
make this paper more readable, I hope it is now accessible to a wider audience.

References

[1] Henk Barendregt. The lambda calculus, its syntax and semantics. Number 103 in Studies in
Logic and the Foundations of Mathematics. North-Holland, second edition, 1984.

[2] Gavin Bierman. A computational interpretation of the Au-calculus. In L. Brim, J. Gruska, and
J. Zlatuska, editors, Proceedings of Mathematical Foundations of Computer Science, volume
1450 of Lecture Notes in Computer Science, pages 336—345. Springer, August 1998.

[3] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Proceedings of the In-
ternational Conference on Functional Programming, volume 35(9) of ACM SIGPLAN Notices,
pages 233-243. Association for Computing Machinery, ACM Press, September 2000.

[4] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A new deconstructive logic: linear
logic. Journal of Symbolic Logic, 62(3):755-807, September 1997.

[5] Philippe de Groote. An environment machine for the lambda-mu-calculus. Mathematical
Structures in Computer Science, 8:637-669, 1998.

[6] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science, 103(2):235-271, September 1992.

21



[7]

[10]

[11]
[12]

[13]

[14]

Jean-Yves Girard. A new constructive logic: classical logic. Mathematical Structures in Com-
puter Science, 1(3):255-296, 1991.

Timothy Griffin. A formulae-as-types notion of control. In Proceedings of the 1990 Principles
of Programming Languages Conference, pages 47-58. IEEE Computer Society Press, 1990.

Martin Hofmann and Thomas Streicher. Completeness of continuation models for lambda-mu-
calculus. Information and Computation, 179(2):332-355, December 2002.

Jean-Louis  Krivine. Un interpréteur du lambda-calcul. Available at
ftp://ftp.logique.jussieu.fr/pub/distrib/krivine/interprt.pdf , 1992.

Jean-Louis Krivine. Lambda-calculus, types and models. Ellis Horwood, 1993.

Jean-Louis Krivine. Typed lambda-calculus in classical Zermelo-Fraenkel set theory. Archive
for Mathematical Logic, 40(3):189-205, 2001.

Mark Lillibridge. Unchecked exceptions can be strictly more powerful than call/cc. Higher-
Order and Symbolic Computation, 12(1):75-104, April 1999.

Michel Parigot. Apu-calculus: an algorithmic interpretation of classical natural deduction. In
Proceedings of International Conference on Logic Programming and Automated Reasoning,
volume 624 of Lecture Notes in Computer Science, pages 190—201. Springer, 1992.

Michel Parigot. Strong normalization for second order classical natural deduction. Journal of
Symbolic Logic, 62(4):1461-1479, December 1997.

Jon Riecke and Hayo Thielecke. Typed exceptions and continuations cannot macro-express
each other. In J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors, International Collo-
quium on Automata, Languages and Programming, volume 1644 of Lecture Notes in Computer
Science, pages 635-644. Springer, July 1999.

Paul Roziere. Déduction naturelle classique et Au-calcul. Notes de cours de DEA. Available
at http://www.pps.jussieu.fr/~roziere/dea/classicalded.pdf , 2001.

Peter Selinger. Control categories and duality: on the categorical semantics of the lambda-mu
calculus. Mathematical Structures in Computer Science, 11(2):207-260, April 2001.

Thomas Streicher and Bernhard Reus. Classical logic, continuation semantics and abstract
machines. Journal of Functional Programming, 8(6):543-572, November 1998.

Hayo Thielecke. Comparing control constructs by double-barrelled cps. Higher-Order and
Symbolic Computation, 15(2/3):141-160, September 2002.

22



