
Krivine's abstra
t ma
hine and the ��-
al
ulus(an overview)Olivier LAURENTPreuves, Programmes et Syst�emesCNRS { Universit�e Paris VIIUMR 7126 { Case 7014175, rue du Chevaleret { 75013 Paris { FRANCEOlivier.Laurent�pps.jussieu.frSeptember 17, 2003Abstra
tAfter a presentation of Krivine's abstra
t ma
hine for the pure and simply typed �-
al
uli,we show how an extension of the instru
tions for the manipulation of sta
ks leads to Parigot's��-
al
ulus. Using a typing system for the ma
hine, we derive the typing rules for the simplytyped ��-
al
ulus.Keywords : �-
al
ulus, ��-
al
ulus, Krivine's abstra
t ma
hine (KAM),
lassi
al logi
,
ontroloperators.Introdu
tionM. Parigot introdu
ed the ��-
al
ulus [14℄ as an extension of the �-
al
ulus allowing to extendthe Curry-Howard
orresponden
e to
lassi
al logi
, in the spirit of GriÆn's ideas [8℄. His work isbased on a proof theoreti
al approa
h in the study of natural dedu
tion with many
on
lusions.We propose to show how it is possible to de�ne and des
ribe the ��-
al
ulus with more operational
onsiderations. We will use Krivine's abstra
t ma
hine (KAM) [10℄ as
omputational framework,presented in a �rst step as an abstra
t ma
hine for the �-
al
ulus. The de�nition of a typing systemfor the ma
hine allows to
ontrol some properties of the ma
hine: stopping states, termination, ...In a se
ond step, we extend the ma
hine with instru
tions for the manipulation of sta
ks whi
happear to
orrespond pre
isely to the ��-
al
ulus and whi
h give enough expressive power to en
ode
ontrol primitives (like
all/

,
ontinuations, ...). The typing system of the ma
hine allows thento derive the typing rules of the simply typed ��-
al
ulus. So that Parigot's ��-
al
ulus is entirelyrebuilt from Krivine's abstra
t ma
hine.We
an almost say that none of the ideas introdu
ed in this paper is due to the author. Theseare
ommon ideas (very well known by M. Parigot and J.-L. Krivine themselves) that have neverbeen written in details, as far as we know. Our goal is to give an alternative presentation of the��-
al
ulus with respe
t to Parigot's one [14℄, that
an be used by people with a basi
 knowledgein �-
al
ulus. 1

1 The �-
al
ulusWe are just going to re
all some elements of �-
al
ulus in order to introdu
e some notations andto present the results we will use. For a more pre
ise and
omplete introdu
tion to the �-
al
ulus,see [1, 11℄.1.1 The languageLet �Var be a denumerable set of variables
alled the �-variables and denoted x, y, z, ..., the�-terms are given by: t ::= x j �x:t j (t)twe will use the notation (t)t1 : : : tn for (((t)t1) : : :)tn.Remark: These kinds of notations with bra
kets around the fun
tion of an appli
ation are par-ti
ularly natural for Krivine's Abstra
t Ma
hine sin
e (t)t1 : : : tn will be an instru
tion whi
h �rstbuilds the sta
k t1 : : : tn and then exe
utes t.The �-
onstru
tion is a binder for the �-variable x. The free variables of a term (denoted byx 2 t) are thus de�ned by:� x has a unique free variable x;� the free variables of �x:t are those of t ex
ept x;� the free variables of (t)u are those of t and u.Terms are used up to �-equivalen
e for bound variables.The �-redu
tion is the only
omputation rule and
an be applied anywhere in a �-term:(�x:t)u !� t[u=x℄where t[u=x℄ is the usual
apture-avoiding substitution of variables by �-terms de�ned by: x[u=x℄ =u, y[u=x℄ = y if x 6= y, ((t)t0)[u=x℄ = (t[u=x℄)t0[u=x℄ and (�y:t)[u=x℄ = �y:(t[u=x℄) where y is
hosennot free in u and x (using �-equivalen
e).Lemma 1 (Redu
tion and free variables)If t !� t0 and x is free in t0 then x is free in t.Instead of the general �-rule, we will be interested in a restri
tion
alled the weak head redu
tion:a redex
an be redu
ed only if it is just under some appli
ations. That is, we only redu
e redexesof the shape ((�x:t)u)u1 : : : un. A weak head normal form is a normal form for this parti
ularredu
tion pro
edure, that is a �-term of the shape (x)u1 : : : un (in this
ase x is
alled its headvariable) or �x:t.1.2 Simple typesGiven a set of ground types (�, ...), the simple types are generated by:A ::= � j ? j A ! Awith the
onvention A ! B ! C = A ! (B ! C). The atoms � or ? are denoted by X. Anysimple type
an be written in a unique way in the shape A = A1 ! � � � ! An ! X. The
onstant?
an be
onsidered as a parti
ular ground type and will be used later.2

A typing
ontext � is a �nite set of pairs (x;A), denoted by x : A, where ea
h �-variable appearsat most on
e. A typing judgment has the shape � ` t : A. The typing rule we are using for thesimply typed �-
al
ulus are:varx : A ` x : A � ` t : B lam� n fx : Ag ` �x:t : A ! B � ` t : A ! B � ` u : A app� [� ` (t)u : Bwhere � n fx : Ag is not de�ned if �
ontains x : B with A 6= B, and � [� is not de�ned if �
ontains x : A and �
ontains x : B with A 6= B (we also use �; x : A for � [fx : Ag).The typing system we present doesn't allow to de
lare unused variables (whi
h is not the
ase with a var-rule like �; x : A ` x : A). This requires to give a re�ned statement for thesubje
t redu
tion property (proposition 1) but gives more informative typing judgments as statedby lemma 2 or lemma 5. Moreover, this makes the typing system of se
tion 2.2 easier to understand.Lemma 2 (Typing
ontext and free variables)If � ` t : A is derivable, then �
ontains exa
tly one typing de
laration for ea
h free variable of t.Lemma 3 (Substitution)If �; x : B ` t : A and � ` u : B are derivable and � [� is de�ned, then � [� ` t[u=x℄ : A.Proposition 1 (Subje
t redu
tion)If � ` t : A is derivable and t !� t0, then �0 ` t0 : A is derivable where �0 is the subset of �
ontaining only the typing de
larations for the free variables of t0.Proposition 2 (Strong normalization)If � ` t : A is derivable, there is no in�nite sequen
e of redu
tions starting from t.2 Krivine's abstra
t ma
hineInstead of the usual interpretation of the redu
tion of the �-
al
ulus as a rewriting system, wewill interpret the
onstru
tions of the �-
al
ulus as instru
tions of an abstra
t ma
hine: Krivine'sabstra
t ma
hine (or KAM).2.1 De�nitions and propertiesIn order to de�ne the states of the KAM, we need the following mutually indu
tive de�nitions:� An environment e is a partial fun
tion with �nite domain from �Var to the set of
losures(or equivalently a �nite set of pairs (x;
)).� A
losure
 is a pair (t; e) of a �-term and an environment (at this stage, there is no parti
ularrequirement on the fa
t e must (or not) give values for the free variables of t, some additional
onstraints will be required by typing in se
tion 2.2, see
omment page 8).� A sta
k � is a �nite sequen
e of
losures.� A state is a triple h t ; e ; � i (or equivalently a pair (
; �)).Informally, a �-term requires some information to de�ne the value of its free variables, and thisinformation is given by the environment in a
losure. A sta
k is an evaluation
ontext.We de�ne the following notations: 3

� ; is the empty environment;� if e is an environment, e(x) is the
losure asso
iated with x in e;� e+ (x =
) is the environment obtained by modifying the value asso
iated with x in e (or byde�ning it if e(x) was unde�ned), whi
h is
 in the new environment;� " is the empty sta
k;�
 :: � is the sta
k obtained by pushing
 on �.Expansion of states. We
an transform any �-term t into a state h t ; ; ; " i of the ma
hine.The
onverse is also possible:� if
 = (t; e) is a
losure with e = f(x1;
1); : : : ; (xn;
n)g, the �-term e
 or tfeg is given by the
orresponding substitutions t[e
1=x1 ; : : : ;f
n=xn ℄;� if � =
1 :: � � � ::
n :: " is a sta
k, e� is the sequen
e of �-terms e
1 : : : e
n.If s = h t ; e ; � i is a state of the ma
hine, the expansion of s is es = (tfeg)e�.Transitions. The transitions of the ma
hine give the evolution of states with the idea that the�-term in the state is the set of instru
tions and de�nes the transition to be applied:h (t)u ; e ; � i push������! h t ; e ; (u; e) :: � ih�x:t ; e ;
 :: � i pop������! h t ; e+ (x =
) ; � ihx ; e ; � i deref������! h t ; e0 ; � i where e(x) = (t; e0)If none of the transitions
an be applied, the ma
hine stops and the last state is the result of the
omputation. There are two reasons for the ma
hine to stop:� in a (pop) transition if the sta
k is empty;� in a (deref) transition if the variable is not de�ned in the environment.In se
tion 2.2, we will see how we
an
ontrol these stopping
ases by some typing
onstraints.Intuitive properties. We �rst give some intuitions about the properties of the KAM, whi
h willbe made more formal in the sequel.� In a
losure (t; e), we
an modify in e the value asso
iated with any variable not free in twithout modifying
omputation (lemma 4).� We
an repla
e any
losure (t; e) by (tfeg; ;) without modifying
omputation.� The
omputation of the KAM realizes the weak head redu
tion of �-terms.
4

Example 1 (Computation of a �-redex)The evaluation of a �-redex in the KAM starts by:h (�x:t)u ; e ; � ipush������! h �x:t ; e ; (u; e) :: � ipop������! h t ; e+ (x = (u; e)) ; � iand during the evaluation of t, ea
h time the variable x arrives in head position, a (deref) transitionis used to evaluate u (this
orresponds to the substitution of x by u given by the �-redu
tion).Lemma 4 (Non-free variables)If (t; e) is a
losure appearing in the state s and if s0 is obtained by repla
ing (t; e) by (t; e+(x =
)) ins with x not free in t, the �-terms that will appear in \instru
tion position" during the
omputationof s0 in the KAM are the same as for the
omputation from s.Proof: We
onsider the following relation on states: s � s0 if s0 is obtained from s by repla
ingsome
losures (t; e) of s by (t; e+ (x =
)) with x not free in t.We show that if s ������! s1 and s � s0 then s0 ������! s01 with s1 � s01. We
onsiderea
h possible transition for s ������! s1 with s = h t0 ; e0 ; �0 i and s0 = h t0 ; e00 ; �00 i:(push) If t0 = (u0)v0, then s1 = hu0 ; e0 ; (v0; e0) :: �0 i and s0 ������! s01 with s01 =hu0 ; e00 ; (v0; e00) :: �00 i. Sin
e s � s0, the di�eren
e between e0 and e00
an only besome additional de
larations for variables not free in (u0)v0 and the same for �0 and �00so that s1 � s01.(pop) If t0 = �y:u0 then �0 =
0 :: �1 so that s1 = hu0 ; e0 + (y =
0) ; �1 i, �00 =
00 :: �01and s01 = hu0 ; e00 + (y =
00) ; �01 i. Up to �-equivalen
e, we
an assume that y is notde
lared in e0 and e00 and from s � s0 we easily dedu
e s1 � s01.(deref) If t0 = y and e0(y) = (t1; e1) then e00(y) is de�ned to be some (t01; e01) and s1 =h t1 ; e1 ; �0 i, s01 = h t01 ; e01 ; �00 i. Sin
e y is free in y, the di�eren
e between (t1; e1)and (t01; e01)
an only
on
ern de
larations in e1 and e01 (and moreover for variables notfree in t1 and t01) thus t1 = t01, and we then get s1 � s01.We thus have that if s ������! s1 ������! � � � ������! sn ������! � � � is the sequen
eof states of the exe
ution of the KAM with starting state s then the sequen
e of states withstarting state s0 is s0 ������! s01 ������! � � � ������! s0n ������! � � � with si � s0i forevery i. This entails that the term of the state si is the same as the term of the state s0i. 2Example 2 (�-redu
tion)The �-redu
tion of the �-
al
ulus is de�ned by:�x:(t)x !� t if x =2 tThis redu
tion is realized by the KAM, ex
ept if the starting sta
k is empty:h �x:(t)x ; e ; " iis a stopping state (this will be re�ned by typing, see after
orollary 4.1).5

If the sta
k is non-empty, the
omputation leads to t:h �x:(t)x ; e ;
 :: � ipop������! h (t)x ; e+ (x =
) ; � ipush������! h t ; e+ (x =
) ; (x; e+ (x =
)) :: � iand the ma
hine
omputes as for h t ; e ;
 :: � i by lemma 4. This is very similar to what appendsfor �-redu
tion.Example 3 (
)We use the standard notation Æ = �x:(x)x:h (Æ)Æ ; ; ; " ipush������! h Æ ; ; ; (Æ; ;) ipop������! h (x)x ; x = (Æ; ;) ; " ipush������! h x ; x = (Æ; ;) ; (x; x = (Æ; ;)) ideref������! h Æ ; ; ; (x; x = (Æ; ;)) ipop������! : : :and the
omputation does not terminate.We have des
ribed a relation between states and �-terms through the expansion of states andwe
an extend this relation to the
omputational part of the two worlds.Proposition 3 (Simulation)If an exe
ution of the ma
hine goes from the state s to the state s0, the �-term es redu
es by weakhead redu
tion to es0. This simulation is stri
t in the
ase of (pop) transitions: if s pop������! s0then es!� es0.Proof: We
onsider ea
h
ase of transition:(push) If the starting state is s = h (t)u ; e ; � i, we have es = ((t)ufeg)e� = (tfeg)ufege� whi
his exa
tly es0 with s0 = h t ; e ; (u; e) :: � i, no redu
tion is required.(pop) If the starting state is s = h�x:t ; e ;
 :: � i, we have es = (�x:tfeg)e
e� and s0 =h t ; e+ (x =
) ; � i with es0 = (tfe+ (x =
)g)e� = (tfeg[e
=x℄)e�. This allows to
on
ludesin
e (�x:tfeg)e
e� redu
es by one step of weak head redu
tion to (tfeg[e
=x℄)e�.(deref) If the starting state is s = hx ; e ; � i with e(x) = (t; e0), we have es = (xfeg)e� = (tfe0g)e�and s0 = h t ; e0 ; � i with es0 = (tfe0g)e�, and no redu
tion is required. 2Corollary 3.1 (Weak head normal form)If the KAM starts from the state s and stops in the state s0, then es0 is the weak head normal formof es.Proof: Using proposition 3, we know that es redu
es to es0 by weak head redu
tion. We just haveto show that if the KAM stops in the state s0, es0 is a weak head normal form. We have twopossible
ases: 6

� s0 = h�x:u ; e ; " i, so that es0 = �x:ufeg is a weak head normal form;� s0 = hx ; e ; � i with e(x) unde�ned, so that es0 = (xfeg)e� = (x)e� is a weak head normalform. 2In parti
ular, if the starting state is h t ; ; ; " i and the stopping state is hu ; e ; � i, (ufeg)e�is the weak head normal form of t.2.2 TypingIn order to type the ma
hine, we �rst introdu
e simple sta
k types:P ::= �� j > j A ^ Pwhere � is a simple ground type and A is a simple type. The notation �� suggests a kind of dualitybetween simple types and simple sta
k types whi
h is made expli
it in the remark after the typingrules.To the previously de�ned typing judgments for �-terms � ` t : A, we add:� typing judgments for
losures: � `
los
 : A, where � is a typing
ontext for the free variablesof
 (that is free in the �-term of
 and not de�ned in the environment of
) and A is a simpletype for the �-term of
;� typing judgments for environments: � `env e : f�g, where � is a typing
ontext for the freevariables of e (that is free in a
losure of e) and � is a typing
ontext for the variables de�nedin e;� typing judgments for sta
ks: � `sta
k � : P , where � is a typing
ontext for the free variablesof � (that is free in a
losure of �) and P is a simple sta
k type;� typing judgments for states: � `state s, where � is a typing
ontext for the free variables ofs (that is free in the
losure of s or in the sta
k of s).The typing rules for environments,
losures, sta
ks and states are:`env ; : fg � `env e : f�g � `
los
 : A� [� `env e+ (x =
) : f�; x : Ag � ` t : A � `env e : f�g(� n �) [� `
los (t; e) : A`sta
k " : �� `sta
k " : > � `
los
 : A � `sta
k � : P� [� `sta
k (
 :: �) : A ^ P� `
los (t; e) : A1 ! � � � ! An ! X � `sta
k � : A1 ^ � � � ^An ^ �X� [� `state h t ; e ; � iwith �X = �� if X = � and �X = > if X = ?.Remark: This last rule
an be de�ned in a slightly di�erent way if we introdu
e an expli
it \du-ality" between simple types and simple sta
k types by �? = ��, ?? = > and (A ! B)? = A^B?:� `
los (t; e) : A � `sta
k � : A?� [� `state h t ; e ; � i7

This idea of a duality between terms and sta
ks
an be thought of as a key ingredient of the
omputational interpretations of
lassi
al logi
. It appears in Parigot's proof of strong normalizationfor the ��-
al
ulus [15℄ and in Krivine's
lassi
al realizability [12℄, it is related to the dualitybetween
all-by-name and
all-by-value
omputations [18, 3℄, it
an be related with the duality oflinear logi
 [4℄, ...We
an now make more formal the intuitive des
riptions of the meanings of typing judgmentswe have given before the rules.De�nition 1 (Free variables)We extend the notion of free variable to environments,
losures, sta
ks and states:� If e = f(x1;
1); : : : ; (xn;
n)g, the free variables of e are the free variables of
1, ...,
n.� If
 = (t; e), the free variables of
 are the free variables of t not de�ned in e and the freevariables of e.� If � =
1 :: � � � ::
n :: ", the free variables of � are the free variables of
1, ...,
n.� If s = h t ; e ; � i, the free variables of s are the free variables of the
losure (t; e) and the freevariables of �.It is not very natural to
onsider
losures with free variables, sin
e the intuition behind a
losureis a
losed obje
t
ontaining exa
tly the de
larations required for the free variables of the �-term.In fa
t these free variables in
losures (or states) should be
onsidered as
onstants more thanvariables and this gives a very easy way to enri
h the language with ground type
onstants sin
ethey are treated just like variables.Lemma 5 (Typing judgments and free variables)Derivable typing judgments de
lare exa
tly the free variables:� If � `env e : f�g is derivable, then �
ontains exa
tly one typing de
laration for ea
h freevariable of e and �
ontains exa
tly one typing de
laration for ea
h variable de
lared in e.� If � `
los
 : A is derivable, then �
ontains exa
tly one typing de
laration for ea
h freevariable of
.� If � `sta
k � : P is derivable, then �
ontains exa
tly one typing de
laration for ea
h freevariable of �.� If � `state s is derivable, then �
ontains exa
tly one typing de
laration for ea
h free variableof s.Proof: We prove all the results together by indu
tion on the size of the typing derivation. We
onsider ea
h possible
ase of a last rule:� If we derive `env ; : fg, ;
ontains no de
laration and no free variable.� If we derive �[� `env e+(x =
) : f�; x : Ag from � `env e : f�g and � `
los
 : A, thede�ned variables of e + (x =
) are those of e,
ontained in � by indu
tion hypothesis,and x. The free variables of e + (x =
) are those of e,
ontained in � by indu
tionhypothesis, and those of
,
ontained in � by indu
tion hypothesis.8

� If we derive (� n �) [� `
los (t; e) : A from � ` t : A and � `env e : f�g, the freevariables of (t; e) are the free variables of t not de�ned in e
ontained in � n � and thefree variables of e
ontained in �.� If we derive `sta
k " : �� or `sta
k " : >, " has no free variable.� If we derive � [� `sta
k (
 :: �) : A ^ P from � `
los
 : A and � `sta
k � : P , the freevariables of (
 :: �) are the free variables of

ontained in � and those of �
ontained in�.� If we derive � [� `state h t ; e ; � i from � `
los (t; e) : A and � `sta
k � : A?, thefree variables of h t ; e ; � i are the free variables of (t; e)
ontained in � and those of �
ontained in �. 2The typing rules we have given for the KAM are
ompatible with the typing rules for termsthrough the expansion of states.Lemma 6 (Typing and expansion)If � `state s is derivable, there exists an atom X su
h that �0 ` es : X is derivable where �0 is thesubset of �
ontaining only the typing de
larations for the free variables of es.Proof: We �rst prove, by indu
tion on the size of e, that if � `
los (t; e) : A then �0 ` tfeg : A.From � `
los (t; e) : A we
an dedu
e � = (�1 n �) [�2 with �1 ` t : A and �2 `env e : f�g.If e = ;, tfeg = t and �2 and � are empty so that � ` tfeg : A. If e = e0 + (x =
),we have �2 = �02 [�002 and � = �0; x : B with �02 `env e0 : f�0g and �002 `
los
 : B. We
an dedu
e (�1 n �0) [�02 `
los (t; e0) : A and by indu
tion hypothesis � ` tfe0g for the
orre
t subset � of (�1 n �0) [�02. If x is not free in t, this is enough to
on
lude, otherwisetfeg = tfe0g[e
=x℄ and by indu
tion hypothesis �002 `
los
 : B entails �0 ` e
 : B with �0 � �002so that (� n fx : Bg) [�0 ` tfe0g[e
=x℄ : A by lemma 3 sin
e �
ontains x : B.If � `state s is derivable with s = h t ; e ; � i, we have � = �1 [�2 with �1 `
los (t; e) : A1 !� � � ! An ! X and �2 `sta
k � : A1 ^ � � � ^An ^ �X , this entails � =
1 :: � � � ::
n :: " with, forea
h 1 � i � n, �i `
los
i : Ai and �2 = �1 [� � � [�n. By the result we have just shown,we get �01 ` tfeg : A1 ! � � � ! An ! X and, for ea
h 1 � i � n, �0i ` e
i : Ai, leading to�01 [�01 [� � � [�0n ` (tfeg)e
1 : : : e
n : X with (tfeg)e
1 : : : e
n = es. 2Proposition 4 (Subje
t redu
tion)The evaluation of the KAM preserves typing, i.e. if � `state h t ; e ; � i is derivable and if thefollowing transition is valid: h t ; e ; � i ������! h t0 ; e0 ; �0 ithen �0 `state h t0 ; e0 ; �0 i where �0 is the subset of �
ontaining only the typing de
larations forthe free variables of h t0 ; e0 ; �0 i.Proof: If � `state h t ; e ; � i is derivable, we must have � = (�1 n �) [�2 [�3 with �1 ` t : A,�2 `env e : f�g and �3 `sta
k � : A?. We look at ea
h possible transition:(push) We have t = (t0)u, this entails �1 = �01 [�001 with �01 ` t0 : B ! A and �001 ` u : B, andwe
an derive:
9

�01 ` t0 : B ! A �2 `env e : f�g(�01 n �) [�2 `
los (t0; e) : B ! A �001 ` u : B �2 `env e : f�g(�001 n �) [�2 `
los (u; e) : B �3 `sta
k � : A?(�001 n �) [�2 [�3 `sta
k ((u; e) :: �) : B ^A?(�01 n �) [(�001 n �) [�2 [�3 `state h t0 ; e0 ; �0 iwith (�01 n �) [(�001 n �) = (�01 [�001) n � = �1 n � and the free variables of s and s0 arethe same.(pop) We have t = �x:t0, A = B ! C, �1 = �01 n fx : Bg and �01 ` t0 : C. Moreover � =
 :: �0,thus �3 = �03 [�003 with �03 `
los
 : B and �003 `sta
k �0 : C? and we
an derive:�01 ` t0 : C �2 `env e : f�g �03 `
los
 : B�2 [�03 `env e+ (x =
) : f�; x : Bg(�1 n �) [�2 [�03 `
los (t0; e+ (x =
)) : C �003 `sta
k �0 : C?(�1 n �) [�2 [�03 [�003 `state h t0 ; e0 ; �0 iand the free variables of s and s0 are the same.(deref) We have t = x, this entails �1 = x : A and e = e0+(x = (t0; e0)). From �2 `env e0+(x =(t0; e0)) : f�g, we dedu
e �2 = �02 [�002 and � = �0; x : A with �02 `env e0 : f�0g and�002 `
los (t0; e0) : A, and we
an derive:�002 `
los (t0; e0) : A �3 `sta
k � : A?�002 [�3 `state h t0 ; e0 ; �0 iBy lemma 5, �002[�3
ontains exa
tly the typing de
larations from � for the free variablesof h t0 ; e0 ; �0 i. 2Corollary 4.1 (Termination)If � `state s is derivable, the KAM, starting from the state s, stops in a state hx ; e0 ; �0 i where xis the head variable of the weak head normal form of es.Proof: We �rst show that the ma
hine stops, whi
h means that we
an't have an in�nite sequen
eof transitions from s. We de�ne the size jtj of a term t to be its number of symbols, the sizejej of an environment e to be the sum of the sizes of its
losures and the size of a
losure(t; e) to be jtj+ jej. We remark that we
an't have an in�nite sequen
e of transitions (push)and (deref) be
ause the value of (jej; jtj) (ordered in lexi
ographi
 order) is stri
tly de
reasingin su
h a sequen
e. So that an in�nite sequen
e of transitions of the ma
hine
ontains anin�nite number of transitions (pop). A

ording to proposition 3, ea
h (pop) transition froms1 to s2
orresponds to a step of weak head redu
tion from es1 to es2, but by lemma 6 the termes asso
iated with the �rst state is typable so that, by strong normalization for the simplytyped �-
al
ulus (proposition 2), it
an't have an in�nite sequen
e of redu
tions.Let s0 be the stopping state, it is either h�x:u ; e0 ; " i or hx ; e0 ; �0 i (see page 4) butthe �rst
ase is reje
ted by proposition 4 sin
e it must be typable and " is not typable of atype A ^ P . This entails, s0 = hx ; e0 ; �0 i with x not de
lared in e0 and by
orollary 3.1,(xfe0g)e�0 = (x)e�0 is the weak head normal form of es so that x is the head variable of thisweak head normal form. 210

In parti
ular, the ma
hine never stops be
ause the �-term is �x:t and the sta
k is empty (inexample 2, the sta
k
annot be empty).A natural parti
ular
ase of the previous
orollary is s = h t ; ; ; " i, and we
an wonder whatresult we get if t is
losed and `state h t ; ; ; " i. In fa
t, we get a
ontradi
tion! If `state h t ; ; ; " iis derivable, the KAM ends with a state hx ; e0 ; �0 i, but this is not possible be
ause x
annot bede�ned in e0 (otherwise the ma
hine doesn't stop) and for `state hx ; e0 ; �0 i to be derivable, xmust be de�ned in e0. We
an give a dire
t proof that `state h t ; ; ; " i is never derivable: if it is,the last rules have the shape:` t : A `env ; : fg`
los (t; ;) : A `sta
k " : A?`state h t ; ; ; " iThis entails A = � or A = ?, otherwise `sta
k " : A? is not derivable, but in this
ase ` t : A isnot derivable.There are two interpretations of this remark. First, using our dis
ussion about free variables in
losures and states, we
an restri
t ourselves to �-terms
ontaining
onstants (with ground types)and with a redu
tion leading to su
h a
onstant. Se
ond, we
an liberalize the typing rule for " by:`sta
k " : Pwith any simple sta
k type P , but in this
ase we get ba
k the stopping
on�guration of a (pop)transition that we
annot apply be
ause the sta
k is empty. So that typing doesn't give anymorea
ontrol on the stopping
on�gurations.3 KAM and
ontrol3.1 Extension of the ma
hineIf we look at a state of the KAM as a pair of a
losure and a sta
k, the transitions we have seeninterpret the instru
tions given by �-terms as operations on
losures: sto
king a
losure on thesta
k (push), naming a
losure in the environment (pop) and reading ba
k a
losure from its namein the environment (deref).In this spirit, it is natural to try to extend our set of instru
tions (thus our
onstru
tions ofterms) in order to de�ne operations on sta
ks: naming a sta
k in the environment (save) andreading ba
k a sta
k from its name in the environment (restore).Given a denumerable set �Var of variables, denoted by �, �, ...,
alled the �-variables and usedin the ma
hine as names for the sta
ks, we extend the language of terms with two new
onstru
tions:t ::= x j �x:t j (t)t j ��:t j [�℄tThe �-
onstru
tion is a binder for the �-variable � and [�℄t introdu
es a free o

urren
e of �. Thisleads to the following de�nition of the free �-variables of a term t:� x doesn't
ontain any free �-variable;� the free �-variables of �x:t are those of t;� the free �-variables of (t)u are those of t and u;� the free �-variables of ��:t are those of t ex
ept �;11

� the free �-variables of [�℄t are those of t together with �.Terms are used up to �-equivalen
e for both bound �-variables and bound �-variables.An environment will now be a pair of partial fun
tions with �nite domain from �Var to
losuresand from �Var to sta
ks (or equivalently a �nite set of pairs (x;
) and (�; �)).This allows to extend the KAM with the two new transitions:h��:t ; e ; � i save������! h t ; e+ (� = �) ; " ih [�℄t ; e ; " i restore������! h t ; e ; � i where e(�) = �These transitions add two new stopping
ases for the KAM:� in a (restore) transition if the sta
k is not empty;� in a (restore) transition if the variable is not de�ned in the environment.It would be possible to de�ne the (restore) transition with a non-empty starting sta
k by justdis
arding it. However this generalized transition
an be simulated by repla
ing [�℄t with �Æ[�℄t(Æ =2 t) and our transitions appear as more atomi
 operations.Lemma 7 (Non-free variables)If (t; e) is a
losure appearing in the state s and if s0 is obtained by repla
ing (t; e) by (t; e + (� =�)) in s with � not free in t, the �-terms that will appear in \instru
tion position" during the
omputation of s0 in the KAM are the same as for the
omputation from s.Proof: We follow the proof of lemma 4 with the same notations, and we extend the relations � s0 by allowing new de
larations for non-free �-variables. Sin
e the transitions (push),(pop) and (deref) ignore the de�nitions of �-variables in the environment, we just study thetwo remaining transitions:(save) If t0 = ��:u0 (we assume � not in e0 and e00 using �-equivalen
e) then s1 = hu0 ; e0 +(� = �0) ; " i and s0 ������! s01 with s01 = hu0 ; e00 + (� = �00) ; " i so that s1 � s01.(restore) If t0 = [�℄u0 and e0(�) = �1 then s1 = hu0 ; e0 ; �1 i and e00(�) is de�ned be
ause� is free in [�℄u0 and s � s0 so that s0 ������! s01 with s01 = hu0 ; e00 ; �01 i (wheree00(�) = �01). Sin
e � is free in [�℄u0, we easily verify that s1 � s01.We
on
lude as for lemma 4. 2Example 4 (push/save)As shown in example 1, the �-redu
tion
orresponds, in the KAM, to an intera
tion between the(push) instru
tion whi
h adds a
losure on the sta
k and the (pop) instru
tion whi
h reads a
losurefrom the sta
k. We now have a new instru
tion whi
h reads the sta
k: the (save) instru
tion, andwe are going to look at the intera
tion between (push) and (save).h (��:t)u ; e ; " ipush������! h ��:t ; e ; (u; e) :: " isave������! h t ; e+ (� = (u; e) :: ") ; " i12

We denote by ~u the sequen
e u1 : : : un and by �~u the sta
k (u1; e) :: � � � :: (un; e) :: ". Sin
e (save)a
ts on the whole sta
k, we have the more general behavior:h (��:t)~u ; e ; " i(push������!)n h ��:t ; e ; �~u isave������! h t ; e+ (� = �~u) ; " ibut this example is not lo
al in the following sense: it requires an empty starting sta
k and it looksat an arbitrarily long sequen
e of terms in the appli
ation. The lo
al
ase would
orrespond to thestarting state h (��:t)u ; e ; � i:h (��:t)u ; e ; � ipush������! h ��:t ; e ; (u; e) :: � isave������! h t ; e+ (� = (u; e) :: �) ; " iAs for the �-redu
tion, we want to �nd a term t0 with the same behavior as (��:t)u to de�ne aredu
tion rule. If we
ontinue the exe
ution of the KAM des
ribed just above for h (��:t)u ; e ; � i,ea
h time we arrive to some term [�℄v, we have to restore the sta
k (u; e) :: � whi
h
orrespondsto the evaluation of (v)u with the sta
k �, that is to the evaluation of [�℄(v)u where � = � is inthe environment.Consider t0 to be ��:t[[�℄(v)u=[�℄v℄ where t[[�℄(v)u=[�℄v℄ is obtained by substituting any sub-termof t starting by [�℄, thus of the shape [�℄v for some v, by the term [�℄(v)u (see se
tion 4.1 for aformal de�nition of this notion of substitution). We have:h ��:t[[�℄(v)u=[�℄v℄ ; e ; � isave������! h t[[�℄(v)u=[�℄v℄ ; e+ (� = �) ; " iA

ording to the previous dis
ussion, the evaluations of h t ; e + (� = (u; e) :: �) ; " i andh t[[�℄(v)u=[�℄v℄ ; e+(� = �) ; " i are almost the same: in the �rst
ase, ea
h time we have a [�℄v, weevaluate v with the sta
k (u; e) :: � and in the se
ond
ase, ea
h time we have a [�℄v, it has beensubstituted by [�℄(v)u and we evaluate (v)u with the sta
k �, that is v with a sta
k (u; e0) :: �.Example 5 (save/restore)Putting together the two instru
tions �� and [�℄
ontinues the
omputation in the same
onditionsex
ept that the sta
k is memorized in the environment with name �:h ��[�℄t ; e ; � isave������! h [�℄t ; e+ (� = �) ; " irestore������! h t ; e+ (� = �) ; � i3.2 Control primitivesTo establish a relation between the sta
k manipulations in the KAM and
ontrol operators, we willshow how to simulate an extension of the �-
al
ulus with \jumping" primitives in the extendedKAM. 13

We
onsider the following toy extension of the �-
al
ulus:t ::= x j �x:t j (t)t j label k : t j goto k with tSin
e we don't want to give the detailed operational semanti
s of this language and we just wantto be informal in this se
tion, the reader
an have a look at [6, 20℄ for more formal presentationsof this kind of extensions of the �-
al
ulus with
ontrol primitives.The idea is the following: if we want to
ompute label k : t in a
ontext C, we start the
omputation of t in the
ontext C, and if we arrive to some goto k with u, we stop the exe
utionand we start the
omputation of u in the
ontext C.We de�ne an embedding of this language in the language of instru
tions of the KAM:x = x�x:t = �x:t(t)u = (t)ulabel k : t = (�f:��[�℄(f)�x:�Æ[�℄x)�k:tgoto k with u = (k)uWe
an
ompare the exe
ution of label k : t with the exe
ution of the KAM for the
orrespond-ing term label k : t (this very parti
ular
ase where we use a unique label de�ned at top level,
anbe en
oded with both ex
eptions and
ontinuations even if they usually di�er [13, 16℄).h (�f:��[�℄(f)�x:�Æ[�℄x)�k:t ; e ; � ipush������! h �f:��[�℄(f)�x:�Æ[�℄x ; e ; (�k:t; e) :: � ipop������! h ��[�℄(f)�x:�Æ[�℄x ; e+ (f = (�k:t; e)) ; � isave������! h [�℄(f)�x:�Æ[�℄x ; e+ (f = (�k:t; e)) + (� = �) ; " irestore������! h (f)�x:�Æ[�℄x ; e+ (f = (�k:t; e)) + (� = �) ; � ipush������! h f ; e+ (f = (�k:t; e)) + (� = �) ; (�x:�Æ[�℄x; e0) :: � ideref������! h �k:t ; e ; (�x:�Æ[�℄x; e0) :: � ipop������! h t ; e+ (k = (�x:�Æ[�℄x; e0)) ; � iwhere e0 = e+(f = (�k:t; e))+(� = �). A

ording to lemmas 4 and 7, we
an repla
e (�x:�Æ[�℄x; e0)with (�x:�Æ[�℄x; � = �).Using the idea that the sta
k represents the
urrent
ontext of evaluation, this shows that inorder to
ompute label k : t, we
ompute t in the same
ontext (with some appropriate upgrade ofthe environment). If k never o

urs during the
omputation of t, the
omputations of label k : tand t are the same, this
orresponds to the
ase where no jump to k is used in t. If k appears
14

during the
omputation of t, the instru
tion (k)u appears in the KAM:h (k)u ; e0 ; �0 ipush������! h k ; e0 ; (u; e0) :: �0 ideref������! h �x:�Æ[�℄x ; � = � ; (u; e0) :: �0 ipop������! h �Æ[�℄x ; (� = �) + (x = (u; e0)) ; �0 isave������! h [�℄x ; (� = �) + (x = (u; e0)) + (Æ = �0) ; " irestore������! h x ; (� = �) + (x = (u; e0)) + (Æ = �0) ; � ideref������! h u ; e0 ; � iwhi
h means that we stop the evaluation of t, and we start the exe
ution of u in the initial
ontext� as for label k : t.4 The ��-
al
ulusWe are going to move from the KAM to a term language with rewriting, based on the instru
tionlanguage of the ma
hine with �� and [�℄. This language is a very small variant of M. Parigot's��-
al
ulus [14℄ (as given in [9℄).4.1 The languageWe have already de�ned the term language in se
tion 3.1 with its two binders � for the �-variablesand � for the �-variables. We now give the
orresponding redu
tion rules, extending �-redu
tionwith a rule for the � binder (as suggested in example 4):(��:t)u !� ��:t[[�℄(v)u=[�℄v℄The substitution t[[�℄(v)u=[�℄v℄ is one of the key ingredients of the ��-
al
ulus, some intuitions havebeen given in example 4 and it is formally de�ned as follows:x[[�℄(v)u=[�℄v℄ = x(�x:t)[[�℄(v)u=[�℄v℄ = �x:(t[[�℄(v)u=[�℄v℄) with x =2 u using �-equivalen
e((t)t0)[[�℄(v)u=[�℄v℄ = (t[[�℄(v)u=[�℄v℄)t0[[�℄(v)u=[�℄v℄(��:t)[[�℄(v)u=[�℄v℄ = ��:(t[[�℄(v)u=[�℄v℄) with � 6= � and � =2 u using �-equivalen
e([�℄t)[[�℄(v)u=[�℄v℄ = [�℄(t[[�℄(v)u=[�℄v℄)u([�℄t)[[�℄(v)u=[�℄v℄ = [�℄(t[[�℄(v)u=[�℄v℄) if � 6= �Example 6 (�-substitution)With the de�nition of the new substitution:�f:��[�℄(f)�Æ[�℄�x:�Æ[�℄x[[�℄(v)u=[�℄v℄ = �f:��[�℄((f)�Æ[�℄�x:�Æ[�℄(x)u)u
15

In the spirit of �-redu
tion, we
an also add two other redu
tion rules:[�℄��:t !� t[�=�℄��[�℄t !� t if � =2 tWe will use the notation u! v for u!� v or u !� v or u !� v.Proposition 5 (Chur
h-Rosser property)If t !� u and t!� v, there exists a ��-term w su
h that u !� w and v !� w.Proof: See [14℄ slightly
orre
ted in [17℄ for example. 2Example 4 shows how the KAM simulates the �-redu
tion: the di�eren
e between h t ; e+(� =(u; e) :: �) ; " i and h t[[�℄(v)u=[�℄v℄ ; e + (� = �) ; " i o

urs in the exe
ution when some [�℄vappears as the
urrent instru
tion. In the �rst
ase, the sta
k (u; e) :: � is restored and exe
ution
ontinues with v. In the se
ond
ase, we have in fa
t [�℄(v)u and the sta
k � is restored butafter one transition u is pushed on the sta
k and exe
ution
ontinues with v leading to the same
omputation.Example 7 (�-redu
tion)The KAM simulates the �-redu
tion if the starting state has an empty sta
k and
ontains a de
la-ration for the variable � in the environment:h [�℄��:t ; e+ (� = �) ; " irestore������! h ��:t ; e+ (� = �) ; � isave������! h t ; e+ (� = �) + (� = �) ; " iExample 8 (�-redu
tion)The simulation of the �-redu
tion
orresponds to the parti
ular
ase of example 5 where � =2 t:h ��[�℄t ; e ; � isave������! h [�℄t ; e+ (� = �) ; " irestore������! h t ; e+ (� = �) ; � iand, a

ording to lemma 7, the
omputation follows on like with the state h t ; e ; � i.Due to the modi�
ation of the de�nition of environments, we have to extend the notion ofexpansion of states:� if
 = (t; e) is a
losure with e = f(x1;
1); : : : ; (xn;
n); (�1; �1); : : : ; (�m; �m)g, the ��-term e
or tfeg is t[e
1=x1 ; : : : ;f
n=xn ℄[[�1℄(v)f�1=[�1℄v; : : : ; [�m℄(v)f�m=[�m℄v℄.The weak head redu
tion of the ��-
al
ulus allows to redu
e redexes (for the �-, �- or �-redu
tions) under appli
ations but also under some ��
onstru
tions at the beginning of the termfollowed by some [�℄ with � bound. This means that the redex r
an be redu
ed in t only if t hasthe shape: ��1 : : : ��n[�1℄ : : : [�k℄(r)u1 : : : upwith n; k; p � 0 and �j 2 f�1; : : : ; �ng for 1 � j � k.A weak head normal form is a normal form for this redu
tion pro
edure, that is a ��-term ofone of the following shapes: 16

� ��1 : : : ��n[�1℄ : : : [�k℄[
℄t with n � 0, k � 0, �1, ..., �k bound and
 free, in this
ase
 is
alled the head �-variable of the weak head normal form;� ��1 : : : ��n[�1℄ : : : [�k℄([
℄t)u1 : : : up with n � 0, k � 0, p > 0 and �1, ..., �k bound, in this
ase
 is
alled the head �-variable;� ��1 : : : ��n[�1℄ : : : [�k℄(x)u1 : : : up with n � 0, k � 0, p � 0 and �1, ..., �k bound, in this
asex is
alled the head �-variable;� ��1 : : : ��n[�1℄ : : : [�k℄�x:t with n � 0, k � 0 and �1, ..., �k bound, and we don't de�ne headvariables in this
ase.Proposition 6 (Simulation)If an exe
ution of the ma
hine goes from the state s to the state s0, the ��-term es redu
es byweak head redu
tion to a term u su
h that es0 is obtained by removing some �� and [�℄ in thebeginning of u. This simulation is stri
t in the
ase of (save) transitions with a non-empty sta
k:if s save������! s0 and the sta
k of s is not empty then es!� u.Proof: We look at the two new transitions:(save) If the starting state is s = h��:t ; e ; � i, we have es = (��:tfeg)e� whi
h redu
es to��:tfeg[[�℄(v)e�=[�℄v℄ (by n steps if �
ontains n
losures) and s0 = h t ; e + (� = �) ; " iwith es0 = tfe+ (� = �)g = tfeg[[�℄(v)e�=[�℄v℄, and the di�eren
e is a �� in the beginning.(restore) If the starting state is s = h [�℄t ; e ; " i with e(�) = �, we have es = ([�℄t)feg =[�℄(tfeg)e� and s0 = h t ; e ; � i with es0 = (tfeg)e�, and the di�eren
e is a [�℄ in thebeginning. 2Corollary 6.1 (Weak head normal form)If the KAM starts from the state s and stops in the state s0, then es0 is the weak head normal formof es (up to some �� and [�℄ in the beginning).Proof: Using proposition 6, we know that es redu
es to es0 by weak head redu
tion (up to some�� and [�℄ in the beginning). We just have to show that if the KAM stops in the state s0, es0is a weak head normal form. We have two new possible
ases with respe
t to
orollary 3.1:� s0 = h [�℄u ; e ; � i with � 6= ", so that es0 = ([�℄u0)e� (for some u0) is a weak head normalform;� s0 = h [�℄u ; e ; " i with e(�) unde�ned, so that es0 = [�℄(ufeg) is also a weak headnormal form. 24.2 Simple typesOur goal is to build a typing system for the ��-
al
ulus out of the KAM, starting with an intuitivetyping of the ma
hine. We look at the following sequen
e:h ��[�℄t ; � = �0 ; � isave������! h [�℄t ; (� = �0) + (� = �) ; " irestore������! h t ; (� = �0) + (� = �) ; �0 i17

Let A be the type of t, the last state tells us that �0 must have type A?. To ensure the
oheren
eof the environment, the type of � must be in
orresponden
e with the type of �0, and if we wantto type �-variables with simple types, the only natural
andidate is A. The middle state entailsthat [�℄t must have an atomi
 type sin
e the
orresponding sta
k is empty, we make the parti
ular
hoi
e of ? for this purpose, so that if t has type A and � has type A, [�℄t has type ?, this
an besummarized by the informal judgments: t : A [:℄[�℄t : ? and � : Athe typing de
laration for � is required in the se
ond judgment sin
e � is free in [�℄t.Let B be the type of �, a

ording to the middle state, � has type B?, this entails in the �rststate that ��[�℄t must have type B. We summarize it by:t : ? and � : B mu��:t : BIf we try to
ompare these informal rules with the (lam) rule written in the same way:x : A and t : B lam�x:t : A! Bwe
an see that the type of x appears negatively in the type of t whi
h justi�es logi
ally the fa
tthat the typing de
laration for x in a typing judgment of the �-
al
ulus appears on the left-handside of `. Whereas the types of the �-variables in our informal rules appear in positive o

urren
ein the type of the term, this leads us to put typing de
larations for �-variables in the right-handside of the `, and to introdu
e typing judgments of the shape:x1 : A1; : : : ; xn : An ` t : A j �1 : B1; : : : ; �m : Bm or � ` t : A j �The formal typing rules for �� and [�℄ follow from these remarks:� ` t : A j � [:℄� ` [�℄t : ? j � [f� : Ag � ` t : ? j � mu� ` ��:t : A j � n f� : AgDue to these rules, the atom ? has now a di�erent status from �, ...Lemma 8 (Typing
ontext and free variables)If � ` t : A j � is derivable, then �
ontains exa
tly one typing de
laration for ea
h free �-variableof t and �
ontains exa
tly one typing de
laration for ea
h free �-variable of t.Example 9 (Call/

 and Peir
e's law)The ��-term we have studied in se
tion 3.2 is typable of type ((A ! B)! A)! A:
varf : (A ! B)! A ` f : (A! B)! A j varx : A ` x : A j [:℄x : A ` [�℄x : ? j � : A mux : A ` �Æ[�℄x : B j � : A lam` �x:�Æ[�℄x : A! B j � : A appf : (A ! B)! A ` (f)�x:�Æ[�℄x : A j � : A [:℄f : (A ! B)! A ` [�℄(f)�x:�Æ[�℄x : ? j � : A muf : (A ! B)! A ` ��[�℄(f)�x:�Æ[�℄x : A j lam` �f:��[�℄(f)�x:�Æ[�℄x : ((A ! B)! A)! A j18

The Curry-Howard
orresponden
e gives the relation between typing derivations in the simplytyped �-
al
ulus and intuitionisti
 logi
. T. GriÆn [8℄ has dis
overed that
ontrol operators inprogramming languages
an be typed with
lassi
al (not intuitionisti
ally provable) formulas, al-lowing to extend the Curry-Howard
orresponden
e to
lassi
al logi
. A lot of work followed thisidea in parti
ular the introdu
tion of the ��-
al
ulus [14℄ (but also [6, 7, 4℄). The �-terms
orre-spond to proofs in intuitionisti
 natural dedu
tion and the previous derivation shows that ��-terms
orrespond to derivations in
lassi
al logi
 (sin
e intuitionisti
 logi
 with Peir
e's law is
lassi
allogi
).Lemma 9 (Substitution)If � ` t : A j �; � : B ! C and �0 ` u : B j �0 are derivable and � [�0 and � [�0 are de�ned,then � [�0 ` t[[�℄(v)u=[�℄v℄ : A j � [�0; � : C.Proposition 7 (Subje
t redu
tion)If � ` t : A j � is derivable and t ! t0, then �0 ` t0 : A j �0 is derivable where �0 (resp. �0)is the subset of � (resp. �)
ontaining only the typing de
larations for the free �-variables (resp.�-variables) of t0.Proof: See [14℄. 2Proposition 8 (Strong normalization)If � ` t : A j � is derivable, there is no in�nite sequen
e of redu
tions starting from t.Proof: See [15℄. 24.3 Types for the KAMWe extend all the typing judgments with a
ontext in the right-hand side and typing judgmentsfor environments be
ome � `env e : f� j �g j � where �
ontains typing de
larations for the�-variables de�ned in e.The unique new rule is the following one:� `env e : f� j �g j � �0 `sta
k � : A? j �0� [�0 `env e+ (� = �) : f� j �; � : Ag j � [�0the other ones are extended in the natural way with right-hand side
ontexts.Lemma 10 (Typing and expansion)If � `state s j � is derivable, there exists an atom X su
h that �0 ` es : X j �0 is derivable where �0(resp. �0) is the subset of �(resp. �)
ontaining only the typing de
larations for the free �-variables(resp. �-variables) of es.Proof: As for lemma 6, we �rst prove the
losure
ase: if � `
los (t; e) : A j � is derivable, then�0 ` tfeg : A j �0. We use the same notations so that �1 ` t : A j �1 and �2 `env e : f� j�g j �2, and we just prove the
ase e = e0 + (� = �). From �2 `env e : f� j �g j �2 we
an dedu
e �2 = �02 [�002, �2 = �02 [�002 and � = �0; � : B with �02 `env e0 : f� j �0g j �02and �002 `sta
k � : B? j �002. If � =
1 :: � � � ::
n :: " and B = B1 ! � � � ! Bn ! X, wehave for ea
h 1 � i � n, �002;i `
los
i : Bi j �002;i with �002 = �002;1 [� � � [�002;n and by indu
tionhypothesis �0002;i ` e
i : Bi j �0002;i. By indu
tion hypothesis we
an dedu
e from �1 ` t : A j �1and �02 `env e0 : f� j �0g j �02 that � ` tfe0g : A j � (for some � � (�1 n �) [�02 and forsome � � (�1 n �0) [�02). If � is not free in t this is enough to
on
lude and if � is free int, � = �0; � : B so that � [�0002 ` tfe0g[[�℄(v)e�=[�℄v℄ : A j �0 [f� : Xg [�0002 by lemma 9.If � `state s j � is derivable with s = h t ; e ; � i, we easily
on
lude with the
losure
ase. 219

Proposition 9 (Subje
t redu
tion)The evaluation of the KAM preserves typing, i.e. if � `state h t ; e ; � i j � is derivable and if thefollowing transition is valid: h t ; e ; � i ������! h t0 ; e0 ; �0 ithen �0 `state h t0 ; e0 ; �0 i j �0 where �0 (resp. �0) is the subset of � (resp. �)
ontaining only thetyping de
larations for the free �-variables (resp. �-variables) of h t0 ; e0 ; �0 i.Proof: If � `state h t ; e ; � i j � is derivable, we must have � = (�1 n �) [�2 [�3 and� = (�1n�)[�2[�3 with �1 ` t : A j �1, �2 `env e : f� j �g j �2 and �3 `sta
k � : A? j �3.The proof for the transitions (push), (pop) and (deref) is almost the same as for proposition 4,and we just give the two other
ases:(save) We have t = ��:t0, this entails �1 = �01 n f� : Ag with �1 ` t0 : ? j �01, and we
anderive:�1 ` t0 : ? j �01 �2 `env e : f� j �g j �2 �3 `sta
k � : A? j �3�2 [�3 `env e+ (� = �) : f� j �; � : Ag j �2 [�3(�1 n �) [�2 [�3 `
los (t0; e+ (� = �)) : ? j (�01 n (� [f� : Ag)) [�2 [�3 `sta
k " : > j(�1 n �) [�2 [�3 `state h t0 ; e+ (� = �) ; " i j (�01 n (� [f� : Ag)) [�2 [�3with �01 n (� [f� : Ag) = (�01 n f� : Ag) n� = �1 n� and s and s0 have the same freevariables.(restore) We have t = [�℄t0 and � = ", this entails �1 = �01; � : B and A = ?, and �3 and �3 areempty with �1 ` t0 : B j �01. Moreover e = e0 + (� = �0) so that �2 = �02 [�002, �2 =�02 [�002 and � = �0; � : B with �02 `env e0 : f� j �0g j �02 and �002 `sta
k �0 : B? j �002,and we
an derive:�1 ` t0 : B j �01 �2 `env e : f� j �g j �2(�1 n �) [�2 `
los (t0; e) : B j (�01 n�) [�2 �002 `sta
k �0 : B? j �002(�1 n �) [�2 `state h t0 ; e ; �0 i j (�01 n�) [�2and s and s0 have the same free �-variables and their free �-variables
an only di�er on� if � =2 t0. 2Corollary 9.1 (Termination)If � `state s j � is derivable, the KAM, starting from the state s, stops in a state hx ; e0 ; �0 iwhere x is the head �-variable of the weak head normal form of es or in a state h [�℄u ; e0 ; " i where� is the head �-variable of the weak head normal form of es.Proof: We �rst show that the ma
hine stops. The size jej of an environment e is now the sumof the sizes of its
losures plus the sum of the sizes of its sta
ks, and the size jsj of a sta
k sis the sum of the sizes of its
losures (with j"j = 0). The transitions whi
h don't
orrespondto a redu
tion step of the term asso
iated to the state are: (push), (deref), (restore) and also(save) when the sta
k is empty, but we
an't have an in�nite sequen
e of su
h transitions sin
ethey de
rease the value of (jej; jtj). We
an dedu
e that an in�nite sequen
e of transitions ofthe ma
hine
ontains an in�nite number of transitions (pop) and (non-degenerated) (save) so20

that, with proposition 6, the term asso
iated with the starting state would have an in�nitesequen
e of redu
tions
ontradi
ting lemma 10 and proposition 8.Let s0 be the stopping state, it
an be:� h�x:u ; e0 ; " i, impossible by proposition 9 sin
e it must be typable and " is not typableof a type A ^ P .� hx ; e0 ; �0 i with x not de
lared in e0 and (xfe0g)e�0 = (x)e�0, so that, by
orollary 6.1, xis the head �-variable of the weak head normal form of es.� h [�℄u ; e0 ; �0 i with �0 6= ", impossible by proposition 9 sin
e it must be typable and�0 6= " is not typable of type >.� h [�℄u ; e0 ; " i with � not de
lared in e0 and � is the head �-variable of [�℄(ufe0g). 2In parti
ular, the ma
hine never stops be
ause the ��-term is [�℄t and the sta
k is not empty,the ? type ensures that in this
ase the sta
k is empty.A more te
hni
al presentation of Krivine's abstra
t ma
hine as an evaluation ma
hine for the��-
al
ulus has been given by P. de Groote [5℄ and a similar work has been
arried out in the
all-by-value
ase by G. Bierman [2℄. A re
onstru
tion of Krivine's abstra
t ma
hine for the ��-
al
ulusthrough its
ontinuation semanti
s has been des
ribed by T. Strei
her and B. Reus [19℄, going inthe opposite dire
tion of our presentation.A
knowledgmentsI would like to thank P. Baillot, C. Berline, C. Fouquer�e and J. Vauzeilles who read earlier versionsof this work and of
ourse the anonymous referees. The
omments of all of them helped me tomake this paper more readable, I hope it is now a

essible to a wider audien
e.Referen
es[1℄ Henk Barendregt. The lambda
al
ulus, its syntax and semanti
s. Number 103 in Studies inLogi
 and the Foundations of Mathemati
s. North-Holland, se
ond edition, 1984.[2℄ Gavin Bierman. A
omputational interpretation of the ��-
al
ulus. In L. Brim, J. Gruska, andJ. Zlatuska, editors, Pro
eedings of Mathemati
al Foundations of Computer S
ien
e, volume1450 of Le
ture Notes in Computer S
ien
e, pages 336{345. Springer, August 1998.[3℄ Pierre-Louis Curien and Hugo Herbelin. The duality of
omputation. In Pro
eedings of the In-ternational Conferen
e on Fun
tional Programming, volume 35(9) of ACM SIGPLAN Noti
es,pages 233{243. Asso
iation for Computing Ma
hinery, ACM Press, September 2000.[4℄ Vin
ent Danos, Jean-Baptiste Joinet, and Harold S
hellinx. A new de
onstru
tive logi
: linearlogi
. Journal of Symboli
 Logi
, 62(3):755{807, September 1997.[5℄ Philippe de Groote. An environment ma
hine for the lambda-mu-
al
ulus. Mathemati
alStru
tures in Computer S
ien
e, 8:637{669, 1998.[6℄ Matthias Felleisen and Robert Hieb. The revised report on the synta
ti
 theories of sequential
ontrol and state. Theoreti
al Computer S
ien
e, 103(2):235{271, September 1992.21

[7℄ Jean-Yves Girard. A new
onstru
tive logi
:
lassi
al logi
. Mathemati
al Stru
tures in Com-puter S
ien
e, 1(3):255{296, 1991.[8℄ Timothy GriÆn. A formulae-as-types notion of
ontrol. In Pro
eedings of the 1990 Prin
iplesof Programming Languages Conferen
e, pages 47{58. IEEE Computer So
iety Press, 1990.[9℄ Martin Hofmann and Thomas Strei
her. Completeness of
ontinuation models for lambda-mu-
al
ulus. Information and Computation, 179(2):332{355, De
ember 2002.[10℄ Jean-Louis Krivine. Un interpr�eteur du lambda-
al
ul. Available atftp://ftp.logique.jussieu.fr/pub/distrib/krivine/interprt.pdf , 1992.[11℄ Jean-Louis Krivine. Lambda-
al
ulus, types and models. Ellis Horwood, 1993.[12℄ Jean-Louis Krivine. Typed lambda-
al
ulus in
lassi
al Zermelo-Fraenkel set theory. Ar
hivefor Mathemati
al Logi
, 40(3):189{205, 2001.[13℄ Mark Lillibridge. Un
he
ked ex
eptions
an be stri
tly more powerful than
all/

. Higher-Order and Symboli
 Computation, 12(1):75{104, April 1999.[14℄ Mi
hel Parigot. ��-
al
ulus: an algorithmi
 interpretation of
lassi
al natural dedu
tion. InPro
eedings of International Conferen
e on Logi
 Programming and Automated Reasoning,volume 624 of Le
ture Notes in Computer S
ien
e, pages 190{201. Springer, 1992.[15℄ Mi
hel Parigot. Strong normalization for se
ond order
lassi
al natural dedu
tion. Journal ofSymboli
 Logi
, 62(4):1461{1479, De
ember 1997.[16℄ Jon Rie
ke and Hayo Thiele
ke. Typed ex
eptions and
ontinuations
annot ma
ro-expressea
h other. In J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors, International Collo-quium on Automata, Languages and Programming, volume 1644 of Le
ture Notes in ComputerS
ien
e, pages 635{644. Springer, July 1999.[17℄ Paul Rozi�ere. D�edu
tion naturelle
lassique et ��-
al
ul. Notes de
ours de DEA. Availableat http://www.pps.jussieu.fr/�roziere/dea/
lassi
alded.pdf , 2001.[18℄ Peter Selinger. Control
ategories and duality: on the
ategori
al semanti
s of the lambda-mu
al
ulus. Mathemati
al Stru
tures in Computer S
ien
e, 11(2):207{260, April 2001.[19℄ Thomas Strei
her and Bernhard Reus. Classi
al logi
,
ontinuation semanti
s and abstra
tma
hines. Journal of Fun
tional Programming, 8(6):543{572, November 1998.[20℄ Hayo Thiele
ke. Comparing
ontrol
onstru
ts by double-barrelled
ps. Higher-Order andSymboli
 Computation, 15(2/3):141{160, September 2002.

22

