
28

From Autonomic to Self-Self Behaviors: The JADE Experience

SARA BOUCHENAK, FABIENNE BOYER, BENOIT CLAUDEL, NOEL DE PALMA,
OLIVIER GRUBER, and SYLVAIN SICARD, University of Grenoble

Autonomic computing enables computing infrastructures to perform administration tasks with minimal
human intervention. This wrap-up paper describes the experience we gained with the design and use of
JADE—an architecture-based autonomic system. The contributions of this article are, (1) to explain how
JADE provides autonomic management of a distributed system through an architecture-based approach,
(2) to explain how we extended autonomic management from traditional self behaviors such as repairing
or protecting a managed system to self-self behaviors where JADE also fully manages itself as it manages
any other distributed system, (3) to report on our experience reaching self-self behaviors for two crucial
autonomic properties, repair and protection.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications

General Terms: Reliability, Security

Additional Key Words and Phrases: Autonomic computing, architecture-based management, JEE

ACM Reference Format:
Bouchenak, S., Boyer, F., Claudel, B., De Palma, N., Gruber, O., and Sicard, S. 2011. From autonomic to
self-self behaviors: The JADE experience. ACM Trans. Auton. Adapt. Syst. 6, 4, Article 28 (October 2011),
22 pages.
DOI = 10.1145/2019591.2019597 http://doi.acm.org/10.1145/2019591.2019597

1. INTRODUCTION

The goal of autonomic computing [Kephart and Chess 2003] is to automate the func-
tions related to system administration. This effort is motivated by the increasing size
and complexity of systems and applications alike, which has two direct consequences.
First, the administration costs are an increasing part of the total information system
costs. Second, the difficulty of the administration tasks tends to reach the limits of
what human administrators can handle. In this context, the self-management capa-
bilities enabled by autonomic computing provide powerful answers in matters such as
self-configuration, self-optimization through continuous performance monitoring, self-
repair through detecting and repairing failures, and self-protection through detecting
and defending against malicious attacks.

In JADE, we provide autonomic management for loosely coupled distributed systems
through an architecture-based approach. First, different autonomic managers observe
and monitor the managed system through its architecture. Second, based on these
observations, each autonomic manager may take appropriate steps to maintain the
managed system within preset goals. In this approach, different autonomic managers

Authors’ address: S. Bouchenak, F. Boyer, B. Claudel, N. De Palma, O. Gruber, and S. Sicard; email:
{sara.bouchenak, fabienne.boyer, benoit.claudel, noel.depalma, olivier.gruber, sylvain.sicard}@inrialpes.fr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1556-4665/2011/10-ART28 $10.00

DOI 10.1145/2019591.2019597 http://doi.acm.org/10.1145/2019591.2019597

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

28:2 S. Bouchenak et al.

are responsible for different autonomic properties, such as self-repair, self-protection,
or self-optimization. It is our experience that a reflective component-oriented design
is very effective for building such self-management capabilities.

JADE uses components to capture the traditional concept of managed elements as
well as the physical machines hosting them. Managed elements are wrapped as fractal
components [Bruneton et al. 2006] that provide simple but powerful control operations.
These control operations are the basis of the JADE uniform management interface,
enabling distributed heterogeneous legacy systems to be managed remotely. With this
wrapping in place, the overall managed system appears as a set of distributed and
interconnected components.

JADE captures this component-oriented architecture and thereby provides auto-
nomic managers with the ability to observe and manipulate the managed system.
Through introspection, autonomic managers can observe not only the architecture of
the managed distributed system but also its runtime behavior, including for instance,
security-related communication patterns for detecting intrusion. Through reconfigu-
ration, autonomic managers can manipulate the architecture of the managed distrib-
uted system, including for instance, the ability to provide higher availability through
replicating components across nodes.

A fundamental challenge that is addressed by JADE is self-self management, mean-
ing that JADE is able to entirely manage itself as it manages any other distributed sys-
tems. Reaching self-self management is essential for ensuring the overall reliability of
an autonomic management system. Without it, the management system guarantees
the reliability of the managed system, but nothing guarantees the reliability of the
management system itself. In particular, the autonomic management system can fail
or be the target of attacks. Based on a unique recursive design, JADE self-protects and
self-repairs.

This article is organized as follows. In Section 2, we present the main principles of
the JADE design. In Section 3, we explain how we reach self-self behaviors through
enhancing the JADE design with recursion and replication principles. In Sections 4
and 5, we discuss self-self behaviors on the essential and challenging properties of
autonomic repair and protection. In Section 6, we give results about the autonomic
management of advanced Web servers (JEE). In Section 7, we discuss related work. In
Section 8, we discuss the lessons learned from the JADE project and we conclude.

2. JADE DESIGN

The design of JADE is best described in these steps. First, we introduce the concept
of wrappers: components that wrap legacy systems in order to provide a uniform set
of management operations across heterogeneous legacy systems. Second, we discuss
the distributed nature of the managed system: JADE manages loosely-coupled legacy
systems, distributed across networked machines. Third, we introduce the concept of
the managed architecture, which captures the distributed architecture of the managed
system in a single component-oriented data structure.

2.1. Wrapping Legacy Systems

Wrapping legacy systems is the first step towards autonomic management of legacy
systems. In JADE, any managed legacy system is wrapped as one FRACTAL compo-
nent. In FRACTAL, each component offers a small but powerful set of control interfaces
that provides the core management operations to JADE. Each wrapper is therefore in
charge of implementing these control interfaces, in legacy-specific ways.

In Sicard et al. [2008], we discussed the full FRACTAL model and the correspond-
ing reflective requirements that a component model must have in order to support

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

From Autonomic to Self-Self Behaviors: The JADE Experience 28:3

autonomic management. The three most important control interfaces implemented
by wrappers are the lifecycle controller, the attribute controller, and the binding
controller.

— The lifecycle controller is about starting and stopping the wrapped legacy system.
The implementation of this controller is usually straightforward, leveraging avail-
able start and stop scripts.

— The attribute controller captures, as key-value pairs, the configuration data of the
wrapped legacy system. Hence, legacy systems can be configured in a uniform way
through setting attribute values. An example of one such attribute is the port used
by an Apache daemon to listen to incoming HTTP requests. Most often, wrappers
implement the attribute controller by direct manipulation of the configuration files
of the legacy systems they wrap.

— The binding controller captures the presence of communication channels between
legacy systems. For instance, wrapping the Apache HTTP daemon, a binding cap-
tures the TCP/IP connection between the HTTP daemon and a servlet engine such
as Tomcat. It is important to point out that bindings are in between FRACTAL com-
ponents (the wrappers) and only capture the existence of communication channels
between the wrapped legacy systems. In other words, bindings are not involved in
the actual communication; wrapped legacy systems communicate directly.

A constraint that should be considered when programming wrappers is that they
are expected to be fail-stop, a necessary property for ensuring the reliability of the
JADE management as explained later in this article. This requires not only wrappers
to be fail-stop themselves but also that failing wrappers actually stop their wrapped
legacy system before they fail. It is our experience that such fail-stop assumptions are
realistic and an important requirement to build self-* properties.

Despite fail-stop assumptions, most wrappers are extremely simple. All wrappers
that we wrote so far are direct programmatic transcriptions of what human adminis-
trators regularly do with scripts and a console.

2.2. Distributed Managed System

JADE targets loosely coupled legacy systems built as an assembly of legacy sub-
systems. Such systems are representative of today’s distributed systems, such as
multitiered Web application servers, Web services, and message-oriented middleware.
More traditional operating systems also rely on loosely coupled subsystems, such as
NFS, DNS, printer spoolers, or email systems.

Providing autonomic capabilities for such distributed systems suggests wrapping
legacy subsystems with components that offer a uniform set of management opera-
tions. Wrappers are fractal components that are distributed across machines in the
same way the managed legacy subsystems are. Wrappers are colocated with their
legacy systems because most of the management operations they provide make calls
to legacy scripts. Through wrapper components, JADE builds the distributed managed
system (DMS), as depicted in the intermediate level of Figure 1. The DMS provides
the JADE autonomic managers with a uniform and complete model of the distributed
system they manage.

JADE also captures the administered physical machines as fractal components.
There is one node component per physical machine known to JADE in the managed
system. In some sense, we can say that a node component wraps a physical machine.
In particular, a node component provides the ability to deploy and undeploy FRACTAL
components. Therefore, a node component has the knowledge of the wrappers that are
deployed on the physical machine it wraps.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

28:4 S. Bouchenak et al.

Fig. 1. Jade overall architecture.

A node component also supports runtime probes, such as intrusion detection or fail-
ure probes. Some probes are legacy subsystems that must be wrapped with FRACTAL
components while other probes may be directly implemented in Java as components.
Probes provide autonomic managers with crucial runtime information about legacy
systems, such as detecting failures for the self-repair manager or detecting intrusions
for the self-protection manager.

2.3. Managed Architecture

The managed architecture, depicted in Figure 1, provides autonomic managers with
a mirror view of the distributed managed system (DMS). For each component in the
DMS, the managed architecture has a mirror component that provides the very same
controllers as the DMS component. In other words, a mirror has the same lifecycle
state (started or stopped) and the same attributes as the component it mirrors. More-
over, mirrors have bindings between them that are isomorphic to the bindings between
the components they mirror.

Through mirrors, autonomic managers can both introspect and reconfigure the ar-
chitecture of the managed system, shielded from its distributed nature and its failures.
By introspecting, we mean that managers can access the mirrors and therefore intro-
spect the architectural state they mirror. For instance, managers can know which
wrappers are started or stopped as well as the bindings that link them. Managers can
also know which wrapper is deployed where, through the mirrors of node wrappers
that capture the knowledge of locally installed wrappers.

By reconfigure, we mean that autonomic managers can change any aspect of the ar-
chitecture they introspect. For instance, managers can start-stop wrappers or change
some of their attributes. They can also remove or create bindings between wrappers.
Autonomic managers therefore reconfigure the managed system through a sequence
of management operations invoked on mirrors, such as start()/stop(), bind()/unbind(),
and setAttribute().

Reconfigurations happen on managed architecture through atomic sessions. At com-
mit time of a session, JADE will apply the reconfiguration done in the managed archi-
tecture onto the distributed managed system. In some sense, JADE replays at commit

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

From Autonomic to Self-Self Behaviors: The JADE Experience 28:5

Fig. 2. Session commit.

time the management operations of the atomic session on the corresponding wrap-
pers. In turn, wrappers will apply the corresponding management operations onto the
legacy systems they wrap. This is globally a two-phase commit process, as depicted in
Figure 2. During the first phase, the commit reconfigures the wrappers of the impacted
mirrors, invoking the necessary management operations onto these wrappers. During
the second phase, the commit enters a barrier, waiting for all wrappers to effect these
management operations on the subsystem they wrap.

For each wrapper, all invoked management operations are bracketed by a beginAp-
ply and an endApply. In other words, JADE always invokes the beginApply method on
a wrapper before it invokes any management operations. Once all management opera-
tions have been invoked, JADE invokes the endApply method. Across wrappers, JADE
globally orders the endApply invocations following the startup ordering constraints in
the managed architecture. This means that when a startup ordering constraint im-
plies that a legacy system managed by a wrapper, Wi, be started after a legacy system
managed by a wrapper, W j, any repair action of a wrapper, W j must happen before
the repair of wrapper Wi if both W j and Wi are detected as failed. By the time all en-
dApply invocations on wrappers have returned, the commit is finished and the current
reconfiguration session completed.

It is important to realize that at commit time, the reconfiguration has already been
successful on the managed architecture, meaning that mirrors have been completely
and correctly reconfigured. Failures that shall be considered are therefore about fail-
ures during the commit itself, when applying the reconfiguration onto wrappers and
ultimately onto legacy systems. Such failures are detected, but do not prevent, the
commit from completing successfully. For instance, if a reconfiguration operation on
a wrapper is unsuccessful, the wrapper fail-stops itself. Such failure will be detected
by JADE and will be automatically repaired in a followup but separate repair session.
In case the failure of a wrapper W impacts other wrappers, these wrappers will also
fail-stop and be later repaired.

3. SELF-SELF DESIGN

JADE not only models and manages a distributed system, it is itself a distributed sys-
tem. This suggests that JADE can manage itself in order to guarantee the reliability
of its autonomic management. We tackled this challenge following a recursive design.

3.1. Recursive Design

The basis of our recursive design is that JADE is entirely designed and implemented
using the very same component model that was used for programming wrappers. This
means that the autonomic managers and the managed architecture are designed as

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

28:6 S. Bouchenak et al.

Fig. 3. Recursive architecture.

FRACTAL components, implemented in Java. Thus, the JADE components appear in
the distributed managed system, alongside other wrappers and node components, and
they are are mirrored in the managed architecture, as any component in the DMS is.
This is depicted in Figure 3. The lower plane shows the distributed managed system,
which includes the managed elements now including JADE components such as the
repair manager and the managed architecture. The top plane represents the mirrors in
the managed architecture, which include mirrors for the JADE components, including
the mirrors of the JADE components used to implement the managed architecture. The
recursion stops there as we do not mirror mirrors.

The recursive nature of our design is now apparent—the managed architecture mir-
rors itself. With this recursive design, autonomic managers can observe and reconfig-
ure either the managed legacy systems or the internals of the JADE system itself.

3.2. Replicated Design

A recursive design is only a first step toward the self-self behaviors; it creates the
possibility for JADE to manage itself using the very same techniques it applies on any
managed systems. However, when a JADE component becomes unavailable because of
a failure or an attack, the ability of JADE to manage itself may be impaired. This is
especially true if the repair manager fails, as it obviously cannot repair itself anymore.
The same is true for the protection manager.

To ensure the fault-tolerance and high-availability of JADE, we replicate JADE on a
cluster called the JADE cluster, as described in Figure 4. In particular, we replicate the
managed architecture and the core autonomic managers requiring self-self properties,
such as the repair and protection managers. We choose to replicate JADE using an ac-
tive replication mechanism [Guerraoui and Schiper 1996], since JADE components are
deterministic. Consequently, each JADE component becomes a replicated Java object
and Java remote unicast references are no longer sufficient. Indeed, for transparency
reasons, a reference between two replicated components shall become a reference be-
tween two groups of Java objects.

We therefore extended the Java Remote Method Invocation (RMI) with groupcast
references, which support remote method invocations between replicated components.
A groupcast reference combines the semantics of a multicast and a gathercast, as

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

From Autonomic to Self-Self Behaviors: The JADE Experience 28:7

Fig. 4. Replicating JADE.

Fig. 5. Multicast-gathercast binding.

illustrated in Figure 5. This groupcast semantic has been implemented on Jgroups,1
a toolkit that provides group membership services and a reliable totally-ordered
message delivery to dynamic groups. We allocate one group per replicated component,
where each group is identified by a globally unique identifier (GUID) that is stored in
the managed architecture.

Using groupcast references, we can introduce replication transparently. Although
each component may be replicated at its own cardinality and across its own set of
hardware nodes, JADE managers perceive nonreplicated components being connected
through unicast bindings. Between replicated components however, unicast bindings
are in reality, groupcast bindings using groupcast references. This translates into the
combination of the following two protocols.

Each incoming binding to a replicated component translates to a multicast seman-
tics onto the different replicas. All correct replicas independently and concurrently
execute the methods invoked on the component. Hence, if a fault prevents one replica
from operating correctly, the other replicas will produce the required results without
the delay required for recovery.

Each outgoing binding from a replicated component translates to a gathercast se-
mantics, ensuring a once-and-only-once semantics. Since replicated components may
invoke methods on nonreplicated components, the gathercast detects and suppresses
duplicate requests that are generated by the different replicas based on message

1http://www.jgroups.org/javagroupsnew/docs/index.html

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

28:8 S. Bouchenak et al.

identifiers. This is especially important for absorbing the redundant management
operations that an active replication scheme introduces.

4. AUTONOMIC REPAIR

This section discusses autonomic repair. In most management systems, an autonomic
repair means the ability to repair a managed system. This is often called self-repair
even though the failures of the management system are not detected and repaired,
requiring a manual intervention from an operator. For JADE, an autonomic repair not
only includes the ability to repair a managed system but also the ability to repair itself,
which we call self-self repair to contrast with the traditional self repair denomination.

4.1. Self Repair

Our autonomic repair is architecture-based and as incremental as possible, avoiding
any shutdown of the overall managed system when repairing the failures of individual
subsystems. After detecting a failure, our self-repair manager analyzes the failures
by introspecting the managed architecture and repairs these failures by reconfiguring
this architecture. Our self-repair manager handles fail-stop failures of either nodes or
subsystems.

During the analysis step, the repair manager identifies the impacts of the detected
failure, determining the set of failed components that were lost due to the node fail-
ure. By introspecting the node mirror representing the failed node in the Managed
Architecture, the self-repair manager is able to discover all the components that were
deployed and running on this failed node. Indeed, the managed architecture protects
the architectural knowledge of the managed system that would otherwise be lost to
failures. Thus, introspecting the managed architecture, our repair manager can know
which wrappers have been lost to a failed node as well as the complete architectural
state of lost wrappers, including their attribute values and their bindings.

From there, the repair process is essentially a three-step process. One, it substi-
tutes a failed node with a new one from a pool of available hardware nodes. Two,
it redeploys on that new node, the lost wrappers and their wrapped legacy systems.
Three, it fully reconfigures the redeployed wrappers, which in turn fully reconfigure
the wrapped legacy systems. This last step includes cleaning up stale bindings before
creating correct ones, which requires computing the set of impacted components.

Impacted components are all the components currently bound to a failed component.
The cleaning up of stale bindings is simply done by unbinding them from impacted
components in the managed architecture. At commit time, JADE forwards the unbind()
operations to the corresponding wrappers that will request their wrapped legacy to
close stale communication channels. The creation of new bindings is also done on the
managed architecture. Again, at commit time, JADE forwards these bind() operations
to wrappers, allowing them to inform their legacy of the new communication channels
to use.

A typical example of this situation can be sketched between an Apache HTTP dae-
mon and its Tomcat servlet engines. When the hardware node where a Tomcat servlet
engine runs, fails, a new instance of a Tomcat servlet engine must be recreated on a
new hardware node. Therefore, the Apache HTTP daemon must first close its socket to
the failed Tomcat and reopen one to the newly created Tomcat. The unbind() operation
resets the IP address and port in the Apache configuration file while the bind() opera-
tion sets the new correct values. It is interesting to point out that the Apache daemon
has to be restarted to reread its configuration file. Hence, to apply the unbind-rebind
operations, the wrapper has to actually shut down and restart the Apache HTTP
daemon. Other legacy systems have a more dynamic approach and can be reconfigured

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

From Autonomic to Self-Self Behaviors: The JADE Experience 28:9

Fig. 6. Replicated failure detector.

without having to stop and restart. In any case, it is the responsibility of the wrappers
to respect such reconfiguration constraints imposed by the wrapped legacy system.

4.2. Self-Self Repair

Our self-self repair is obtained as follows. First, we replicate all the components
involved in the autonomic repair. This means replicating the repair manager, the
managed architecture, and the fault detector. Second, each replica of the repair
manager watches over all the components mirrored in the managed architecture.
Third, given our recursive design, where JADE components are mirrored in the
architecture, this means that each replica of the repair manager watches over all the
replicas of JADE components. Hence, any failure of a JADE component, including those
of the repair manager replicas, can always be repaired by the unaffected replicas of
the repair manager.

This is a quite traditional use of active replication to reach high-availability and
fault-tolerance. There is only challenge—we replicate our failure detector and fail-
ure detectors are known to be nondeterministic. Figure 6 illustrates our replication
scheme for our failure detector; it is connected to the repair manager, itself a repli-
cated component, through a groupcast reference. This dual replication ensures that
the failure detector is no single point of failure and that all replicas of the repair man-
ager are notified that a failure occurred. Each failure detector replica, called detector
in this discussion, watches over all the hardware nodes managed by JADE, themselves
watching over the fractal components they host. Each detector continuously reports a
detected failure to the replicated repair manager until that failure is actually repaired
or the repair manager decides, after several repair attempts, that the component has
permanently failed.

Nevertheless, the nondeterministic nature of failure detectors is still a problem.
The solution comes from our groupcast semantics, whose design forces a deterministic
outcome. Indeed, our gathercast semantics absorb redundant messages, based on their
sequence number and not their actual contents. Therefore, different failure reports
multicasted with the same sequence number from different detectors will be absorbed.
To the repair manager, it appears as if all detectors had multicasted the same failure
report, hence the deterministic outcome. This design may enable a false positive to
be absorbed but most importantly it introduces no false negative—no detected failure
can remain unreported. Indeed, as long as a detector knows about a failure that has
not been repaired, it will keep multicasting its failure report. At some point, either its

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

28:10 S. Bouchenak et al.

report will go through as it acquires the highest sequence number or another detector
will report it. In either case, the failure will eventually be reported to our repair
manager.

5. AUTONOMIC PROTECTION

This section discusses autonomic protection, another autonomic behavior, which ap-
plies to both the managed system and the management system. Self-protection relies
on a sense of self, that is, the ability to detect the intrusion of foreign elements through
the distinction of self from non-self. Once an intruder is detected, countermeasures
can be put in place to contain its progression and the damages it creates. We focus on
generic mechanisms that not only can recognize known and unknown attacks but are
also independent from any specifics of wrapped legacy systems.

Our autonomic protection detects illegal communication channels using the knowl-
edge of the managed architecture as the sense of self, which illustrates the importance
of an architecture-based approach for autonomic protection.

In particular, this approach handles well, both self and self-self protection, where
the protection manager itself is the target of attacks. Our sensors detect all the com-
munication not explicitly authorized in the managed architecture. Hence, it is possible
to react to all kind of attacks (known and unknown) using an illegal communication
channel. For instance, it is possible to detect a port scanner and block the attack be-
fore the real intrusion. However, our approach does not prevent attacks that use legal
communication channels.

5.1. Self-Protection

The assumption is that the managed architecture captures the knowledge of legal com-
ponents and legal communication channels between these components. That is, com-
ponents mirrored in the managed architecture represent legally installed software on
hardware nodes. The bindings between mirrors represent legal communication chan-
nels. Since bindings capture the TCP/IP parameters used by underlying communica-
tion channels; they can be used to detect illegal communication channels. Indeed, any
communication through a network connection that does not correspond to an existing
binding between known components in the architecture is considered an attack and
must be blocked.

This approach has no false positives if we assume an accurate and legal ar-
chitecture. To ensure this, all reconfigurations of the managed architecture are
authenticated through asymmetric cryptography, making sure only official autonomic
managers are allowed to reconfigure the managed architecture. This prohibits com-
promised components from manipulating the architecture and introducing illegal
bindings between components, something that could allow them to authorize illegal
communication channels.

Our protection mechanism relies on managed firewalls, one such firewall running on
each node. In our prototype, we wrapped the netfilter firewall [Netfilter]. Firewalls are
configured automatically from the self-knowledge available in managed architecture.
Every time this architecture evolves, firewall configurations are updated accordingly.
This is done by the self-protection manager, which observes the managed architecture
and maintains the firewall configurations in sync using the knowledge of the com-
munication ports and IP addresses of established communication channels between
managed components.

When detected, illegal communications between nodes are prevented by firewalls
that notify the self-protection manager. This detection is depicted in Figure 7 in
the context of a multitiered JEE server, the firewall of node 4 detects an illegal

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

From Autonomic to Self-Self Behaviors: The JADE Experience 28:11

Fig. 7. Detection of an attack from node 5.

communication originating from node 5. Once an illegal communication is detected,
different protection policies may be implemented. In our prototype, we chose to
consider as compromised, the node from which the illegal communication originated.
Our rationale is that only a compromised node in a JADE-managed system can
attempt an illegal communication. The self-protection manager will therefore recon-
figure the managed architecture through unbind() operations in order to isolate the
compromised node.

5.2. Self-Self Protection

Given our recursive design in JADE, self-self protection can be provided by replicating
the protection manager and the managed architecture. Since they are deterministic
fractal components, our active replication scheme applies.

Intrusion detectors represented by wrapped firewalls need not be replicated since
the availability of a firewall only needs to match the availability of the hardware node
it runs on. Therefore, since our intrusion detectors are deterministic and not repli-
cated, the reliable totally-ordered multicast is enough to ensure that all replicas of the
protection managers receive intrusion events in the same order and all of them receive
a given intrusion event or none of them do. The gathercast semantic is still required
for a once-and-only-once semantics, avoiding wrapped firewalls to execute redundant
configuration orders sent by the different replicas of the protection manager.

If a replica of the protection manager becomes infected and attempts to use an il-
legal communication channel, the attack will be detected by the other replicas of the
protection managers. This will induce the isolation of the hardware node running the
infected replica. However, we face the challenge of a malicious replica of the protec-
tion manager reconfiguring firewalls. Since each replica of the protection manager has
the right to contact any wrapped firewall, this cannot be detected as an illegal use of
a communication channel. To protect from this behavior, we used a specialized im-
plementation of our groupcast protocol, introducing quorum voting in the gathercast
semantics. When quorum voting is turned on, a method invocation is delivered to a
wrapper if and only if a quorum of requests has been received. In our case, we set
the quorum to the majority. Therefore, unless a majority of replicas of the protection
manager requests a firewall reconfiguration, it will not be considered.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

28:12 S. Bouchenak et al.

6. EVALUATION

For our experiments, we used the Java 2 Platform Enterprise Edition (JEE), which
defines a model for developing Web applications. The architecture is classically divided
in three tiers: the HTTP daemon (Apache), the application server (Tomcat), and the
database tier (such as MySQL). Such applications receive requests from Web clients,
route these requests through a Web server (provider of static contents), then to an
application server to execute the business logic of the application, and finally to a
database system that persistently stores data. Furthermore, to support high loads
and provide higher availability of Internet services, a commonly used approach is the
replication of each tier over a cluster.

Our testbed application is the RUBiS [Amza et al. 2002] application, a well-known
JEE application benchmark based on servlets, which implements an auction site simi-
lar to eBay. The load injector of RUBiS emulates a variable number of clients sending a
series of requests. It defines 26 Web interactions, such as registering new users, brows-
ing, buying or selling items. For our experiments, we used two transition matrices,
(1) the browse only transitions matrix (which contains only read-only operations) and
(2) the default transitions matrix (which contains 80% of read-only operations and
20% of write operations). This benchmarking tool gathers statistics about the gener-
ated workload and the Web application behavior.

We used the Rubis 1.4.2 version of the multitier JEE application running on several
middleware platforms: Apache 1.3.29 as a Web server [Apache], Jakarta Tomcat 3.3.2
as an enterprise server,2 MySQL 4.0.17 as a database server,3 Tomcat clustering as the
enterprise server clustering solution,4 and c-jdbc 2.0.2 as the database server cluster-
ing system [Cecchet et al. 2004]. Experiments were performed using Linux, on IA-32
processor at 1.8GHz with 1GB of RAM, and connected via a 100Mb/s Ethernet LAN.

6.1. Autonomic Repair

Experiences with autonomic repair compare the case where Rubis is run and managed
by JADE and when it is run and managed by hand. In these experiments, Rubis fol-
lows the default transitions matrix. Without JADE, failures require the intervention
of a human, who has to detect and understand them. Assuming a hardware failure, he
has to set up another machine, configure, and start both Apache and Tomcat. Further-
more, human errors are considered as the root cause of roughly 20% to 50% of system
outages [Gray 1986, 1990]. The lower bound of the mean time to repair is long, being
dependent on the time necessary for a human to react and reconfigure the failed sys-
tem. With JADE, the detection and recovery is automated. The mean-time-to-repair
(MTTR) is dominated by the time to detect the failure, the time to redeploy the nec-
essary software on the newly allocated node, and finally the time to restart the legacy
system.

To evaluate this, we forced failures on either the Apache HTTP daemon or the Tom-
cat servlet engine, as depicted in Figure 8 and Figure 9. JADE detects and repairs
the Apache daemon failure within 12 seconds and the Tomcat failure within less than
50 seconds. These numbers include the time for the failure detector to trigger and
the time for downloading and installing the necessary software (Rubis, Apache dae-
mon, and Tomcat). They include the installation of the Java wrappers and applying
the overall reconfiguration operations, including the writing of the configuration files
from attributes. Ultimately, they also include the time it takes for Apache or Tomcat

2http://www.tomcat.apache.org/
3http://www.mysql.com/
4http://www.tomcat.apache.org/

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

From Autonomic to Self-Self Behaviors: The JADE Experience 28:13

Fig. 8. Apache Web server failure and recovery.

Fig. 9. Tomcat failure and recovery.

to start. While Apache is a fast starter, Tomcat is rather slow. While these num-
bers could be considered large, they are orders of magnitude better than any manual
repair time, even by skilled operators. Indeed, manual repairs are the largest contrib-
utor to MTTRs that are several hours long on average [Kalyanakrishnam et al. 1999;
Oppenheimer et al. 2003].

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

28:14 S. Bouchenak et al.

JADE has also been applied to a clustered JEE, where Apache is used as a load-
balancer to balance requests on multiple remote Tomcats. While such clustered JEE
provides high availability with respect to Tomcat failures, maintaining the replicas’
cardinality despite failures, still require the intervention of human administrators.
Using JADE, failed Tomcat instances can be automatically repaired while maintaining
the high availability of the Web server. The challenge is that the load-balancer does
not support hot replacement of Tomcat replicas. In other words, to change the config-
uration of the load-balancer—that is, remove the failed replica of a Tomcat and add
the newly created replica—our Apache wrapper must start and stop the Apache HTTP
daemon it wraps.

Fortunately, our approach allows the wrapper of the Apache HTTP daemon to re-
order management operations, updating the load-balancer configuration while keeping
the HTTP daemon up and running, serving HTTP requests using the Tomcat repli-
cas that are still available. Our wrapper will do only a quick stop-start sequence on
the HTTP daemon at the end of the commit of the reconfiguration. Since the Apache
HTTP daemon stops and starts well below a second, the interruption of service is quite
minimal. The overall point is that JADE provides safe and automated repair without
hindering the legacy system performance, being fully compatible with clustered legacy
systems tuned for high availability.

Finally, we experimented with the self-self-repair behavior of JADE itself and its
overhead on the ability of JADE to repair managed legacy systems. We kept the failure
of a Tomcat but forced a simultaneous failure of one of the JADE replicas (including
both a replica of the repair manager and the managed architecture). These three
failures are detected and handled in this experiment in one repair session. Hence,
there is more work to do for repairing not only the lost Tomcat but also the lost replicas
of the repair manager and the managed architecture. Again, the repair of Tomcat and
of JADE can be done without impacting the overall availability of the Web server.

6.2. Autonomic Protection

This section presents the experiment we made to evaluate our autonomic protection
system. We first discuss the reactivity of our self-protection when an illegal commu-
nication is detected. We then evaluate the performance penalty induced by our self-
protection system.

Our first experiment measures the time between the detection of an illegal com-
munication and the isolation of compromised nodes. We have reproduced the scenario
described in Figure 7, measuring the delay between the detection of an illegal com-
munication coming for node 4 and the firewall reconfiguration on node 1, 2, and 9 in
order to isolate node 5. The average time measured over 1000 runs is 2.133 ms with
a 0.146 ms standard deviation. Hence, our prototype is very reactive and can quickly
block an intruder.

Our second experiment measures the impact of protection on the performance of
RUBiS. The deployed JEE architecture corresponds to that of Figure 7. The load
injector of RUBiS emulates a variable number of clients, from 0 to 3000 in our exper-
iments. The results are depicted in Figures 10 and 11. Figure 10 illustrates a read-
only scenario (browse only matrix) whereas Figure 11 is about a read-write scenario
(default matrix). In both scenarios, we progressively increment the number of clients
until we reach the saturation point. We compare the throughput with and without the
self-protection system. The results show that for each matrix, the throughput with
and without the self-protection system are very close (between 0 and 4% overhead).

One essential performance factor is the number of filtering rules in the firewall.
Indeed, when a network packet goes through Netfilter, it is compared with each rule

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

From Autonomic to Self-Self Behaviors: The JADE Experience 28:15

Fig. 10. Throughput for the browse only transitions matrix.

Fig. 11. Throughput for the default transitions matrix.

following a priority until all rules are challenged or one of the rules matches (in the
case of an illegal packet). Therefore the number of rules configured in firewalls im-
pacts performance. In the previous results, we have about a dozen rules in each fire-
wall. To check the scalability of our system, we have inserted 100 additional rules in
each firewall before the 10 real rules that were generated for our JEE architecture.
This number of rules in each machine represents a medium-size cluster composed of
approximately 50 nodes. Results of this latter experiment are given in Figure 12. We
can see that the overhead induced by the additional rules remains very low.

Results depicted in Table I represent the average response time with and without
self-protection. We only evaluated the delay for read requests (browse only matrix) be-
cause they are the fastest and therefore the ones most penalized by the self-protection
overhead. The given numbers are averaged over a thousand runs, with warmed-up
server caches. The overhead is very low, with a 3.5% maximum.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

28:16 S. Bouchenak et al.

Fig. 12. Bandwidth for the browse only transitions matrix.

Table I. Response Time (Milliseconds)

Requests Without self-protection With self-protection
Home 2.374 2.380 (+0.25%)

Browse 2.354 2.378 (+1.02%)
BrowseCategories 3.985 4.069 (+1.10%)

SearchItemsInCategory 11.503 11.764 (+2.27%)
BrowseRegions 4.263 4.361 (+2.30%)

BrowseCategoriesInRegion 4.202 4.349 (+3.50%)
SearchItemsInRegion 19.960 20.240 (+1.4%)

ViewItem 3.352 3.361 (+0.26%)

ViewUserInfo 4.034 4.089 (+1.36%)
ViewBidHistory 7.474 7.728 (+3.40%)

7. RELATED WORK

Numerous works have focused on autonomic management of legacy systems. In
Section 7.1, we consider autonomic management systems that deal with legacy
applications. We then focus on architecture-based management frameworks that
mostly rely on a formal or semiformal description of the managed system structure,
typically expressed in terms of components and bindings using an architecture de-
scription language (ADL). In Section 7.2, we present architecture-based management
frameworks based on nonreflective component models. In Section 7.3, we describe
architecture-based management frameworkbased on reflective component models.
Finally, Section 7.4 compares our work to frameworks encompassing a model@runtime
approach.

7.1. Legacy Management Framework

Most autonomic management approaches for legacy systems are based on ad hoc so-
lutions that are tied to a particular context. This reduces the reusability of the man-
agement services and policies; they need to be reimplemented each time a new legacy
system is introduced in the system. This trend is well illustrated in the context of

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

From Autonomic to Self-Self Behaviors: The JADE Experience 28:17

Internet services where many projects provide ad hoc solutions for self-healing or self-
optimization concerns.

For instance, Urgaonkar and Shenoy [2005], Appleby et al. [2001], and Norris
et al. [2004] have considered the management of a dynamically extensible set of
resources in the context of Internet services. Soundararajan et al. [2006] propose a
self-optimized dynamic provisioning algorithm that specifically targets a cluster of
databases. Pradhan et al. [2002] describe a solution to provide adaptation to changing
workloads specifically for Web servers. In the same way, the JAGR project [Candea
et al. 2003] provides a solution for self-recoverability in the context of Enterprise Java
Beans running into the JBoss application server.

Other systems like KX [Parekh et al. 2006] propose a solution that can be used to
manage different legacy systems by retrofitting autonomic computing onto such sys-
tems without modifying the legacy code. KX runs as a decentralized set of loosely
coupled components communicating via a publish/subscribe mechanism. These com-
ponents correspond to sensors (watching the system), gauges (aggregating the sensor
data), controllers (making decisions) and effectors (reconfiguring the system). Whereas
gauges and controllers are generic components that can be reused over a range of sys-
tems, sensors and effectors are, as in JADE, wrapper components tightly coupled to the
target system.

7.2. Framework Based on Nonreflective Component Models

Rainbow [Cheng et al. 2004; Dashofy et al. 2002], Darwin [Georgiadis et al. 2002]
and Willow [Rowanhill et al. 2004] are good representatives of frameworks based on
nonreflective component models.

Rainbow [Cheng et al. 2004] is an architecture-based management framework that
supports self-adaptation of software systems. It uses an abstract architectural model
to monitor the runtime properties of an executing system, evaluates the model for
constraint violations, and if a problem occurs, performs global adaptations of the
running system. One main objective of Rainbow is to favor the reusability of their
framework from one system to another by dividing the framework into a generic sys-
tem layer composed of probes and effectors and a specific architecture layer defining
the constraints, rules, and strategies for adaptation. A translation service is used to
manage the mapping between the system layer and the architecture layer, and vice
versa.

In contrast, we only consider one layer of management in JADE, which is composed
of reflective components representing the managed elements and providing, by reifi-
cation, an architectural model of the runtime system. Moreover, JADE is inherently
distributed, while the Rainbow framework is based on a centralized design. Finally,
Rainbow concentrates on the system adaptation in terms of autonomic policies and
event processing—it does not address software deployment and the self-self manage-
ment challenges. In particular, Rainbow neither detects nor repairs its own failures.
Furthermore Rainbow does not address its own protection against intrusions.

Dashofy et al. [2002] propose a framework for creating architecture-based auto-
nomic systems focused on event-based software architectures that are suited for man-
aged legacy systems that are loosely coupled (an element can be replaced without
impacting the other elements). The architecture of a managed system is represented
in xADL, an extensible XML-based ADL. Changes to software architectures, such as
an architectural repair, are represented as architectural differences, also expressed in
a subset of the xADL language. The framework is composed of a specific component,
called an architecture evolution manager, that can instantiate and update a running
system whenever its architectural description changes. This component is therefore

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

28:18 S. Bouchenak et al.

responsible for managing the mapping between the running system and its architec-
tural description. As in Cheng et al. [2004], this approach requires a mapping between
the architectural description and the running system, which is automatic with JADE.
Furthermore, the aspects related to the reliability of the components are presented as
future work; self-self-management has not been taken into account.

Darwin [Georgiadis et al. 2002] proposes a component model based on an explicit ar-
chitectural specification expressed in the alloy language [Jackson 1999]. Components
are associated with constraints that define their behavior according to the architec-
tural evolution of the global system. These constraints drive the autonomic behav-
ior of components, providing them with self-organizing properties and self-configuring
bindings. At runtime, each component contains an implementation, a manager, and
a configuration view. This view can be seen as a checkpoint of the current architec-
tural state of the global system. A component manager maintains the consistency of
its configuration view through the use of a group protocol, which tolerates the failure
of individual components. It also adjusts the component’s configuration in accordance
with the configuration view.

The component model proposed by Darwin more specifically targets self-organizing
systems that allow components to control their configuration in a decentralized man-
ner. This motivates the use of a globally replicated architectural view, that could be-
come an issue when the number of managed components becomes large. While the
self-organizing properties of this component model are interesting for obtaining auto-
nomic capabilities, it could not be directly used as a basis for a management framework
like JADE since it would imply providing a decentralized design of our autonomic man-
agers in order to embed a copy of them within each component. Supporting such a
design without involving a complex coordination between managers becomes a chal-
lenge since our autonomic managers often take global decisions concerning more than
one individual component.

Finally, Willow [Rowanhill et al. 2004] also addresses the management of dis-
tributed applications through an architecture-based approach. Willow provides self-
repairing and self-protection of very large-scale applications through a hierarchical
management approach. It uses a relevant communication mechanism providing a ded-
icated event dissemination. The focus is on combining hierarchical and widely distrib-
uted management rather than on providing self-self behaviors.

7.3. Reflective Component Framework

With reflective component models, managed systems are implemented as a collection
of interconnected components enhanced with a metalevel that provides introspection
and reconfiguration capabilities on the component structure. The metalevel directly
provides a causally connected representation of the component structure, mainly by
ensuring that any change performed on the component structure at the metalevel are
reported at the base level. Blair et al. [2004] consider the use of reflective middleware
to develop self-managing systems as a challenging research direction. Our work on
JADE falls in this category of systems projects such as OpenORB [Coulson et al. 2002],
Plastik [Batista et al. 2005], and FORMAware [Moreira et al. 2002].

OpenORB [Coulson et al. 2002] is a middleware platform built around a well-
founded reflective lightweight component model called OpenCOM. Like the fractal
reflective component model used in JADE, the OpenCOM runtime provides support
for a specializable and extensible metalevel model that provides introspection and
reconfiguration operations on components. By managing the adaptability of a dis-
tributed architecture at the level of the component model, the OpenORB platform
aims to provide built-in support for building highly flexible distributed architectures

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

From Autonomic to Self-Self Behaviors: The JADE Experience 28:19

that ensure reconfiguration integrity. As we argue in JADE, the authors of OpenORB
state that one needs a reflective component-based middleware to build an autonomic
management system on top of it. However, they do not further investigate the neces-
sary mechanisms and policies in such an autonomic system. In particular, they do not
address the challenges of self-self-management in OpenORB.

The reflective OpenORB platform is used in the Plastik infrastructure [Batista et al.
2005], which follows an architecture-based management approach relying on the rei-
fied architecture provided by OpenORB. Plastik focuses on constraints and general
invariants that can be associated to the specification of a component-based system
through the notion of architectural styles. Any component reconfiguration is accepted
as long as the invariants defined in its associated architectural style are not violated.
This approach, as well as those used in Cheng et al. [2002], conforms to a design pat-
tern proposed by Rakic et al. [2002], which exposes architectural style requirements
for building self-managed systems. Architectural styles could also be considered in
JADE by more advanced autonomic managers, working on semantically higher-level
reconfiguration operations.

The OpenORB platform is also used in the FORMAware project [Moreira et al.
2002]. FORMAware proposes extending architectural reflection for capturing domain-
specific semantics and using it for safely governing architecture adaptations. As in
Plastik, FORMAware uses the notion of architectural styles to impose explicit con-
straints for observing and managing the architecture. Their architectural styles define
a set of formally specified constraints over an architecture, as well as how to carry out
reconfigurations in terms of high-level architectural operators. A translation service
maps the high-level architecture operations into lower-level systems operations acting
on runtime components.

7.4. Models@runtime Approach

Models@runtime [Blair et al. 2009] is a new research trend that leverages model-
driven engineering techniques (MDE) at design time as well as at run time. Like re-
flective frameworks, models@runtime promotes a causally connected representation
of the underlying system. However such representation is based on the artifacts pro-
duced from the MDE process and the software engineering methodologies employed.
Models@runtime focuses on the structure, behavior, and goals of the system from a
problem space perspective while reflective approaches manipulate lower level abstrac-
tions that are related to the computation model.

Cheng et al. [2009] and Morin et al. [2009] are examples of models@runtime ap-
proaches. Cheng et al. [2009] is based on an architectural model to support the design
of component-based adaptive systems. The system’s adaptation logic is specified using
a state machine, where each state represents a particular configuration. Each transi-
tion describes, (1) when the system must switch from one configuration to another, and
(2) what reconfiguration script must be used to update the system. Cheng et al. [2009]
use this model to generate configuration files and ECA adaptation policies that can be
dynamically inserted at runtime.

Morin et al. [2009] follow a models@runtime approach for specifying and executing
dynamically adaptive software systems. This proposal aims at reducing the complex-
ity of such systems by using both model-driven and aspect-oriented techniques. Four
metamodels are used to explicit the system’s variability (using a feature diagram),
the environment, the adaptation logic, and the system architecture. Aspect-oriented
techniques are used to generate architectures by weaving aspects associated with fea-
tures, instead of describing all the possible configurations. Once these configurations
are verified, model-driven techniques are used to produce the reconfiguration scripts

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

28:20 S. Bouchenak et al.

that allow the system to switch from the current configuration to a target configuration
depending on the runtime context.

Since JADE is built as a reflective system, its metamodel and its reconfiguration
capabilities are based on the computational model incarnated by Fractal. It would be
interesting to study how JADE could be extended towards a models@runtime approach
in order to take into account design time aspects when reconfiguring a system.

While the models@runtime approach appears promising, it is still in its infancy,
with very few real use cases. It is difficult to evaluate the impact of the approach
on system performance. This is potentially the case when considering the overhead
of maintaining the necessary causal relationship between the model and the running
system in distributed systems with nodes and network failures.

8. CONCLUSION AND LESSONS LEARNED

During the five years of the JADE project, we have learned several important lessons
that we wished to share. Some, but not all, confirm our design and technical choices.
Also, we would like to share some insight on the impact of autonomic management on
the future of distributed systems, as well as sketch the main open issues as we see
them.

We feel that the cornerstone of our approach, the use of a reflective component
model, was essential in reaching full autonomic behavior. The importance of having
a model for the definition of a minimal set of management operations cannot be under-
stated. Components made wrapping easier and less error-prone and supported the con-
cept of an architecture-based approach. Additionally, a component-oriented approach
made our recursive design quite natural.

In our quest for reaching fully autonomic behaviors, it seems that not all managers
have equal requirements. Some autonomic behaviors seem to inherently require a self-
self approach, while others can perfectly fulfill their role with a simpler self approach.
For instance, we discussed in detail the challenge of autonomic repair and autonomic
protection in this article. These two autonomic behaviors must be replicated and must
self-apply. Anything less, and it is difficult to declare an autonomic property. However,
once protection and repair behavior are available, many other managers may rely on
being protected and repaired. Our performance managers, such as load balancers or
quality-of-service monitors, are typical examples of managers that do not require any
self-self behavior.

On a different topic, our failure assumptions were often questioned, as well as our
assumptions on the execution model for the legacy systems we can manage with JADE.
In all practical aspects, we feel that our fail-stop assumption was acceptable and al-
lowed us to focus on reaching autonomic behavior. It seems important however that
this work be extended to take into account Byzantine failures. We feel that many of the
existing solutions would apply in our context, but much more research work is needed.

Regarding our assumptions around a loose coupling of legacy systems, they have
been quite confirmed through our practical involvement with real systems. The key
point is that loose coupling is mandatory for allowing partial failures. The more cou-
pled are the legacy systems, the less likely some parts of the overall system will resist
any partial failure. In contrast, loose coupling provides the basis for resisting the
spreading of failures and thereby offers the opportunity for incremental repair. Fur-
thermore, we feel that trying to do autonomically what administrators do manually,
using the same administration capabilities, was very productive in focusing our work
on providing concrete and understandable autonomic behaviors.

As a corollary to loose coupling, our experience suggests that some distributed
systems still have to mature. We detailed some cases in this article. For instance,
the HTTP daemon’s inability to reread its configuration without any interruption of

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

From Autonomic to Self-Self Behaviors: The JADE Experience 28:21

service. This clearly illustrates that the design of subsystems has not yet integrated
the possible presence of autonomic behaviors. We are still very much in the era of
simple watchdogs, repairing standalone systems. We feel that core autonomic behav-
iors such as repair and protection need to find their way in replacing operating-level
services such as the InetDaemon.

A similar statement can be made about deployment. While deploying Java wrappers
and components was easy, the deployment of legacy systems is complex and extremely
platform-specific. The recent advance in virtualization technologies seems to suggest
that generic deployment solutions are foreseeable in the near future. This evolution
will certainly help the establishment of autonomic management solutions, as deploy-
ment underlies so many autonomic behaviors.

On a different line of thought, it is our experience that architecture-based auto-
nomic behaviors are inherently challenged by highly dynamic systems. In JADE, we
support the management of systems that we call admin-dynamic systems. These sys-
tems evolve dynamically, but for administration reasons (protection, maintenance, re-
pair, or even load balancing). This means that architectural changes are expressed
on the architecture and then applied onto the managed system. In contrast, much re-
search work is needed for the autonomic management of systems where architectural
changes come from the managed system itself. As an extreme example, peer-to-peer
systems are challenging not only because of their high churn rate in terms of nodes
but also in terms of the dynamicity of the bindings between these nodes.

Finally, scalability is challenging for autonomic behaviors. As the size of the man-
aged system grows, several facets of our design need to be reevaluated. It is clear that a
failure detector would need an adequate design for a large scale network. With larger
scale networks, network partitioning must be considered carefully. Similarly, a sin-
gle description of the architecture of the managed system does not scale. This would
suggest adapting our current approach to apply it at the granularity of single admin-
istration domains and to work out coordination among autonomic behaviors across
domains.

REFERENCES
AMZA, C., CECCHET, E., CHANDA, A., COX, A., ELNIKETY, S., GIL, R., MARGUERITE, J., RAJAMANI, K.,

AND ZWAENEPOEL, W. 2002. Specification and implementation of dynamic Web site benchmarks. In
Proceedings of the IEEE 5th Annual Workshop on Workload Characterization (WWC-5).

APACHE. HTTP Server Project. http://httpd.apache.org/.
APPLEBY, K., FAKHOURI, S., FONG, L., GOLDSZMIDT, G., AND KALANTAR, M. 2001. Oceano - SLA based

management of a computing utility. In Proceedings of the 7th IEEE International Symposium on Inte-
grated Network Management.

BATISTA, T., JOOLIA, A., AND COULSON, G. 2005. Managing dynamic reconfiguration in component-based
systems. In Proceedings of the European Workshop on Software Architecture.

BLAIR, G., BENCOMO, N., AND FRANCE, R. 2009. Models@Run.Time. Computer 42, 10, 22–27.
BLAIR, G. S., COULSON, G., AND GRACE, P. 2004. Research directions in reflective middleware: the Lan-

caster experience. In Proceedings of the 3rd Workshop on Adaptive and Reflective Middleware (ARM).
BRUNETON, E., COUPAYE, T., LECLERCQ, M., QUÉMA, V., AND STEFANI, J. 2006. The fractal component

model and its support in Java. Softw. Practice Exper. (Special Issue on Experiences with Auto-Adaptive
and Reconfigurable System) 36, 11–12, 1257–1284.

CANDEA, G., KICIMAN, E., ZHANG, S., KEYANI, P., AND FOX, A. 2003. JAGR: An autonomous self-
recovering application server. In Proceedings of the 5th International Workshop on Active Middleware
Services (AMS).

CECCHET, E., MARGUERITE, J., AND ZWAENEPOEL, W. 2004. C-JDBC: Flexible database clustering mid-
dleware. In Proceedings of the USENIX Annual Technology Conference, Freenix Track.

CHENG, B. H. C., SAWYER, P., BENCOMO, N., AND WHITTLE, J. 2009. A goal-based modeling approach
to develop requirements of an adaptive system with environmental uncertainty. In Proceedings of the
International Conference on Model Driven Engineering Languages and Systems (MoDELS). 468–483.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

28:22 S. Bouchenak et al.

CHENG, S., GARLAN, D., SCHMERL, B., SOUSA, J., SPITZNAGEL, B., AND STEENKISTE, P. 2002. Using
architectural style as a basis for self-repair. In Proceedings of the 3rd Working IEEE/IFIP Conference
on Software Architecture.

CHENG, S. W., HUANG, A. C., GARLAN, D., SCHMERL, B., AND STEENKISTE, P. 2004. Rainbow:
Architecture-based self adaptation with reusable infrastructure. IEEE Computer 37, 10, 46–54.

COULSON, G., BLAIR, G. S., CLARKE, M., AND PARLAVANTZAS, N. 2002. The design of a configurable and
reconfigurable middleware platform. Distrib. Comput. 15, 2.

DASHOFY, E., VAN DER HOEK, A., AND TAYLOR, R. 2002. Towards architecture-based self-healing systems.
In Proceedings of the 1st ACM Workshop on Self-Healing Systems.

GEORGIADIS, I., MAGEE, J., AND KRAMER, J. 2002. Self-organizing software architectures for distributed
systems. In Proceedings of the 1st Workshop on Self-Healing Systems.

GRAY, J. 1986. Why do computers stop and what can be done about it? In Proceedings of the Symposium on
Reliability in Distributed Software and Database Systems.

GRAY, J. 1990. A census of tandem system availability between 1985 and 1990. Tech. rep., Tandem
Computers.

GUERRAOUI, R. AND SCHIPER, A. 1996. Fault-tolerance by replication in distributed systems. In Proceed-
ings of the International Conference on Reliable Software Technologies. Springer Verlag.

JACKSON, D. 1999. Alloy: A lightweight object modelling notation. MIT Lab for Computer Science.
KALYANAKRISHNAM, M., KALBARCZYK, Z., AND IYER, R. 1999. Failure data analysis of a LAN of Windows

NT based computers. In Proceedings of the 18th IEEE Symposium on Reliable Distributed Systems.
KEPHART, J. AND CHESS, D. 2003. The vision of autonomic computing. IEEE Computer 36, 1.
MOREIRA, R., BLAIR, G., AND CARRAPATOSO, E. 2002. FORMAware: Framework of reflective components

for managing architecture adaptation. In Proceedings of the 3rd International Workshop on Software
Engineering and Middleware.

MORIN, B., BARAIS, O., NAIN, G., AND JEZEQUEL, J.-M. 2009. Taming dynamically adaptive systems using
models and aspects. In Proceedings of the IEEE 31st International Conference on Software Engineering
(ICSE). IEEE Computer Society, Los Alamitos, CA, 122–132.

NETFILTER. Firewalling, NAT, and packet mangling under Linux. http://www.nefilter.org.
NORRIS, J., COLEMAN, K., FOX, A., AND CANDEA, G. 2004. OnCall: Defeating spikes with a free-market

application cluster. In Proceedings of the 1st International Conference on Autonomic Computing (ICAC).
OPPENHEIMER, D., GANAPATHI, A., AND PATTERSON, D. 2003. Why do Internet services fail, and what can

be done about it? In Proceedings of the 4th USENIX Symposium on Internet Technologies and Systems.
PAREKH, J. J., KAISER, G. E., GROSS, P., AND VALETTO, G. 2006. Retrofitting autonomic capabilities onto

legacy systems. Cluster Comput. 9, 2, 141–159.
PRADHAN, P., TEWARI, R., SAHU, S., CHANDRA, A., AND SHENOY, P. 2002. An observation-based approach

towards self-managing Web servers. In Proceedings of the 10th IEEE International Workshop on Quality
of Service.

RAKIC, M., MEHTA, N., AND MEDVIDOVIC, N. 2002. Architectural style requirements for self-healing sys-
tems. In Proceedings of the 1st Workshop on Self-Healing Systems.

ROWANHILL, J. C. , VARNER, P. E., AND KNIGHT, J. C. 2004. Efficient hierarchic management for recon-
figuration of networked information systems. In Proceedings of the Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN).

SICARD, S., BOYER, F., AND DE PALMA, N. 2008. Using components for architecture-based management:
The self-repair case. In Proceedings of the 30th International Conference on Software Engineering.

SOUNDARARAJAN, G., AMZA, C., AND GOEL, A. 2006. Database replication policies for dynamic content
applications. In Proceedings of the 1st EuroSys Conference.

URGAONKAR, B. AND SHENOY, P. J. 2005. Cataclysm: Policing extreme overloads in Internet applications.
In Proceedings of the 14th International Conference on World Wide Web (WWW).

Received March 2009; revised September 2009, February 2010; accepted July 2010

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 4, Article 28, Publication date: October 2011.

