
Future Generation Computer Systems 54 (2016) 233–246
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

SLA guarantees for cloud services
Damián Serrano a, Sara Bouchenak a, Yousri Kouki b, Frederico Alvares de Oliveira Jr. b,
Thomas Ledoux b, Jonathan Lejeune c, Julien Sopena c, Luciana Arantes c, Pierre Sens c,∗

a University of Grenoble, France
b EMN – INRIA – LINA, Nantes, France
c Sorbonne Universités, UPMC, CNRS, Inria, Paris, France

h i g h l i g h t s

• We provide a domain specific language that allows to describe SLA in cloud services.
• We present a general control-theoretic approach for managing cloud service SLA.
• We apply our approach on MapReduce, locking, and e-commerce services.

a r t i c l e i n f o

Article history:
Received 30 September 2014
Received in revised form
20 March 2015
Accepted 23 March 2015
Available online 17 April 2015

Keywords:
SLA
QoS
Cloud Computing
Specific language
Online control

a b s t r a c t

Quality-of-service and SLA guarantees are among the major challenges of cloud-based services. In this
paper we first present a new cloudmodel called SLAaaS — SLA aware Service. SLAaaS considers QoS levels
and SLA as first class citizens of cloud-based services. Thismodel is orthogonal to other SaaS, PaaS, and IaaS
cloudmodels, andmay apply to any of them.More specificallywemake three contributions: (i)weprovide
a novel domain specific language that allows to describe QoS-oriented SLA associatedwith cloud services;
(ii) we present a general control-theoretic approach for managing cloud service SLA; (iii) we apply the
proposed language and control approach to guarantee SLA in various case studies, ranging from cloud-
based MapReduce service, to locking service, and higher-level e-commerce service; these case studies
successfully illustrate SLAmanagement with different QoS aspects of cloud services such as performance,
dependability, financial energetic costs.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Cloud Computing is nowadays a widely extended computation
paradigm. It enables remote and on demand access to configurable
computing resources providing hardware and software services in
a way that it minimizes the human efforts needed by customers
as well as providers to configure, use and maintain the services. A
cloud service follows a pay-as-you-go approach, that means that
customers are charged only for the time they use the service.
Regarding the kind of services that are provided, a cloud may have
the form of infrastructure services (IaaS), platform services (PaaS)

∗ Corresponding author.
E-mail addresses: Damian.Serran@imag.fr (D. Serrano),

Sara.Bouchenak@imag.fr (S. Bouchenak), Yousri.Kouki@mines-nantes.fr (Y. Kouki),
FredericoAlvares.deOliveiraJr@mines-nantes.fr (F.A. de Oliveira Jr.),
Thomas.Ledoux@mines-nantes.fr (T. Ledoux), Jonathan.Lejeune@lip6.fr
(J. Lejeune), Julien.Sopena@lip6.fr (J. Sopena), Luciana.Arantes@lip6.fr (L. Arantes),
Pierre.Sens@lip6.fr (P. Sens).

http://dx.doi.org/10.1016/j.future.2015.03.018
0167-739X/© 2015 Elsevier B.V. All rights reserved.
and software services (SaaS). However, there is a lack of a solid
foundation for quality of service in the clouds.

For instance, let us consider Dropbox, a widely-used cloud
storage service where users can store files and get them from
anywhere. In August 2012, users have frequently experienced un-
availability of files and long synchronization delays between local
files and data in some clouds. Such a bad performance has strongly
affected the service reputation. Another example is the Amazon
web service outage in April 2011 [1] which rendered inaccessi-
ble other services built on top of it, such as reddit, HootSuite or
FourSquare. This last example also illustrates the strong relation-
ship between the guaranties of the different layers of a cloud ar-
chitecture: a lack of services at the IaaS level induces violations of
the quality of service constraints at the SaaS level.

Formally, the definition of Quality of Service (QoS) is the ability
of a service to meet certain requirements for different aspects
of the service like performance, availability, reliability, or cost.
In order to evaluate QoS in a qualitative and quantitative way,
several metrics are considered like rejection rate, mean time

http://dx.doi.org/10.1016/j.future.2015.03.018
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.03.018&domain=pdf
mailto:Damian.Serran@imag.fr
mailto:Sara.Bouchenak@imag.fr
mailto:Yousri.Kouki@mines-nantes.fr
mailto:FredericoAlvares.deOliveiraJr@mines-nantes.fr
mailto:Thomas.Ledoux@mines-nantes.fr
mailto:Jonathan.Lejeune@lip6.fr
mailto:Julien.Sopena@lip6.fr
mailto:Luciana.Arantes@lip6.fr
mailto:Pierre.Sens@lip6.fr
http://dx.doi.org/10.1016/j.future.2015.03.018

234 D. Serrano et al. / Future Generation Computer Systems 54 (2016) 233–246
between failures, response time, throughput, financial cost, or
energy consumption. Then, service providers and customers have
to negotiate a Service Level Agreement (SLA) that allows them to
formally specify the QoS and agree on the requirements.

Any SLAmainly describes two things: the different Service Level
Objectives (SLO) in terms of values for Quality of Service metrics
and the penalties to be applied if the objectives have not been
accomplished.

Existing public clouds providers offer very few guarantees in
terms of performance and dependability [2]. This is the case of
Amazon, Rackspace, or Microsoft for instance. Usually, they only
commit to guarantee availability under the presence of hardware
failures. For instance, we can get in Amazon’s site the information
that their service will be available 99.95% of time. However, other
aspects like service response time, service network bandwidth, or
even energy consumption are left to a best-effort’ policy.
Contributions. We argue that the quality of service offered by
cloud service providers and the respective SLA that they can
commit are a differential key element among them. However, such
a commitment raises the following challenges: (i) How to consider
SLA in a general way for different cloud environments? (ii) How
to describe the SLA terms between a cloud provider and a cloud
customer, such as service levels objectives, or penalties in case of
SLA violations? (iii) How to provide guarantees on cloud Quality of
Service to produce better than best-effort behavior for clouds?

To address the above challenges, we propose a newmethod for
providing SLA with quality of service in clouds. It is composed of
the following components:
• a novel cloud model, SLAaaS (SLA-aware Service) which enables

systematic and transparent integration of service levels and SLA
into a cloud;

• a new language, called CSLA, to formally describe cloud-
oriented Service level agreements;

• the definition of utility functionsmerging different Service Level
Objectives (SLO);

• online controlling algorithms to monitor and ensure the SLOs.

In order to illustrate the soundness and advantages of the pro-
posed method, some SLA case studies (e.g. book store application,
MapReduce service, locking service) at PaaS or SaaS levels are pre-
sented in the paper. A preliminary version of them can be found
in [3]. Then, we propose in this paper a new scenario for energy
shortage composed of SLAs at multi-levels which combines SLAs
at both SaaS and IaaS layers.

The paper is organized as follows. Section 2 introduces some
background and our general methodology. CSLA language is
described in Section 3. Sections 4 and 5 detail our case studies.
Section 6 describes our multi-SLA scenario. Section 7 reviews the
related work, and Section 8 concludes the paper.

2. Design principles

A cloud provides a set of services where each of them exposes
a functional interface with possible operations to be called in
the context of the cloud. For instance, an IaaS cloud such as
Amazon EC2 provides a functional interface that allows users to
acquire compute instances, to run software on these instances,
or to release instances while Amazon RDS PaaS cloud provides a
relational database service that makes it easy to set up, operate,
and scale a relational database. A third example is Google Apps
SaaS cloud which provides a set of services with functional
interfaces, such asGoogleDrive, that allows users to create, update,
and share documents.

In addition to the above functional aspects of cloud services,
there are also non-functional aspects related to the Quality of
Service (QoS), such as performance, availability, reliability, and cost.
For each QoS aspect, multiple QoS metrics may be considered.
Some examples of such metrics are:
Fig. 1. SLAaaS cloud model.

• performance metrics: response time, which is the necessary time
for a user request to get served, or throughput that reflects cloud
service scalability, etc.

• availability metrics: abandon rate, which is the ratio of accepted
service requests to the total number of requests, or use rate
which is the ratio of time a cloud service is used to the total
time.

• reliability metrics: mean time between failures which is the
predicted elapsed time between inherent failures of the service,
ormean time to recover which is the average time that a service
takes to recover from a failure.

• cost metrics are the energetic cost that reflects the energy
footprint of a service, or the financial cost of using a cloud
service.

A QoS metric is, thus, a mean to quantify the service level
with regard to a QoS aspect since the customer may require a
service level to get a given objective, i.e., the Service Level Objective
(SLO). For instance, a SLO can define a QoS metric with a value
higher/lower than a given threshold, maximize/minimize some
QoS metrics, etc. Therefore, a Service Level Agreement (SLA) is a set
of SLOs that should be satisfied and negotiated between the cloud
service provider and the customer.

2.1. SLAaaS model

In order to allow the definition of non-functional interfaces
which expose the SLA associatedwith cloud functional services,we
have introduced a new cloud model denoted SLA-aware-Service
(SLAaaS). Fig. 1 shows the SLAaaS model at three cloud levels:
an IaaS cloud, a PaaS cloud and an example of a SaaS cloud that
represents here a business intelligence system. We can observe
in the figure four levels: an end-user is a client of the SaaS cloud,
which is itself a client of the PaaS cloud, which is itself a client of
the IaaS cloud.

Notice that the traditional functional interface of a cloud ex-
poses operations that allow a cloud customer to get new resources
from the cloud, access/use resources in the cloud or release re-
sources that he/she does not use anymore while SLAaaS allows
the cloud to expose SLA non-functional interfaces. Furthermore,
SLAaaS aims to provide SLA-oriented cloud reconfiguration and
SLA governance. In this article, we focus on the former.

By using SLAaaS, the user firstly selects theQoS aspects inwhich
he/she is interested (e.g. performance, cost), as well as the QoS
metrics for these aspects (e.g. service response time, financial cost).
The user can then choose the SLOs he/she wants to apply on the
QoS metrics. For instance, the SLO for the response time and for

D. Serrano et al. / Future Generation Computer Systems 54 (2016) 233–246 235
Fig. 2. Examples of SLAs at different cloud levels.

Fig. 3. Cloud autonomic reconfiguration.

the financial costmay be defined in order to respectively guarantee
that the response timenever exceeds a given threshold and the cost
is minimized. Then, the SLA is defined as the combination of SLOs.
Furthermore, the SLA between a cloud service and the customer
may include additional information, such as the agreed confidence
level (e.g. SLOs are guaranteed with a confidence of 95%), or the
penalties applied in case of SLA violation. Fig. 2 presents three
examples of SLAs that applied at three different cloud levels:
between the end-user and the SaaS, between the SaaS and the PaaS,
and between the PaaS and the IaaS.

2.2. Methodology overview

The SLAaaS model enriches the general paradigm of Cloud
Computing, and enables systematic and transparent integration of
service levels and SLA into the cloud. SLAaaS is orthogonal to IaaS,
PaaS, and SaaS clouds and may apply to any of them. Furthermore,
a specific language is introduced to describe QoS-oriented SLA
associated with cloud services, the CSLA (C loud Service Level
Agreement) language. CSLA is described in Section 3.

A control-theoretic approach is then described to provide
performance, dependability and cost guarantees for online cloud
services, with time-varying workloads. The online control of cloud
services is based on a general feedback control loop as described
in Fig. 3. To manage cloud SLA in a principled way, we follow a
control-theoretic approach to design fully autonomic SLA-oriented
cloud services. The general approach consists in three main steps.

First, a utility/objective function is defined to precisely describe
the set of SLOs as specified in the cloud SLA, the weights assigned
to these SLOs if any, and the possible trade-offs and priorities
between the SLOs. The cloud service configuration (i.e., how many
resources, what is their combination) with the highest utility is the
best regarding SLA guarantees.

Then, control theory techniques are applied to model cloud
service behavior, and propose control laws and algorithms for
fully autonomic SLA-oriented cloud services. The challenges for
modeling cloud services are to build accurate models that are
able to capture the non-linear behavior of cloud services, and
that are able to self-calibrate to render the variations of service
workloads. The challenges for controlling cloud services are to
propose accurate and efficient algorithms and control laws that
calculate the best service configuration, and rapidly react to
changes in cloud service usage.

3. CSLA language

CSLA, the Cloud Service Level Agreement language, allows
to define SLA in any language for any cloud service (XaaS).
CSLA addresses intrinsically the dynamic nature of the Cloud
(e.g. elasticity) and its cost model. A preliminary version of CSLA
has been introduced in our previous work [4]. This new version
is more stable, addresses more features and is based on the Open
Cloud Computing Interface (OCCI) [5] and the Cloud Computing
Reference Architecture of the National Institute of Standards and
Technology (NIST) [6].

3.1. Motivation and overview

Elasticity is the intrinsic element that differentiates Cloud com-
puting from traditional computing paradigms, since it allows
service providers to rapidly adjust resources to absorb the de-
mand and hence guarantee a minimum level of Quality of Service
(QoS) that respects the Service Level Agreements (SLAs) previously
defined with their clients. However, due to technical and concep-
tual limitations (e.g., non-negligible resource initiation time, un-
predictable workload), it becomes hard for service providers to
guarantee QoS levels and SLA violations may occur. A Cloud SLA
has to be suitable for heterogeneous, volatile resources in a highly
unpredictable and dynamic environment. Existing SLA languages
such as WSLA [7] and WS-Agreement [8] do not support the dy-
namic nature of the Cloud.

We propose CSLA (Cloud Service Level Agreement), a SLA lan-
guage to finely express SLA contracts and to address SLA viola-
tions in the context of Cloud services. Besides the standard formal
definition of contracts – comprising validity, parties, services def-
inition and guarantees – CSLA is enriched with new properties
(QoS/functionality degradation and an advanced penalty model)
introducing a fine language support for Cloud elasticity manage-
ment. Indeed, CSLA allows the expression of sophisticated Service
Level Objectives (SLOs) with new features such as confidence and
fuzziness to deal with QoS uncertainty: (i) the fuzziness defines the
acceptable margin degree around the threshold of an expression;
(ii) the confidence defines the percentage of compliance of clauses.
Besides, the functionality degradation allows Cloud services to
operate in different modes (e.g., 2D vs. 3D display, a degree of se-
curity levels), each one consuming more or less resources, conse-
quently this property allows service providers more flexibility to
raise additional resources. Finally, an advanced penalty model re-
lated to degradation is proposed. This model aligns penalties with
functionality/QoS degradation in order to provide a good trade-off
between price and quality which is both attractive for final clients
and profitable for Cloud service providers.

Our goal is to make contracts more flexible and consequently
increase Cloud services self-adaptation capability and elasticity
possibilities. CSLA allows service providers to maintain its
consumers satisfaction while minimizing the service costs due to
resources fees.

236 D. Serrano et al. / Future Generation Computer Systems 54 (2016) 233–246
Fig. 4. SLO evaluation in CSLA.

3.2. How to evaluate service level objectives (SLO) in CSLA?

ASLO is a predicatewhich has usually one of the following form:
a QoS metric (e.g., response time) with a value higher/lower than
a given threshold (e.g., 3 ms). In CSLA, we enrich the SLO defini-
tion with the fuzziness and the confidence features (see 3.4 for
examples). In order to evaluate an objective (SLO), an initial eval-
uation enables to classify the predicate as ideal (i.e., threshold is
respected), degraded (i.e., threshold is respected using fuzziness
margin) or inadequate (i.e., threshold is not respected even with
fuzziness margin) (cf. Fig. 4). We distinguish two types of evalu-
ation: (i) per-interval evaluation, in which the evaluation is per-
formed at the end of each interval (e.g. time window of 30 min);
(ii) per-request evaluation, in which the objective is evaluated for
each request. At the end of the time window, a final evaluation al-
lows one to verify an objective (SLO) by applying the fuzziness and
confidence percentages to the initial evaluation. Moreover, the fi-
nal evaluation enables the identification of non-accepted/accepted
degradation and inadequate cases. In other words, the final evalu-
ation absorbs or notifies the violations.

3.3. CSLA meta-model

A SLA in the CSLA language contains three sections: a section
describing the validity, a section defining the parties involved and
the section referencing the template used to create the agreement
(cf. Fig. 5). TheValiditydefines how long an agreement is valid. CSLA
distinguishes two types of Parties: Signatoryparties, namely service
provider and service customer, and Supporting parties (e.g., trusted
third party).

A CSLA Template is like a pattern for SLA. It contains five ele-
ments: cloud services definition, Parameters, Guarantees, Billing
and Terminations.

• A cloud service definition refers any XaaS service (SaaS, PaaS or
IaaS). We use OCCI standard for IaaS services definition.

• Parameters provide a way to define variables in the context
of the agreement which should be used in others sections.
Variables refer to a distinct element such as Metric, Monitoring
and Schedule (see 3.4).

• Guarantees contain four elements: Scope, Requirements, Terms
and Penalties. The scope specifies which services in the
agreement are covered by the guarantee. The requirements
define the specifications that must be fulfilled for operating
the scope services (e.g., Flash Player v10.1 or above). The
terms aggregate guarantees term with and or or operators. A
guarantee term contains one or more Objectives (SLO). Each
objective defines an expression that must be met according
to a precondition. An expression formulates a predicate. It is
characterized by a Metric, a Comparator and a Threshold. We
define a Priority for each objective to take into account the
Fig. 5. CSLA meta model.

customer QoS preferences. The metric is evaluated according
to predefinedMonitoring in specific period (Schedule). Penalties
compensate the consumer for accepting QoS or functionality
degradation and tolerating the SLA violation. The compensation
can be applied either as a constant or variable rate (see 3.4).

• CSLA supports two types of billing: Pay as You Go (i.e., price per
request on the cloud service) and All-in package (i.e., fixed price
per period).

• Finally, the agreement continues in force in accordancewith the
section Validity or in accordance with the Terminations section
which can describe a specific cancellation clause.

3.4. CSLA example

The CSLA syntax is defined according to the grammar generated
from the CSLA meta-model. In this paper, we use XML as a
representation format. The following XML presents an example of
a CSLA file describing the guarantee Terms and Penalties for SLA
between a SaaS provider and its customer concerning the service
S1 (for more details see Section 6).

In this example, two SLOs are composed using the ‘‘and’’
operator: a performance SLO – contractualizing the QoS of the
response time – and a mode SLO—contractualizing the use of
the functionality degradation. The performance SLO (lines 6–11)
specifies that for each interval of 3 min in window of 30 min
(expressed in the variableMon-1, not detailed here), themaximum
request response time (Rt) must be below 3 s if the data size is less
than 1 TB. This objective should be achieved every day between
8 a.m. and 10 a.m. (expressed in the variable Sch-Morning, not
detailed here) during the validity of the contract. It guarantees that,
on at least 99% of requests for the service S1 (Confidence) among
which 10% can be degraded (Fuzziness), i.e., a margin of 0.2 s is
acceptable as a QoS degradation. Lines 12–14 specify the mode
SLO. The functionality degradation mode must be used in 10% of
requests for the service S1. It is noticeable that the functionality
degradation is managed like any other SLOs since it defines an
objective of usage.

The second part presents the penalties (lines 16–31). They are
applied in case of SLA violations to compensate cloud service
customers, i.e., penalties reduce the service price. The reduction
can be applied either as a constant or variable rate. In the latter
case, the request price is modeled as linear function [9]. A violation
of the mode SLO (lines 25–30) implies a penalty equal to 0.1
euro/request whereas the penalty of the performance SLO (lines

D. Serrano et al. / Future Generation Computer Systems 54 (2016) 233–246 237
17–24) depends on delay. In the request, price is modeled as: P =

α −β · dt; where α is the price with no violations (α > 0), β is the
penalty rate (β > 0) and dt is the absolute difference between the
actual value and the SLO threshold. For each penalty, a procedure
indicates the actor in charge of the violation notification (e.g.,
provider), the notificationmethod (e.g., email) and the notification
period (e.g., 7 days).
1 <csla:terms>
2 <csla:term id="T1" operator="and">
3 <csla:item id="responseTimeTerm"/>
4 <csla:item id="modeTerm"/>
5 </csla:term>
6 <csla:objective id="performanceSLO" priority="1" actor="provider">
7 <csla:precondition policy="Required">
8 <csla:description> Data size less than 1 TB</csla:description>
9 </csla:precondition>

10 <csla:expression metric="Rt" comparator="lt" threshold="3"
11 unit="second" monitoring="Mon−1" schedule="Sch−Morning"
12 Confidence="99" fuzziness−value="0.2" fuzziness−percentage="10"/>
13 </csla:objective>
14 <csla:objective id="modeSLO" priority="2" actor="provider">
15 <csla:expression metric="Mu(S1−M2)" comparator="lt" threshold="10"

unit="\%" monitoring="Mon−1" Confidence="99"
16 fuzziness−value="2" fuzziness−percentage="5"/>
17 </csla:objective>
18 </csla:terms>
19 <csla:penalties>
20 <csla:Penalty id="p−Rt" objective="responseTimeTerm" condition="violation"

obligation="provider">
21 <csla:Function ratio="0.5" variable="delais" unit="second">
22 <csla:Description> ... </csla:Description>
23 </csla:Function>
24 <csla:Procedure actor="provider" notificationMethod="e−mail"

notificationPeriod="7 days">
25 <csla:violationDescription/>
26 </csla:Procedure>
27 </csla:Penalty>
28 <csla:Penalty id="p−Mu" objective="modeTerm" condition="violation" obligation

="provider">
29 <csla:Constant value="0.1" unit="euro/request"/>
30 <csla:Procedure actor="provider" notificationMethod="e−mail"

notificationPeriod="7 days">
31 <csla:violationDescription/>
32 </csla:Procedure>
33 </csla:Penalty>
34 </csla:penalties>

4. SLA for a SaaS service: bookstore application

To illustrate the design principles, we describe in the following
how we applied the proposed SLAaaS model to the TPC-W [10]
online bookstore Software-as-a-Service.

4.1. SLA actors

TPC-W [10] is a well-known benchmark that emulates a book-
storewhich can be offered as SaaS. TPC-W is organized in two tiers,
namely the front-endweb tier and the back-enddatabase tier; each
tier may have one or more servers. Multi-tier architectures are in-
tended to improve scalability, since the larger the set of servers
in each tier is, the better the performance and availability. How-
ever, the number of servers involved in a cloud service determines
its cost. There is a trade-off between performance, availability and
cost, which is not straightforward to handle.

This kind of trade-offs can be easily controlled with a SLAaaS
service. Table 1 presents an example of SLA for such a service.
Here, the SLA is established between the SaaS bookstore provider
and any of its customers. The table shows three SLOs: response
time that should not exceed 500 ms with 150 ms of fuzziness,
availability with at least 95% of requests have to be successfully
processed, and cost, i.e., number of servers, that should be kept at
a minimum given that performance and availability objectives are
guaranteed.
Table 1
SLA for multi-tier bookstore SaaS in CSLA language.

Service Metric Oper. Value
(ms)

Fuzz.
(ms)

Conf.
(%) ($)

Multi-tier Response time ≤ 500 150 100
Bookstore Availability ≥ 95 0 100

Cost (#nodes) min – – –

4.2. Objective function

The first step to build our SLA-aware service is to translate the
desired SLA into an objective function (recall Section 2.2). To do
that, we first draw a function to capture that performance and
availability objectives (PAO) are guaranteed at a given time.

PAO(t) = PO(t) · AO(t) (1)

PO(t) =


1 if ℓ(t) ≤ ℓmax + f ∆

perf
0 otherwise

(2)

AO(t) =


1 if α(t) ≥ αmin
0 otherwise (3)

where ℓ(t) is the average response time at time t , ℓmax is
the maximum response time defined in the SLA, f ∆

perf is the
fuzziness value described in the SLA, α(t) the availability (ratio
of successfully processed requests) at time t , and αmin is the
minimum availability defined in the SLA. Thus, PAO(t) = 0 means
objectives are not met at time t , and PAO(t) = 1 when they are.

We have to relate now the third objective with the other
two. The third objective is to minimize the cost of the service,
which, in a cloud context, is directly related with the usage of the
cloud infrastructure. For simplification purposes, we consider only
homogeneous nodes/virtual machines. Other cost parameters like
network usage or storage could be added similarly. We can, thus,
draw the following objective function:

θ(t) =
T · PAO(t)

ω(t)
(4)

where ω(t) gives us the number of nodes at time t hosting both
tiers of the SaaS, T being the number of tiers (T = 2 in this use case)
which is used for normalization purposes. Note that ∀t, θ(t) ∈

[0, 1], since ω(t) ≥ T , that is, we consider a minimum of one node
in each tier at any moment, and, as said, PAO(t) ∈ {0, 1}.

Eq. (4) constitutes the objective function that integrates the
requirements described in the SLA. This objective function will be
maximized by the control algorithm.

4.3. Control algorithm

The environment where an SaaS is used is not static. Different
amounts of customers can access the service at differentmoments,
competing for computing resources. Finding the configuration
of the service that provides the highest utility in a constantly
changing cloud environment constitutes the main challenge when
building an SLAaaS. That configuration is maintained and adapted
by the control algorithm.

To control our SaaS, first we need to model its behavior and
then to find the configuration of the service that uses the model
to maximize the utility function.

The considered SaaS service follows a multi-tier architecture.
More specifically, there is a queue of received requests waiting to
be executed in the first tier and the execution of the requests in
the first tier generates more requests that are placed in a queue
for the second tier. This execution behavior accommodates to a
queuing network approach where the execution queue of each
tier is modeled as a M/M/c/K queue [11,12]. M/M/c/K means that

238 D. Serrano et al. / Future Generation Computer Systems 54 (2016) 233–246
(a) Service performance. (b) Service availability.

(c) Online control of cloud instances. (d) Online control of MPL.

Fig. 6. SLAaaS multi-tier bookstore service.
request arrival time is independent of other requests (first M),
execution time is independent of other requests (second M), c is
the number of servers (called ω(t) in the utility function), and K is
the number of requests accepted for execution (MPL). Both c and
K correspond to the configuration of the service. Besides c and K ,
each tier queue needs the average response time and the average
arrival time to estimate the execution time. The estimate for the
availability is calculated as the ratio of received requests in each
tier and the MPL.

In the M/M/c/K model, the parameters c and K can be varied
to find the configuration that maximizes the utility function (Eq.
(4)). This is the task of the capacity planning algorithm. For that,
the capacity planning algorithm uses the M/M/c/K network with
the monitored values for average response time and average
arrival time and implements a dichotomic search on the other two
parameters (c and K). The search has maximum values fixed for
each parameter. Once the search finds the values of c and K with
the highest utility, if they differ from the current configuration,
actuators are triggered to add or remove server nodes and to
modify the MPL.

We assume that between two consecutive executions of the ca-
pacity planning algorithm the service is able to stabilize, specially
new resources are warming up. This assumption is suitable as the
stabilization time is short compared to the duration of the exper-
iment, as will be shown in graphs in Fig. 6. [13] describes a model
and capacity planning algorithm deeper in detail for a multi-tier
service. Themost interesting particularity is that the capacity plan-
ning algorithm is able to configure the service at once for a given
SLA, without the need to follow a step-by-step approach. More
complex capacity planning algorithms could be implemented, for
instance to cope with the added resources while they are not yet
stabilized. However, that is out of the scope of the paper.

The suitability of a queuing system for online services has been
already studied in [13]. Finding other models for the same service
dealing with other situations is out of the scope of this paper.
More enrichedmodels could be proposed instead of using queuing
theory, they might take into account the impact of VMmigrations,
for instance.

4.4. Experimental results

We have implemented our control algorithm in an existent
implementation of the benchmark [10]. The results of our
experiments can be found in Fig. 6. These experiments consider the
SLA depicted in Table 1.

To emulate dynamicity in the usage of the cloud service, we
have varied the number of clients during the execution of the
experiment, starting at 50, then sharply increased until 500 and
finally coming back to 50 again. Clients submit read-only requests
belonging to the browsing-mix, which is a workload provided in
the specification of TPC-W and integrated in the implementation
we used.

To cope with the execution of the capacity planning algorithm,
the parameters needed by the model are monitored every
5 s. These parameters include the request arrival rate and the
average request response time. The capacity planning algorithm
is executed every minute and uses the history of the monitor
data collected in the 2 previous minutes. Maximum values for the
number of nodes andMPL are fixed to 25 and 900 respectively. Row
G5K I in Table 2 describes the hardware configuration. As initial
configuration, each tier is composed of only one server, plus one
extra server that runs the capacity planned separately.

Figs. 6(a) and (b) show the values overtime for the performance
and availability objectives defined in the SLA, as well as the
monitored number of concurrent clients accessing the service.
Below, Figs. 6(c) and (d) show the controlled configuration, the
number of nodes and the maximum number of requests executed

D. Serrano et al. / Future Generation Computer Systems 54 (2016) 233–246 239
Table 2
Hardware configurations.

Cluster CPU Memory Storage Network

Amazon EC2 Large instances, 4 EC2 Compute Units in 2 virtual cores 7.5 GB 850 MB 10 Gbit Ethernet
G5K I 4-core 2-CPU 2.5 GHz Intel Xeon E5420 QC 8 GB 136 GB SATA 1 Gbit Ethernet
G5K II 4-core 1-CPU 2.53 GHz Intel Xeon X3440 16 GB 278 GB SATA II Infiniband 20G
Table 3
SLA for MapReduce PaaS in CSLA language.

Service Metric Oper. Value (s) Fuzz. (s) Conf. (%)

MapReduce Response time ≤ 90 5 100
Cost min – – –

concurrently (MPL), respectively. Results shown in the graphs
correspond to measurements after 15 min of warmup with 50
clients.

At the beginning, each tier is composed of only one server, offer-
ing satisfying values for performance and availability regarding the
considered SLA. Then, our SLAaaS bookstore reacts adding 2 new
servers to the database tier (Fig. 6(c)) and setting new values for
the MPL (Fig. 6(d)) to cope with the sharp increment on the num-
ber of concurrent clients at minute 12. That decision avoids the vi-
olation of the response time SLO (Fig. 6(a)), which althoughwe can
see that the response time is higher than the maximum value of
the response time SLO, that values fall into the acceptable margins
due to the fuzziness property of CSLA. Moreover, we can see that
impact on availability is almost unnoticeable (Fig. 6(b)).

5. SLA for PaaS services

As stated earlier in Section 2.1, our SLAaaSmodel can be applied
to any service in the three XaaS layers.We successfully applied it to
an SaaS service in the previous section. We illustrate here how to
use our proposed approach to build SLAaaS services at the platform
layer (PaaS).

The experiments presented in this section were conducted a
private cloud, Grid’5000 [14], and a public cloud, Amazon EC2.
Table 2 shows the hardware configurations.

5.1. Map-Reduce service

The first PaaS service built using our SLAaaS model is a Map-
Reduce service. Following directions in Section 2.2 we describe
how to build this service and we validate it experimentally af-
terwards. Some previous works [15,16] have taken similar ap-
proaches, however, they do not provide a MapReduce framework
that guarantees a SLA regarding the intrinsic dynamicity of cloud
services in terms of variation in the workload amount.

5.1.1. SLA actors
MapReduce [17] has become a widely extended programming

model and execution environment for Big Data processing
(i.e., large amounts of unstructured data). It can be run on
clusters of commodity computers attaining high availability with
an acceptable high performance. To that end, MapReduce provides
automatic mechanisms to parallelize execution and to partition
and replicate data across the cluster. Several cloud providers (for
instance, Amazon or Azure) offer MapReduce as Platform-as-a-
Service through a functional interfacewith operations to start/stop
a MapReduce cluster or submit a job for execution.

Following our SLAaaS model, a SLA could be established
between aMapReduce PaaS provider and its customers.We take in
this section the SLA presented in Table 3. In that SLA, response time
should be below 90 s (performance objective) with the minimum
cost in terms of the size of the MapReduce cluster (cost objective).
5.1.2. Objective function
To apply SLAaaS to a MapReduce service, first a utility function

drawn ad hoc from the SLA is defined. Similarly to the SaaS case,
we combine an expression for performance objective with another
integrating the cost. Eq. (5) tests if the service guarantees the
performance SLO at time t:

PO(t) =


1 if ℓ(t) ≤ ℓmax + f ∆

perf
0 otherwise

(5)

where ℓ(t) is the average response time at time t , and ℓmax is
the threshold in the performance SLO and f ∆

perf its fuzziness. Thus,
∀t, PO(t) ∈ {0, 1} whether performance objective is guaranteed
or not. Then, we combine PO(t) with cost:

θ(t) =
PO(t)
ω(t)

(6)

where ω(t) is the size of the MapReduce cluster at time t in terms
of the number of servers.

Eq. (6) is the utility function that we need to maximize in this
case. Obviously, the minimum number of servers that guarantees
response time provides the highest utility. Note that, ∀t, θ(t) ∈

[0, 1].

5.1.3. Control algorithm
The control of the considered MapReduce service takes place

into two steps. First, a model for the service is defined to estimate
ℓ(t), the average response time at a givenmoment. Then, a capacity
planning algorithm to find the configuration of the service that
guarantees the SLA is provided. That algorithm uses the model to
maximize the previously defined utility function (θ(t)).

MapReduce divides each job into smallerworkunits called tasks
and place those tasks into a queue to be executed by any of the
server nodes. Similarly to the SLA-aware SaaS service presented
in Section 4, the queue can be modeled as a M/M/c queue [11,12].
That is, where the arrival of jobs is independent of other jobs (first
M), the execution time of jobs is independent of other jobs (second
M) and c is the number of server nodes (called ω(t) in the utility
function). Although there are two different types of tasks, we use
only one queue assuming therewill be always enough tasks to feed
the server nodes. Finding a finer grain model could be possible but
we consider it to be out of the scope of the paper.

The model uses as inputs the average job arrival rate, the
average job response time and the current size of the MapReduce
cluster, the model is able to predict the average response time
for future jobs given a different configuration (i.e., changing the
number of nodes).

The capacity planning algorithm uses the previous defined
model to search for the minimum cluster size that maximizes
the utility function θ(t). For that it uses monitored values for
the average job arrival rate and the average job response time
and implements a binary search on the parameter c. If the result
varies from the current configuration, the number of server nodes
is adjusted triggering actuators to add/remove servers. As for
the SaaS control algorithm, here again the number of servers
guaranteeing the SLA is calculated at once without the need of
following a step-by-step approach. Again, we assume that the
system stabilizes between two consecutive executions of the

240 D. Serrano et al. / Future Generation Computer Systems 54 (2016) 233–246
Table 4
SLA for locking PaaS.

Service Metric Unit Oper. Value Fuzz.

Locking Response time ms ≤ 400 0
Resource usage % of time max – –
Fig. 7. Self-elastic MapReduce service.

capacity planning algorithm as the time to stabilize is short
compared to the experiment duration (see Fig. 7).

Our M/M/c queue is suitable since MapReduce is proposed as
an online service where users submit requests concurrently [13].
Like the SLA-aware SaaS, buildingmore complex capacity planning
algorithms, for instance being able to cope with resources that are
not yet warmed up, or models that can predict VM migrations are
out of the scope of this paper. Note that, we have considered only
homogeneous servers in our use case. The SLA-aware MapReduce
service could be built taking into consideration different node
types. For that, we need to change the model and the utility
function. Instead of a M/M/c queue model, we need to build
the queuing system with a different service time distribution
associated to each node. On the other hand, the utility function
should combine the cost of the different nodes instead of only
counting them. The controller could be enriched with heuristics to
dealwith nodes that are notworking properly. The controller could
blacklist and report those nodes or replace those nodes by ‘‘fresh’’
instances in a virtualized scenario.

5.1.4. Experimental results
We have implemented our control algorithm in Hadoop [18],

a very popular implementation of MapReduce and we set up a
MapReduce PaaS service in a cluster of Amazon EC2 instances (see
Table 2).

We have generated a dynamic workload to test the SLAaaS
MapReduce using MRBS [19] emulating MapReduce clients in
another instance. One additional instance is used to host the
SLA controller. Among the five different benchmarks provided,
we used Recommendation System which is proposed to evaluate
online services that use MapReduce. Recommendation Systems
emulates an online movie recommendation site with real data
from MovieLens [20] (the experiments use the dataset consisting
of 1700 movies, 1000 users, and 100,000 ratings given by users
for movies indicating how much users like or dislike them). As
other recommendation sites, the request that can be executed are
requesting the top ten recommendations for a user, listing all the
ratings for a specific movie, list all the ratings given by a certain
user or to propose how much a user would like or dislike a certain
movie, among others. Clients take a random request and submit
the jobs for execution to the SLAaaSMapReduce clustering a closed
loop.
Fig. 7 shows the results of our experiment. The graph depicts
the measurements after warming-up the service with 5 clients
during 10 min and the number of concurrent clients (workload
amount) changes over time from 5 to 10 and back to 5. The initial
size of MapReduce cluster is set to 4 servers, plus 1 node that runs
MRBS, plus 1 node that runs the SLA controller.We have added also
monitoring for the parameters need by model: job arrival rate and
average response time, monitored with a 1-min time window. In
this experiment, the capacity planning algorithm is executed every
3 min and uses the data collected in the previous 5 min.

Interestingly, we observe that the capacity planning algorithm
reacts when the workload amount increases until 10. At that
moment we can see that client request response time also
increases above the SLO for response time at time 13 min.
Nevertheless, this behavior does not impose any penalty. The
response time is kept under acceptable margins as indicated by
the fuzziness property in the SLA (see Table 3). Nevertheless,
the capacity planning algorithm detects that this configuration
for MapReduce would lead to violations of the SLA. That is why
the number of servers is increased. When the number of clients
goes back to 5 again, the capacity planning algorithm releases the
servers that are nomore needed to guarantee the performance SLO.
This decision is taken to keep the service cost at a minimum.

Through this use case, we have successfully applied our
proposed SLAaaS model to a MapReduce PaaS service enabling it
to accomplish a SLA established between provider and its clients
which also involves performance and cost objectives.

5.2. Locking service

Locking services ensure exclusive access to shared resources
by concurrent processes, and is usually provided as a Platform-
as-a-Service in a cloud. For instance, Google provides the Chubby
distributed lockingmechanism that is used by other cloud services
such as Google File System service and BigTable data storage
service [21]. Basically, such a mechanism provides a functional
interface with operations to acquire or release locks. However,
locking procedures remain costly. According to [22], locking is
considered as an important and poorly resolved problem in cloud.
Its protocols have to be scalable and take into account QoS
objectives.

5.2.1. SLA actors
The SLAaaS model can be applied to a locking service at PaaS

level. In this case, the SLA is engaged between the locking service
and the respective customers. Table 4 gives an example of SLA
that combines performance and availability objectives. The SLA
specifies that the response time of a request to the lock service
should not exceed 400 ms.

5.2.2. Objective function
In order to minimize the response time of a lock service, the

use rate of the locked shared resource should be held as high as
possible. This is expressed ad hoc into a utility function:

θ(t) =
PO(t)
ρ(t)

(7)

where PO(t) is given in Eq. (5), and ρ(t) is the use rate of the locked
resource. Intuitively, the locking service with the highest utility
value is the one that guarantees the SLO (if possible) with a high
resource use rate, and therefore, the SLA is guaranteed.

D. Serrano et al. / Future Generation Computer Systems 54 (2016) 233–246 241
(a) Service performance. (b) Service availability.

Fig. 8. Self-adaptive locking service.
(a) Service performance. (b) Service availability.

Fig. 9. Impact of control admission in locking service.
5.2.3. Control algorithm
For providing the above SLA guarantees, we propose a locking

service that combines admission control techniques with a dis-
tributed locking algorithm [23]. Thus, before accepting a request,
the locking service controller first verifies that, taking into account
the current system state, the performance SLO can be satisfied. If
it is the case, the request for lock acquisition is accepted and will
be satisfied; otherwise, the request is rejected. The complete algo-
rithm can be found in [23].

5.2.4. Experimental results
We conducted experimentswith the proposed SLAaaS-oriented

locking service approach, on top of a 40 node cluster in the G5K II
infrastructure (see Table 2). To emulate long distance, we injected
network latency betweennodes. Eachnode runs a process thatmay
request the locking service related to a shared resource. The load
of requests of the system varies over the time. It is characterized
by the ratio of processes requesting lock acquisition to the total
number of processes, as shown in Fig. 8.

Fig. 8(a) shows the mean response time of lock requests
(latency) over the execution of the experiment when the load
varies. When the load is low, the response time remains low
compared to the SLO. When the load increases, there is more
contention on the shared resource, with an increase of lock request
latency. However, the locking service automatically adapts itself
in order to keep request latency below the threshold, as specified
by the SLA. Such an adaptation is possible thanks to the admission
control.

Fig. 8(b) shows the use rate of the shared resource, i.e., how
often the resource is actually locked and used by one of the
processes. It is expressed by the ratio of time during which the
resource is used by processes to the total time. In the network
configuration testbed, such a ratio cannot exceed 50% since half
of the total time is spent in message transmission. Interestingly,
when the load increases the locking service adapts to the load,with
an increasing use rate until a maximum value, which corresponds
to the availability objective of the underlying SLA. In summary,
SLAaaS successfully applies to associate SLA with a locking service
at PaaS level.

We have evaluated the impact of our admission control
mechanism and the results are summarized in Fig. 9. To this end,
we considered two versions of our algorithm, named Without
control and With control, which respectively disables and enables
the control mechanism. Contrarily to the experiment of Fig. 8, each
point of the figures corresponds to an experiment computedwith a
static given load. Fig. 9(a) shows the number of violated requests,
i.e., the number of requests which have been satisfied after their
required deadline while Fig. 9(b) shows the use rate of the shared
resource.

On the one hand, we note that, in terms of use rate, both ver-
sions have the same behavior: in low load, the resource is slightly
less available in the version with the control mechanism, whereas
they behave more or less the same way with medium and high
load. On the other hand, Fig. 9(a) shows that there is no violation
with the control mechanism whatever the load. Consequently, we
can deduce that the admission control mechanism avoids violation
of requests without degrading service availability.

6. Cross-layer SLAs: energy shortage scenario

Energy consumption of datacenters has been seen as a big
issue [24]. The way energy management is performed at the IaaS
level may drastically impact the other services that depends on
it. For instance, IaaS may be lead to shutdown part of its physical
infrastructure in order to cope with periods of energy shortage. As
a result, the SLAs established with IaaS consumers (e.g. PaaS/SaaS
providers) hosted on it may no longer be guaranteed. That has
a domino effect since it may also impact the upper levels SLAs
established between the PaaS/SaaS provider and the its consumer
and hence force them to seamlessly adapt itself to avoid violations.

242 D. Serrano et al. / Future Generation Computer Systems 54 (2016) 233–246
Table 5
SLA between the IaaS and SaaS providers.

Service Metric Oper. Value (%) Price ($) Fuzz. (%) % of Fuzz. Conf. (%) Penalty ($)

Small/Large Availability ≥ 98% 0.06/0.12 18 10 100 0.05/CPU core
Table 6
SLAs between the SaaS provider and Ad Clients 1 and 2.

Service Price ($- CPM) Usage mode Funct. Deg. Penalty ($) Metric Oper. Value (ms) Fuzz. (ms) % of Fuzz. Conf. (%) Penalty ($)

Ad 1
0.30

Video –
Resp. time ≤ 500 300 20 90 0.10Ad 2 Video (80%) 0.05 per exceeding %Image (20%)
Fig. 10. Actors of the multi-SLA scenario.

The objective of this section is to show how SLAaaS can be
employed to establish SLAs at different levels and how thosemulti-
level SLAs can guide autonomous behaviors in several layers of the
cloud stack.

6.1. SLA actors

Fig. 10 illustrates the architecture of this case study. We
consider a two-level cloud system, in which, at the lower level
an IaaS provides physical infrastructure as a service by means of
virtual machines, whereas at the upper level, a SaaS provides an
advertisement software as a service. So, the SaaS provider is a
IaaS client and companies willing to deploy advertising campaigns
are the clients of the SaaS provider. Finally, end-users are regular
website visitors who implicitly requests advertisements through a
web browser.

Like other commercial cloud infrastructure providers (e.g. Ama-
zon EC2 or Microsoft Azure), IaaS consumers are given two ser-
vice options with respect to the amount of compute virtual
resources (CPU and RAM), namely large and small. A SLA is estab-
lished between the IaaS provider and its client (in this case the SaaS
provider) stating that the provider must guarantee at least 98%, as
it is shown in Table 5.

The availability can be defined as the proportion of service
uptime, that is, the measure of likelihood to successfully access
resources. It is calculated by the proportion of time the allocated
resources (VMs) can be accessed within an observation period.
According to the SLA there is also a fuzziness of 18% and
fuzziness percentage of 10%,whichmeans that the availabilitymay
be between 98% and 80% in 10% of the observation periods. In
case of violation, a financial compensation of 0.05$ per CPU core
allocated should be given to the client.

The SaaS provides only one service (advertisement), which
may operate in two modes: normal (video) and degraded (static
image). Clients are charged in a cost-per-mille (CPM) manner, that
is, according to the number of times per thousand (mille) each
advertisement is viewed. As shown in Table 6, a SLA is established
between the SaaS provider and each one of its clients (companies
interested in internet advertisement). More precisely, for Ad Client
1, only video views is accepted,whereas for AdClient 2, up to 20%of
image views may be accepted. Beyond that threshold, a functional
degradation penalty of 0.05$ per exceeded percentage point must
be payed back to the client as compensation.

For both SLAs, the SaaS provider should guarantee an average
response time less than or equal to 500 ms, with confidence,
fuzziness and percentage fuzziness of 90%, 300 ms and 20%,
respectively. It means that the average response time measured
within an observation period may exceed 500 ms in at most 10%
of the observation periods within a predefined time window and
may be between 500 and 800ms in at most 18% (90% of 20%) of the
measured values within a predefined time window.

6.2. Objective functions

Based on the SLA, we define a utility function (cf. Eq. (8))
that takes into account the number of physical nodes and the
availability.

(IaaS)AO(t) =

1 if α(t) ≥ αmin
fav if (αmin − f ∆

av) ≤ α(t) < αmin
0 otherwise

(8)

where α(t) is the service availability, αmin is the minimum service
availability to be guaranteed and f ∆

av is the fuzziness. fav ∈

{0, 1} is the fuzziness function, which takes into consideration the
percentage of fuzziness and the confidence to return either 0, if the
IaaS violates the SLA, or 1 otherwise.

The boolean expression in Eq. (9) states that the current energy
consumption should not exceed a given threshold due to energy
shortage reasons.

(IaaS)EO(t) = (ϵ(t) ≤ ϵmax) (9)

where ϵ(t) corresponds to the power consumption at time t , and
ϵmax to the maximum power consumption the data center must
have due to energy shortage reasons.

The decision module of the IaaS is modeled with Constraint
Programming (CP), in which the problem is stated by means
of decision variables, variable domains and constraints on these
variables. Given an energy threshold to be used to cope with the
energy shortage and the shortage duration, the model determines

D. Serrano et al. / Future Generation Computer Systems 54 (2016) 233–246 243
which nodes should be shutdown so that the SLA violations are
minimized, that is, the solution with highest utility (cf. Eq. (10)).
In other words it tries to choose the set of nodes in way the impact
on the already allocated resources (to the SaaS) is minimized.

(IaaS)θ(t) = (AO(t) · EO(t)). (10)

In order to avoid SLA violation, the objective of SaaS provider is
to have the minimum amount of resources necessary to maintain
the response time.

As formalized in Eq. (12) the SaaS utility function takes into con-
sideration the expression associated to the response time (cf. Eq.
(11)), the service usage mode (e.g. image or video advertisement)
and the number of instances allocated to the service.

(SaaS)PO(t) =

1 if ℓ(t) ≤ ℓmax
fperf if ℓmax < ℓ(t) ≤ (ℓmax + f ∆

perf)

0 otherwise
(11)

where ℓ(l) corresponds to the average latency, ℓmax to the maxi-
mum latency the SaaS provider has to guarantee and f ∆

perf to the
fuzziness interval. fperf corresponds to the fuzziness function and
takes into account the percentage of fuzziness and the confidence
to return 0, if the SaaS violates the SLA, or 1 otherwise.

(SaaS)θ(t) =
PO(t) · µ(t)

ω(t)
(12)

whereω(t) corresponds to the number of instances allocated to the
service at time t andµ(t) ∈ {0, 1} to the utility function associated
to the servicemode (video/image) at time t . More precisely, it takes
into consideration the percentage of service mode and return 0, if
the SaaS violates the SLA, or 1 otherwise.

Similar to the IaaS decision module, the SaaS decision module
is also modeled in CP. Its objective is to find a minimum resource
allocation that keeps the latency lower than ℓmax, or in the last
case lower than ℓmax + f ∆

perf for a given workload (number of client
requests).

6.3. Control algorithm

IaaS. First, we define the decision variable zi, whose domain
D(zi) ∈ {0, 1}.∀i ∈ [1, p]. This variable indicates whether or not
a node pmi ∈ P should be shutdown. The second part consists of a
set of constraints over the decision variables zi.

Eq. (13) states that the total power consumption of nodes
should not exceed ϵmax.

p
i=1

zi ∗ pwi ≤ ϵmax (13)

where pwi corresponds to the power consumption of a node pmi.
Finally, Eq. (14) corresponds to the objective function that tries

to maximize the sum of all availabilities.

maximize


v

i=1

αi


(14)

where v corresponds to the number of virtual machines and αi, the
service availability.

SaaS. The first part of the CPmodel is a set of decision variables:
x, whose domain D(x) ∈ [1,m], is a variable indicating the usage
mode configuration; yij, where D(yij) ∈ [1, N].∀i ∈ [1, n], ∀j ∈

[1, q], is a variable indicating the number of virtual machines of
class mj allocated to component ci; ui, where D(ui) ∈ {0, 1}.∀i ∈

[1, n], is a variable indicating whether the component is used by
the mode x. Eq. (15) is the objective function that maximizes the
Fig. 11. Power consumption before and after an Energy Shortage.

performance (for a given usage mode x and allocation matrix y)
and minimizes the total number of virtual machines allocated.

maximize

 (ℓobj(x, y) + µx)
n

i=1

q
j=1

yij

 . (15)

6.4. Experimental results

Setup. For this use case, we relied on a sub-set of 13 nodes from
Grid’5000 [14], a French grid for experimental testbed. Two nodes
were used to host the controllers, i.e., one per service instance (two
for the SaaS provider and one for the IaaS provider); one node was
used to host load injectors (one for each Ad Client); and ten nodes
were used to host theVMs containing the SaaS services themselves.
The duration of the experiments was fixed at one hour, during
which the workload of both SaaS instances increases from 0 to 140
request per second. It means that both instances require the same
amount of resources until reaching the peak load.

An Energy Shortage is scheduled to be triggered at 45 min
of execution. The objective is to observe how IaaS and SaaS
providers face with this situation while taking into consideration
the SLAs defined in the previous section. For the IaaS provider,
the observation interval was fixed in six minutes, whereas for
the SaaS provider it was fixed in one minute. It means that the
availability of the IaaS at a given observation interval is calculated
by the percentage of time the resources are accessible within the
six minutes of the concerned interval. Regarding the SaaS, the
response time is calculated by the average of all the requestswithin
one minute interval. These intervals are inspired by real world
cloud providers such as Amazon EC2 and Microsoft Azure.

Results. Fig. 11 shows the total power consumption of the
infrastructure, before and after the Energy Shortage event. This
event contains the number of nodes that should be shutdown in
order to maintain a certain level of power consumption (ϵmax).
The interval between the event detection (vertical line) and the
decrease in the power consumption is due to the timeout between
the Scale Down notification (from the IaaS provider to the SaaS
provider) and the actual shutdown of nodes. In this scenario, we
specified an ϵmax of 2400 W before and 1200 W after the shortage
event. Based on the total power consumption of each node, it is
possible to have the number of nodes needed to be shutdown in
order to keep the power consumption under the specified ϵmax. In
that case, 1200 W corresponds to five nodes, i.e., 50% of the total
infrastructure.

It is straightforward that level of shortagemay lead to an impact
on the service availability. Fig. 12 depicts the IaaS availability
all through the experiment. We have established the observation
interval every 6 min so that we could have 10 intervals within one
hour. As it can be seen, until the shortage event, all the intervals
have 100% of availability and thus respect the SLA established in

244 D. Serrano et al. / Future Generation Computer Systems 54 (2016) 233–246
0 6 12 18 24 30 36 42 48 54 60

Fig. 12. IaaS availability.

Table 5. After the shortage event, the availability decreases to 80%
for the first observation interval and to 78% for the last one. This
decrease is explained by the VMs made unavailable due to the
shortage.

According to the SLA expressed in Table 5, in each observation
interval the availability must not be lower than 98%, with
confidence 100%. Since there is a fuzziness of 18% for 10% of the 10
intervals, the first interval after the shortagewill not be considered
as a violation. The last interval, instead, violates the specified SLA,
because it exceeds the 98% of availability and does not meet the
fuzziness conditions.

The Energy Shortage at the IaaS layer forces SaaS providers to
Scale Down, that is, to work with less resources than allocated to
them. As a consequence, the downscaling may also impact on the
SaaS QoS and thus lead to SLA violations. Fig. 13 shows the QoS in
terms of Average Response Time of the SaaS for Ad Clients 1 and 2
according to a workload variation. According to the SLA expressed
in Table 6, the average response time must not exceed 500 ms.
Hence, there is no penalty before the downscaling, since none of the
observation intervals has an average response time greater than
500 ms.

It should be reminded that the SLA specifies a confidence of 90%,
and fuzziness of 300 ms for 20% of requests. Even though, after the
downscaling, the SaaS instance for the Ad Client 1 gets penalties for
each observation intervals exceeding 500 ms of average response
time beyond the 10% of intervals accepted thanks to the confidence
margin. Contrary to the Ad Client 1, the SLA established with Ad
Client 2 accepts a functional degradation for 20% of requestswithin
a time window. That way, the SaaS instance for Ad Client 2 is
turned into a functional degraded mode (image) so as to absorb
the same workload while avoiding SLA violations related the QoS.
It should be noticed that those violations are avoided thanks to
the fuzziness. Indeed, with the functional degradation the SaaS
provider manages to keep the average response time between 500
and 800 ms. However, a few violations are not avoided at the end
of the time window, because both the fuzziness and usage mode
works only for 20% of requests.

Finally, Fig. 14 depicts the incomes, costs and penalties of both
SaaS instances as well as the IaaS. Not surprisingly, both instances
have the same cost since the same amount of resources is allocated
to them. The SaaS instance 1 has a lower income with respect
to instance 2, since it is able to process less requests within the
same amount of time (lower throughput). It is also important to
observe that the penalties are higher for the instance 1 then for
instance 2. This is because of the numerous SLA violations after the
forced downscaling, which occurs at the end of the experiments for
requests that do not meet neither the fuzziness nor the functional
degradation conditions. With respect to the IaaS, the income
corresponds to the costs of instance 1 and 2 together. For simplicity
reasons, the IaaS costs are due to the energy consumption, that is,
the amount of energymultiplied by the current energy fees. Finally,
Fig. 13. The average response time before and after the downscaling and the usage
mode change.

Fig. 14. The incomes, cost and penalties for SaaS and IaaS providers.

the IaaS penalties are payed by the IaaS to the SaaS provider due to
violations in the availability caused by the energy shortage.

To sum up, this use case is important to show how the SLA
can be used to guide decisions in several layers of the cloud stack.
Moreover, it shows hownewproperties of CSLA (QoS/functionality
degradation, advanced penalty model) introduce a fine language
support for Cloud elasticity management. Indeed, interesting
features such as the usage mode, fuzziness and confidence can
be used so as to turn SaaS and IaaS providers more flexible and
able to seamlessly copewith extreme situations such as the energy
shortage.

7. Related work

7.1. SLA specification

Historically, SLA has been used since the 1980s in a variety of
areas such as Networking and Web Services. The Web services
community has performed significant level of research in SLAs
languages. Several languages, such as SLAng [25], WSLA [7] and
WS-Agreement [8], have been proposed for SLA specification
using a XML-based language. All these works have contributed
significantly to the standardization of SLA. However, none meets
the needs for cloud computing environment and particularly the
elasticity concept. In Cloud computing, a SLA has to be suitable for
multiple layers (XaaS) with heterogeneous and volatile resources
in a highly dynamic environment. Moreover, performance of cloud
services may fluctuate due to the dynamic Internet environment,
which makes the QoS inherently uncertain.

More recently, initiatives such as SLA@SOI [26] or Optimis [27]
have addressed SLA specification for Clouds. The SLA@SOI language
(SLA*) is based on the WS-Agreement while the Optimis language
(WSAG4J) is a full Java-based implementation of WS-Agreement

D. Serrano et al. / Future Generation Computer Systems 54 (2016) 233–246 245
and WS-Agreement Negotiation. Their solutions covers SLA
lifecycle. However, the violations management does not reflect
cloud characteristics. In addition, in SLA*, the description of SLA
is just limited to guarantee terms while external file (e.g., OVF)
is needed to describe IaaS services. The CSLA language shares
motivations with the SLA@SOI project and goes further by taking
into account the cross-layer nature of Cloud and QoS instability:
CSLA allows defining SLA in any language for any cloud service
(XaaS) in the same file and allow services providers to address
violations. Finally, CSLA supports open standards to address the
need for interoperability in the field of cloud computing (OCCI [5],
NIST [6]).

7.2. SLA control

Existing public clouds provide very few guarantees in terms of
performance and dependability [28]. Amazon EC2 compute service
offers a service availability of at least 99.95% [29], and Amazon S3
storage service guarantees a service reliability of 99.9% [29].
However, in case of an outage, Amazon requires the customer to
send them a claimwithin thirty business days for Amazon EC2 and
ten days for Amazon S3. Amazon cloud services do not provide
performance guarantees or other QoS guarantees. Rackspace and
Azure cloud services provide similar behaviors [30,31].

Several recent research works consider SLA in cloud environ-
ments [32–35]. Chhetri et al. propose the automation of SLA estab-
lishment based on a classification of cloud resources in different
categories with different costs, e.g. on-demand instances, reserved
instances and spot instances in Amazon EC2 cloud [32]. How-
ever, this approach does not provide guarantees in terms of per-
formance, nor dependability. Macias and Guitart follow a similar
approach for SLA enforcement, based on classes of clients with
different priorities, e.g. Gold, Silver, and Bronze clients [33]. Here
again, a relative best-effort behavior is provided for clients with
different priorities, but neither performance nor dependability
SLOs are guaranteed. Other works consider to better tune MapRe-
duce systems for performance improvement [36,37], target other
specific environments such SaaS [35], or propose heuristics for SLA
management [34]. However, these works provide best-effort be-
haviorwithout strict guarantees on SLA, anddonot tackle themany
types of clouds.

Recent works have also addressed SLA guaranties for cloud
services. [38] defines an architecture focused on detecting
anomalies rather thanmodeling the cloud behavior, as it is done in
this paper. [39] proposes an SLA-aware PaaSMapReduce, however,
its solution reacts at scheduling time without capturing cloud
dynamicity during the execution of jobs. Our work proposes
the CSLA language and an online control architecture to cope
with cloud dynamicity. [40] takes into account maximization of
provider profit in addition to SLA constraints. They model the PaaS
as an optimization problem. [41] has developed an SLA-aware
PaaS Database service defining SLOs on database specific metrics
like data freshness. They provision virtualized database replicas
based on a previous experimental characterization of the service
instead of modeling its behavior. Concerning locking control, in
the majority of work found in the literature that provide locking
services with time constraints, accesses to the shared resource are
usually ordered based on the priorities assigned to each request
rather than the deadline when the locking request should be
satisfied. Therefore, several priority-based algorithms have been
proposed to cope with time requirements [42–44]. They usually
exploit a token-based distributed algorithm and a priority level,
that dynamically changes, is associated to every process’s locking
request.

Few locking services explicitly address real-time constraints
[45,46] whose algorithms directly take into account deadlines of
requests and processes agree on the same order of locking request
satisfactions.

With respect to SLAs and energymanagement, [47] proposes an
autonomic framework that deals with several energy-related sub-
problems (e.g. load balancing, frequency scaling) across multiple
layers of the IT infrastructure so as to guarantee SLAs established
between applications and end-users. [48] proposes an approach
for the coordination of multiple control loops in order to manage
power in infrastructures and performance SLAs of applications.
Although those work provide a nice contribution for cross-layered
power management and SLA guarantees, they fall short to explore
the variety of features that can be formalized within SLAs (e.g. QoS
degradation) such as in CSLA. As a consequence, contracts aremore
constrained and services less adaptable for certain circumstances.

8. Conclusion

We have presented in this paper a new method that combines
Quality of Service (QoS) with Service Level Agreement (SLA) in
clouds aiming at facing challenges such as better performance,
dependability, or cost reduction of online cloud services. To this
end, we introduce the SLAaaSmodel which enables the integration
of service levels and SLA into clouds. We also propose the CSLA
language for finely expressing SLA definition and addressing SLA
violations in the context of Cloud services. Furthermore, objective
functions can be defined to ensure the best SLA guarantees since
it allows the specification of the SLOs of the SLA in question as
well as the trade-off, priority, and weight among them. Finally,
the behavior of the cloud is characterized, and online control
algorithms are applied in order to achieve the SLOs, and, therefore,
the respective SLA guarantees.

Three use cases with evaluation performance results (one
for SaaS layer and two for PaaS layer) confirm the solidity and
usefulness of the proposed method. In the near future, we intend
to extend them or propose new ones applying other metrics, such
as service throughput or energetic cost. We have also presented
a fourth use case concerning energy shortage that shows that
our method can be used for multi-layer SLAs, avoiding then, SLA
violation domino effect.

Although in this paper we have considered only the number
of instance as a metric for cost in the SLA, as a perspective for
this work, we will take into consideration a cloud billing model
for cost which relates resource cost and the time units (e.g. hours)
resources are used.

This work opens also interesting perspectives in terms of SLA
governance. We plan to allow cloud customers to be part of the
loop and to be automatically notified about the state of the cloud,
such as SLA violation and cloud energy consumption. A second
future work could involve other QoS aspects of cloud services such
as privacy and security guarantees.

Acknowledgments

This work was supported by the ANR agency, under the My-
Cloud project (ANR-10-SEGI-0009, http://mycloud.inrialpes.fr/).
Part of the experiments were conducted on the Grid’5000 exper-
imental testbed (http://www.grid5000.fr/).

References

[1] Summary of the Amazon EC2 and Amazon RDS service disruption in the US
East Region, 2011. http://aws.amazon.com/fr/message/65648/.

[2] S. Bouchenak, G. Chockler, H. Chockler, G. Gheorghe, N. Santos, A. Shraer,
Verifying cloud services: Present and future, Oper. Syst. Rev. 47 (2) (2013).

[3] D. Serrano, S. Bouchenak, Y. Kouki, T. Ledoux, J. Lejeune, J. Sopena, L. Arantes, P.
Sens, Towards QoS-oriented SLA guarantees for online cloud services, in: 13th
IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing, CCGrid, 2013.

http://mycloud.inrialpes.fr/
http://www.grid5000.fr/
http://aws.amazon.com/fr/message/65648/
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref2

246 D. Serrano et al. / Future Generation Computer Systems 54 (2016) 233–246
[4] Y. Kouki, T. Ledoux, CSLA: a language for improving cloud SLA management,
in: 2nd Int. Conf. on Cloud Computing and Services Science, CLOSER, 2012.

[5] T. Metsch, A. Edmonds, Open cloud computing interface—infrastructure. Open
Grid Forum, 2011.

[6] L. Fang, T. Jin, M. Jian, B. Robert, L.B. John Messina, D. Leaf, NIST cloud
computing reference architecture, 2011.

[7] H. Ludwig, A. Keller, A. Dan, R.P. King, R. Franck, Web service level agreement
(WSLA) language specification. Tech. Rep., IBM, 2003.

[8] A. Andrieux, et al.Web services agreement specification (ws-agreement). OGF,
2007.

[9] D. Irwin, L. Grit, J. Chase, Balancing risk and reward in a market-based task
service, in: 13th IEEE Int. Symp. on High Performance Distributed Computing,
HPDC, 2004.

[10] Transaction Processing Performance Council, 2014. TPC-W.
www.tpc.org/tpcw.

[11] N. Gautam, Analysis of Queues: Methods and Applications, CRC Press, 2012.
[12] P. Harrison, N.M. Patel, Performance Modelling of Communication Networks

and Computer Architectures, Addison-Wesley, 1992.
[13] J. Arnaud, S. Bouchenak, Performance andDependability in Service Computing,

IGI Global, 2011.
[14] R. Bolze, et al., Grid’5000: A large scale and highly reconfigurable experimental

grid testbed, Int. J. High Perform. Comput. Appl. (IJHPCA) 20 (4) (2006).
[15] Z. Fadika, M. Govindaraju, DELMA: Dynamically ELastic MapReduce frame-

work for CPU-intensive applications, in: 11th IEEE/ACM Int. Symp. on Cluster,
Cloud and Grid Computing, CCGrid, 2011.

[16] A.W. Gordon, P. Lu, Elastic phoenix:MalleableMapReduce for shared-memory
systems, in: 8th IFIP Int. Conf. on Network and Parallel Computing, NPC, 2011.

[17] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large clus-
ters, in: 6th USENIX Symp. on Operating Systems Design and Implementation,
OSDI, 2004.

[18] T. White, Hadoop: The Definitive Guide, first ed., O’Reilly Media, Inc., 2009.
[19] A. Sangroya, D. Serrano, S. Bouchenak, Benchmarking dependability of

MapReduce systems, in: 31st IEEE Int. Symp. on Reliable Distributed Systems,
SRDS, 2012.

[20] MovieLens web site, 2014. http://movielens.umn.edu/.
[21] M. Burrows, The chubby lock service for loosely-coupled distributed systems,

in: 7thUSENIX Symp. onOperating SystemsDesign and Implementation, OSDI,
2006.

[22] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A.
Patterson, A. Rabkin, I. Stoica, M. Zaharia, Above the clouds: A berkeley view
of cloud computing. Tech. Rep., University of California, Berkeley, 2009.

[23] J. Lejeune, L. Arantes, J. Sopena, P. Sens, Service level agreement for distributed
mutual exclusion in cloud computing, in: 12th IEEE/ACM Int. Symp. on Cluster,
Cloud and Grid Computing, CCGrid, 2012.

[24] J.G. Koomey, Growth in data center electricity use 2005 to 2010. Tech. Rep.,
Analytics Press, 2011.

[25] D. Lamanna, J. Skene, W. Emmerich, SLAng: A language for defining service
level agreements, in: 9th IEEE International Workshop on Future Trends of
Distributed Computing Systems (FTDCS) Rico, Proceedings, 2003, p. 100.

[26] SLA@SOI project, 2012. http://sla-at-soi.eu/.
[27] W. Ziegler, M. Jiang, OPTIMIS SLA framework and term languages for SLAs in

cloud environment. Deliverable D2.2.2.1, OPTIMIS European project, 2011.
[28] S.A. Baset, Cloud SLAs: present and future, ACM SIGOPS Oper. Syst. Rev. 46 (2)
(2012).

[29] Amazon Web Services, 2012. http://aws.amazon.com/.
[30] Rackspace SLA, 2012. http://www.rackspace.com/cloud/legal/sla/.
[31] Windows Azure, 2012. http://www.microsoft.com/windowsazure.
[32] M.B. Chhetri, Q.B. Vo, R. Kowalczyk, Policy-based automation of SLA

establishment for cloud computing services, in: 12th IEEE/ACM Int. Symp. on
Cluster, Cloud and Grid Computing, CCGrid, 2012.

[33] M. Macias, J. Guitart, Client classification policies for SLA enforcement in
shared cloud datacenters, in: 12th IEEE/ACM Int. Symp. on Cluster, Cloud and
Grid Computing, CCGrid, 2012.

[34] H. Goudarzi,M. Ghasemazar,M. Pedram, SLA-based optimization of power and
migration cost in cloud computing, in: 12th IEEE/ACM Int. Symp. on Cluster,
Cloud and Grid Computing, CCGrid, 2012.

[35] L. Wu, S.K. Garg, R. Buyya, SLA-based resource allocation for software as a
service provider (SaaS) in cloud computing environments, in: 11th IEEE/ACM
Int. Symp. on Cluster, Cloud and Grid Computing, CCGrid, 2011.

[36] H. Herodotou, S. Babu, Profiling, what-if analysis, and cost-based optimization
of mapreduce programs, in: 37th International Conference on Very Large
DataBases, VLDB, 2011.

[37] A. Verma, L. Cherkasova, R.H. Campbell, Aria: Automatic resource inference
and allocation for mapreduce environments, in: The 8th ACM International
Conference on Autonomic Computing, ICAC, 2011.

[38] A.C. Oliveira, H. Chagas, M. Spohn, R. Gomes, B.J. Duarte, Efficient network
service level agreement monitoring for cloud computing systems, in: 2014
IEEE Symposium on Computers and Communication (ISCC), IEEE, 2014,
pp. 1–6.

[39] F. Teng, F. Magoulès, L. Yu, T. Li, A novel real-time scheduling algorithm and
performance analysis of a mapreduce-based cloud, J. Supercomput. (2014)
1–27.

[40] D. Dib, N. Parlavantzas, C. Morin, SLA-based profit optimization in cloud
bursting PaaS, in: 14th IEEE/ACM Int. Symp. on Cluster, Cloud and Grid
Computing, CCGrid. Chicago, United States, May 2014.

[41] S. Sakr, L. Zhao, A. Liu, Clouddb autoadmin: A consumer-centric framework
for SLA management of virtualized database servers, in: Large Scale and Big
Data—Processing and Management, 2014, pp. 357–388.

[42] A.M. Goscinski, Two algorithms for mutual exclusion in real-time distributed
computer systems, J. Parallel Distrib. Comput. 9 (1) (1990) 77–82.

[43] S. Kanrar, N. Chaki, FAPP: A new fairness algorithm for priority process mutual
exclusion in distributed systems, J. Netw. 5 (1) (2010) 11–18.

[44] Y.-I. Chang, Design of mutual exclusion algorithms for real-time distributed
systems, J. Inf. Sci. Eng. 11 (4) (1994) 527–548.

[45] K. Han, Scheduling distributed real-time tasks in unreliable and untrustworthy
systems (Ph.D. thesis), Faculty of the Virginia Polytechnic Institute and State
University, USA, 2010.

[46] R. Rajkuman, Synchronization in Real-time Systems; A Priority Inheritance
Approach, Kluwer Academic Publishers, Boston, 1991.

[47] D. Ardagna, B. Panicucci, M. Trubian, L. Zhang, Energy-aware autonomic
resource allocation in multitier virtualized environments, IEEE Trans. Serv.
Comput. 5 (1) (2012) 2–19.

[48] X.Wang, Y.Wang, Coordinating power control and performancemanagement
for virtualized server clusters, IEEE Trans. Parallel Distrib. Syst. 22 (2) (2011)
245–259.

http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref7
http://www.tpc.org/tpcw
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref11
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref12
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref13
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref14
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref18
http://movielens.umn.edu/
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref22
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref24
http://sla-at-soi.eu/
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref28
http://aws.amazon.com/
http://www.rackspace.com/cloud/legal/sla/
http://www.microsoft.com/windowsazure
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref38
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref39
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref41
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref42
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref43
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref44
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref45
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref46
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref47
http://refhub.elsevier.com/S0167-739X(15)00080-1/sbref48

	SLA guarantees for cloud services
	Introduction
	Design principles
	SLAaaS model
	Methodology overview

	CSLA language
	Motivation and overview
	How to evaluate service level objectives (SLO) in CSLA?
	CSLA meta-model
	CSLA example

	SLA for a SaaS service: bookstore application
	SLA actors
	Objective function
	Control algorithm
	Experimental results

	SLA for PaaS services
	Map-Reduce service
	SLA actors
	Objective function
	Control algorithm
	Experimental results

	Locking service
	SLA actors
	Objective function
	Control algorithm
	Experimental results

	Cross-layer SLAs: energy shortage scenario
	SLA actors
	Objective functions
	Control algorithm
	Experimental results

	Related work
	SLA specification
	SLA control

	Conclusion
	Acknowledgments
	References

