
Adaptive Internet Services Through Performance and
Availability Control

Jean Arnaud
INRIA

Grenoble, France
jean.arnaud@inria.fr

Sara Bouchenak
Grenoble Universities

Grenoble, France
sara.bouchenak@inria.fr

ABSTRACT
Cluster-based multi-tier systems provide a means for build-
ing scalable Internet services. Building adaptive Internet
services that are able to apply appropriate system sizing and
configuration is a challenging objective for nowadays system
administrators. This paper addresses two issues for build-
ing adaptive Internet services: (i) the control of service cost,
performance and availability, three antagonist and primary
aspects of Internet services, and (ii) an adaptive control of
Internet services that does not shift the complexity of system
administration from the Internet service to its controller.

This paper presents the design and implementation of
MoKa - a middleware for controling performance and avail-
ability of cluster-based multi-tier systems. The contribution
of the paper is multifold. First, we improve an analytic
model to predict the performance, availability and cost of
cluster-based multi-tier applications. Second, we define a
utility function and use it to build a capacity planning al-
gorithm that calculates the optimal application configura-
tion which guarantees performance and availability objec-
tives while minimizing functioning cost. Finally, we pro-
pose a novel approach for dynamic provisioning of multi-
tier applications that removes the burden of manual (re-
)configuration of the controller itself. Our experiments on
the TPC-W multi-tier online bookstore show that MoKa
provides significant benefits on application performance and
availability.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Client/server, Distributed
applications, Distributed databases; C.4 [Performance of

Systems]: Performance attributes, Reliability, availability,
and service ability; D.4.8 [Performance]: Modeling and
prediction, Queueing theory

General Terms
Algorithms, Management, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22–26, 2010, Sierre, Switzerland
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords
Multi-tier applications, Cost, Availability, Performance, SLA,
Modeling, Capacity planning

1. INTRODUCTION
Data centers host a large variety of Internet services, rang-

ing from web servers to email servers, streaming media ser-
vices, and enterprise servers. These services are usually
based on the client-server architecture, in which a server
provides some online service to concurrent clients, such as
reading web documents, sending emails or buying the con-
tent of a shopping cart. To face the increasing load of such
applications, servers are organized in a multi-tier architec-
ture. Figure 1 represents a three-tier web application which
starts with requests from web clients that flow through an
HTTP front-end server and provider of static content, then
to an enterprise server to execute the business logic of the
application and generate web pages on-the-fly, and finally
to a database that stores non-ephemeral data. However, the
complexity of multi-tier applications and their low rate for
delivering dynamic web documents – often one or two or-
ders of magnitudes slower than static documents – place a
significant burden on data centers [10]. To face high loads
and provide higher service scalability, a commonly used ap-
proach is the clustering and replication of servers in clusters
of machines.

Figure 1: Multi-tier applications

The challenge in cluster-based multi-tier applications stems
from the conflicting goals of, on the one hand, high per-
formance and availability, and on the other hand, low cost
and resource consumption. In the limit, high performance
and availability can be achieved by assigning all available
machines in a data center to a multi-tier application. Sym-
metrically, it is possible to build a very-low cost multi-tier
application by allocating very few machines, which induces
bad performance and data center downtime. Between these
two extremes, there exists a configuration such that cluster-



based multi-tier applications achieve a desirable level of ser-
vice performance and availability while cost is minimized.
This paper precisely addresses the problem of determining
this optimal configuration. It presents MoKa - a middle-
ware for capacity planning and provisioning of cluster-based
multi-tier applications. The contributions of the paper are
the following.

First, we propose a capacity planning system for cluster-
based multi-tier applications that takes into account per-
formance and availability constraints of applications. We
believe that both criteria must be taken into account collec-
tively. Otherwise, if capacity planning is solely performance-
oriented for instance, this may lead to situations where only
1% of clients are admitted in the application with guaran-
teed performance while 99% of clients are rejected. To com-
bine performance and availability objectives:

• We define a utility function that quantifies the perfor-
mance, availability and cost of cluster-based multi-tier
applications.

• We develop a capacity planning algorithm that, given
SLA performance and availability constraints, calcu-
lates a configuration of the cluster-based multi-tier ap-
plication that guaranntees SLA constraints while min-
imizing the cost of the application (i.e. the number of
hosting machines). The capacity planning algorithm is
based on an analytic model of cluster-based multi-tier
applications.

• We extend a queuing theory-based analytic model, that
originally predicts application performance, with the
following features: the prediction of application avail-
ability, and the handling of cluster-based multi-tier ap-
plications where each tier may consist of several replica
servers.

Finally, we apply admission control and server provision-
ing techniques in order to reify the optimal planned capacity
in the actual multi-tier application.

To the best of our knowledge, existing approaches for ca-
pacity planning of cluster-based multi-tier systems concen-
trate on performance requirements and do not address avail-
ability issues [1, 22, 21]. Furthermore, these approaches
require manual off-line calibration of their model to deter-
mine its parameter values, and this each time application
workload mix changes (i.e. client behavior changes) [22,
21]. This removes the burden of configuration from the
multi-tier application, but induces new manual configura-
tion needs at the level of the application capacity planning
controller, which may be non-trivial. We believe in adap-
tive controllers for a practical use of modeling and capacity
planning in dynamic distributed Internet services. Thus,
we propose a provisioning technique for cluster-based multi-
tier applications that uses lightweight monitoring in order
to: (i) automatically detect workload mix changes and, (ii)
dynamically recalibrate the underlying analytic model to re-
flect the new mix, before being able to adequately provision
the application.

Finally, we implement MoKa , a middleware for mod-
eling, capacity planning and provisioning of cluster-based
multi-tier applications. The paper presents experiments con-
ducted with MoKa on an industry standard application, the
TPC-W online bookstore. The results of the experiments

on a fourty machines cluster show that MoKa optimizes
the utility of multi-tier applications by providing significant
benefits on application performance, availability and cost.

The remainder of the paper is organized as follows. Sec-
tion 2 defines the necessary background. Section 3 presents
design principles of the MoKa middleware for capacity plan-
ning and provisioning of multi-tier applications. Section 4
presents the results of our experiments. Section 5 provides a
brief overview of the related work, and Section 6 draws our
conclusions.

2. BACKGROUND

2.1 Cluster-based multi-tier systems
A multi-tier system is composed of a series of M tiers

T1, T2, ..., TM . Each tier is tasked with a specific concern.
For instance, the multi-tier system in Figure 1 consists of
tier T1 responsible of processing the application web content,
tier T2 responsible of the application business logic, and tier
T3 responsible of the storage of non-ephemeral data of the
application. When a client issues a request to a multi-tier
system, the request first accesses tier T1, and then may flow
through successive tiers T2, T3, ..., TM . More precisely, when
a request is processed by tier Ti either a response is returned
to tier Ti−1 (or to the client if i = 1), or a subsequent request
is sent to tier Ti+1 (if i < M).

Multiple clients may concurrently access a multi-tier sys-
tem. In its basic form, each tier consists of a single server. To
prevent a server from thrashing when the number of concur-
rent clients grows, a classically used technique is admission
control [12]. It consists in fixing a limit for the maximum
number of clients allowed to concurrently access a server –
also known as the Multi-Programming Level (MPL) config-
uration parameter of servers. Above this limit, incoming
clients are abandoned (i.e. rejected). Thus, a client request
processed by a multi-tier system either terminates success-
fully with a response to the client, or is abandoned because
of a server’s concurrency limit.

Moreover, a multi-tier application may face a varying work-
load amount and a varying workload mix over time. The
workload amount denoted N is the number of clients that
try to concurrently access a multi-tier application. And the
workload mix denoted X corresponds to the distribution of
different types of interactions issued by clients. Application
workload variation reflects different client behaviors at dif-
ferent times; for instance, an e-mail service is likely to face
a higher workload amount in the morning than in the rest
of day.

Multi-tier servers are hosted by machines (i.e. computing
units), and a machine is exclusively owned by a server. How-
ever, for scalability purposes, a tier is usually provisioned
with multiple servers in a cluster built atop replication, par-
titioning and load balancing techniques. In the following, we
consider fair load balancing techniques. If not provisioned
adequately, cluster-based multi-tier applications may face a
bottleneck on one of the tiers; and bottleneck may occur at
most on one tier [4]. We consider that adding more machines
to an overloaded tier reduces load amount on each machine
of the tier, thus improving overall performances. We also
made the assumption that machines are homogeneous in-
side each tier of the application, as it is typically the case in
computer clusters of that size [3].



2.2 Performance, availability and cost
SLA – Service Level Agreement – is a contract negotiated

between clients and their service provider [13]. It specifies
service level objectives (SLOs) that the application must
guarantee in the form of constraints on performance and
availability. Among the key metrics of interest for quanti-
fying the performance and availability of multi-tier applica-
tions, we can cite client request latency and client request
abandon rate used in the following.

The latency of a client request is the necessary time for a
multi-tier application to process that request. The average
client request latency (or latency, for short) of a multi-tier
application is denoted as ℓ. A low latency is a desirable
behavior which reflects a reactive application.

The abandon rate of client requests is the ratio of requests
that are rejected by a multi-tier application compared to the
total number of requests issued by clients to that application.
It is denoted as α. A low client request abandon rate (or
abandon rate, for short) is a desirable behavior which reflects
the level of availability of a multi-tier application.

Besides performance and availability metrics, the cost of
a multi-tier application is another aspect that is taken into
account when optimizing the provisioning of the applica-
tion. The cost of multi-tier systems refers to the economical
and energetical costs of these systems. Here, cost is defined
as the total number of machines that host a cluster-based
multi-tier application, and is denoted as ω. Saving energy
from running servers is always a good point, even if machines
amount are not limited, then a low cost always preferable.

3. MOKA DESIGN PRINCIPLES
The objective of MoKa is to provision a cluster-based

multi-tier application with a configuration in such a way
that the performance and availability constraints are re-
spected and the cost of the application is minimized. Thus,
MoKa takes as inputs performance and availability con-
straints in the form of respectively latency and abandon
rate limits not to exceed (i.e. ℓmax and αmax). An implicit
constraint is the minimization of the cost of the applica-
tion (i.e. the number of machines hosting the cluster-based
multi-tier application). MoKa has also exogenous inputs
that are the application workload amount N and workload
mix X. MoKa produces as an output the configuration
κ with which the application must be provisioned in order
to guarantee the constraints.

As described in figure 2, the MoKa middleware architec-
ture consists of four main parts, namely Monitoring, Ana-
lytic model, Model calibration, Model-based capacity planning
and provisioning. In the following, we first provide some def-
initions, before describing MoKa sub-systems.

3.1 Definitions
We define the configuration κ of a cluster-based multi-

tier application with a triplet κ(M , AC, LC), where M is
the fixed number of tiers of the multi-tier application, and
AC and LC are respectively the architectural configuration
and local configuration of the application. We define the
architectural configuration of a cluster-based multi-tier ap-
plication as the distributed setting of the application in the
form of the number of replica servers at each tier. It is con-
ceptualized as an array AC < AC1, AC2, ..., ACM >, where
ACi is the number of machines at tier Ti of the multi-tier

Monitoring

Detect workload amount variation (N)

Detect workload mix variation (X)

Model calibration

Update model with monitored workload mix 

parameters (Si, Vi, Think time)

X changes

Capacity planning

N changes

Does k respect 

performance and 

availabity 

constraints and 

minimize cost?

Provisioning

Provision the multi-tier system with 

configuration k

Iterate on multi-tier system 

configurations k

Yes

No

performance and availability constraints

MoKa

Model

Performance and 

availability prediction 

for k

Figure 2: Overview of MoKa

application. We define the local configuration of a multi-
tier application as the local tuning parameter(s) applied on
servers at tier Ti. Local configuration is conceptualized as
an array LC < LC1, LC2, ..., LCM >; and in the following,
LCi represents servers MPL (multi-programmig level) at tier
Ti of the multi-tier system. For instance, the cluster-based
multi-tier application presented in Figure 1 has the following
configuration κ(3, AC < 3, 2, 3 >, LC < 200, 160, 100 >),
though LC is not illustrated in the figure.

3.2 Monitoring
MoKa includes a monitoring mechanism in order to de-

tect variations in application workload amount and workload
mix. For the former, the mechanism follows a proxy-based
approach in order to intercept requests sent by clients to
the application, and thus the amount of different clients N

(workload amount). This is monitored over time as a mov-
ing average, and a noticeable1 difference in the monitored
N over time represents a workload amount variation which
triggers capacity planning and provisioning of the multi-tier
application.

Regarding the workload mix, MoKa proxy-based moni-
toring mechanism performs online monitoring and a moving
average of the performance and availability of the applica-
tion (i.e. latency and abandon rate), and compares moni-
toring results to performance and availability values as pre-
dicted by the analytic model (see Section 3.3). A noticeable1

deviation of the predicted values from the monitored data
represents a workload mix variation that triggers, first model
recalibration, and then capacity planning and provisioning of
the multi-tier application (as illustrated in Figure 2 and de-
tailed in Section 3.4).

3.3 Analytic model
MoKa includes an analytic model that estimates the be-

havior of a cluster-based multi-tier application. The model
takes as inputs (i) a configuration κ(M , AC, LC) of the
multi-tier application, (ii) a workload amount N , and (iii) a
workload mix X of the application. The model produces
as outputs the estimated (i) client request latency ℓ, and
(ii) client request abandon rate α. This model extends the
theoretic and general queuing network model based on the
MVA algorithm (Mean-time Value Analysis) [19]. Due to

1A noticeable difference can be determined either as a rela-
tive value (e.g. ±10%) or an absolute value (e.g. ±50 clients).



space limitation, we are not able to fully detail the MVA
model and the proposed extended version. In the follow-
ing, we briefly describe the features added by the proposed
extensions.

First, the analytic model is now able to represent cluster-
based multi-tier applications where several server replicas
may exist per tier, and a fair load-balancing applies to dis-
tribute the load between replicas. This results in an addi-
tional input to the original model that is the architectural
configuration AC < AC1, .., ACM > of the multi-tier ap-
plication. Second, the model is now able to estimate client
request abandon rate of the application (as an indicator of
availability), where admission control applies at the entry
of each tier server and requests may therefore be rejected.
This implies adding LC < LC1, .., LCM > local configu-
ration (i.e. MPLs) of the multi-tier application to original
model inputs, and abandon rate α to original model out-
puts.

Furthermore, the workload mix given as an input of the
model is represented by a triplet X(TT , V < V1, ..., VM >,
S < S1, ..., SM >), where TT is the client think time, V <

V1, ..., VM > are tiers visit ratios, and S < S1, ..., SM > are
service times at the tiers [19]. Client think time is the aver-
age time between the reception of a response by a client and
the sending of the next request by that client. Visit ratios
reflect how much client requests visit the tiers of the applica-
tion. Indeed, when a client request enters tier T1, the request
may generate sub-sequent requests to tier T2, tier T3, and so
on until tier TM . The visit ratio Vi is the average number of
sub-sequent requests at tier Ti generated by a client request
entering the multi-tier application. Service times correspond
to the incompressible amount of time necessary to process
requests on each tier of the application. Thus, service time
Si is the average incompressible time necessary to process a
client request on tier Ti. X(7s, V < 1, 2 >, S < 5ms, 8ms >)
is an example of a workload mix where client think time is 7
s, where each request on tier T1 induces in average 2 requests
on thier T2 (i.e. visit ratios), and where the incompressible
request service time is of 5 ms on tier T1 and 8 ms on tier
T2.

3.4 Model calibration
In the original MVA model, an initial stage, called model

calibration, is necessary to use the model. It consists in de-
termining the application workload mix parameters X (TT ,
V < V1, ..., VM >, S < S1, ..., SM >) that are given as an
input of the model. To automate this phase, MoKa includes
monitoring mechanisms in order to calibrate the model. These
mechanisms are based on interception techniques that apply
at the entry of servers of the front-end tier for measuring TT ,
and at the entry of servers of each tier Ti for measuring Vi

and Si.
In the current prototype of MoKa , an implementation

of the monitoring mechanism is proposed for monitoring
Java EE multi-tier applications, the industry standard for
building Java multi-tier applications. Monitoring in MoKa ap-
plies AOP (Aspect-Oriented Programming) techniques - and
AspectJ implementation - in order to intercept the informa-
tion that characterizes application workload mix [8]. Indeed,
Java EE defines standard APIs for the entry point of each
tier of multi-tier applications, such as HTTP Servlet API for
the Web and business tier and JDBC API for the database
tier. MoKa makes use of these standard APIs in order to

capture the time when a request enters a tier, the time when
it leaves it, and the interval between the two. This allows
to measure service times S < S1, ..., SM > and visit ratios
V < V1, ..., VM >. Client think time TT is measured as the
interval between the time when a client request terminates
and the time when the next request is made by the same
client (i.e. inside the same HTTP session). The data are
monitored on the different servers of the multi-tier applica-
tion, then collected on a central node. A moving average
is calculated in order to produce the average values of (TT ,
V < V1, ..., VM >, S < S1, ..., SM >) that characterize a
workload mix X.

Moreover, workload mix parameters must be determined
with a low workload amount of the application [19]. This is
especially true for estimating service times S < S1, ..., SM >

which values must not include overhead due to a high load of
the application. Thus, the proposed model is automatically
calibrated at application start-time with the parameters of
the initial workload mix, and then recalibrated each time
the workload mix changes. And whenever a (re-)calibration
of the model is triggered, this must be done on a lightly-
loaded application. However, a workload mix change may
occur whereas the application faces a high workload amount.
A first approach to face this issue consists in forcing the ap-
plication to lower its workload amount through aggressive
admission control for a period of time in order to monitor
new values of X(TT , V < V1, ..., VM >, S < S1, ..., SM >)
and recalibrate the model with the new mix X. Another ap-
proach consists in dividing the machines hosting the multi-
tier application into two sub-sets, one for model recalibra-
tion and one for continuing serving clients during recalibra-
tion. The former sub-set is small (e.g. consisting of M ma-
chines, one per tier) and handles a small amount of clients
(denoted by N ′). The latter consists of the remaining ma-
chines (e.g.

P

ACi − M) and handles the remaining clients
(N − N ′). While the second approach for model recalibra-
tion maintains higher service availability than the first ap-
proach, it requires specific load-balancing in order to balance
N ′ clients to the first sub-set of machines and the remain-
ing clients to the second sub-set. Experiments presented in
Section 4 follow the former approach.

3.5 Capacity planning
Once the model correctly calibrated, and if the workload

varies, MoKa performs capacity planning in order to cal-
culate the new configuration κ of the multi-tier application
that respects performance and availability constraints while
minimizing cost, i.e. maximizes utility. In the following, we
first define our utility function, before describing the pro-
posed utility-aware capacity planning.

3.5.1 Utility function
Given performance constraint ℓmax and availability con-

straint αmax that a multi-tier application must guarantee,
we define Performability Preference (i.e. performance and
availability preference) as follows:

PP (ℓ, α) = (ℓ ≤ ℓmax) · (α ≤ αmax) (1)

where ℓ and α are respectively the actual latency and aban-
don rate of the multi-tier application. Note that ∀ℓ,∀α, PP (ℓ, α) ∈
{0, 1}, depending on whether Eq. 1 holds or not.

Based on performability preference and cost of the multi-
tier application, we now define a utility function that com-



bines both criteria as follows:

Θ(ℓ, α, ω) =
M · PP (ℓ, α)

ω
(2)

where ω is the actual cost (i.e. #machines) of the multi-tier
application, and M is the number of tiers of the multi-tier
application. M is used in Eq. 2 for normalization purposes.
Here, ∀ℓ,∀α,∀ω,Θ(ℓ, α, ω) ∈ [0, 1], since ω ≥ M (at least
one server per tier) and PP (ℓ, α) ∈ 0, 1.

A high value of the utility function reflects the fact that,
on the one hand, the multi-tier application guarantees ser-
vice level objectives for performance and availability, and on
the other hand, the cost underlying the multi-tier applica-
tion is low.

3.5.2 Utility-aware capacity planning

Algorithm 1: Capacity planning of multi-tier applications

Input:
N : workload amount (i.e. #clients)
X(TT, V < V1, .., VM >, S < S1, .., SM >) : workload mix
Output:
κ∗(M, AC < AC1, .., ACM >, LC < LC1, .., LCM >)
Parameters:1

ℓmax : maximum latency2

αmax : maximum abandon rate3

MO : underlying model algorithm4

Initialization:5

/* a probability of αmax incoming clients are abandoned */6

N ′ = N ∗ (1− αmax); α′

max = 0;;7

/* initial architectural and local configuration */8

for m = 1;m ≤ M ;m + + do9

ACm = 1; /* minimal architectural configuration */10

LCm = N′
· Vm ; /* local configuration */11

o∗ = 0;12

κ∗ =< ∅, ∅ >;13

/* V erifying PP, cf. Eq.1 */14

while ℓ > ℓmax ∨ α > α′

max do15

for m = 1;m ≤ M ;m + + do16

ACm = ACm + 1; /* server addition */17

LCm =
N′

·Vm
ACm

; /* load balancing */18

< ℓ,α> = MO(κ< M, AC, LC >, N ′, X);19

/* Maximizing θ via cost minimization, cf. Eq. 2 */20

for m = 1;m ≤ M ;m + + do21

/*dichotomic search of AC∗

m in [1 . . . ACm] */22

AC′

m = ACm
2

;23

LC′

m = N
′
·Vm

AC′
m

; /* load balancing and visit ratios */
24

AC′ =< AC1, ..., AC′

m, ..., ACM >;25

LC′ =< LC1, ..., LC′

m, ..., LCM >;26

< ℓ,α>= MO(κ< M, AC′, LC′ >, N′, X);27

if ℓ > ℓmax ∨ α > α′

max then28

pursue dichotomic search of AC∗

m in]
ACm

2
. . . ACm]29

else30

pursue dichotomic search of AC∗

m in [1 . . .
ACm

2
]31

return κ∗ (M, AC < AC∗

1
, .., AC∗

M
>, LC < LC∗

1
, .., LC∗

M
>32

We propose a utility-aware capacity planning method based
on the above utility function to calculate the optimal archi-
tectural and local configuration of a cluster-based multi-tier
application in such a way that the application performance
and availability preference for latency and abandon rate is
guaranteed while the cost of the application is minimized.
Calculating the optimal configuration of a multi-tier appli-
cation is thus equivalent to calculating the configuration for
which the utility function value is maximal, (i.e. optimal,
Θ∗).

Algorithm 1 describes the proposed capacity planning for
cluster-based multi-tier applications. It takes as inputs the
application workload amount N , the workload mix X; and
produces as output the application configuration that op-
timizes utility. The algorithm uses the performance and
availability preference parameters ℓmax and αmax, and the
model denoted by MO.

Roughly speaking, given an application workload and a
target performability preference, the capacity planning al-
gorithm builds an initial minimal configuration of the multi-
tier application, then calculates the performance and avail-
ability of this configuration based on the model, and tests
the estimated performance/availability against performabil-
ity preference. If performability preference is verified, the
capacity planning algorithm returns that configuration and
terminates; otherwise, it iterates on a new augmented config-
uration of the multi-tier application and repeats the process.

More precisely, the algorithm builds an initial configura-
tion with a minimal architectural configuration (for mini-
mal cost) and the corresponding local configuration in such
a way that availability preference based on αmax is guaran-
teed (cf. Algo. 1, lines 8-13). In the initial configuration,
each tier is provisioned with a single server. Admission con-
trol is applied based on the maximum abandon rate applied
to incoming workload, which produces the workload N ′ ac-
tually entering the system. At each tier, the server’s MPL
(i.e. local configuration) is simply assigned the number of
entering client requests at that tier; this is calculated based
on entering workload and visit ratios parameters (cf. Algo. 1,
line 11). The capacity planning algorithm then follows two
successive stages in order to guarantee performance and
availability objectives and to minimize cost. In a first stage
(cf. Algo. 1, lines 16-19), a configuration that verifies per-
formability preference of Eq. 1 is rapidly built, though that
configuration may not be minimal regarding cost. This first
stage simply consists in adding server machines to all tiers
until performance and availability objectives are met. At
each tier, servers MPL is assigned based on fair load balanc-
ing among servers of that tier. Thus, starting from that con-
figuration, the second stage of the algorithm maximizes the
utility of the multi-tier system through cost minimization
(cf. lines 22-31). To do so, it applies a dichotomic approach
for an efficient search of the minimal number of servers at
each tier (i.e. architectural configuration). The local config-
uration is calculated based on load balancing among servers
of a tier. In Algo. 1-line 24, the number of concurrent re-
quests that globally enter all replicas of tier Tm is by defini-
tion N ′ ·Vm. Thus, with load balancing between replicas, the

number of requests that enter one replica at tier Tm is N
′
·Vm

AC′
m

1. Finally, the algorithm produces an application configu-
ration that verifies performance and availability preference
while minimizing cost, thus, a configuration that maximizes
utility. As a result, and based on the produced configu-
ration, two techniques are used for reifying the configura-
tion in the application: a technique that applies provision-
ing through server allocation/deallocation and a technique
that uses server admission control to prevent thrashing.

1Though correct, the way MPL (i.e. local configuration)
is calculated here might be sensitive to workload amount
variation since it is calculated based on a given N ; and it
might incur frequent MPL reconfigurations. An improved
calculation of the MPL consists in augmenting its value to
the maximum as long as performability preference is verified.



4. EVALUATION

4.1 Experimental setup

4.1.1 Testbed application
The evaluation of the extended analytic model and utility-

aware capacity planning and provisioning techniques has
been conducted using the TPC-W benchmark [20]. TPC-
W is an industry standard benchmark from the Transaction
Processing Council that models a realistic web bookstore.
TPC-W comes with a client emulator which generates a set
of concurrent clients that remotely access the bookstore ap-
plication. They emulate the behavior of real web clients by
issuing requests for browsing the content of the bookstore,
consulting the best-sellers, etc. The client emulator gener-
ates a tunable workload; this allows us to vary the workload
amount and workload mix during the experiments. In our
experiments, the on-line bookstore was deployed as a cluster-
based two-tier system, consisting of a cluster of replicated
web/business servers as a front-end and a cluster of repli-
cated database servers as a backend.

4.1.2 Software and hardware environment
Our experiments have been conducted on a set of com-

puters organized as follows: a first computer dedicated to
the client emulator, a front-end cluster of replicated servers
running Apache Tomcat 5.5 web and application server, and
a back-end cluster of replicated servers running MySQL 5.0
database server. The cluster-based multi-tier TPC-W appli-
cation running with MoKa was deployed as follows. First,
aspect weaving was applied to the code of the TPC-W ap-
plication in order to automatically integrate monitoring fea-
tures as discussed in Section 3. Second, a proxy-based ap-
proach was followed in order to implement admission con-
trol, and load balancing among the replicas of a tier. Here,
load balancing is able to dynamically integrate/remove repli-
cas upon server (un-)provisioning. The experiments were
conducted on x86-compatible machines with bi-2.0 GHz AMD
Opteron CPUs and 2 GB RAM, connected via a 10 Gb/s
Ethernet LAN.

4.2 Model validation
We first conduct experiments to validate the accuracy of

the extended analytic model and its ability to reflect the
behavior of the cluster-based multi-tier application. In par-
ticular, we evaluate the ability of the model to reflect the
variation of latency ℓ and abandon rate α of the application
when input variables such as application workload amount
N and workload mix X vary. Thus, for the same set of in-
put variables, the performance and availability reified by the
model is compared with the actual performance and avail-
ability of the real system. Figure 4 describes workload vari-
ation, both in amount and mix, used in the experiments.
Here, two application mixes are considered Mix1 and Mix2;
the former is the TPC-W Browsing mix, and the latter is a
heavier version of the Browsing mix2. Mix2 involves more
requests being sent to tier 2 (then a larger visit ratio) and
an increased service time on tier 2.

Figure 3 presents the evolution over time of respectively
client request latency and abandon rate, for both the real

2Due to the lack of free and efficient solutions for dynamic
allocation and load balancing at database tier, we only use
read-only mixes.
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Figure 4: Workload variation

system and the modeled system, when the workload varies
according to Figure 4. For comparison with the base sys-
tem, we use two configurations: κ1 (2, AC < 2, 5 >, LC <

150, 100 >) and a larger configuration κ2 (2, AC < 4, 10 >

, LC < 800, 1000 >). The results show that the model is able
to render the behavior of the real system, for both latency
and abandon rate.

4.3 Capacity planning evaluation
In this section, we evaluate the proposed utility-aware ca-

pacity planning techniques. Here, we consider a performance
constraint limiting the maximum client request latency to
500 ms, and an availability constraint fixing the limit of
client request abandon rate to 5%. Thus, 95% of client re-
quests are handled by the application in less than half a
second. The role of the capacity planning is to guarantee
these constraints while minimizing the cost, through feed-
back provisioning and admission control.
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Figure 5: Architectural configuration of the con-

trolled system

In the following experiments, workload varies over time
as described in Figure 4. The application faces a first work-
load mix which then changes to another mix, and during
each mix the workload amount increases and then decreases.
Figures 5 and 6 respectively presents the architectural con-
figuration (i.e. #machines at first and second tier) and local
configuration (i.e. MPL at first and second tier servers) of
the controlled multi-tier application. Application configu-
ration varies with the workload. The largest architectural
configuration is obtained when application faces the heaviest
mix, which requires more treatment on tier 2, and a large
workload amount (between time instants 6000s and 7000s).

Figures 7 and 8 describes respectively latency and aban-
don rate of the multi-tier application when the workload
varies. It compare the uncontrolled base system (in the pre-
viously presented medium configuration κ1 and large con-
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Figure 3: Real system vs. modeled system
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tem

figuration κ2, cf. Section 4.2) with the controlled system.
The results show that the controlled system is able to main-
tain performance and availability below the limits, while the
uncontrolled system exceeds the latency limit with configu-
ration κ2 and violates the availability constraint with config-
uration κ1. Furthermore, we can notice peaks in the latency
and abandon rate of the controlled system, which correspond
to reconfiguration delays upon workload changes.
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Figure 7: Latency in presence of control
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Figure 8: Abandon rate in presence of control

5. RELATED WORK
Capacity planning and provisioning are critical issues for

the performance and availability of Internet services [14, 15,
6]. While the improvement of server performance and avail-
ability is usually achieved by system administrators using
ad-hoc tuning [2, 17], new approaches tend to appear to
ease the management of such systems.

Server admission control (i.e. MPL control) is extensively
studied in server systems. Elnikety et. al. apply it at the
level of a web server [9], Milan-Franco et. al. use it in
database servers [18], whereas Menascé et. al. study it at
each tier of a multi-tier system [16]. Some admission con-
trol solutions are proposed in the form of heuristics such as
the well-known hill-climbing heuristic [16]. Other solutions
are based on analytic models for quality-of-service guaran-
tees [11]. Diao et. al. use an analytic model to control MPL
in multi-tier systems [7]. Zhang et. al. propose a regression-
based modeling of multi-tier applications in order to predict
the capacity of applications in terms of allowed concurrent
clients [23].

Other approaches control the dynamic provisioning of servers
in cluster-based systems. Autonomic provisioning of database
servers is presented in [5], and dynamic server provision-
ing in multi-tier systems is described in [1]. While these
systems are based on heuristics, other approaches tend to
better characterize multi-tier applications through analytic



modeling. Villela et. al. follow a model-based approach for
provisioning the business tier in a multi-tier system [22]. Ur-
gaonkar et. al. apply an analytic model calibrated for the
underlying workload mix in order to plan the capacity of
multi-tier systems in terms of the number of servers to pro-
vision at each tier [21]. Both approaches are motivated by
performance objectives; however they require calibrating the
model with appropriate parameters.

In summary, our present work differs from other projects
in many aspects: (i) it performs capacity planning at all
tiers of a multi-tier system since the bottleneck tier may
differ from one workload to another, (ii) it combines per-
formance with availability objectives, (iii) it handles both
workload amount and workload mix variations without re-
quiring a manual recalibration of the model, (iv) it combines
admission control with server provisioning for a better usage
of resources, and (v) it follows a model-based approach that
maximizes the utility of applications, i.e. guarantees perfor-
mance and availability constraints while minimizing cost.

6. CONCLUSION
In this paper, we present MoKa , a middleware for adap-

tive modeling, capacity planning and dynamic provision-
ing of clusterbased multi-tier applications. The proposed
method includes four novel features: (i) A utility function
that takes into account performance and availability objec-
tives, and combines them to the cost of multi-tier applica-
tions; (ii) A utility-aware capacity planning algorithm that
calculates configuration of multi-tier applications that guar-
antees performance and availability constraints while mini-
mizing application cost of the application; (iii) The exten-
sion of a queuing theory-based analytic model that predicts
application performance with features for the prediction of
application availability in cluster-based multi-tier systems;
(iv) An adaptive model calibration that dynamically deter-
mines model parameters in order to handle both workload
amount and workload mix variations. Our experiments on
an online bookstore show that MoKa provides significant
benefits on application performance and availability.
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