
Architecture-Based Autonomous Repair Management:
An Application to J2EE Clusters

Sara Bouchenak1, Fabienne Boyer1, Daniel Hagimont2, Sacha Krakowiak1,
Adrian Mos2, Noël de Palma3, Vivien Quéma3, Jean-Bernard Stefani2

1 Université Joseph Fourier
Grenoble, France

2 INRIA
Grenoble, France

3 Institut National Polytechnique de Grenoble
Grenoble, France

Abstract

This paper presents a component-based architecture
for autonomous repair management in distributed systems,
and a prototype implementation of this architecture, called
JADE, which provides repair management for J2EE appli-
cation server clusters. The JADE architecture features three
major elements, which we believe to be of wide relevance
for the construction of autonomic distributed systems: (1) a
dynamically configurable, component-based structure that
exploits the reflective features of the FRACTAL component
model; (2) an explicit and configurable feedback control
loop structure, that manifests the relationship between the
managed system and repair management functions; (3) an
original replication structure for the management subsys-
tem itself, which makes it fault-tolerant and self-healing.

1 Introduction

Autonomic computing [18], which aims at the construc-
tion of self-managing and self-adapting computer systems,
has emerged as an important research agenda in the face
of the ever-increasing complexity and pervasiveness of net-
worked computer systems. Following [27], we believe an
important part of this agenda lies in the elicitation of ar-
chitectural principles and design patterns, as well as soft-
ware engineering techniques for the construction of auto-
nomic systems. We believe in particular that we need to
develop a principled approach to designing and architect-
ing autonomous management systems, which remains as
independent as possible from the implementation details of
managed systems. As a contribution to this goal, we present
in this paper the design of a self-healing failure repair man-
agement system, and the application of this design to the
construction of an autonomous repair management system
for J2EE clusters.

We call repair management an instance of failure recov-
ery management, whose main goal is to restore a managed
system, after the occurrence of a failure, to an active state
satisfying a given level of availability, according to a given
policy. For instance, a simple repair policy can be to bring
back the failed system to a known configuration which ex-
isted prior to failure. Typically, repair management can be
used in complement of classical fault-tolerance mechanisms
to ensure that a managed system satisfies an agreed level
of availability: for instance, a cluster system that is toler-
ant of f node failures can become only f − 1 tolerant if a
node fails; repair management can bring the system back to
an f -tolerant functioning regime. The repair management
system presented in this paper is self-healing in that it is
fault-tolerant, and deals with failures occurring in the repair
management system itself, without any human intervention.

Our autonomous repair management design contains
three main system architecture and software engineering el-
ements, which we believe to be of wide relevance for the
construction of self-managing and self-adapting systems,
and which constitute the main contributions of the paper:
(1) a dynamically configurable component-based architec-
ture and its supporting software infrastructure; (2) an ex-
plicit (and configurable) feedback control loop structure,
that manifests the relationship between the managed sys-
tem and repair management functions, and which maintains
a causally connected representation of the managed system;
(3) an original replication structure for the management sys-
tem, which makes it fault-tolerant and self-healing.

We have applied our repair management design to build
a prototype repair management system for J2EE application
server clusters, called JADE. Apart from the fact that Web
application servers constitute an important and represen-
tative segment of distributed computing, there are several
reasons for this choice of application area and experimen-
tal setting. First, performability management in application
servers still remains an open issue, witness several recent
papers that deal with this subject, such as [9, 14]. Our repair

management system improves on the state of the art in this
area by demonstrating how availability management can be
made entirely automatic, even in the presence of failures in
the management sub-system itself. Second, a J2EE appli-
cation server cluster constitutes a distributed system which
has a non-trivial complexity, involving several interacting
tiers, and combining different legacy middleware technolo-
gies (Web servers, EJB servers, databases). We demonstrate
with the JADE prototype that our design for repair manage-
ment can be applied to non-trivial legacy systems, with es-
sentially no modification of the legacy code. Third, the size
of J2EE clusters remains limited, allowing for practical ex-
periments, but scaling issues are already apparent when us-
ing group communication protocols such as atomic broad-
cast (see e.g. [1] for a discussion). We demonstrate with the
JADE prototype that our design for repair management can
be scaled to cluster size distributed systems.

The paper is organized as follows. Section 2 presents
the main requirements and underlying assumptions on the
environment for our repair management design. Section
3 presents the FRACTAL component model, which consti-
tutes the basis for our design. Section 4 presents the overall
feedback control loop the repair management system real-
izes. Section 5 describes the replication structure we use to
make the repair management system fault-tolerant and self-
healing. Section 6 describes a prototype implementation of
our design, called JADE, which applies it to the construction
of self-repairable J2EE application server clusters. Section
8 discusses related work. Section 9 concludes the paper
with a discussion of future research.

2 Requirements

We gather in this section the main requirements and un-
derlying assumptions for our design. There are both func-
tional requirements — which mandate the presence of spe-
cific capabilities —, and non-functional ones — which re-
quire that certain properties be achieved in the design and
its implementation.

Failure modes: the repair management system should
deal with silent hardware (machine crashes) and software
failures. An underlying assumption is that the interconnec-
tion network between the supporting machines is a mesh,
has known upper bounds on communication delays, and
does not fail1.

Basic repair policy: the repair management system
should support at least a basic repair policy consisting in
updating the failed managed system to a configuration that

1These are simplifying assumptions, in line with the high-performance
clustering environments we target with the JADE prototype. The overall
design would not be significantly impacted if these assumptions were in-
validated, however, since all communication paths in our component-based
design can be reified as components.

conforms to the same architecture description as the config-
uration in place prior to the occurrence of failure.

Fault-tolerance: the repair management system should
be fault-tolerant with respect to the failure (crash) of the
machines on which it executes.

Self-repair: the repair management system should be
self-healing in the sense that it should deal with failures oc-
curring in the repair management system itself. In other
words, repair management should also function to repair it-
self.2

Dynamic system configuration: the repair management
system should be dynamically deployable. In particular, it
should be possible to set up repair management on an al-
ready running managed system, and it should be possible
to dynamically modify the different elements of the repair
management system (e.g. its management policy, its repair
algorithms, its monitoring structure, etc.).

Support for ad-hoc administration: the repair man-
agement system should allow human administrators to mon-
itor the activity of the overall system (managed J2EE system
as well as repair management system), and to manually ef-
fect repairs, in replacement of the standard repair manage-
ment behavior. A human administrator should in addition
be allowed to dynamically set up a management console on
an arbitrary node (i.e. a management console should not be
tied to a specific node in the system and should be dynami-
cally deployable, as per the dynamic configuration require-
ment above).

Support for legacy systems: the repair management
system should be applicable to legacy systems (possibly
with reduced requirements)3.

Strict separation between mechanism and policy: the
repair management system should enforce a strict separa-
tion between mechanism and policy, with the goal of allow-
ing the execution of different management policies, possi-
bly at different levels of abstraction. In particular, it should
allow for different configuration and deployment policies,
from the exact specification of selected components and
locations at which they should be deployed, to the indi-
rect specification of selected components and their locations
through high-level management goals and constraints4.

Minimal interference: the operations of the manage-
ment sub-system should interfere minimally with the be-

2Note that this is a different requirement from the fault tolerance re-
quirement above.

3A legacy application usually appears as a “black box” providing im-
mutable interfaces for activation and monitoring; its internal structure is
not accessible.

4For instance, one can have different levels of declarativity in the spec-
ification of deployment and configurations: the selected components and
the location at which they should be deployed are explicitly specified; the
components and locations are not explicitly specified, but the administrator
may specify preferences; the specification is in terms of higher-level goals,
e.g. select the components and the locations for maximal availability or
maximal performance.

2

havior of the managed system. Thus, the repair manage-
ment system should preserve the correct operation of the
managed system, and the performance interference between
the nominal behavior of the system and its behavior under
management should be minimal.

3 Component basis

Our repair management system is built using the FRAC-
TAL reflective component model [7]. In this section, we
present briefly the FRACTAL model, and how we use it.

3.1 The FRACTAL component model

The FRACTAL component model is a general component
model which is intended to implement, deploy, monitor, and
dynamically configure complex software systems, includ-
ing operating systems and middleware. This motivates the
main features of the model: composite components (to have
a uniform view of applications at various levels of abstrac-
tion), introspection capabilities (to monitor and control the
execution of a running system), and reconfiguration capa-
bilities (to deploy and dynamically configure a system). A
FRACTAL component is a run-time entity that is encapsu-
lated, and that has a distinct identity. A component has one
or more interfaces. An interface is an access point to a com-
ponent that supports a finite set of methods. Interfaces can
be of two kinds: server interfaces, which correspond to ac-
cess points accepting incoming method calls, and client in-
terfaces, which correspond to access points supporting out-
going method calls.

Communication between FRACTAL components is only
possible if their interfaces are bound. FRACTAL supports
both primitive bindings and composite bindings. A primi-
tive binding is a binding between one client interface and
one server interface in the same address space. A com-
posite binding is a FRACTAL component that embodies a
communication path between an arbitrary number of com-
ponent interfaces. These bindings are built out of a set of
primitive bindings and binding components (stubs, skele-
tons, adapters, etc.). The FRACTAL model thus provides
two mechanisms to define the architecture of an application:
bindings between component interfaces, and encapsulation
of components in a composite.

The above features (hierarchical components, explicit
bindings between components, strict separation between
component interfaces and component implementation) are
relatively classical. The originality of the FRACTAL model
lies in its open reflective features. In order to allow for
well scoped dynamic reconfiguration, a FRACTAL compo-
nent can be endowed with controllers allowing its introspec-
tion and the control of its behavior.

At the lowest level of control, a FRACTAL component is
a black box that does not provide any introspection capa-
bility. Such components, called base components, are sim-
ilar to plain objects in an object-oriented language. Their
explicit inclusion in the FRACTAL model facilitates the in-
tegration of legacy software. At the next level of control,
a FRACTAL component provides a Component interface,
similar to the IUnknown interface in the COM model,
that allows one to discover all its (client and server) inter-
faces. At upper levels of control, a FRACTAL component
contains several controllers that expose (part of) its internal
structure. A controller can superpose a control behavior to
the behavior of the component’s sub-components, including
suspending, checkpointing and resuming activities of these
sub-components. A controller can also play the role of an
interceptor, used to export the interface of a sub-component
as an interface of the parent component, and to intercept the
oncoming and outgoing method calls of an exported inter-
face. The FRACTAL model allows for arbitrary (including
user defined) classes of controller and interceptor objects.
It specifies, however, several useful forms of controllers,
which can be combined and extended to yield components
with different reflective features, including the following:

Attribute controller: this controller allows getting and
setting the component’s attributes, i.e. its configurable
properties.

Binding controller: this controller allows binding and
unbinding the component’s client interfaces to server inter-
faces.

Content controller: this controller supports an interface
to list, add and remove sub-components in the content of the
component.

Life-cycle controller: this controller allows an explicit
control over the component’s execution. Its interface in-
cludes methods to start/stop the component’s execution.

3.2 Using components and software architecture

We use the component model in three main ways: (1)
for obtaining a dynamically reconfigurable structure, (2) for
instrumenting the managed system, and (3) for building a
causally connected system representation. The construc-
tion of a system with FRACTAL components yields a dy-
namically reconfigurable system, where a component is a
unit of reconfiguration. We exploit this for the dynamic de-
ployment of the repair management system. Each compo-
nent of the repair management system has three controllers
(binding, content, and life-cycle) that allow updating the
configuration of the management system. Moreover, in-
strumentation of the managed system can be done using a
set of controllers behind which legacy software is wrapped.
These controllers provide us a way to build behavior moni-
toring adapted to each component, to control the life-cycle

3

of components, and to control the way component inter-
faces are bound and interact. Central to the operation of
the repair management system, is a representation of the
managed system, called the system representation. A causal
connection is maintained between the system representation
and the managed system, which means that relevant state
changes occurring in the system are mirrored in the system
model, and, conversely, that any changes in the system rep-
resentation are reflected in the actual evolution of the sys-
tem. The system representation consists in a software ar-
chitecture description of the system, expressed in terms of
the component model, exhibiting bindings between compo-
nents, and containment relationships. The software archi-
tecture description is generated from a specification written
in the FRACTAL architecture description language (ADL).

4 Overall architecture

Our repair management architecture can be described as
a software architecture conforming to the FRACTAL compo-
nent model. An instance of our repair management archi-
tecture constitutes a management domain, i.e. a set of com-
ponents under a single repair management authority. Our
architecture can extend to the case of hierarchically orga-
nized management domains, but we do not describe this ex-
tension in this paper. To present our repair management
architecture, we first define the components that constitute
a repair management domain. We then present the overall
structure of the repair management feedback control loop.
The replication structure for the repair management system,
which ensures it self-healing property, is described in the
next section.

4.1 Repair management domain

The scope of a repair management domain, in our design,
is defined by a set of components, called nodes, together
with their sub-components. A node corresponds to an ab-
straction of a physical computer. Sub-components of a node
correspond to the different software components executing
in the node. The set of nodes in a repair management do-
main can vary dynamically over time, due to failures, and
to the introduction of new nodes. The introduction of a new
node in a management domain is the responsibility of the
node manager component. The node manager provides two
basic operations: an operation to request the introduction of
a new node, and an operation to collect a failed node.

A node component provides operations for deploying
and configuring components executing on the node. The
state of a node component is determined by its set of sub-
components, together with their established intra, and inter-
node bindings. Operations provided by a node component
include the addition and removal of components to and from

a node. For instance, in the JADE system, which applies our
repair management architecture to J2EE application server
clusters, components which can be added to, or removed
from, a node include:

• Middleware components that comprise the different
tiers in a J2EE server.

• Application components that comprise Web service
applications in a J2EE server.

• Node failure sensor components, which enable the re-
mote monitoring of a node status (active or failed).

• Components that form the repair management sub-
system per se, described in the next subsection.

In addition, a node provides basic life-cycle operations
to stop and resume its execution.

Some remarks are in order. First, note that instantiating
a node implies bootstrapping the underlying machine with
some remote communication capabilities, and can imply
passing the node manager appropriate values (e.g. software
packages) in a request for introduction of a new node. Sec-
ond, note that a repair management domain explicitly com-
prises all the components that form the repair management
system itself, meaning that the repair management system
itself is subject to its repair management policy.

4.2 Repair management control loop

The overall structure of the repair management system
takes the form of a system feedback control loop, as illus-
trated in Figure 1. We describe each element of the loop.

Managed system
S

SActuators

Manager component

Notification

transport

Command

transport

S
SSensors

Figure 1. Management control loop

Sensors. Sensors are in charge of observing the system;
basic observations comprise: component state changes,
node resource usage observations, and component failure
observations. Node failure observations are the result of
a failure detection protocol that is run between monitored

4

nodes and the monitoring node. The failure detection proto-
col involves components residing on each monitored node,
components residing on the monitoring node, and bindings
between them.

Actuators. Actuators exercise the following basic ac-
tions5 on managed components (including nodes):

• Life-cycle actions: to stop and resume execution of
components in a node, and to stop and resume exe-
cution of binding components.

• Configuration actions: to add or remove a component
from a node, to create or remove a binding component,
and to modify the code of running components.

Transport. Bindings that bind sensors, actuators and
the Manager component, are referred to, collectively, as
the transport subsystem. Notification of failures follow an
asynchronous operation semantics, but are subject to timing
and safety guarantees. Commands issued by the Manager
component (typically, configuration actions) obey a syn-
chronous at most once operation semantics, under timing
constraints.

Manager. The Manager component implements the
analysis and decision stage of the repair management con-
trol loop. An example manager component is illustrated
in Figure 4. The Manager component contains several
sub-components: a set of policy components (cluster man-
ager, application manager, failure manager, etc.) and a sys-
tem representation component. The cluster manager imple-
ments a policy for node allocation. The application manager
enforces policies for deploying components on nodes (e.g.
deployment policies for J2EE tiers and for applications).
The failure manager enforces the repair management pol-
icy per se. The system representation maintains a causally
connected representation of the managed system as follows:

• On bootstrap of the repair management system, the
system representation contains an architecture descrip-
tion of the system after initialization (including nodes
that run the management sub-system with the compo-
nents they contain).

• Policy components update the system model with the
new nodes they have introduced (through requests to
the node manager), if any, and the new components
they have added to the active nodes in the domain.

• Policy components install or update bindings between
each node they have installed or updated, and the Man-
ager component.

5Basic actions are actions which represent mechanistic, imperative
commands, without intervening complex decision making in their realiza-
tion – at least from the point of view of the management system. Policies
are then built on top of these basic mechanisms.

• Upon receipt of a relevant state change from a sensor,
the Manager component updates the system represen-
tation to reflect the new state of the system.

• When a command is executed that modifies the state
of the system, the Manager component transactionally
updates the system representation to reflect the new
state of the system.

The behavior of the repair manager is determined by the
repair policy it enforces. Here is an example of a (simple)
repair policy, implemented in the JADE system:

1. On receipt of a J2EE component failure, execute the
following commands, in sequence: terminate bind-
ings to the failed component; start a new (possibly the
same) J2EE component replacing the previous one in
the same node; re-establish failed bindings.

2. On receipt of a node failure, execute the following
commands in sequence: terminate bindings to all the
failed J2EE components which were supported by the
node; request a new node from the node manager; in-
stall a configuration isomorphic to the failed one on
the selected node; re-establish all failed bindings to the
new configuration.

3. If the node manager raises an exception, signal a node
availability fault.

Several remarks are in order. The above policy implicitly
considers stateless configurations. More complex policies
are required to deal properly with stateful component con-
figurations. Also, the policy above is minimal in the sense
that it considers all external requests are equivalent. More
complex policies are needed, for instance, when differenti-
ation exists between requests, based on various factors such
as session age or principals. Scenarios with differentiated
services illustrate the need to consider the interaction of sev-
eral system management functions, in particular between
failure management and performance management, which
is the function guaranteeing a given level of performance to
potentially different classes of customers. We leave this for
future work.

5 Replication structure

The control loop structure presented in the previous sub-
section is sensitive to failures impacting the Manager com-
ponent or the node running the Manager component (called
the Manager node). We present in this section a replication
structure which makes the Manager component tolerant of
failures and which allows the repair management system to
be self-healing in the sense that repair management policies
enforced by the Manager component can be applied to the

5

repair of the Manager component itself or of the Manager
node. For simplicity, the description in this section consid-
ers only the case of machine failures.

The replication structure, illustrated in Figure 2, is ob-
tained by: (1) actively duplicating the Manager component
on different nodes, and (2) by ensuring that the System Rep-
resentation contains a representation of the Manager nodes
themselves. A simple active replication of the Manager
component on different nodes is not sufficient, however, for
there are subtle interplays between the different elements
involved in the construction of the feedback loop described
in the previous subsection. In particular, sensors for node
failure detection are located on the Manager node. If the
Manager node can fail, one must replicate the node fail-
ure sensors as well. Another issue arises with the execu-
tion of the group communication protocol used for imple-
menting the active replication of the Manager component:
for reasons of efficiency and fault-tolerance, we make use
of a uniform atomic broadcast protocol that uses a form of
fixed sequencer (called Leader), with sequencer election in
case of sequencer failure; to ensure a consistent state of the
Manager component replicas, the repair manager compo-
nent must be able to assess the Leader status of its support-
ing node.

Manager component

S

Managed system

S
S

S
S
A

Group communication protocol

Manager component Manager component

(leader)

SS
S

S
S
S

Notification

transport

Command

transport

Figure 2. Replication structure

The active replication of the Manager components is thus
realized according to the following scheme:

• The Manager component and the node failure detec-
tion sensors are replicated on different nodes, accord-
ing to the required level of fault-tolerance. Since we
only consider silent failures with no possible network
partition, f Manager node failures can be tolerated us-
ing f + 1 nodes.

• Each failure notification to, and each command from, a
Manager component, is broadcast to all other Manager
components in the system, using the uniform atomic
broadcast protocol.

• Only the policy components of the Leader Manager
node act on failure notifications or instructions from
the Console.

• Associations between notifications and resulting com-
mands, as well as between console instructions and re-
sulting commands, are assigned unique identifiers and
are journalized by policy components in each Man-
ager.

• Identifiers for notification/command pairs uniquely
identify commands, and are sent as additional param-
eters of each command. Actuators discard commands
that bear the identifier of a previously executed com-
mand. This takes care of the potential window of vul-
nerability that exists between the completion of a com-
mand and the failure of a Leader Manager node.

6 Implementation

The JADE prototype is an implementation of the repair
management architecture described in sections 4 and 5.
JADE targets specifically clusters of multi-tier J2EE appli-
cation servers; however most of the JADE prototype can be
applied to other application areas. In this section, after in-
troducing J2EE applications, we discuss two parts of the
JADE prototype which are not covered by the architecture
description in previous sections: the wrapping of legacy
components in FRACTAL components, and the implementa-
tion of the system representation. We terminate this section
with a brief presentation of a repair management scenario
which has been experimented with JADE and a qualitative
evaluation of the JADE prototype.

6.1. J2EE applications

The J2EE architecture defines a model for developing
distributed multi-tiered applications. The application usu-
ally starts with requests from Web clients that flow through
an HTTP server, then to an application server to execute the
business logic of the application and dynamically generate
Web pages, and finally to a database that stores the persis-
tent data (see Figure 3).

6.2. Legacy component wrapping

We used FRACTAL to wrap the different software com-
ponents which constitute a J2EE architecture. In our cur-
rent prototype, these software bricks are the Apache HTTP

6

Database serverClient W eb server Application
server

SQ L req.

SQ L res.

HTTP response

HTTP request

Internet

W eb tier Business tier Database tier

Figure 3. Architecture of J2EE applications

server, the Tomcat Servlet Container, the Jonas EJB server
and the MySQL database server. A FRACTAL component is
associated with each of these bricks. When instantiated, this
FRACTAL component is colocated with the wrapped soft-
ware and it provides the control interfaces required for its
management. It is implemented in Java and it translates all
invocations on its control interfaces into adequate control
operations on the legacy software. For each component, we
implement the following interfaces:

Attribute controller: The implementations of the at-
tribute getter and setter methods provide a mapping of the
component’s attributes on the configurable attributes of the
wrapped legacy software.

Life-cycle controller: The implementations of the life-
cycle methods generally rely on system calls to run the
script file (provided in the legacy software tools) associated
with each operation.

Binding controller: In our J2EE application example,
software tiers (Apache, Tomcat, Jonas, MySQL) are in-
terconnected to form an architecture which implements a
dynamic content Web server. Our wrapping reifies these
interconnections as FRACTAL bindings. For instance, the
Apache and Tomcat tiers are interconnected using a mod jk
connection [25].

6.3. System representation

The system representation provides a view of the runtime
system architecture, which is isomorphic, introspectable
and causally connected to runtime components. The sys-
tem representation is built automatically from the ADL de-
scription of the managed system, and consists in a set of
components, called meta components.

A meta component has the same interfaces, bindings, at-
tributes and internal configuration (in terms of meta compo-
nents) as the component it reifies (base level component).
Controllers of a meta component implement the causal con-
nection with the corresponding base level component. For
instance, invoking a binding controller at the meta level to

bind two meta components will invoke the corresponding
binding controller at the base level.

Both the managed system and the management system
are described with the FRACTAL architecture description
language (ADL). Architecture descriptions are used by con-
figuration managers to deploy all the system components at
runtime.

6.4 Manager component

Figure 4 illustrates the structure of the management com-
ponent that was deployed in our experiments. Notice here
that this is only an example of a management component
that can be easily defined thanks to JADE flexibility.

Software

Repository

Clusters

Manager
Application

Manager

Failure

Manager

node

allocator
cluster

config

Naming

Service

Manager

Global

Manager

System Representation

Software

Repository

Clusters

Manager
Application

Manager

Failure

Manager

Naming

Service

Global

Manager

System Representation
Manager

Figure 4. Manager component

The main components of this architecture are Managers,
which implement administration functions for particular
concerns. In our experiments, the addressed concerns are
respectively cluster management, application management,
and failure management.

7

The Cluster Manager implements a policy regarding the
allocation of nodes and the placement of the managed en-
tities on these nodes. Each node is represented by a com-
ponent, which includes each entity deployed on this node.
Arbitrary cluster management policies can be defined, in-
cluding management of sub-clusters and the management
of virtual cluster or nodes.

The Application Manager manages the architecture of
the application. In our J2EE scenario, it provides functions
for deploying an initial application architecture which in-
cludes Apache, Tomcat and MySql components. It also pro-
vides basic reconfiguration operations which may be used
by other managers, e.g. for adding/replacing a component.

The Failure Manager implements a policy regarding re-
pair management. It dynamically deploys and configures
control loops that implement repair facilities. Control loops
are composed of sensors, actuators and a Repair Manager
component.

6.5 Repair management

Our current implementation of repair management in
JADE relies on the introspection facilities of FRACTAL that
allow dynamically retrieving the managed system’s archi-
tecture. When a failure is notified to a repair manager com-
ponent by a sensor, the repair algorithm uses FRACTAL in-
trospection interfaces to access the architecture of the man-
aged system (using the System Representation) and finds
which components were affected by the failure. A node
is allocated and the affected components are re-deployed
on the allocated machine. These components are then inte-
grated in the overall software architecture, thus reaching a
global architecture equivalent to the one preceding the fail-
ure. Notice here that repairing this overall system archi-
tecture implicitly updates each manager’s state consistently.
This algorithm is not tied to a particular application envi-
ronment, since it applies to any distributed FRACTAL com-
ponent architecture. Furthermore, JADE being structured
in terms of FRACTAL components, the repair algorithm ap-
plies to JADE itself in the sense that it can repair JADE man-
agers whenever affected by a failure.

6.6. Example scenario

Figure 3 presents a simple J2EE configuration, involv-
ing Apache, Tomcat, Jonas, and MySQL. Consider a sce-
nario where the machine hosting the Tomcat server fails.
The failure of the Tomcat server is notified by a sensor node
failure detector to the repair manager. The repair manager
checks, in the System Representation, the configuration of
the failed node prior to failure. The repair manager requests

a new node from the node manager, deploys a Tomcat server
on it, and configures the Tomcat server. Finally, the repair
manager sets up a node failure detector sensor for the new
node, and updates the System Representation accordingly.

7 Evaluation

7.1 Qualitative assessment

This section assesses the adequacy of JADE regarding the
requirements enounced in section 26.In its current version,
JADE only deals with silent hardware failures. However,
since it relies on and benefits from the FRACTAL compo-
nent model, it can easily be extended to deal with network
or software failures. For instance, a software failure de-
tector can be implemented by a controller monitoring the
behavior of the component it controls. The implemented
scenario demonstrates a basic repair policy where a tier
affected by a machine crash can be dynamically redeployed
to restore the application in its initial state. Moreover, we
have shown that by duplicating the repair management sys-
tem and by using an adequate group protocol, it is possible
to build a scalable self-healing repair management sys-
tem. We have not yet implemented the duplication of the
management system, but we already have an implementa-
tion of the required group communication library. Dynamic
system configuration is systematic in JADE. An applica-
tion managed by JADE is wrapped by FRACTAL compo-
nents and the repair system is developed with Java-based
FRACTAL components. Therefore, both the application and
the system benefit from FRACTAL dynamic configuration.
FRACTAL also provides an explorer that can be used as
a management console providing support for ad-hoc ad-
ministration.We have shown that FRACTAL allows wrap-
ping legacy software by implementing a set of controllers.
In particular, we have detailed how controllers can be de-
veloped to wrap the tiers found in clustered J2EE applica-
tions. JADE being designed in terms of FRACTAL compo-
nents, any of its constituents can be replaced (at any level
of abstraction) to implement a specific policy. In partic-
ular, the deployment and repair management services can
be adapted to specific needs. In this way, JADE enforces
separation between mechanisms and policies. Finally, it
is important to note that the JADE design strives to mini-
mize interference with application performance. Indeed,
bindings between wrapped components are reified (using a
binding controller), but, as shown in our J2EE experiment,
none of the communication between components are inter-
cepted.

6The main requirements enumerated in this section 2 are quoted in bold
font in the text below.

8

7.2 Quantitative evaluation

We have conducted a series of experiments in order to
determine the costs and benefits of using the JADE repair
management architecture in a close-to-reality J2EE sce-
nario. The results prove that JADE can handle consecu-
tive system failures and automatically restore system per-
formance without inducing a significant runtime overhead.

7.2.1 Environment

The tests have been carried out using 7 dedicated machines,
connected via a Gigabit Ethernet network. All machines
were dual Itanium 900 Mhz servers with 3 GB of RAM
and 10000 rpm SCSI drives, running Linux kernel 2.4 SMP
ia64. The servlet-only version of RUBiS [20] was used for
performance evaluation. RUBiS is an auction application
prototype, modeled after eBay with the purpose of serving
as a performance benchmark for application servers [11].
The J2EE architecture employed a Web tier, a middleware
tier and a database tier. The Web tier had one Apache ma-
chine for serving the static HTML pages. The middleware
tier consisted of four Tomcat machines for executing the
servlets and the database tier had one MySQL machine for
hosting the RUBiS database. The Apache machine was set
up to use round-robin load balancing for servlet requests
sent to the Tomcat servers. All Tomcat machines were
configured to use the Sun JVM version 1.4.2 07-b05 for
ia64 architectures. All tests used the RUBiS client emu-
lator running on a dedicated client machine to stress-test
the servers. The load consisted of 600 simultaneous clients
performing a selection of operations including browsing a
product database and placing auction bids on selected items
[11]. Each test was timed to include a 500s ramp-up time,
4000s duration and 500s cool-down period. The CPU mea-
surements were collected by the RUBiS client emulator us-
ing the widely available sar tool part of the sysstat suite
that is found in most Linux distributions. The values for
throughput and average response times were computed by
additional logic added to the client emulator. They refer to
HTTP requests sent by the virtual clients to the Web tier.
Such requests include static HTML elements and servlets
and they were generated during the tests using the default
RUBiS transition table [20] [11].

7.2.2 JADE management overhead

In order to determine the overhead imposed by JADE, we
have first run the RUBiS benchmark in an unmanaged en-
vironment (i.e. without JADE) and then in a JADE managed
environment. The comparison of average response time and
throughput values obtained in the two cases is presented in
table 1.

Original JADE

Throughput [req/sec] 82.75 82.75
Avg. Response Time [ms] 194.5 214.75

Table 1. Runtime overhead

The results show that using JADE induces a small over-
head which is due to the periodic probing of the registered
components that correspond to the managed servers and the
processing of received data. The next section shows that this
overhead remains relatively constant even in server-crash
conditions.

7.2.3 Automatic failure recovery

In order to evaluate the automatic repair functionality of
JADE, server crashes were induced in the deployed system.
Three Tomcat servers were crashed consecutively, each af-
ter a quarter of the test duration (excluding the warm-up
time). This eventually resulted in only one server without
a crash. All tests were repeated three times and results av-
eraged out. Figure 5 shows the evolution of CPU usage
for the Tomcat servers in the described scenario, when the
application runs without being managed by JADE. It can
be seen that after each server crash, the remaining servers
compensate accordingly and their CPU usage increases to
accommodate the constant client load. After the third crash,
the single remaining server is almost saturated and this re-
flects significantly in the response times experienced by the
users. In extreme conditions, the consecutive or simultane-
ous crash of a number of servers can lead to complete sat-
uration and loss of availability of the remaining machines,
with the effect that client requests are rejected at the Web
tier level.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
ro

ce
ss

or
 u

sa
ge

 in
 %

Measurements

Processor Usage

Tomcat 0
Tomcat 1
Tomcat 2
Tomcat 3

Figure 5. CPU evolution without JADE

In contrast to the above situation, when JADE manages

9

the running environment, the CPU load remains constant
with the exception of isolated usage peaks corresponding
to server redeployment (see figure 6). Note that for the
purpose of the tests, the repair manager used the same ma-
chines to restore the crashed Tomcat server. This however is
not mandated by the JADE functionality and other available
machines in the cluster could be automatically activated as
replacements. Since the crashed servers are immediately
identified by the repair manager, they can be quickly re-
stored and the remaining healthy machines do not need to
compensate and increase their CPU load.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

P
ro

ce
ss

or
 u

sa
ge

 in
 %

Measurements

Processor Usage

Tomcat 0
Tomcat 1
Tomcat 2
Tomcat 3

Figure 6. CPU evolution with JADE

Table 2 shows the evolution of average response time and
throughput for each of the test segments (corresponding to
the periods before crashes of Tomcat servers). As expected
these performance values degrade with each server crash
in the case of the unmanaged system, with a significant
degradation corresponding to the situation in which only
one server remains active. However, when using JADE, the
performance characteristics remain approximately constant
throughout the entire duration of the test. The only changes
in performance are due to the short repair operations which
require the redeployment of the appropriate software envi-
ronment. We envisage that for long running systems where
crashes are not as frequent as in our scenario, the overhead
induced by the repair operations will account for even less
overall impact. The automatic, short and contained repair
operations, together with the low overhead induced when
the system is healthy (see 7.2.2) suggest that JADE could
contribute to achieving the goal of automatic management
of long running, unattended enterprise systems.

8 Related work

Our work is related to several different research do-
mains. We single out the following ones: architecture-

based self-healing systems, distributed configuration man-
agement, J2EE application server management and cluster
and large scale distributed systems management.

Architecture-based self healing systems. Our repair
management architecture is an example of architecture-
based management [13], in that management functions
rely on, and exploit an explicit, causally connected sys-
tem model which is essentially an architectural description
of the running system. There are several works that have
adopted an architecture-based approach to system manage-
ment in the recent years, e.g. [21, 17, 5]. Among those,
the work which is closest to ours is the Darwin-based sys-
tem described in [17]. There are two main differences be-
tween this work and ours. First, we exploit the FRAC-
TAL component model [7], which provides more flexibility
and run-time adaptability than Darwin. Second, our repair
management system exhibits a reflexive structure, where
key management services (including monitoring, transport,
atomic broadcast, and distributed configuration) are them-
selves component-based, and can be supervised along the
same lines as the managed system. In the Darwin-based
system, this is not the case. Finally, the Darwin-based sys-
tem maintains an explicit system representation (which does
not cover infrastructure elements but merely application-
level components) at each node. JADE does not maintain
the same global system representation at each node; instead,
JADE maintains a separate view of the system configuration,
which reduces the interference between managed system
and management system, and alleviates the scaling prob-
lems from which the Darwin-based system suffers.

Cluster and large scale distributed systems manage-
ment. There are numerous works dealing with cluster-
based and large scale distributed system management. A
large number of them, e.g. [3, 12, 2, 16], deal mostly with
resource management, and focus less on recovery manage-
ment. A work which is closer to ours is that on the BioOpera
system [4], which features an explicit representation of the
managed system (called “cluster-awareness”, in the form of
instrumented workflows representing application tasks and
node status information), and a recovery management sys-
tem based on task checkpointing. There are however sev-
eral differences between our work and BioOpera. First,
one can note that the system representation in BioOpera is
only derived systematically for application workflows. The
cluster system instrumentation is ad-hoc, and thus does not
provide for the general framework for repair that we have
presented. Second, in contrast to our repair management
system, where arbitrary configuration changes can be taken
into account, dynamic reconfiguration in BioOpera appears
limited to the introduction of new workflows and the han-
dling of node or workflow failures. As a final remark, we
can note that the task monitoring and the task recovery ser-
vices that BioOpera provides can be readily provided in our

10

Throughput Orig. Throughput JADE Resp. Time Orig. Resp. Time JADE

4 servers 82 83 213 239
3 servers 83 83 241 303
2 servers 83 82 266 304
1 servers 77 83 879 310

Table 2. Performance parameters - server crashes

system, provided that the managed components provide a
refined life-cycle controller.

Distributed configuration management. Much work
has also been conducted on distributed configuration man-
agement [26, 6, 22, 24]. The closest work to ours [19]
presents a model for reifying dependencies in distributed
component systems. They consider two kinds of depen-
dencies: prerequisites that correspond to the requirements
for deploying a component, and dynamic dependencies be-
tween deployed components. Each component is associated
with a component configurator which is responsible for en-
suring that its dependencies are satisfied both at deployment
and reconfiguration time. JADE differs by three main char-
acteristics:

• The system representation used in JADE is more ex-
pressive: beside component dependencies which cor-
respond to binding and containment relationships in
FRACTAL, the system representation allows describing
component attributes and could easily be extended to
support, for instance, the description of components’
behavior.

• JADE being built using FRACTAL, it benefits from its
hierarchical component model, which allows uniform
description of the managed system (from low level re-
sources to applicative components). Thus, systems can
be managed at various granularities.

• JADE allows dynamic reconfiguration to be applied to
itself, which is not the case for component configura-
tors that cannot be reconfigured at runtime.

J2EE management. We can also relate our work to re-
search dealing with availability management in J2EE clus-
ters. A number of works in this area rely on tier replica-
tion, which is both a means to scale up performance and to
guarantee high availability. In this vein, experiments were
reported for database-tier replication (e.g. C-JDBC [10]),
EJB-tier replication (e.g. as in JOnAS [23] and JBoss [15]),
servlet-tier replication (e.g. as in mod jk [25]). Most pro-
posals are statically configured. As a consequence, they do
not allow automatic adaptation of the application (e.g. re-
pairs or installations on dynamically allocated machines).
Recently, the JAGR system [8] has demonstrated how to
handle transient software faults in J2EE components. The

motivation of this approach is that in the presence of tran-
sient software faults, determining the faulty components of
the application and rebooting them may be the unique al-
ternative to rebuild a consistent state of the system. The
JAGR approach is complementary to ours (especially in its
software fault detection aspects), which provides a general
repair management for J2EE servers. Moreover, JAGR does
not provide a self-healing management system, relying as it
does on a unique reboot server.

9 Conclusion

We have presented in the paper a repair management sys-
tem, which emphasizes a principled, architecture-based ap-
proach to the construction of self-managed systems. We
have implemented this system in the JADE prototype, which
targets repair management in J2EE application servers.
Our work demonstrates how to build self-configuring and
self-healing systems, through a combination of reflective
component-based design, an explicit control loop design
pattern, and management system replication. It should be
noted that we exploit reflection at two levels: at the level
of individual components, which provide access to their in-
ternal configuration through FRACTAL controllers, and at a
system-wide level through a causally connected system rep-
resentation component. We believe this reflective design,
and the potential for automation which it demonstrates, to
be an original contribution of this paper, which we think is
applicable to other system management functions.

Much work of course remains to be done to fully validate
this design. First, we need to complement our quantitative
evaluation with that of the self-healing structure of JADE.
Second, we need to extend our prototype to handle software
failures in full by introducing appropriate software failure
detection facilities. We plan to exploit the failure detection
facilities of the PinPoint system [8] to that effect. Third,
we need to extend our current scheme to take into account
more complex component life-cycles, allowing distributed
activities to be repaired and recovered along with individual
components. Finally, we need to assess the scalability of our
architecture to larger scale distributed systems. There are
several interesting possibilities to consider. One would be
to consider hierarchies of management domains organized
as we described in the paper, with system representations
varying in abstraction level according to their level in the

11

domain hierarchy. Another one would be to consider super-
peer based network overlays for ensuring replication among
management systems in the domain hierarchy.

References

[1] T. Abdellatif, E. Cecchet, and R. Lachaize. Evaluation of a
Group Communication Middleware for Clustered J2EE Ap-
plication Servers. In Proceedings Int. Symposium on Dis-
tributed Objects and Applications (DOA 2004), 2004.

[2] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalan-
tar, S. Krishnakumar, D. Pazel, J. Pershing, and B. Rochw-
erger. Oceano - SLA based management of a computing
utility. In Proceedings of the 7th IFIP/IEEE International
Symposium on Integrated Network Management, May 2001.

[3] Mohit Aron, Peter Druschel, and Willy Zwaenepoel. Cluster
reserves: a mechanism for resource management in cluster-
based network servers. In Proceedings of the ACM SIGMET-
RICS Conference on Measurement and Modeling of Com-
puter Systems, pages 90–101, Santa Clara, California, June
2000.

[4] W. Bausch, C. Pautasso, R Schaeppi, and G. Alonso. Bio-
Opera: Cluster-Aware Computing. In Proc. IEEE Interna-
tional Conference on Cluster Computing (CLUSTER 2002).
IEEE Computer Society, 2002.

[5] G. Blair, G. Coulson, L. Blair, H. Duran-Limon, P. Grace,
R. Moreira, and N. Parlavantzas. Reflection, self-awareness
and self-healing in OpenORB. In Proceedings of the 1st
Workshop on Self-Healing Systems, WOSS 2002. ACM,
2002.

[6] M. Blay-Fornarino, A.-M. Pinna-Dery, and M. Riveill. To-
wards dynamic configuration of distributed applications. In
Proceedings of the International Workshop on Aspect Ori-
ented Programming for Distributed Computing Systems in
association with ICDCS ’02, 2002.

[7] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.B.
Stefani. An Open Component Model and its Support in Java.
In Proceedings CBSE ‘04, LNCS 3054. Springer, 2004.

[8] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. A Microrebootable System - Design, Implemen-
tation, and Evaluation. In Proceedings OSDI ‘04, 2004.

[9] G. Candea, E. Kiciman, S. Zhang, P. Keyani, and A. Fox”.
JAGR: An Autonomous Self-Recovering Application Server.
In Proc. 5th International Workshop on Active Middleware
Services, 2003.

[10] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC:
Flexible Database Clustering Middleware. In FREENIX
Technical Sessions, USENIX Annual Technical Conference,
2004.

[11] Emmanuel Cecchet, Julie Marguerite, and Willy
Zwaenepoel. Performance and scalability of ejb ap-
plications. In Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, pages 246–261. ACM Press,
2002.

[12] Jeffrey S. Chase, David E. Irwin, Laura E. Grit, Justin D.
Moore, and Sara E. Sprenkle. Dynamic virtual clusters in
a grid site manager. In Proceedings 12th IEEE Interna-
tional Symposium on High Performance Distributed Com-
puting (HPDC’03), Seattle, Washington, June 2003.

[13] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. To-
wards architecture-based self-healing systems. In Proceed-
ings WOSS ‘02. ACM, 2002.

[14] A. Diaconescu, A. Mos, and J. Murphy. Automatic Per-
formance Management in Component-Based Software. In
Proceedings IEEE Int. Conference on Autonomic Computing
(ICAC 2004), 2004.

[15] M. Fleury and F. Reverbel. The JBoss Extensble Server.
In Middleware 2003, ACM/IFIP/USENIX International Mid-
dleware Conference, volume 2672 of Lecture Notes in Com-
puter Science. Springer, 2003.

[16] Yun Fu, Jeffrey Chase, Brent Chun, Stephen Schwab, and
Amin Vahdat. SHARP: an architecture for secure resource
peering. In Proceedings of the nineteenth ACM Symposium
on Operating Systems Principles (SOSP’03), pages 133–
148. ACM Press, 2003.

[17] I. Georgiadis, J. Magee, and J. Kramer. Self-organizing soft-
ware architecture for distributed systems. In Proceedings
of the 1st Workshop on Self-Healing Systems, WOSS 2002.
ACM, 2002.

[18] J. O. Kephart and D. M. Chess. The Vision of Autonomic
Computing. IEEE Computer 36(1), 2003.

[19] F. Kon and R. H. Campbell. Dependence Management in
Component-Based Distributed Systems. IEEE Concurrency,
8(1), 2000.

[20] ObjectWeb. Rubis: Rice university bidding system.
http://rubis.objectweb.org/.

[21] P. Oriezy, M. Gorlick, R. Taylor, G. Johnson, N. Medvidovic,
A. Quilici, D. Rosenblum, and A. Wolf. An Architecture-
Based Approach to Self-Adaptive Software. IEEE Intelligent
Systems 14(3), 1999.

[22] F. Plasil, D. Balek, and R. Janecek. Sofa/dcup: Architecture
for component trading and dynamic updating. In Proceed-
ings of the International Conference on Configurable Dis-
tributed Systems, 1998.

[23] JOnAS Project. Java Open Applica-
tion Server (JOnAS): A J2EE Platform.
http://jonas.objectweb.org/current/doc/JOnASWP.html.

[24] C. Salzmann. Invariants of component reconfiguration.
In Proceedings of the 7th International Workshop on
Component-Oriented Programming (WCOP’02), 2002.

[25] G. Shachor. Tomcat documentation. The Apache Jakarta
Project. http://jakarta.apache.org/tomcat/tomcat-3.3-doc/.

[26] S. Shrivastava and S. Wheater. Architectural support for dy-
namic reconfiguration of large scale distributed applications.
In Proceedings of the International Conference on Config-
urable Distributed Systems, 1998.

[27] S. White, J. Hanon, I. Whalley, D. Chess, and J. Kephart.
An Architectural Approach to Autonomic Computing. In
Proceedings ICAC ‘04, 2004.

12

