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Abstract

A fully automated system for the identification of possible oil spills present on Synthetic Aperture Radar (SAR) satellite images
based on artificial intelligence fuzzy logic has been developed. Oil spills are recognized by experts as dark patterns of characteristic
shape, in particular context. The system analyzes the satellite images and assigns the probability of a dark image shape to be an oil

spill. The output consists of several images and tables providing the user with all relevant information for decision-making. The case
study area was the Aegean Sea in Greece. The system responded very satisfactorily for all 35 images processed. The complete
algorithmic procedure was coded in MS Visual CCC 6.0 in a stand-alone dynamic link library (dll) to be linked with any sort of

application under any variant of MS Windows operating system.
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1. Introduction

Environmental protection is currently an important
subject of increasing public concern and as a result,
particular attention is being paid to the environmental
damage caused by the creation of spills of hydrocarbon
compounds over the sea surface created as a result of
oil-tanker accidents or illegal cleaning of tankers. A
successful combating operation to a marine oil spill
depends on the rapid response from the time the oil spill
is detected. In fact, the concept of oil spill contingency
planning refers to several activities for developing an
immediate response program and undeniably the most
important one is oil spill detection (Assilzadeh and
Mansor, 2001). In fact, several studies have already been
reported on oil spill contingency planning (Uthe, 1992;
Monk and Cormack, 1992; Theophilopoulos et al.,
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1996; Assilzadeh et al., 1999); all studies recognize the
oil spill detection and surveillance issue as the most
important one amongst all others including assessment
and evaluation, spill evolution computer simulation,
management and clean up. Oil spills depending on the
exact hydrocarbon content and type involve normally
extensive areas of film on sea surface, a fact which
reduces water roughness and can therefore allow the
detection by Synthetic Aperture Radar (SAR) images. It
is important that oil spill detection algorithms provide
the user with accurate information about specific
features characterizing the oil spill, including location
of its centroid, size, distance from the land etc. This
information has to be available fast and subsequently
fed into models which predict the trajectory and fate of
a chemical spill (e.g. Skognes and Johansen, 2004;
French McCay and Isaji, 2004) and/or statistical oil-spill
risk analysis models, such as the ‘‘Oil-spill Risk
Analysis’’ (OSRA) model, driven by analyzed sea
surface winds and model-generated ocean surface
currents (Price et al., 2004).

SAR imagery is a common medium for detecting oil
spills. In some cases, especially when a large number of
SAR scenes has to be examined, the image processing
and by eye discrimination between oil spills and look-
alikes may be a time consuming as well as labor-intensive
task (Gade and Alpers, 1999). Several important efforts
have already been reported so as to develop an
automated detection system that would recognize an
oil spill through a SAR image without the intervention of
the expert. Such systems retrieve SAR images, referring
to the sea regions under consideration, from a corre-
sponding satellite platform and produce alarm notifica-
tions when an object on the image is identified as an oil
slick. From previous experience, the automatic detection
of oil slicks in SAR images is reported as a very
complicated task because objects resembling oil spills
(often called look-alikes) occur frequently in SAR
images, especially in low wind conditions. Most fre-
quently, look-alikes are produced by organic film,
grease, wind front areas, land, plankton formations,
rain cell, current shear zones and upwelling zones
(Hovland et al., 1994). There are cases, where even the
most experienced operator cannot discern between
a possible oil spill and a look-alike. Actually, an
experienced operator is trained to discriminate between
oil spills and look-alikes based on experience and prior
information on weather conditions, difference in shape,
contrast to surrounding and background objects and
proximity to land. Thus, a fully automated system
should actually resemble the expert’s decisions based
on similar criteria, knowledge and rules.

The development of automated or semi-automated
systems for oil spill detection is a subject of several
efforts reported in literature. Kubat et al. (1998)
developed a neural network for the classification of
dark regions detected in a series of nine SAR images
that served as a training set of the system. The
complexity of such a system as well as the appropriate
actions that have to be taken into consideration by
potential tool developers in such fields were analyzed
in detail. Input to the classifier was straightforward,
though image preprocessing was not automated. The
classifier had an open architecture of rules so that it
could embed user experience in several other fields
apart from oil detection. Del Frate et al. (2000) also
used neural network architecture for semi-automatic
detection of oil spills on SAR images using a set of
features characterizing a candidate oil spill as input
vector. Solberg and Solberg (1996) and Solberg et al.
(1999) produced a semi-automated classifier for oil
spill detection, in which the objects with a high
probability of being an oil spill were automatically
detected. Three different categories of probability (low,
medium and high) were recognized. A rational
processing procedure was adopted for 84 SAR images
utilized. It involved pixel local thresholding based on
wind level information, clustering of small pixel
objects or partitioning of large pixel objects based
on sizing criteria and feeding each individual cluster to
a classifier operating on a stochastic processing basis.
Ten different object characteristics were identified and
classification was based on a Bayesian inference
procedure. Fiscella et al. (2000) developed a stochastic
classifier based on Mahalanobis statistical tests and
classical compound probabilities. A preprocessing tool
was used in order to extract pixel objects from SAR
images and classified them according to statistical
criteria implemented on a total of 14 different
characteristics of extracted clusters. Marghany (2004)
utilized RADARSAT data for oil slick detection and
oil slick trajectory model in the coastal water of
Malacca Straits. His approach involved two sub-
models: one is containing entropy and homogeneity
texture algorithms for oil slick detection, and the
second one is containing the oil slick trajectory
forecasting model.

In the present work a fully automated system for
the identification of possible oil spills that resembles the
expert’s choice and decisions has been developed. The
system comprises modules of supplementary operation
and uses their contribution to the analysis and
assignment of the probability of a dark image shape to
be an oil spill. SAR images are read, located, land
masked, filtered and thresholded so that the appropriate
dark areas are extracted. Candidate oil spill objects are
fuzzy classified to determine the likeness of each
individual object to be an oil spill. The output images
and tables provide the user with all relevant information
for supporting decision-making. The case study area
was the Aegean Sea. The system responded very
satisfactorily for all 35 images processed.
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2. Image preprocessing

Automatic oil spill detection for SAR images
was implemented through a series of computational
procedures involving retrieval and storage of SAR
image content, locating, land masking, smoothing
(filtering), thresholding, segmentation and classification.
In almost each step a visual or tabular output is
available to the user. The sequence of procedures and
the available output in each step are presented in Fig. 1.
The complete algorithmic procedure was coded in MS
Visual CCC 6.0 in a stand-alone dynamic link library
(dll) to be linked with any sort of application under any
variant of MS Windows operating system. For pre-
sentation reasons a multiple document/view application
was developed to serve as a visualization tool for the
system’s user. The tool also involved an automated ftp
downloading utility and the automated oil spill de-
tection alarm system developed.

Low-resolution ERS-1 and -2 SAR images (pixel size
at range and azimuth equal to 100 m and 79.5 m,
respectively) are used for this study. The identification
of patterns and shapes in SAR images require the
evaluation of radar signal amplitude from complex pixel
value as well as the corresponding geometrical correc-
tions necessary for the image integrity. Low-resolution
SAR images are derived from preprocessed 5/5 bit
complex raw pixel images appropriately re-sampled for
a pre-specified size of a non-overlapping moving
window across the image. Such images are geometrically
corrected and signal amplitude is introduced as a 16-bit
integer number. The format of low-resolution SAR

Fig. 1. System information flowsheet.
images comprises a leading header and a series of bytes
representing pixel values in rows as scanned by radar
beam. Header information is important to correctly
import the file and appropriately locate it with respect to
a pre-specified coordinate system, since several vital
image components are included, such as the longitude–
latitude pairs of the four corners bounding image
quadrilateral as well as of its centroid, the exact image
dimensions in pixels, the exact time that was taken and
several more specific information.

Information from leading file header is used to derive
the exact coordinates of the image-bounding quadrilat-
eral and therefore automatically locate the image in
a coordinate map. To restore the image in its correct
position with respect to the background, some further
processing is required depending on the ascending or
descending path of the satellite. Several different SAR
images can be simultaneously viewed within the
graphical user interface of the tool, as presented in
Fig. 2. The tool is equipped with numerous graphical
facilities for appropriate zooming and manipulation of
the images and bitmaps studied. In particular, image
pixels have to be transposed in an up-side-down
direction and west-tilted for the ascending mode and
mirrored and east-tilted for the descending mode.

The image projection on a latitude–longitude geo-
graphical coordinate system is a quadrilateral whose
corner points are included in the image header. Let us
consider an arbitrary pixel I(i, j ) located on the i-th
column and j-th row of an image of N columns and M
rows. In tool graphics procedures as well as in the land-
masking algorithm, one has to estimate the exact
longitude–latitude coordinate of the given image pixel
I(i,j ) and vice versa, i.e. given the longitude–latitude
geographical coordinates of a point C(xC,yC), to check
whether it is included in the image and estimate its exact
image coordinates. The derivation involved in mapping
operations is given by a set of equations relating point
projections on quadrilateral faces, based on the fact that
these points must have similar distance proportions on
face projections as the image point has with respect to its
rows and columns.

Landmasking is a very important operation due to the
fact that land regions that are present in the image involve
several dark regions and thus, their existencemay trick the
classification process. In addition, in our case studies that
involve mostly images of the Aegean Sea, the situation is
more complicated because the images cover lots of small
and medium sized islands usually very close to one
another. Automatic land masking is performed by
appropriately overlaying a polygonal GIS theme of the
entire map of Greece and Turkey on the image. Each
polygon of the collection is transformed in a regional MS
Windows API application region and each of them is
appropriately region-subtracted by the original image
region.What remains is the seamask.A coarseGIS theme
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Fig. 2. Tool main document view.
can be safely used for this purpose for speeding-up
calculations. The original polygon regions were created
once and used for all images processed.

The sea image pixels are smoothed using a standard
Gaussian filter. The Gaussian smoothing operator is a
2-D convolution operator that is used to ‘blur’ images
and remove detail and noise (Davies, 1990; Gonzalez and
Woods, 1992). It uses a moving kernel that represents the
shape of a Gaussian hump. The moving window size
value is 41 ! 41 appropriately tuned. Subsequently, grey-
level thresholding was used to segment the image into two
classes: one having pixels below a user defined value and
one above. This is an important operation for image dark
regions extraction. It is applied to each individual image
pixel or group of pixels on a local or global level. The pixel
digital number is compared to the mean value of all pixels
digital numbers lowered by a threshold value. In the case
of global thresholding, the window addressed is the entire
image. All pixels corresponding to digital number values
lower than the threshold value were registered as pixel of
a dark region. In this study, local thresholding was
adopted, where the window size, the threshold value and
degree of overlap between successive moving windows
were the procedure parameters. Only pixels belonging to
the sea mask were taken into consideration for the
numerical process. Thresholding was appropriately
optimized by subtracting and adding in each window
move, solely the appropriate columns and rows over-
lapped by previous moves. Amoving average scheme was
used for calculating the windowmean digital number. As
a result, the complexity of this algorithm was O(NMw),
wherew is the window size. The window size was the same
as for smoothing. The value of optimal threshold value
used was 40, while a range of 20–100 was tested for
performance.

The result of thresholding was the partitioning of the
initial sea part of the image into areas characterized as
dark and bright. Extraction of pixel groups that would
be candidate objects were fed to the system’s classifier.
This was automatically performed through appropriate
segmenting of the initial group objects. Segmentation
was performed by determining the k-groups within the
extracted dark region objects (Pal and Pal, 1993). This
type of groups are characterized by a certain proximity
property for the pixels of the group, that is to say, each
pixel in the group has at least one pixel neighbor that is
close to the former by a distance of k pixels in any
direction. This distance metric adopted was actually the
norm of the digital space processed (image). In this way,
depending on the value of k, smaller groups could be
merged to bigger ones. In our system, the greedy
approach of 1-groups was adopted (each pixel had at
least one neighbor at a distance of one pixel). This
procedure takes a few seconds. An O(NM ) complexity
algorithm was used to separate groups obtained. The
algorithm used a multithreaded code where each pixel
checked for its neighbors, which in turn checked for
theirs in a recursive way.
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3. Estimating the probability of an object

to be an oil spill

The probability of each object extracted with the
techniques mentioned in the previous section to be an oil
spill was estimated using an artificial intelligence fuzzy
logic modeling system. The system was initially
developed by human experts based on their experience
and a large database of available information.

3.1. Fuzzy logic as a modeling tool

Fuzzy logic theory has emerged over the last years as
a useful tool for modeling processes which are too
complex for conventional quantitative techniques or
when the available information from the process is
qualitative, inexact or uncertain. Although it is almost
four decades since Lotfi Zadeh (1965) introduced the
fuzzy logic theory, only recently it became a popular
technique for developing sophisticated models and
systems. The reason for this rapid development of fuzzy
systems is simple. Fuzzy logic addresses qualitative
information perfectly as it resembles the way humans
make inferences and take decisions. It fills an important
gap in system design methods, which is between purely
mathematical approaches (e.g. system design), and
purely logic-based approaches (e.g. expert systems).
While other approaches require accurate equations to
model real-world behaviors, fuzzy design can accom-
modate the ambiguities of real-world human language
and logic. It provides an intuitive method for describing
systems in human terms and automates the conversion
of those system specifications into effective models.

Traditional set theory is based on bivalent logic,
where an object is either a member of a set or it is not.
Contrary to that, fuzzy logic allows a number or object
to be a member of more that one sets and most
importantly it introduces the notion of partial member-
ship (Klir and Yuan, 1995). Information flow through
a fuzzy model requires that the input variables go
through three major transformations before exiting the
system as output information, which are known as
fuzzification, fuzzy inference, and defuzzification. The
three steps are depicted in Fig. 3, which shows the

Fig. 3. The structure of a typical fuzzy logic system.
structure of a fuzzy logic system and are explained in
brief:

1. Fuzzification. It is the process of decomposing
a system input variables into one or more fuzzy
sets, thus producing a number of fuzzy perceptions
of the input.

2. Fuzzy inference. After the inputs have been decom-
posed into fuzzy sets, a set of fuzzy if-then-else rules
is used to process the inputs and produce a fuzzy
output. Each rule consists of a condition and an
action where the condition is interpreted from the
input fuzzy set and the output is determined from
the output fuzzy set.

3. Defuzzification. It is the process of weighting and
averaging the outputs from all the individual fuzzy
rules into one single output decision or signal. The
output signal eventually exiting the system is a pre-
cise, defuzzified, crisp value.

Fuzzy modeling methodologies are procedures for
developing the knowledge base of the system, i.e. the set
of fuzzy rules (Pedrycz, 1996). The natural way to
develop such a system is to use human experts who build
the system based on their intuition, knowledge and
experience. In this case the fuzzy sets and the member-
ship functions are defined by the experts, usually based
on a trial and error approach. The rule structure is then
determined based on how the designers interpret the
characteristics of the variables of the system.

The most popular fuzzy model suggested in the
literature, which is also used in this work, is the one
proposed by Mamdani (1974) that has the following
formulation with respect to its fuzzy rules:

cr˛R : if ^
1%i%n

�
xi˛Ar

i

�
then ^

1%j%m

�
yj˛Br

j

�
ð1Þ

where r is the fuzzy rule, R is the set of fuzzy rules, ^
denotes the logical operator ‘‘AND’’, n is the number of
input variables, m is the number of output variables,
xi; 1%i%n are the input variables, Ar

i ; 1%i%n are fuzzy
sets defined on the respective universes of discourse,
yj; 1%j%m are the output variables and Br

j ; 1%j%m are
fuzzy sets defined for the output variables.

3.2. Development of a fuzzy classifier for the
detection of oil spills on SAR images

The fuzzy logic modeling architecture that was used
to build a model for the estimation of the probability of
an object to be an oil spill was based on important
influencing factors. In order to develop the database and
the rule base of the system, human experts were
employed. The experts used their knowledge and
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experience, but also consulted a large database of
information, consisting of:

- Database of major oil spill events in the Aegean Sea
between 1997 and 1999, provided by the Greek
Ministry of Mercantile Marine.

- Information on shape and size of oil spills detected
by SAR sensors published in the literature (Solberg
et al., 1999; Konings, 1996; Gade and Alpers,
1999).

The Mamdani type of fuzzy model was selected
(Mamdani, 1974) and the development of the system
was completed in three steps.

1) Step 1 – Selection of input parameters: The
probability of a dark object on an SAR image to be
an oil spill is a function of many factors. The selection of
the input parameters was made so that all the important
influencing factors are considered, while maintaining the
system at a reasonable size. The only source of data was
the SAR image itself, making the system completely
independent of any external information (e.g. weather
and sea condition). Based on the above criteria, the list
of selected input variables consisted of the following
parameters:

- The total number of objects identified in the image;
- the number of the dark objects in the vicinity of

a candidate dark object;
- the area of the candidate dark object;
- the eccentricity of the object’s shape;
- the proximity of the object to the land.

It should be mentioned that the wind speed and
sea roughness were not selected as input variables
explicitly. However, the total number of objects on the
image along with the number of dark objects in the
vicinity of a candidate dark object are dependent on
wind speed and sea roughness, as low wind conditions
favor the development of many look-alikes. In moderate
wind speed the number of look-alikes is small, and
therefore the probability of an object to be an oil spill is
higher.

2) Step 2 – Development of the database: In this step,
fuzzy sets were defined for all the input parameters, as
well as for the only output variable, namely, the
probability of a dark object to be an oil spill. More
specifically, three fuzzy sets were defined for all the input
variables, except for the area of the object, for which five
fuzzy sets were appointed. An example of the fuzzy set
defined for the input variable ‘‘total number of objects
identified on the image’’ is given in Fig. 4(a). For the
output variable ‘‘probability of an object to be an oil
spill’’ the experts defined 3 fuzzy sets which cover the
domain from 0 to 1 (corresponding to 0–100%) as
shown in Fig. 4(b). A more detailed description of the
fuzzy sets appointed to each input or output variable
follows:

The total number of objects identified on the image:
Three fuzzy sets, namely ‘‘Few’’, ‘‘Some’’ and
‘‘Many’’ were defined on the input space which
measures the number of objects from 0 to 200
(Fig. 4(a)). The higher the number, the less likely is
the observed object to be an oil spill.
The number of the dark objects in the vicinity of

a candidate dark object: Again three fuzzy sets,
namely ‘‘Few’’, ‘‘Some’’ and ‘‘Many’’ were defined
on the input space. In this case the number varies
from 0 to 100, depicting the local conditions. In the
case of many dark objects in the vicinity (within
5 km) of the candidate object, it is likely that the
observed area is under low wind conditions and
therefore the probability of the candidate object to be
an oil spill is small.
The area of the candidate dark object in km2: In this
case five fuzzy sets were defined, since this parameter
is considered crucial for the success of the detection.
The range covered by the classes is from 0 to 50 km2.
Konings (1996) reported that from 283 oil spills
observed on SAR images of the North Sea, roughly
62% were less than 1 km2, 18% were in the range

Fig. 4. Fuzzy sets defined for (a) input variable ‘‘total number of dark

objects in SAR scene’’ and (b) output variable ‘‘probability of a dark

object to be an oil spill’’.
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1–2 km2, 11% were in the range of 2–5 km2, 7% were
in the range of 5–10 km2 and only 2% were larger
than 10 km2. It has to be noted that these figures were
only used as an indication, as the sizes of oil spills in
the North Sea are in general larger than the ones
observed in the Aegean Sea. However, it can be said
with confidence, that the larger the object the smaller
the probability to be an oil spill.
The object’s eccentricity: The eccentricity of an object
is defined as the ratio of the length of the longest
chord of the shape to the longest chord perpendicular
to it. In more mathematical terms, it is the ratio of the
minimum and maximum eigenvalues of shape second
order moment matrix. Oil spills are elongated seg-
ments characterized by high eccentricities. In the
classifier three fuzzy sets were defined, the eccentricity
covering the range between 0 and 21.
The proximity of the object to land: Three fuzzy sets
were defined, namely ‘‘Close’’, ‘‘Further’’ and
‘‘Away’’. The distances cover the range of 0 to
55 km. In general, there are usually many dark
objects along the coastline of the leeward side of
the islands; therefore, the probability of such a dark
object to be an oil spill is low.
Probability of an object to be an oil spill: The only
output variable is the probability of an object to be
an oil spill and is measured from 0 to 1. For this
variable, three triangular fuzzy sets were defined on
the above mentioned output space (Fig. 4(b)).

3) Step 3 – Development of the rule base: During this
step, the experts were employed to develop a number of
fuzzy rules, based on their intuition and experience. The
fuzzy rules were developed and tuned, so as to relate
successfully the input conditions of nine out of the 35
Fig. 5. SAR image with verified oil spill and small total number of dark objects (13): (a) original scene, (b) land masked image, and (c) output image

with dark objects colored according to their possibility to be oil spills (green is low, red is high).
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available SAR images of the Aegean Sea, acquired
under different weather conditions. The images are from
the years 1998 and 1999. It has to be stressed that in each
image a large number of dark objects are present,
potentially oil spills or look-alikes. The number of these
objects varies considerably with sea state from around
ten to 200 per image. Therefore, the training and
subsequent evaluation was based on hundreds of objects.

The rules are constructed in simple language terms
and can be understood at a common sense level. At the
same time these rules result in specific and repeatable
(same inputs gives same output) results. The experts
developed 405 rules, one for each combination of fuzzy
rules of the input parameters. All the rules use the
logical AND operation. An example of a fuzzy rule is
shown below:

‘‘If the total number of dark objects on image is
small AND the number of objects in the vicinity of
the candidate object is small AND the area is small
AND the eccentricity is high AND the distance
from land is high THEN the probability of the
candidate dark object to be an oil spill is HIGH.’’
The above three-step procedure defines the knowledge
base of the fuzzy system. When the fuzzy model is
to be applied to a set of input parameter values, the
information flows through the fuzzification–inference–
defuzzification processes that are depicted in Fig. 3, in
order to generate the fuzzy probability estimation that
the candidate dark object is an oil spill. For this
particular fuzzy system, the three above processes are
executed as follows:

Fuzzification: During the fuzzification process, the
triangular membership functions (fuzzy sets) defined
on each input variables are applied to their actual
values, to determine the degree of truth for each rule
premise.
Inference: During the inference process, the truth
value for the premise of each rule is computed, and
applied to the conclusion part of the rule. This
procedure results in the assignment of one output
fuzzy set for each rule. The min–max inferencing
technique was used (Zadeh, 1973), where the output
membership function of each rule is clipped off at a
height corresponding to the rule premise’s computed
Table 1

Sample tabular output from scene depicted in Fig. 5(a)–(c)

Dark object 
on image 

Number
of

objects
around

Area
(km2)

Eccentricity Land
distance

(km)

Longitude
(°N) 

Latitude
(°E)

1 0.843

1 1.081

1 4.587

1 3.124

0 0.994

0 1.002

1 2.019

1 1.097

0 1.383

1 5.048

2 1.590

2 2.210

0 1.542

9.377

5.888

2.066

15.776

1.067

2.735

1.470

2.312

4.028

2.237

1.789

1.715

1.266

32.718

5.214

0.833

44.716

16.418

23.127

1.210

1.093

0.449

2.418

2.189

0.655

1.072

23.58

23.41

23.45

23.72

23.73

23.78

23.87

23.90

24.24

24.35

24.40

24.50

24.45

36.37

36.98

36.91

36.35

36.72

36.59

36.84

36.82

36.78

36.63

36.63

36.66

37.12

76.509

50.000

21.541

80.686

21.614

59.317

19.356

24.809

19.681

23.087

23.387

20.093

19.845

Probability
to be an oil 

spill       
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Fig. 6. SAR image with verified oil spill and 59 dark objects adjacent to and between the islands: (a) original scene, (b) land masked image, and (c)

output image with dark objects colored according to their possibility to be oil spills (green is low, red is high).
degree of truth. The combined fuzzy output member-
ship function is constructed by combining the results
of all the fuzzy rules. If an output fuzzy set is activated
by more than one rule, the maximum of all activations
is considered in the construction of the combined
output membership function.
Defuzzification: The final output of the fuzzy system
for the probability of an object to be an oil spill should
be a crisp number, so as the fuzzy output needs to be
defuzzified. The centroid defuzzification method
(Driankov et al., 1993) was used, where the crisp value
of the output variable is computed by finding the center
of area below the combined membership function.

The programming implementation of the fuzzifica-
tion, rule-based and defuzzification part of the algo-
rithm was based on numerical analysis approximations
of the problem. More specifically, the area covered
within the participation functions as calculated by rules
was determined and computed as integral using a Simp-
son’s rule. The fuzzy logic system developed using this
approach gives very satisfactory results. The system was
applied to the remaining 26 SAR scenes, not included in
the training phase, and responded perfectly in 23 of
them. The testing also proved that the system can be
used to assign a probability that the observed object is
an oil spill given any combination of input values within
the specified ranges.

4. Case studies

The case study area was the Aegean Sea in Greece. A
series of 35 ERS-1 and -2 SAR (acquired in 1998 and
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1999) images were tested using the algorithm developed
in this study and described above. The algorithms
performed satisfactorily in scenes that contained verified
oil spills but also in the ones that contained only look-
alikes. A set of two images containing verified oil spills is
presented (case 1 and 2) together with an example of
a complex SAR scene which contained only look-alikes
(case 3).

4.1. Case 1

The original SAR image is illustrated in Fig. 5(a) and
is the first visual output of the algorithm. The image is
acquired over the island of Milos in Cyclades, Greece.
The image presents only a small number of dark regions
(13 in total) due to moderate wind conditions. The
image with the land masked out is illustrated in
Fig. 5(b); this is the second visual output in bitmap
format. After the thresholding, segmentation and fuzzy
classification processes, the result comes out as a third
visual output (Fig. 5(c)). In this figure, the candidate
objects are painted with colors ranging from green to
red, showing the probability of the object to be an oil
spill: green is low probability (0%) whilst red is very
high probability (100%). Therefore, when the software
is used in an operational mode, the user can immediately
depict the areas to be visited for in situ or aerial
inspection. The algorithm also generates a tabular
output (Table 1) which gives useful information about
the scene, such as the number of dark objects around the
candidate oil spill, the area of each candidate object (in
km2), the eccentricity and proximity to land as well as its
geographic coordinates (latitude and longitude in
degrees). The table contains the shape of each colored
dark object according to its probability to be an oil spill.
The algorithm depicted correctly the verified oil spill
seen at the SE corner of the image and assigned to it
a probability of 80% to be an oil spill.

4.2. Case 2

The original SAR image is illustrated in Fig. 6(a). The
image is acquired over the islands of Milos, Sifnos,
Serifos and Paros in Cyclades. The image presents
a larger number of dark regions compared to Case 1,
especially close and between the islands. The total
number of dark objects is 59. The image with the land
masked out is illustrated in Fig. 6(b); this is the second
Table 2

Sample tabular output from scene depicted in Fig. 6(a)–(c)

2 24.88 36.63 23.107

9 24.81 37.09 22.707

2 24.96 36.60 23.110

2 24.89 37.22 78.389

2 24.97 37.19 76.606

1 25.03 36.97 23.440

1 25.15 36.72 23.187

1 25.17 36.74 49.080

1 25.13 36.98 22.460

0

0.811

10.073

1.169

1.224

2.679

1.081

1.169

1.336

5.199

0.835

2.750

2.760

2.650

10.723

20.210

3.579

2.596

2.738

2.915

2.548

0.081

10.342

0.357

12.583

14.792

0.143

0.311

1.937
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0.632 25.34 36.47 23.148
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visual output of the algorithm. The third visual output is
presented in Fig. 6(c). In this case, the algorithm
depicted correctly the low probability of the dark
objects adjacent to and in between the islands to be oil
spills. These formations are due to local low wind
conditions. Furthermore, it assigned a high probability
of 78% to the verified oil spill shown on the NW part of
the image. A sample of the tabular output correspond-
ing to this case study is given in Table 2.

4.3. Case 3

The original SAR image is illustrated in Fig. 7(a).
The image presents a very large number of dark regions
(117 in total), due to low wind conditions, and no oil
spill. Therefore, the dark objects are all look-alikes. The
image with the land masked out is illustrated in
Fig. 7(b). After the thresholding, segmentation and
fuzzy classification processes, the resultant image is
presented in Fig. 7(c). The algorithm depicted correctly
that the probability of these objects to be oil spills is low
and has left out the very large dark regions, due to their
size. The corresponding sample tabular output is given
in Table 3.

5. Conclusion

A fully automated system for the identification of
possible oil spills has been developed. The software is
a stand-alone application for windows. It is only fed
by a RAW data satellite image file and returns an alarm
as well as all information related to objects detected.
The system comprises of modules of supplementary
Fig. 7. SAR image containing only look-alikes (117 in total): (a) original scene, (b) land masked image, and (c) output image with dark objects

colored according to their possibility to be oil spills (green is low, red is high).
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Table 3

Sample tabular output from scene depicted in Fig. 7(a)–(c)

20.072

39.096

48.161

43.557

22.593

48.695

27.922

38.447

22.881

21.471

40.338

48.028

1

3

5

2

9

2

5

6

10

11

6

6

11

7.131

1.614

2.202

0.938

2.465

4.333

1.200

1.081

1.129

1.010

1.296

1.781

1.375

1.175

1.867

2.570

1.237

1.845

3.546

1.588

3.762

1.843

1.630

3.356

1.866

2.196

1.519

9.996

12.247

3.317

9.091

1.948

1.551

0.442

2.576

4.885

0.343

2.440

1.753

22.72

22.76

22.79

22.86

22.83

22.77

22.88

22.91

22.89

22.89

22.83
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22.92

36.79

36.56
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36.23

36.45
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36.31
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operation and uses the modules for the analysis and
assignment of the probability of a dark image shape to
be an oil spill. SAR images are read, located, land
masked, filtered and thresholded so that the appropriate
dark areas are extracted. Candidate oil spill objects are
fuzzy classified to determine the likeness of each
individual object to be an oil spill. The resulting images
and tables provide the user with all relevant information
for supporting decision-making. The system was
developed using nine SAR images and was tested
independently on 26 images of the Aegean Sea, yielding
an overall performance of 88%.

The system can be easily expanded to cover other
geographical areas. The time required for the whole
process (preprocessing and fuzzy classification) to be
completed is of the order of 2–3 min per image,
depending on computer speed. In addition, in case of
an oil spill alarm, the system provides the operator with
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oil spill features necessary as input for trajectory and
fate simulation models, such as size, shape, location, and
distance from land. Automation of all the above makes
the system autonomous; as a result, it can work
continuously on a large amount of satellite images and
alert the operator in case of an alarm. Therefore, the
proposed system can be effectively used in real-time
operations.
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