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Second-Order Blind Separation of First- and
Second-Order Cyclostationary Sources—Application

to AM, FSK, CPFSK, and Deterministic Sources
Anne Ferréol, Pascal Chevalier, and Laurent Albera

Abstract—Most of the second-order (SO) and higher order
(HO) blind source separation (BSS) methods developed this last
decade aim at blindly separating statistically independent sources
that are assumed zero-mean, stationary, and ergodic. Nevertheless,
in many situations of practical interest, such as in radiocom-
munications contexts, the sources are nonstationary and very
often cyclostationary (digital modulations). The behavior of the
current SO and fourth-order (FO) cumulant-based BSS methods
in the presence of cyclostationary sources has been analyzed,
recently, in a previous paper by Ferréol and Chevalier, assuming
zero-mean sources. However, some cyclostationary sources used in
practical situations are not zero-mean but have a first-order (FIO)
cyclostationarity property, which is, in particular, the case for
some amplitude modulated (AM) signals and for some nonlinearly
modulated digital sources such as frequency shift keying (FSK) or
some continuous phase frequency shift keying (CPFSK) sources.
For such sources, the results presented in the previous paper by
Ferréol and Chevalier no longer hold, and the purpose of this
paper is to analyze the behavior and to propose adaptations of the
current SO BSS methods for sources that are both FIO and SO
cyclostationary and cyclo-ergodic. An extension for deterministic
sources is also proposed in the paper.

Index Terms—AM, blind, deterministic sources, first-order
cyclostationary, FSK and CPFSK sources, second order, SOBI,
source separation.

I. INTRODUCTION

FOR more than a decade, blind source separation (BSS)
methods exploiting either the second-order (SO) [3] or the

higher order (HO) [16] or both the SO and HO [5], [13] statis-
tics of the data have been strongly developed, as depicted in the
overview presented in [14]. These methods aim at blindly sepa-
rating several statistically independent sources that are assumed
to be zero-mean, stationary, and ergodic. Nevertheless, in many
applications, such as in the radiocommunications context, the
sources are nonstationary and very often cyclostationary (digital
modulations). Under these conditions, it becomes important to
analyze the behavior of these current SO and HO blind methods
that have been developed for zero-mean stationary sources in
the presence of cyclostationary sources whose cyclostationarity
property appears explicitly at the processing level as soon as
the sources are oversampled. This is generally the case for nu-
merous applications such as, for example, the passive listening
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context, where the different sources may have very different
baud rate or bandwidth [17].

The behavior of the current SO and fourth-order (FO) cu-
mulant-based blind source separation methods in the presence
of cyclostationary sources has been analyzed in a recent paper
[19], assuming zero-mean sources. Under this last assumption,
which is valid in particular for linearly modulated digital
sources, it has been shown in particular that under weak con-
ditions of cyclo-ergodicity [4], the current SO blind methods
are not affected by the cyclostationarity of the sources. On
the contrary, the current FO cumulant-based blind methods,
such as the JADE method [5], have been shown to be strongly
affected, in some cases, by the cyclostationarity property of
the sources and an adaptation of these FO methods, taking into
account the SO cyclic frequencies of the sources has been pro-
posed. A FO alternative approach aiming at blindly separating
statistically independent zero-mean cyclostationary sources
with no knowledge or estimation of the cyclic frequencies of
the sources has been proposed recently in [24]. Finally, other
approaches of blind spatial filtering or blind source separation
of zero-mean cyclostationary sources, aiming, in this case, at
recovering the sources signals directly from the cyclic statistics
of the observations, have also been proposed in the literature at
both the SO [1], [2], [25] and the HO [6], [18].

However, the cyclostationary sources used in practical ap-
plications are not necessarily zero-mean but may be first-order
(FIO) cyclostationary, which is, in particular, the case for some
amplitude modulated (AM) sources [21] and for some nonlin-
early modulated digital sources such as frequency shift keying
(FSK) sources [31] or some continuous phase frequency shift
keying (CPFSK) sources, which belong to the more general
family of the so-called continuous phase modulation (CPM)
sources [23], [28], [31], [32]. For such sources, the analysis pre-
sented in [19] no longer applies, and for this reason, the purpose
of this paper is to analyze the behavior and to propose adap-
tations of the current SO blind source separation methods in
the presence of statistically independent sources that are both
FIO and SO cyclostationary. An extension for polyperiodic de-
terministic sources is also proposed in the paper. The behavior
analysis of the current HO blind methods in the same context is
partially presented in [20].

The current SO BSS problem for zero-mean stationary in-
dependent narrowband (NB) sources together with the second-
order blind identification (SOBI) algorithm [3], and the empir-
ical estimator of the SO statistics of the data are recalled in
Section II. Then, the problem of SO blind separation of FIO
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and SO cyclostationary sources together with examples of such
sources (some AM, FSK, and some CPFSK sources) are pre-
sented in Section III, where, in particular, the limitations of
the empirical estimator of the SO statistics for nonzero mean
sources are pointed out. The situations for which these limita-
tions may have bad consequences on the behavior of the cur-
rent SO BSS methods, jointly with the behavior description
of the latter, are presented in Section IV, where it is shown in
particular that the performance of the SOBI method may be
strongly affected by the FIO cyclostationary properties of the
sources. To overcome this problem, an adaptation of the current
SO blind methods taking into account the possible FIO cyclosta-
tionarity of the sources is proposed in Section V. Unfortunately,
this adaptation does not allow the processing of deterministic
sources, and to overcome this drawback, an extension of this
adaptation, called second-order blind extraction of FIO cyclo-
stationary sources (SOBEFOCYS), is described in Section VI.
Most of the results presented in the paper are finally illustrated
in Section VII by computer simulations. Note that the results
presented in this paper have already been partially presented in
[10] and [11].

II. SO BSS FOR ZERO MEAN STATIONARY SOURCES

A. Problem Formulation

In the classical SO BSS problem, a noisy mixture of zero-
mean, stationary, and narrowband (NB) independent sources
is assumed to be received by an array of sensors. Under
this assumption, the vector of the complex envelopes
of the signals present at time at the output of the sensors
can be written as

(1)

where is the noise vector, which is assumed zero-mean, sta-
tionary, ergodic, circular, and spatially white, and cor-
respond to the complex envelope and the steering vector of the
source , respectively, is the vector whose components are
the signals , and is the matrix whose columns
are the vectors .

Under these assumptions, the classical SO BSS problem con-
sists of finding, from the SO statistics of the observations, the

linear and time-invariant (TI) source separator ,
whose output vector

(2)

corresponds, to within a diagonal matrix and a permutation
matrix , to the best estimate of the vector . Note
that the symbol means transpose and complex conjugate. The
separator is defined to within a diagonal and a permutation
matrix since neither the value of each output power of the sepa-
rator nor the order in which the outputs are arranged change the
estimation quality of the sources.

B. SO Statistics of the Data

Under the previous assumptions, the SO statistics of the data
are characterized by the correlation matrices , which also
correspond to SO cumulant matrices, defined by

(3)

where is the SO correlation function of the noise on each

sensor, I is the identity matrix, the
diagonal under the previous hypotheses is the correlation matrix
of the vector , and is the correlation
matrix of the mixed sources.

C. Philosophy of the SO BSS Methods (SOBI)

Let us now briefly recall the philosophy of the SOBI [3]
method, which can be considered currently, for zero-mean sta-
tionary sources, as the most powerful SO BSS method but re-
quires that the sources have different spectral densities. This
separator aims at separating the received sources from the blind
identification of their steering vectors. These identified steering
vectors may then be used to build and to apply to the data,
for each source, a well-suited spatial filter such as the spatial
matched filter or the optimal interference canceller [8], [9]. This
blind identification requires the prewhitening of the data, by the
pseudo-inverse, noted , of a square root of the matrix ,
noted in the following, computed from the
matrix and the knowledge of the noise correlation matrix. Usu-
ally, the matrix is chosen to be equal to the matrix

, where the matrix and the
diagonal matrix correspond to the matrices of the orthonor-
malized eigenvectors and associated nonzero eigenvalues of ,
respectively. This prewhitening operation aims at orthonormal-
izing the sources steering vectors to search for the latter through
a unitary matrix , which is simpler to handle. If we note that

is the whitened observation vector, the matrix
is chosen to optimize an SO criterion, which is function of the
elements of the correlation matrices of the vector for
several nonzero values of . The matrix can be easily
computed from (3) and is given by

(4)

where is the unitary matrix of the whitened sources

steering vectors ,

is the input power of the source ,
corresponds to the correlation matrix of , which is

the normalized vector such that each component has a unit

power, and is the correlation matrix of
the whitened mixed sources.

Assuming that the sources have not the same spectral density
and, for simplicity, that the coefficients

are not zero for the considered value of ,
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where means complex conjugate and is the normalized
complex envelope , the SOBI method [3] is based on the
fact that the orthonormalized vectors are
eigenvectors of the matrix associated with its nonzero
eigenvalues , which also correspond to the eigenvalues
of having the greatest absolute value. Then, an arbitrary
eigenvector of associated with a nonzero eigenvalue
is necessarily a linear combination of the vectors . Under
these conditions, it is easy to verify [3] that the unitary ma-
trix is, to within a permutation and a unitary diagonal ma-
trix, the only one that jointly diagonalizes the set of matrices

provided that, for each couple ( , ) of
sources, there is at least a such that . In other
words, the unitary matrix maximizes, with respect to the uni-
tary matrix variable , the following joint di-
agonalization criterion [3]:

(5)

Nevertheless, as the matrix is not observable, it must
theoretically be estimated from the observable matrix .
Under a temporally white noise assumption, which is done in
[3], the quantity is zero for , and the matrix
can be replaced by the matrix in (5). However, in prac-
tical situations, the reception band is finite, and the noise can
only be assumed temporally white within the reception band.
Under these conditions, if the reception band is sufficiently high
with respect to the bandwidth of the sources, it is possible to find

such that and , which still allows the
use of instead of in (5), which is done in the
following.

D. Implementation of the SO BSS

In situations of practical interests, the SO statistics of the data
are not known a priori and have to be estimated from the data by
temporal averaging operations using the SO ergodicity property
of the data. Noting that is the sample period and the th
sample of the observation vector , the empirical estimator

currently used to estimate the matrix , for
, from data snapshots is defined by

(6)

It is well known that for a stationary and SO ergodic vector
, the empirical estimator generates, as be-

comes infinite, an unbiased and consistent estimate of .

III. SO BLIND SOURCE SEPARATION FOR FIO AND SO
CYCLOSTATIONARY SOURCES

A. Problem Formulation

In many applications such as in radiocommunications or
in passive listening contexts, the received sources are very
often cyclostationary (digital modulations) with a potential
carrier residu (passive listening). Under these conditions, the

observation model (1) currently used in stationary contexts
becomes too restrictive, and we must adopt, for the complex
observation vector , the following model [19]:

(7)

where a noisy mixture of first and SO cyclostationary, cyclo-
ergodic, and NB independent sources is assumed to be received
by the array of sensors. In (7), the vector is the noise
vector, which is assumed to be zero-mean, stationary, circular
and spatially white, , , , and correspond to the
complex envelope, NB, first and SO cyclostationary, the carrier
residue, the phase and the steering vector of the source , re-
spectively, is the vector whose components are the signals

, and is the
matrix whose columns are the vectors . To simplify the de-
velopments, we limit the analysis to instantaneous mixtures of
sources, which is typical of some applications such as the spatial
telecommunications, some high data rate line-of-sight (LOS)
contexts, or some airborne electronic warfare applications.

Under the previous assumptions, although in the presence of
cyclostationary sources it may be useful to use polyperiodic
(PP) [12] and, for noncircular sources [29], widely linear [7],
[30] structures of separation, one may still prefer to try to re-
cover the sources through a linear and TI structure of separation,
which is easier to handle. Under these conditions, the problem
is to find, from the SO statistics of the data, the linear
and TI source separator , whose output vector (2) aims at cor-
responding, to within a diagonal matrix and a permutation
matrix , to the best estimate of the vector .

B. FIO and SO Statistics of the Data

1) FIO Statistics: In the presence of FIO cyclostationary
sources, the FIO statistic of the vector , which is given by
(7), can be written as

(8)

where , , and are the expected values of
, , and , respectively.

The quantities and have a Fourier serial expansion,
and we obtain

(9)

(10)

where and are the set of
cyclic frequencies and of and , respectively,
and and are what we call the cyclic mean of
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and , respectively, for the cyclic frequencies and ,
respectively, which are defined by

(11)

(12)

where the symbol corre-

sponds to the continuous-time temporal mean operation of
over an infinite observation interval. Note that for a zero mean
source , the quantities and are zero for all the cyclic
frequencies and , respectively. Besides, for a stationary
source that is not zero mean, only the quantity for
is not zero. A consequence of the previous results is that the vec-
tors and also have a Fourier serial expansion, and
using (10) into (8), we obtain

(13)

(14)

where is the set of cyclic frequencies of
and , the vectors and are the cyclic mean of

and , respectively, defined by

(15)

(16)

Under these assumptions, the first and SO cyclostationary
vector can be decomposed as the sum of a deterministic
(quasi)-periodic part and a zero-mean (quasi)-cyclosta-
tionary random part such that

(17)

where is the zero-mean

vector of the source signals, with components

, where .
2) SO Statistics: Under the previous assumptions, using (7)

and (17), the first correlation matrix
of the data, which is time dependent, can be written as

(18)

where is the SO correlation function of the noise on each
sensor, I is the identity matrix,
is the first correlation matrix of the vector , and
is a cumulant matrix corresponding to the covariance matrix of

, which is defined by

(19)
where is the covariance
matrix of . Using (8) and (19) into (18), we finally obtain

(20)

The SO cyclostationary property of the sources implies that
the matrices and and, thus, the matrices

and , have Fourier serial expansions in-
troducing the SO cyclic frequencies and statistics of ,

, , and , respectively. In particular, the first
cyclic correlation matrix of for the zero cyclic frequency
corresponds to the temporal mean of , which can be
written, from (18), as

(21)
where , and where, from (20),

is given by

(22)

where , and
.

For observations , which are sampled at the sample
period , the matrices and are defined only
for the time instants and , which are mul-
tiple of this sample period. Under these conditions, it is pos-
sible to show [19], [27] that, for bandlimited sources, the matrice

defined by (21) for can be computed only
from the sampled matrices instead of ,
provided that the data are sufficiently oversampled. In other
words, for sufficiently oversampled data, it is possible to re-
place, in (21), the continuous-time temporal mean operation

by a discrete one over an infinite number of samples

.

C. Two Examples of FIO Cyclostationary Sources: AM and
FSK Sources

1) AM Sources: The AM sources [21] are amplitude mod-
ulated analog sources used in particular in old radio communi-
cations systems. If the source is an AM source, its complex
envelope can be written as

(23)

where is a scalar, is the modulation indice,
and , such that , is, in the general case, a

nonzero mean nonstationary random signal. Defining
, the statistical mean of is then given by

(24)

which is, in the general case, a nonzero time-dependent func-
tion. The signal becomes FIO cyclostationary for the par-
ticular case of FIO cyclostationary signals . In this latter
case, has a Fourier serial expansion (9), and we can easily
verify that the cyclic mean is given by

(25)

where is the Kronecker symbol and where
. Thus, the FIO cyclic frequencies of an AM

source correspond to the zero cyclic frequency and to the FIO
cyclic frequencies of .
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2) FSK Sources: The FSK sources [31] are nonlinearly
modulated digital sources used, in particular, for low data rate
radio communications in the HF band. If the source is an
FSK source, its complex envelope can be written as

Rect (26)

where is the input power of the source ,
is the symbol duration, the are the transmitted -ary

symbols that are assumed i.i.d and taking their values in the al-
phabet , where is generally a power
of two, is the peak frequency deviation, Rect is the rect-
angular pulse of amplitude 1 and of duration , and is the
phase of the symbol . Note that for -ary symbols, the asso-
ciated FSK source is called an -FSK source .

When the signal is built from only one local oscillator
that is hopping from one frequency to another, at every symbol
period , the phases may be considered to be i.i.d random
variables that are statistically independent of the symbols and
uniformly distributed between 0 and . In this case, it is easy to
verify that is zero mean. However, when the signal
is built from local oscillators, one oscillator per symbol
value, among which one oscillator is switched at every symbol
period , the phase of the symbol corresponds to the
phase of the switched oscillator for this symbol and becomes
a function of the symbol value, taking its values in
the alphabet .
In this case, the statistical mean of is given by (27),
shown at the bottom of the page, which corresponds to a pe-
riodic function of with a period . In other words, the associ-
ated -FSK source is an FIO cyclostationary source with
FIO cyclic frequencies ’s multiple of . Under these con-
ditions, has a Fourier serial expansion (9), and the cyclic
mean is shown in Appendix A to be given by

(28)

where , which is the cyclic mean for the cyclic frequency
, is given by (29), shown at the bottom of the page.

In particular, we deduce from (29) that an -FSK source
such that the product is an integer has exactly equal

power FIO cyclic frequencies ,
, such that

(30)

D. Third Example of FIO Cyclostationary Sources: Some
CPFSK Sources

1) CPFSK Sources as a Particular Case of CPM Sources:
The CPM sources [28], [31] are nonlinearly modulated digital
sources used in many applications of practical interest such as
the mobile cellular radio communications (GSM) or the spatial
telecommunications. One characteristic of CPM sources is that
their spectral efficiency is much better than that of nonlinear
modulations without a continuous phase. Another property is
that their complex envelope has a constant amplitude, which al-
lows the use of cheap amplifiers working at a saturation level
without any distorsion on the transmitted information. If the
source is a CPM source, its complex envelope can be written
as

(31)

where is the input power of the source ,
is the symbol duration, the are the transmitted -ary

symbols that are assumed i.i.d and taking their values in the al-
phabet , where is generally a power
of two, is a sequence of modulation indices, and is
the waveform shape that is represented as the integral of a pulse

that is nonzero and bounded on the interval [0, ],
where is a nonzero integer, and such that

(32)

When for all , the modulation is said to be mono-in-
dice; otherwise, the modulation is qualified by multi-indices.
When , the CPM source is called full response CPM;
otherwise, it is called partial response CPM. To each choice of
the pulse function , it corresponds a family of CPM source

Rect (27)

(29)
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. The GMSK modulation, which is the modulation of the GSM
standard and for which the pulse function has only an ap-
proximated finite duration, belongs to one of these families.

The CPFSK source is a particular case of the mono-indice
full response CPM source for which the pulse is a rect-
angular pulse of amplitude and of duration . For such
sources , it is possible to show, after easy computations, that

can be written as (26), where is the peak
frequency deviation, and , which represents the accumula-
tion (memory) of all symbols up to , is defined by

(33)

For -ary symbols, the associated CPFSK source is
called an -CPFSK source . Note that a binary CPFSK
source with a modulation index is called
a minimum shift keying (MSK) source .

2) FIO Statistics of CPFSK Sources: It is shown in
Appendix B that, under the previous assumptions, the statistical
mean of is, for an -CPFSK source , given by

(34)

where the quantities , , and are defined
by

(35)

(36)

Rect (37)

From the previous expressions, two cases have to be consid-
ered depending on the value of . These cases correspond to
the cases where is an integer or not, respectively.

a) Is not an Integer: If is not an integer, it is obvious
that , which implies the nullity of both and . In
other words, an -CPFSK source whose modulation indice
is not an integer is a zero-mean source .

b) Is an Integer: If is an integer, it is obvious that
if is even and if is odd, which implies

that in the first case and that expression (35) has no limit
, whereas in the second case. In this latter

case, note that if we assume that the number of past symbols is
finite, then . A consequence of the previous results is
that reduces to

(38)

which corresponds to a periodic function of with a period
if is even and with a period if is odd. In other words,
the associated -CPFSK source is an FIO cyclostationary
source with FIO cyclic frequencies ’s multiple of in
the first case and multiple of in the second case. Under

these conditions, has a Fourier serial expansion (9), and
the cyclic mean is shown in Appendix B to be given by

(39)

where is the Kronecker symbol. Thus, a -CPFSK source
whose modulation indice is an integer has exactly equal

power FIO cyclic frequencies such that

for

(40)

Note that in this case, , despite the fact that
.

E. Problem Addressed in This Paper

For FIO and SO cyclostationary and bandlimited vectors
having an SO cyclo-ergodicity property [4] and for sufficiently
oversampled data, the empirical estimator , which
is defined by (6) with instead of , gives an asymptotically un-
biased and consistent estimate of , which is defined by
(21) with , by definition of the cyclo-ergodicity prop-
erty. In other words, in cyclostationary contexts, the SO BSS
methods such as the SOBI method exploit, asymptotically or in
the steady state, the information contained in several time av-
eraged correlation matrices , which are
defined by (21).

However, while these matrices correspond to cumulant ma-
trices for zero-mean stationary sources and to time-averaged cu-
mulant matrices for zero-mean cyclostationary sources [19], it
is no longer the case for FIO and SO cyclostationary sources
for which , , and

, as shown by (8), (18), and (22). As a consequence,
while, for zero-mean statistically independent sources,
and , appearing in (22), coincide and are diagonal,
only the matrix keeps in all cases a diagonal structure
for nonzero mean sources by definition of the statistical inde-
pendence of the sources, whereas the matrix may loose
its diagonal character. In this latter case, if the element [ , ],

, of the matrix , with , is not zero, we
will say that the FIO cyclostationarity of the statistically inde-
pendent sources and creates an apparent SO correlation of
the sources in the and matrices. This apparent
SO correlation is directly related to the so-called impure SO
cycle frequencies of the SO statistics of the sources discussed
in [22].

In this context, we must first must identify the conditions
that two statistically independent FIO and SO cyclostationary
sources have to be verified to create an apparent SO correlation
in the matrices. Then, we must analyze the consequences
of such an apparent SO correlation between two sources on the
output performances of the current SO BSS methods such as the
SOBI one. These two questions are adressed in Section IV.
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IV. BEHAVIOR ANALYSIS OF CURRENT SO BSS METHODS FOR

FIOAND SO CYCLOSTATIONARY SOURCES

A. Structure Analysis of the Matrix

The matrix is not diagonal if and only if the matrix
introduced in (22) is not diagonal. Thus, two sources

and become apparently SO correlated in the matrix if
and only if the element [ , ], of the matrix
is not zero, which is a situation that is analyzed in this section.

1) General Case: Using (13) and (22), the matrix
can be written as

(41)

and using the fact that , we obtain

(42)

The element [ , ] of the matrix is thus given by

(43)

where is the set of cyclic frequencies be-
longing to both and , which are defined in (10), and
and are defined by (12) with instead of . Expression
(43) shows that is generally not zero, i.e., the two
sources and become apparently SO correlated in the matrice

if condition C1) is verified, where C1) is defined by the
following.

C1) The two sources and share at least one FIO cyclic
frequency, i.e., and share at least one cyclic
frequency.

2) Application to FSK Sources: In the particular case of a
-FSK source and a -FSK source built from and

oscillators, respectively, such that and are integer
and such that

and ,
(43) becomes

(44)

which is not zero if is not empty, which is the case if it exists
at least one value of and one value
of such that

(45)

3) Application to CPFSK Sources: In the particular case
of a -CPFSK source and a -CPFSK source , using
the results of Section III, a necessary condition to obtain

is that the two sources have integer modu-
lation indices and , respectively. Under these conditions,
using (40) and (12), (43) becomes

(46)
which is not zero if is not empty, which is the case if there
exists at least one value of and one
value of such that (45) is verified.

In other words, for a -CPFSK source and a -CPFSK
source , condition C1) becomes C1 ), which is defined by the
following.

: a) The two sources and have an integer modulation
indice.

b) There exists at least one
and one such that

We must now wonder how the presence of apparently SO cor-
related sources in the matrices may modify the behavior
of the current SO BSS method and the SOBI method in partic-
ular. These questions are addressed in Sections IV-B to D.

B. Prewhitening of the Data

In this section, we evaluate the consequences of an apparent
SO correlation of the sources on the prewhitening operation of
the observations.

1) Apparent SO Correlation Coefficient of Two Sources: To
characterize the degree of apparent SO correlation of two
sources and in the matrix , we introduce
the apparent SO correlation coefficient of these sources

defined by

(47)

where . In particular, from
(46) and using the fact that for

, the apparent SO correlation coefficient of a -CPFSK
source and a -CPFSK source , with integer modulation
indices, is given by

card (48)

where card is the number of elements of . This expres-
sion shows in particular that for given values of and ,
increases with the number of couples ( , ) verifying (45). For
example, if , , and , we
obtain .

2) Eigenstructure of : To simplify the developments,
we limit, in the following, the analysis to the two FIO cyclosta-
tionary source cases, and we assume that the source matrix ,
which is defined from (21) for , is not rank deficient, i.e.,
that the sources are not apparently SO coherent .
As the eigenstructure of is directly deduced from that of
(same eigenvectors and eigenvalues obtained by the addition of
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to the eigenvalues of ), we limit the analysis to the eigen-
decomposition of . Under these assumptions, it is possible
to show, after easy but tedious algebraic manipulations, that the
two nonzero eigenvalues of , , and are given by

(49)

where and are scalar quantities defined by

Re (50)

(51)

where , and
is the spatial correlation coefficient of the sources 1

and 2 defined by

(52)

The associated orthonormalized eigenvectors and are
defined by

(53)

where is an arbitrary phase value, and and are scalar
quantities defined by

(54)

(55)

3) Whitened Observations: From the previous expressions,
it is possible to build the whitening matrix

, where Diag and .
The whitened observation vector is then given by

(56)
where is the (2 1) vector of the normalized com-
plex envelopes of , such that

, is the (2 2) matrix of the whitened
source steering vectors , such that the whitened
steering vector is defined by

(57)

Meanwhile, for apparently SO uncorrelated sources
, which is, in particular, the case for zero-mean sources, the

whitened source steering vectors , are orthonor-
malized vectors, and the matrix is an unitary matrix, and
it is no longer the case for apparently SO correlated sources

, for which the vectors , are nei-
ther normalized nor orthogonal.

Proof: To show the previous result, let us first assume
that the matrix is orthogonal. Under this assumption, as

the matrix corresponds to the identity
matrix, the matrix is diagonal and equal to

, implying that the matrix is diagonal,
which is not the case for apparently SO correlated sources.

Let us now assume that the columns of are normalized. In
this case, as , we obtain
that , which means that
is the inverse of , which is the case for since
the two matrices are the identity matrix but which is generally
not the case for since not diagonal does not
depend on the spatial properties of the sources.

To illustrate the previous result, assume that we can simplify
the computations that the sensors are omnidirectional

and that the two sources 1 and 2 are orthogonal
. Under these conditions, it is possible to show, after

tedious computations, that

(58)

(59)

which shows that the modulus of the spatial correlation coef-
ficient of the whitened sources 1 and 2, which is defined
by the normalized inner product of and , is equal to

and increases with .

C. Blind Identification From Matrices by the SOBI
Method

After the whitening operation of the observations, the tem-
poral mean of the correlation matrix of the whitened ob-
servation vector is given by

(60)

where , and is the
normalized vector with components .
Choosing parameters , such that ,
the process of joint diagonalization of the matrices
gives a (2 2) unitary matrix , maximizing the criterion
(5) with . Meanwhile, for apparently SO uncorrelated
sources , is a unitary matrix that jointly diag-
onalizes the set of matrices , and it is no longer the
case for apparently SO correlated sources since

is neither a unitary matrix nor an orthogonal matrix. Under
these conditions, even for sources with different spectrum, the
two orthonormalized vectors and corresponding to the
two columns of become necessarily linear combinations of
the whitened steering vectors and , which are given by

(61)

where the coefficients and are dependent on the
SO properties of the sources and are such that

Re (62)

(63)
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Consequently, the blind identification stage of the SOBI method
is perturbed by the apparent SO correlation of the sources, and
the behavior of the SOBI method is modified in the steady
state. This nonideal behavior of the blind identification of the
whitened source steering vector generates a degradation of the
source separation process, as it is shown in Section IV-D.

D. Blind Source Separation by the SOBI Method

1) Performance Criterion and Spatial Filter Choice: Fol-
lowing the description of the SOBI method in Section II-C,
from the blindly identified vectors and , which are con-
sidered to be estimates of and , it is possible to obtain,
to within a scalar factor, an estimate of the true steering vec-
tors of the sources defined by , where

is the pseudo-inverse operation. Using (61) and the fact that
, the vectors can be written as

(64)

Under these conditions, both the optimal linear and TI spatial
filters associated with the vectors and the perfor-
mance of the associated source separator can be computed.

For statistically independent zero-mean sources, the concepts
of both source separator performance and optimal linear and TI
source separator have been clearly defined in [8]. In particular,
an estimate of the latter consists to implement, for each source
, the estimated spatial matched filter defined by

[8]. However, for statistically independent sources that
are FIO cyclostationary, due to the potential apparent SO corre-
lation of the latter, the concepts of source separator performance
together with that of optimal source separator have to be rede-
fined. Indeed, the power of the output of a linear
and TI spatial filter , whose input vector is given by (7) with

apparently SO correlated statistically independent FIO
cyclostationary sources, is given by

Re (65)

Then, for each source , do we have to consider the
term Re as a useful term for the
source , as an interference term for the source , or as a term
that is a combination of a useful and an interference part for the
source ? These questions have no easy answers, and their anal-
ysis is beyond the scope of this paper. Nevertheless, they have
to be clarified to introduce the concepts of both source separator
performance and optimal linear and TI source separator in the
presence of FIO cyclostationary sources that are apparently SO
correlated.

In the following, to simplify the problem, we still use the
concept of source separator performances introduced in [8]. In
other words, for each source , the signal-to-interfer-
ence-plus-noise ratio for the source at the output of a spatial
filter is defined by

SINR (66)

where is the total noise correlation matrix for the source
, corresponding to the matrix in the absence of the source
. For example, . Under these conditions,

the restitution’s quality of the source at the output of the sep-
arator , whose columns are the , can be evaluated by the
maximum value of SINR when varies from 1 to 2, which
is noted SINRM . It is well known that for the previous
performance criterion, the optimal source separator is the one
that implements, for each source , the spatial matched filter
that is defined, to within a scalar, by , which re-
quires the knowledge of the nonobservable matrix . How-
ever, while the filter is colinear to the filter
for zero mean sources, it is no longer the case for FIO cyclo-
stationary sources that are apparently SO correlated. For this
reason, for each source , we prefer to implement, in the fol-
lowing, an estimate of the optimal interference canceller (OIC)
for the source , whose performance is very close to that of the
optimal filter in most cases [8]. The OIC for the source is de-
fined [8] by

(67)
where is a scalar, and is the operator of orthogonal pro-
jection on the space orthogonal to the steering vectors of the
interference for the source . Then, an estimate of the filter (67)
( ) can be obtained by replacing in (67) the true steering
vectors and by their blind estimates and , which are
generated by the SOBI method, which finally gives

(68)
Considering as the column of the matrix ,
the associated source separator can be written as [8]

(69)

where .
2) Performance Computation: To simplify the performance

computation, we assume in this section that the sources are or-
thogonal (i.e., ) and strong ( ,

, 2) and that the sensors are omnidirectional ( ,
, 2). Under these assumptions, for each source ,

the SINRM at the output of the source separator , de-
duced from the SOBI method, can be computed using (64), and
after tedious elementary algebraic manipulations, we obtain (in
the steady state)

SINRM (70)

where the quantities are defined by

Min Min (71)

Min Min (72)

where , and where the and
verify (62) and (63), where (58) and (59) are valid for orthogonal
sources.
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Expression (70) shows that SINRM does not depend on the
input signal-to-noise ratio (SNR) of the source different of the
source and is a decreasing function of . The performance of
the SOBI method is optimal, and the SINRM is maximum and
equal to when , i.e., when the blind identification of
the two source whitened steering vectors is perfect. This situa-
tion always occurs for zero-mean sources having different spec-
trum but has no reason to occur for FIO cyclostationary sources
that are apparently SO correlated, as shown in the previous sec-
tions. In the latter case, (70)–(72) show that the performance at
the output of the SOBI method degrades. In this case, the quan-
tities and , and thus the SINRM1 and the SINRM2, are
related to each other and become a function of both and the ap-
parent SO correlation coefficient of the two sources , which
are themselves directly related to the SO statistics of the FIO cy-
clostationary sources. In particular, while for two equal power
sources, SINRM1 corresponds to SINRM2 when , it is
no longer the case when , as shown by (71) and (72),
which shows that the apparent SO correlation of the sources in-
troduces a difference in the restitution’s quality of the sources.
Some situations for which one of the parameters and is
sufficiently high to generate strong performance degradation of
the SOBI method are described in Section VII.

These results show that to prevent strong performance degra-
dation or, in the worst case, a very poor source separation at the
output of the SOBI method and, more generally, at the output of
the current SO cumulant-based BSS methods in FIO (quasi)-cy-
clostationary contexts, the SO statistics of the data from which
the blind identification of the source steering vectors is per-
formed have to correspond to time-averaged SO cumulants of
the data and have to take into account the potential FIO cyclosta-
tionarity of the sources. Such an estimator of the time-averaged
SO cumulants of the observations is presented in Section V.

V. ADAPTED SO BLIND SOURCE SEPARATION FOR FIO AND

SO CYCLOSTATIONARY SOURCES: COVARIANCE METHODS

A. Adapted SO BSS Philosophy for FIO Cyclostationary
Sources: Covariance Philosophy

It has been shown in the previous sections that the poten-
tial performance degradation of the current SO BSS methods
is directly related to the potential nondiagonal character of the
source correlation matrix temporal mean defined by
(22), which appears in the expression of the observation correla-
tion matrix temporal mean given by (21).
Moreover, the potential nondiagonal character of is di-
rectly related to the potential nondiagonal character of ,
whereas the matrix source covariance matrix temporal mean

is always diagonal, regardless of the FIO character-
istic of the sources, by definition of the statistical independence
of the latter. Consequently, to prevent poor performance of SO
BSS methods for FIO cyclostationary sources, it is necessary
to exploit the information contained in the matrix in-
stead of . This can be done by exploiting the information
contained in the temporal mean of the observation cumulant ma-
trix given, using (18) and (19), by

(73)

where, using (14), is given by

(74)

and where it is recalled that is the set of the FIO cyclic fre-
quencies of , and is the cyclic mean of for the
cyclic frequency , which is defined by (16). Note from (73)
and (74) that in the general case of FIO cyclostationary sources
and contrary to the stationary sources case, the matrix
cannot be obtained by substracting, from the matrix, only
the part of associated with the zero cyclic frequency and
given by but has to take into account
all the FIO cyclic frequencies of the observation vector ,
which then requires a preliminary step of FIO cyclic frequency
estimation of the data.

Such a SO philosophy, which is called covariance phi-
losophy, prevents generation of apparently SO correlated
FIO cyclostationary sources when the latter are statistically
independent and thus allows good source steering vector
blind identification performances and then good separation
performances to within the spatial filtering process limits,
regardless of the FIO characteristic of the sources, provided
they do not have the same spectrum. Moreover, for zero-mean
cyclostationary sources (containing in particular the zero mean
stationary ones), this philosophy corresponds, in the steady
state, to the classical one. For this reason, the proposed philos-
ophy can be considered to be an extension of the classical one,
allowing also the processing of FIO cyclostationary sources
(also containing the nonzero-mean stationary sources).

Nevertheless, the new proposed philosophy of SO BSS is
unable to process cyclostationary deterministic sources, such
as sinusoid sources or, more generally, poly-periodic sources,
whose contribution in the matrix disappears. For this
reason, an extension of the covariance method, allowing the pro-
cessing of FIO cyclostationary sources jointly with determin-
istic sources, is presented in Section VI.

B. Covariance Philosophy Implementation

In situations of practical interest, the cyclic frequencies and
the statistics of the observations are unknown a priori and have
to be estimated from the data, by temporal averaging operations,
using the FIO and SO cyclo-ergodicity property of the data [26].

For this purpose, if data snapshots of the observation vector
are available and provided that the data are sufficiently

oversampled, we introduce the estimates and , of

and , respectively, defined by

(75)

(76)

Under these conditions, an FIO cyclic frequency detector of the
observations can be implemented by selecting the cyclic fre-
quencies , which makes the criterion greater than
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a threshold, whose value has to be chosen to maximize the de-
tection probability of high power cyclic frequency for a given
false alarm rate, where is defined by

(77)

Once the active FIO cyclic frequencies of the observations
have been detected, the matrix for , which is
defined by (73) and (74), can be estimated, from the data
snapshots, by the quantity defined by

(78)
where is defined by (6).

Under the assumption of FIO and SO (quasi)-cyclostationary
and cyclo-ergodic bandlimited observations, and for sufficiently
oversampled data, the estimator (78) is asymptotically unbiased
and consistent, which means that it generates, in the steady state,
the true matrix , provided that the cyclic frequencies

are exactly known [15]. Finally, the current SO BSS methods,
qualified by correlation methods, can be implemented from the

matrix instead of , giving birth to
covariance methods.

VI. SO BLIND EXTRACTION OF STOCHASTIC AND

DETERMINISTIC FIO AND SO CYCLOSTATIONARY

SOURCES: SOBEFOCYS METHOD

A. General Philosophy

The so-called correlation SOBI method [3], which exploits
the information contained in the matrices, allows the pro-
cessing of zero-mean statistically independent cyclostationary
sources jointly with deterministic sources, provided the latter
do not generate nondiagonal terms in the matrix. This
requires that the spectrum of the deterministic sources have no
common frequencies, i.e., that these sources are spectrally sepa-
rable, which can be considered as the definition of independent
deterministic sources. Otherwise, the deterministic sources be-
come correlated and generate nonzero nondiagonal terms in the

matrix, and the Correlation SOBI method is no longer
adapted for this problem. In the same way, FIO cyclostationary
sources sharing at least one FIO cyclic frequency still generate
nonzero nondiagonal terms in the matrix and become
no longer separable by the correlation SOBI method, as shown
in Section IV.

On the contrary, the so-called covariance SOBI method
(Section V), which exploits the information contained in the

matrices, allows the processing of both zero-mean and
FIO cyclostationary statistically independent sources but is
unable to process deterministic sources since their contribution
disappears from the matrices.

In this context, the purpose of this section is to propose an SO
BSS scheme that allows the joint processing of both zero-mean
and FIO cyclostationary statistically independent sources that
are either stochastic or deterministic. This scheme, which is
called SOBEFOCYS, implements a first step allowing the pro-
cessing and the extraction of stochastic sources, zero-mean or
not, from the covariance method proposed in Section V, and a

second step allowing the processing and the extraction of deter-
ministic sources from the results of the first step. Note that other
schemes may be proposed, but their analysis is beyond the scope
of the paper.

B. SOBEFOCYS Method

1) Observation Model: In the presence of stochastic and
deterministic statistically independent sources such that

, the observation model (7) can be written as

(79)

where and are the and matrices
of the steering vectors of the stochastic and deterministic
sources, respectively, and and are the
and vectors of the complex envelope (with potential
carrier residues) of the stochastic and deterministic sources,
respectively. Note that the stochastic sources are assumed
to be FIO cyclostationary and may share some FIO cyclic
frequencies, whereas the deterministic sources are assumed to
be polyperiodic. The statistical independence of the stochastic
sources means that the components of are statistically
independent. The statistical independence of the determin-
istic sources means that the spectrum of the latter share no
frequencies. Finally, the statistical independence of stochastic
and deterministic sources means, in this paper, that the vectors

and are not correlated, regardless of the
value of , i.e., that .

2) FIO and SO Statistics of the Data: Under the previous
assumptions, the FIO statistics of the vector can be written
as

(80)

where and have a
Fourier serial expansion. The deterministic character of
implies that the latter vector disappears from the temporal mean

of the covariance matrix , which is given by

(81)

where is a diagonal
matrix, and . Finally, under the
assumptions of Section VI-B1, the temporal mean of the
correlation matrix is given by

(82)

where , , such
that is a diagonal matrix.

3) Detection of Deterministic Sources From P1 and P2 Esti-
mation: The presence of deterministic sources can be detected
from the estimation of the number of sources and con-
tained in the matrices (81) and (82) for , respectively. The
different steps of this process are presented in the following:

— estimation of from data snapshots ,
using the empirical estimator (6) with ;

— estimation of from the eigendecomposition of
using a classical eigenvalue test;

— estimation of the FIO cyclic frequencies of the ob-
servations using (75)–(77);
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— estimation of from and the es-
timated cyclic frequencies using (78) for ;

— estimation of from the eigendecomposition of
, using a classical eigenvalue test;

— estimation of by ;
— deterministic sources are detected if .
4) First Step of the SOBEFOCYS Method: Extraction of the

Stochastic Sources: The blind estimation of the mixing ma-
trix can be obtained, to within a permutation ma-
trix and a diagonal matrix , by implementing
the so-called covariance SOBI method, from , and
several covariance matrices with , com-
puted from (78), (6), and the cyclic frequencies . Then, from
the obtained matrix, an stochastic
sources separator has to be built to allow the extraction of the
stochastic sources, i.e., the estimation of the stochastic
sources vector to within a permutation and a diagonal
matrix by

(83)

In the absence of deterministic sources , as sug-
gested in Section IV-D1, the separator is chosen to imple-
ment the OIC for each stochastic source, which is equivalent, for
a spatially white noise, to implementing the least square sepa-
rator [8], which is defined by

(84)

and which gives

(85)
In the presence of deterministic sources , the column

, of the separator is chosen to minimize the output
power under a first constraint of
zero distorsion in the direction of the source associated with the
column , , of , and under a second constraint of nulling
all the other stochastic sources, i.e., for . It is
easy to verify that is written as

(86)

and gives

(87)

Note that in the absence of deterministic sources, the separator
(86) asymptotically (i.e., when becomes infinite) corresponds
to (84).

5) Second Step of the SOBEFOCYS Method: Extraction of
the Deterministic Sources: Once the stochastic sources have
been extracted, the deterministic sources can be processed if

. To this aim, we first remove the stochastic sources
from the observation vector by building the projection

of the observation vector on the subspace orthogonal to the
column of defined by

(88)

where . Note that for a perfect blind
identification of the matrix , we obtain , and the
vector takes the form

(89)

The blind estimation of the projected mixing
matrix can be obtained, to within a permutation
matrix and a diagonal matrix , by implementing
the so-called correlation SOBI method [3] from , , and
several correlation matrices with computed
from (6) with the indice replaced by . Then, from the ob-
tained matrix, an deter-
ministic source separator has to be built to allow the extrac-
tion of the deterministic sources, i.e., the estimation of
the deterministic source vector , to within a permutation
and a diagonal matrix, by

(90)

The separator is chosen to implement the least square sep-
arator for the deterministic sources once the stochastic sources
have been removed from the observation vector. It is then de-
fined by

(91)
which gives

(92)

VII. SIMULATIONS

The results presented in Sections I–V are illustrated in
Figs. 1–4, where two statistically independent binary CPFSK
sources are assumed to be received by a circular array of
five uniformly spaced sensors with a radius
( is the wavelenght). The two sources are assumed to be
orthogonal to each other , which is, in particular,
the case when their angle of arrival is such that
and . They have the same input signal-to-noise ratio
(SNR) of 10 dB and are synchronized. Their symbol durations

and their modulation indices are such that
for and . Besides, the

considered SOBI method aims at diagonalizing an estimation
of only one correlation or one covariance matrix temporal
mean of the whitened observation matrix for . In the
first case, the SOBI method (which is the current one) is called
SOBI_COR, whereas in the second case, the SOBI method
(which is the new one) is called either SOBI_COV when all the
FIO cyclic frequencies belonging to are taken into account in
(78) or SOBI_ACOV (for approximated covariance) when only
the zero cyclic frequency is taken into account in (78). Finally,
the SINRMk ( , 2) at the output of the SOBI methods,
computed in these figures, are averaged over 200 realizations.
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Fig. 1. SINRM1 at the output of SOBI_COR, SOBI_ACOV, and SOBI_COV
as a function of K , N = 5, P = 2 2-CPFSK sources, � = 50 , � = 91 ,
SNR = 10 dB, h =T = h =T = 1=4T , h = 2, h = 4, � = 4T , and
�f = �f = h =2T . (a) SOBI_COV. (b) SOBI_ACOV. (c) SOBI_COR.

Fig. 2. SINRM2 at the output of SOBI_COR, SOBI_ACOV, and SOBI_COV
as a function of K , N = 5, P = 2 2-CPFSK sources, � = 50 , � = 91 ,
SNR = 10 dB, h =T = h =T = 1=4T , h = 2, h = 4, � = 4T , and
�f = �f = h =2T . (a) SOBI_COV. (b) SOBI_ACOV. (c) SOBI_COR.

Under the previous assumptions and assuming that the two
sources have a carrier residue such that ,
Figs. 1 and 2 show the variations of the SINRM1 and the
SINRM2, respectively, at the output of the SOBI_COR, the
SOBI_ACOV, and the SOBI_COV separators, as a function
of . As the two sources share the FIO cyclic frequencies

and , they become apparently SO correlated
in the matrix, with a coefficient equal to 0.5.
In this case, it can be shown that or

, , and ,
which explains the high performance degradation (the SINRM1
and the SINRM2 converge toward 2.5 and 8 dB, respectively,
instead of 17 dB) and the poor separation of the sources at
the output of the current SOBI (SOBI_COR) method. On the
contrary, the implementation of the SOBI method from the

Fig. 3. SINRM1 at the output of SOBI_COR as a function ofK ,N = 5,P =
2 2-CPFSK sources, � = 50 , � = 91 , SNR = 10 dB, h =T = h =T =
1=4T , h = 2, h = 4, � = 4T , and �f = h =2T . (�f ��f )xT =
(a) 0, (b) 0.005, and (c) 0.01.

Fig. 4. SINRM2 at the output of SOBI_COR as a function ofK ,N = 5,P =
2 2-CPFSK sources, � = 50 , � = 91 , SNR = 10 dB, h =T = h =T =
1=4T , h = 2, h = 4, � = 4T , and �f = h =2T . (�f ��f )xT =
(a) 0, (b) 0.005, and (c) 0.01.

matrix, given by (78) for , where the
two cyclic frequencies and have been used
(SOBI_COV), shows performances approaching the optimality
as the number of snapshots increases. Nevertheless, the use of
(78) with only one of the two common FIO cyclic
frequencies of the sources (SOBI_ACOV) is not sufficient to
obtain optimal performances.

Figs. 3 and 4 show, for several values of , the variations of
the SINRM1 and the SINRM2, respectively, at the output of the
SOBI_COR separator, as a function of the number of snapshots

, for several values 0, 0.005, and 0.01 of the differential carrier
residue . Note the poor separation of the two
sources when , even in the steady-state (SINRM

dB, SINRM dB), and the decreasing convergence
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Fig. 5. SINRMi(1 � i � 4) at the output of SOBI_COR as a function of
K , N = 5, P = 4: 2 2-CPFSK sources and two sinusoids � = 50 , � =
�179 , � = 125 , � = 93 , SNR = 10 dB, h =T = h =T = 1=4T ,
h = 2, h = 4, � = 4T , �f = �f = h =2T , �f = 1=3T , and
�f = 1=5T .

Fig. 6. SINRMi(1 � i � 4) at the output of the SOBEFOCYS method as
a function of K , N = 5, P = 4: two 2-CPFSK sources and two sinusoids
� = 50 , � = �179 , � = 125 , � = 93 , SNR = 10 dB, h =T =
h =T = 1=4T , h = 2, h = 4, � = 4T , �f = �f = h =2T ,
�f = 1=3T , and �f = 1=5T .

speed of the SOBI_COR separator as decreases.
In this latter case, the steady-state output performance are not
affected by the use of the empirical SO statistics estimator since
the source correlation matrix is diagonal due to the fact that
the sources do not share any FIO cyclic frequencies. Neverthe-
less, when the FIO cyclic frequencies of the sources are close to
each other, the output performance degradation obtained from a
short-time observation is a decreasing function of the difference
between the FIO cyclic frequencies of the sources.

The results presented in Section VI are illustrated in Figs. 5
and 6, where the context is the same as the one depicted for

Figs. 1–4, to within the DOA of the source 2, which is equal
to , but where two independent deterministic
sources, corresponding to two sinusoïds, have been added
in the observation vector. These deterministic sources have
an SNR of 10 dB, come from the directions and

, respectively, and are such that
and . In this context, Figs. 5 and 6 show the
variations of the SINRM at the output of the
SOBI_COR and the SOBEFOCYS method, respectively, as a
function of . Note that the SOBI_COR method separates the
deterministic sources but has some difficulties to separate the
FO cyclostationary stochastic sources as the latter share the FIO
cyclic frequencies and . In the same context,
the SOBEFOCYS method allows good separation of all the
sources, deterministic or not, despite the FIO cyclostationarity
of the latter and the fact that sources 1 and 2 share some FIO
cyclic frequencies.

VIII. CONCLUSION

In this paper, the behavior of the current SO cumulant-based
BSS methods, such as the SOBI method, initially developed for
zero mean, stationary, and ergodic sources, has been analyzed
for cyclostationary and cyclo-ergodic sources that are assumed
FIO cyclostationary. Examples of such sources correspond to
CPFSK sources having an integer modulation indice some FSK
and AM sources.

It has been shown in the paper that when two sources share
at least one FIO cyclic frequency, they become apparently SO
correlated in the temporal mean of the data correlation matrix,
and the performance of the current SO BSS methods may be
strongly affected by such sources, despite the fact that they are
statistically independent.

To solve this problem, it has been proposed in the paper to
implement the current SO BSS method from the temporal mean
of the data covariance matrix instead of the correlation ma-
trix, which generates covariance methods instead of correlation
ones. For this purpose, an asymptotically unbiased and consis-
tent estimator of the data covariance matrix temporal mean has
been proposed for FIO and SO cyclostationary and cyclo-er-
godic sources. However, the use of this estimator requires the
knowledge or the a priori estimation of all the FIO cyclic fre-
quencies of the observations.

The so-called covariance BSS philosophy proposed in this
paper allows the separation of both stationary and cyclosta-
tionary statistically independent sources that are either zero
mean or not (FIO cyclostationary), provided they do not have
the same spectrum. In that sense, it extends the applicability
of the current correlation BSS methods [3] that have been
developed for stationary sources to FIO and SO cyclostationary
sources.

However, the main limitation of the proposed covariance phi-
losophy is that it is unable to separate cyclostationary determin-
istic sources such as sinusoids or polyperiodic sources. For this
reason, an SO BSS scheme, called the SOBEFOCYS method,
allowing the joint processing of arbitrary modulated (stochastic
or deterministic, zero-mean or not) statistically independent cy-
clostationary sources, has finally been proposed in the paper.
After the estimation of the number of deterministic sources,
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this scheme implements the proposed covariance method in a
first step, allowing the processing and the extraction of sto-
chastic sources, and then implements a second step allowing
the processing and the extraction of deterministic sources from
the results of the first step. Note that to our knowledge, the
SOBEFOCYS scheme is the first to allow the joint SO BSS of
arbitrarily modulated (stochastic or deterministic, zero-mean or
not) cyclostationary sources.

APPENDIX A

In this Appendix, we compute the FIO cyclic statistics of a
-FSK source built from local oscillators.

The cyclic mean has to be computed for cyclic frequen-
cies multiple of . For the cyclic frequency ,
using the fact that the function is periodic
with a period equal to , we deduce from (27) that the cyclic
mean , which is defined by (11) with , is given
by (A1), shown at the bottom of the page. Using the fact that
Rect is zero outside the interval [0, ] and making in (A1)
the change of variables , , we obtain,
after some elementary manipulations, (29).

APPENDIX B

In this Appendix, we compute the FIO statistics of a
-CPFSK source .

A. Computation of

From (26) and (33), using the statistical independance of the
symbols , we obtain

Rect (B1)

On the other hand, for equiprobable symbols , with proba-
bility , it is easy to verify that for an arbitrary real value

, we obtain

(B2)

Applying (B2) into (B1), (34)–(37) follow immediately.

B. Computation of for

When , the cyclic mean has to be computed
for the cyclic frequencies multiple of . For the

cyclic frequency , using the fact that the function
is periodic with a period equal to , we

deduce from (38) that the cyclic mean , which is defined by
(11) with , is given by

(B3)
Using the fact that is zero outside the interval [0, ],
making in (B3) the change of variables ,
and using (37) in (B3) with , where is an integer, we
obtain, after some elementary manipulations that

(B4)
which, after elementary trigonometric manipulations, can also
be written as

(B5)

For each value of , , if
, it is easy to verify that the expression (B5) gives .

However, if , we deduce from (B5) that
. Recalling that , we deduce that

is not zero for cyclic frequencies
, and the associated cyclic mean is

; this result is expressed by (39).

C. Computation of for

When , the cyclic mean has to be computed
for the cyclic frequencies multiple of . For the
cyclic frequency , using the fact that the function

is periodic with a period equal to , we
deduce from (38) that the cyclic mean defined by (11) with

is given by

(B6)

Using the fact that is zero outside the interval [0, ],
making in (B6) the change of variables , ,

Rect (A1)
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and using (37) in (B6) with , where is an integer,
we obtain, after some elementary manipulations that

(B7)

If is even, , and . However, if is odd,
i.e., if , where in an integer, it is easy to verify,
after some elementary trigonometric manipulations, that

(B8)

For each value of , , if
, it is easy to verify that (B8) gives .

However, if , we deduce from
(B8) that . Recalling that

, we deduce that is not zero for cyclic frequencies
,

and the associated cyclic mean is ; this result is
expressed by (39).
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