
i
i

“cis-template” — 2020/9/14 — 14:07 — page 1 — #1 i
i

i
i

i
i

Communications in Information and Systems
Volume 14, Number 4, 1–27, 2014

Continuous Collision Detection with
Medial Axis Transform for Rigid Body

Simulation

Shibo Song, Lei Lan , Junfeng Yao⇤ and Xiaohu Guo⇤

Continuous Collision Detection (CCD) is a fundamental problem
for physically based simulation, such as rigid motion, elastic defor-
mation, cloth animation, etc. CCD has been widely studied in
the past decades, and most proposed algorithms are performed
on the level of triangle mesh by using some culling methods to
reduce the number of tested triangle pairs. However, the e�ciency
of these algorithms is very sensitive to the resolution of the tri-
angular mesh. In this paper, we present an e↵ective and e�cient
CCD method based on Medial Axis Transform (MAT) for simu-
lating rigid motion. The simplified MAT, represented as a medial
mesh composed of medial primitives like cones and slabs can pro-
vide a high-quality tight enclosure of the original 3D shape, while
its number of primitives is smaller than that of the original triangle
mesh by several orders of magnitude. With this key observation,
our colliding elementary tests are only performed on the medial
mesh, and the first time-of-impact in CCD can be computed by
solving a quadratic optimization problem. The experiments show
our algorithm can accurately and e�ciently handle CCD of multi-
bodies with thin features, without any penetration or tunnelling
artifacts. Compare to the standard Bounding Volume Hierarchy
(BVH) methods, our method achieves great improvement in e�-
ciency.

1. Introduction

Most physically-based simulations have to e↵ectively and e�ciently handle
collision problems to prevent invalid penetration or overlap between geo-
metric primitives. The fidelity and e�ciency of these simulators depends
largely on the collision detection algorithms they choose. For real-time or
interactive simulators, collision detection is their major performance bottle-
neck. In general, an exact collision detection not only needs to determine

1

i
i

“cis-template” — 2020/9/14 — 14:07 — page 2 — #2 i
i

i
i

i
i

2 S. Song, L. Lan, J. Yao and X. Guo

whether two objects are intersecting on a given configuration, but also needs
to query all overlapping geometric primitives. Nowadays, simulated objects
with hundreds of thousands or even millions of surface triangles are ubiq-
uitous, and it is unacceptable to perform pair-wise primitive intersection
test in a brute-force way. In the past decades, a number of collision detec-
tion algorithms have been proposed to speed up computation by culling out
the non-colliding primitives as much as possible. These algorithms can be
classified into high-level culling techniques like Bounding Volume Hierarchy
(BVH) [14, 34], spatial subdivision [9], and low-level culling techniques like
normal cone [35, 37], orphan sets [30], and representative triangles [8, 32].

However, e�ciency of collision detection is still a serious challenge for
most real-time applications. To compromise on e�ciency, these applications
have to use Discrete Collision Detection (DCD), which only checks for colli-
sions at a given time step and omit the collisions between the time interval.
It is well known that DCD may su↵er from missing collisions when objects
move at a high speed or simulators run on a large time step, and could lead
to visual artifacts in simulation. In contrast, Continues Collision Detection
(CCD) [7, 28, 36] is a more accurate alternative. CCD considers trajectories
of objects in a time interval by interpolation, and checks for the first collision
event, including the first time-of-contact and location information, that hap-
pens along the trajectories. At the triangle-level detection, CCD reduces the
overlapping test of a triangle pair to 15 elementary tests, including 6 vertex-
face tests and 9 edge-edge tests [6, 28]. These elementary tests require using
cubic polynomial root solvers to obtain the first time-of-contact. Therefore,
CCD is more time-consuming than DCD. Besides physically-based simula-
tions, CCD has been widely used in robot motion planning [31, 32], haptic
rendering [10, 40], etc.

In this paper, we propose a new CCD algorithm for rigid body simu-
lation. Our algorithm accelerates CCD by directly performing elementary
tests on Medial Axis Transform (MAT) of input objects, rather than on
their triangle mesh. MAT of a 3D object is composed of a set of medial
spheres, which are the maximally inscribed spheres touching the boundary
with at least two contacts [5]. MAT preserves the topology and geometric
features of the 3D objects while containing their local thickness informa-
tion, so MAT has long been considered as an e↵ective shape approximation
representation [11, 29, 41]. Medial mesh is a compact expression of MAT,
and it is a non-manifold triangle mesh that discretizes MAT with piecewise
linear elements. Vertices on the medial mesh are medial spheres, and the con-
nections between vertices form the volumetric medial primitives by linearly
interpolating two (or three) medial spheres along edge (or faces). Lan et

i
i

“cis-template” — 2020/9/14 — 14:07 — page 3 — #3 i
i

i
i

i
i

Continuous Collision Detection with Medial Axis Transform 3

al. [23] demonstrated that medial primitives can be used in DCD as bound-
ing primitives to perform pair-wise primitive intersection tests by solving an
analytically Quadratically Constrained Quadratic Program (QCQP) prob-
lem. Since the simplified medial mesh only contains a modest number (n) of
medial primitives while maintaining a high-quality approximation for the 3D
object with a large number (N) of triangles, the simulator only needs O(n)
(n ⌧ N) calculations and culls more non-colliding triangle pairs in DCD to
achieve interactive simulation of elastic bodies with high-resolution trian-
gle meshes in collision-rich scenes. The algorithm we propose extends DCD
algorithm of MAT in [23] to CCD. In addition, due to the non-deformable
nature of rigid bodies, we directly perform CCD on MAT rather than using
it as bounding primitives for triangular meshes.
Main Contributions: Inspired by Lan et al.’s work [23], we present a CCD
algorithm with MAT for rigid body simulation in this paper. Only medial
primitives are detected for elementary tests, and the global first time-of-
contact and colliding location are found by solving a quadratic optimization
problem about the spherical distance between medial primitives in the given
time interval. We use alternating iteration to solve this optimization prob-
lem: when the time instance is fixed as a constant, this problem is equal
to the QCQP in [23]; when the nearest sphere pair is fixed, this problem
becomes a standard quadratic optimization problem and can be solved by
computing its derivative. This iteration strategy can converge quickly in
the rigid body simulation. The results show our algorithm can significantly
improve the e�ciency of CCD without any penetration or tunnelling arti-
facts.

2. Related Work

In this section, we briefly introduce the prior works about CCD algorithms,
including collision culling, cubic solver, parallel collision detection, and col-
lision handling.

Collision culling is a critical process for existing collision detection algo-
rithms because of limited computing resources. BVH is a primary adopted
high-level culling algorithm for CCD and DCD. Various types of bounding
volume have been explored such as Axis-Aligned Bounding Box (AABB) [34],
Object-aligned Bounding Box (OBB) [12], Bounding Sphere [14, 16], Box-
tree [44], Spherical Shell [19], etc. For deformable body simulation, these
BVHs have to be update to satisfy shape changes in each frame. Many
algorithms are presented to quickly refit or reconstruct BVHs, including

i
i

“cis-template” — 2020/9/14 — 14:07 — page 4 — #4 i
i

i
i

i
i

4 S. Song, L. Lan, J. Yao and X. Guo

linear time refitting [20], selective restructuring [26, 43], and parallel recon-
struction [18, 21]. Most of Low-level culling algorithms are designed for
self-collision in CCD by removing duplicate elementary tests based on con-
nectivity information of mesh. Orphan Sets [30] and Representative Trian-
gles [8, 32] are the low-level culling algorithms for many CCD applications
with self-collisions, especially for cloth simulation. Orphan Sets [30] precom-
putes an orphan set from adjacent collision pairs, and removes the primitives
among all adjacent pairs that are not in the orphan sets. Representative
Triangles [8, 32] assigns each primitive to a unique triangle to guarantee no
duplicate elementary test would be checked. Besides, many techniques han-
dle deformable objects by computing some bounds related to deformation
and using them for self-collision culling. Barbič and James [4] computed self-
collision culling certificates in subspace to accelerate self-collision culling.
Based on the observation that a self-collision occurs under large local defor-
mation, Zheng and James [45] proposed an energy-based metric to improve
the e↵ectiveness of self-collision culling. Wong et al. [39] proposed a tech-
nique that accelerates continuous collision detection by performing radial
view-based culling based on the skeleton structure, but the skeleton needs to
be precomputed and the overhead for models undergoing topology changes
can be high.

Elementary tests of CCD are performed by finding roots of a cubic poly-
nomial equation, which is derived from coplanar conditions. These elemen-
tary tests are typically implemented using finite-precision or floating-point
arithmetic and use error tolerances, resulting in the tests being prone to
error, such as false negatives. Many exact cubic solvers are proposed to
avoiding these errors, and there is an excellent review of the topic [42] rec-
ommended to readers. Brochu et al. [7] proposes an exact CCD algorithm
by calculating non-constructive predicates for parity of the number of col-
lisions. Wang [36] performed forward error analysis to check the existence
of exact vertex-triangle or edge-edge intersection to reduce false positives.
Tang et al. [33] presented a geometrically exact CCD algorithm based on the
exact geometric computation paradigm to perform reliable Boolean collision
queries.

In order to increase the performance of CD, a number of acceleration
technologies have been proposed by exploiting the parallel capability of
GPUs [22, 23, 27, 38]. Since we only need a very low number of medial
primitives to tightly bound each 3D object, our algorithm simply checks all
elementary tests of medial primitive pairs parallelly on GPU. Recently, some

i
i

“cis-template” — 2020/9/14 — 14:07 — page 5 — #5 i
i

i
i

i
i

Continuous Collision Detection with Medial Axis Transform 5

simulators of elastoplastic contact models are presented to handle challeng-
ing contact scenarios with CCD [13, 17, 24]. Although these simulators can
produce high-quality animations, they run in a slow rate far from real-time.

3. Medial Mesh Representation

An initial MAT usually is computed by the Voronoi diagram of a set of
sampled points on the shape boundary of 3D object [1]. However, the ini-
tial MAT has many undesirable spikes, making them unsuitable for any
practical application. To obtain a structurally simple and compact medial
axis, the initial MAT has to be simplified by identifying and pruning the
spikes. Li et al. [25] proposed a MAT simplification algorithm that using a
quadratic error metric to measure approximation errors in MAT simplifica-
tion. This algorithm e�ciently and e↵ectively removes a lot of meaningless
medial primitives, while producing a compact and accurate approximation of
input object. Once the radii of MAT is slightly dilated, a high-quality tight
enclosure of the original object can be obtained. Therefore, the original 3D
objects can be enclosed by the dilated MAT to perform the overlapping test,
by detecting if there is any medial spheres overlapping.

Given a medial vertex m on medial mesh, and it is denoted as a 4D
vector by m = {c>, r}>, where c is the center of medial sphere and r is its
radius. Each edge and face of medial mesh is associated with a volumetric
primitive, which is called medial primitive, as shown in Fig. 1(a). All medial
primitives are combined to be the enveloping primitives of the medial mesh,
which is an approximation of the original 3D object, as shown in Fig. 1(b).
An edge is denoted Cij = {mi,mj}, which connects two vertices mi and
mj . By interpolating both the sphere centers and radii information across
Cij , the resulting volumetric primitive is a medial cone: {m|m = ↵mi +
(1� ↵)mj , ↵ 2 [0, 1]}. Similarly, a triangle of medial mesh is denoted Cijk =
{mi,mj ,mk}. The volumetric primitive associated with it is a medial slab,
which is obtained by linearly interpolating the three medial spheres: {m|m =
�imi + �jmj + (1� �i � �j)mk,�i 2 [0, 1] ,�j 2 [0, 1� �i]}.

For a 3D object, its medial mesh is not only an inner skeleton, but also
provides a volumetric approximation of the object with a small number of
medial primitives. Lei et al. [23] used the medial primitive as the bounding
volume to cull unnecessary collisions (DCD only) in elastic body animation.
The distance between two medial primitives is formulated as a signed spher-
ical distance that is determined by the two closest medial spheres on each
other. If the distance is negative, the two medial primitives are overlapping.
Otherwise, they are separating. Since the medial mesh provides an excellent

i
i

“cis-template” — 2020/9/14 — 14:07 — page 6 — #6 i
i

i
i

i
i

6 S. Song, L. Lan, J. Yao and X. Guo

(a) (b)

Figure 1: (a) Medial primitives: medial cone (upper) and medial slab (bot-
tom). (b) The enveloping primitives of its medial mesh (left) and the original
3D object (right).

shape approximation with only a small number of medial primitives, the
method shows at least two orders of magnitude higher culling e↵ectiveness
than other widely used bounding primitives, such as OBB and bounding
spheres. Its culling strategy does not depend on any tree-like multi-level
data structure. All overlapping tests on the pairs of medial primitives are
parallelly performed on GPUs. However, Lei et al. [23] ran the overlapping
tests of medial primitives on the pipeline of discrete collision detection, some
collision events may be missed when adopting a large time step.

In this paper, we will generalize the MAT-based bounding volume to
continues collision detection for rigid body simulation. The radii of medial
spheres do not need to be updated because of the rigid motion. It means
that the bounding quality of rest-shape MAT is maintained, and high colli-
sion accuracy can be obtained if a high-resolution medial mesh is configured.
Unlike [23], our algorithm will directly perform the low-level collision detec-
tion on MAT, instead of on triangle mesh.

4. Continue Collision Detection on Medial Mesh

4.1. Continuous Collision Detection

For CCD on triangle mesh, detecting collisions between two triangles in
motion reduces to performing pairwise vertex-face and edge-edge elementary
tests. The motion of triangles usually is linearly interpolated within a time

i
i

“cis-template” — 2020/9/14 — 14:07 — page 7 — #7 i
i

i
i

i
i

Continuous Collision Detection with Medial Axis Transform 7

interval. For two arbitrary triangles, there are 6 vertex-face and 9 edge-edge
elementary tests to be performed to compute the first time-of-contact. For
two arbitrary medial primitives, detecting continuous collisions can also be
reduced to performing two types of pairwise elementary tests: cone-cone and
sphere-slab. For two medial cones we need to perform a cone-cone test; for a
medial cone and a medial slab we need to perform 3 cone-cone and 2 sphere-
slab tests; and for two medial slabs we need to perform 9 cone-cone and 6
sphere-slab tests. A list of collision tests including all cone-cone and sphere-
slab tests between two medial meshes will be built up in the precomputation
stage. During animating, all tests on the list will be parallelly performed on
GPUs if the bounding boxes of two medial meshes are overlapping.

4.2. Elementary Tests of Medial Primitive Pairs

Let us introduce our algorithm by taking the cone-cone test as an example.
Its routine can be readily generalized to sphere-slab tests, since the problem
structure is unchanged. Consider two medial cones C1 = {m|m = ↵m11 +
(1� ↵)m12, ↵ 2 [0, 1]} and C2 = {m|m = �m21 + (1� �)m22, � 2 [0, 1]} in
rigid motion. Let v11, v12, v21, v22 be the constant velocities of the four
centers of medial spheres in the time interval [t0, t1]. The centers and radii
of arbitrary spheres on these two cones at time t 2 [t0, t1] can be defined as:

(1)

c1(↵, t) = ↵(c11 + v11t) + (1� ↵)(c12 + v12t),

r1(↵) = ↵r11 + (1� ↵)r12,

c2(�, t) = �(c21 + v21t) + (1� �)(c22 + v22t),

r2(↵) = �r21 + (1� �)r22.

The signed distance between these two spheres can be formulated as:

(2)
S(↵,�, t) = kc1(↵, t)� c2(�, t)k � (r1(↵) + r2(�))

=
p

P1(↵,�)t2 + P2(↵,�)t+ P3(↵,�)�R(↵,�).

i
i

“cis-template” — 2020/9/14 — 14:07 — page 8 — #8 i
i

i
i

i
i

8 S. Song, L. Lan, J. Yao and X. Guo

Here,

P1(↵,�) = kv11 � v12k2↵2 + kv21 � v22k2�2

�2(v11 � v12)>(v21 � v22)↵�
+2(v11 � v12)>(v12 � v22)↵
�2(v21 � v22)>(v12 � v22)�
+kv12 � v22k2,

P2(↵,�) = 2(v11 � v12)>(c11 � c12)↵2

+2(v21 � v22)>(c21 � c22)�2

�2[(v11 � v12)>(c21 � c22) + (v21 � v22)>(c11 � c12)]↵�
+2[(v11 � v12)>(c12 � c22) + (v12 � v22)>(c11 � c12)]↵
�2[(v21 � v22)>(c12 � c22) + (v12 � v22)>(c21 � c22)]�
+2(v12 � v22)>(c12 � c22),

P3(↵,�) = kc11 � c12k2↵2 + kc21 � c22k2�2

�2(c11 � c12)>(c21 � c22)↵�
+2(c11 � c12)>(c12 � c22)↵
�2(c21 � c22)>(c12 � c22)�
+kc12 � c22k2,

R(↵,�) = (r11 � r12)↵+ (r21 � r22)� + (r12 + r22).

The goal of CCD is to determine whether collisions occur within the
time interval, and obtain the first time-of-contact, which is equivalent to
solving the minimum root of S(↵,�, t) = 0. However, it is di�cult to find
the analytic solution of S(↵,�, t) = 0. We re-formulate it as the following
minimization problem:

(3)
min f(↵,�, t) = S(↵,�, t)2,
s.t. 0  ↵  1, 0  �  1, t0  t  t1.

Obviously, f(↵,�, t) = 0 is the minimum value. If collisions happen between
C1 and C2 during the time interval [t0, t1], there must be at least one root
making f(↵,�, t) = 0. We just need to obtain the root that is first time-of-
contact. Otherwise, f(↵,�, t) > 0 at the entire span of time interval.

We propose to minimize f(↵,�, t) and solve for {↵,�} and {t} in an
iterative manner: (1) fix the time t, and solve for the linear interpolation
parameters {↵,�} of the nearest sphere pair; (2) fix {↵,�}, and solve for
the closest time instance t. We iterate these 2 steps until convergence or
no-collision being confirmed. In addition, after the QCQP[23] is solved in

i
i

“cis-template” — 2020/9/14 — 14:07 — page 9 — #9 i
i

i
i

i
i

Continuous Collision Detection with Medial Axis Transform 9

the first step, the quadratic optimization problem in second step is actually
to search the closest moment of the fixed sphere pair in the continuous
domain [t0, t1]. Therefore, the whole iteration process of searching for the
First Time-of-Contact is continuous and consistent with the idea of CCD.

From geometric perspective, the whole iteration process is to find the
nearest sphere pair {↵j ,�j} at a time tj firstly (j is the iteration number),
then find the first time tj+1 when the spheres ↵j and �j are in contact (or
closest if no-collision). We keep updating the nearest sphere pair {↵,�} and
contact time t until they converge, which means we find the first time-of-
contact and the colliding sphere pair.

4.3. The First Time-of-Contact

When t is fixed, the problem is equivalent to the discrete collision detection
for MAT. The nearest sphere pair can be obtained by the method proposed
by Lan et al. [23]. When {↵,�} is fixed, we set the first-order derivatives of
f(t) to be zero:

(4)
df(t)

dt
=

(
p

P1t2 + P2t+ P3 �R)(2P1t+ P2)p
P1t2 + P2t+ P3

= 0.

Due to the existence of 1p
P1t2+P2t+P3

, Eq. (4) has a singular point when

P1t2 + P2t+ P3 = 0. It will happen if and only if the centers of two spheres
{↵,�} coincide. So, we can ignore it in general situations. It is noticed thatp

P1t2 + P2t+ P3 �R = 0 is equivalent to a parabola P1t2 + P2t+ P3 �
R2 = 0, and it has two roots t(1), t(2) (t(1) < t(2)). The third solution comes
from 2P1t+ P2 = 0: t(3) = � P2

2P1
, which is exactly the symmetry axis of the

parabola. Note that we use the notation t(i) to denote the i-th root of t for
Eq. (4), and use the notation tj to denote the j-th iteration of t throughout
the optimization of Eq. (3). We can discuss the following two cases for the
parabola:
Case 1: t(1), t(2) 2 R. This is the most general case. If t(1) � t0 and f(t(1)) =
0, t(1) is the first time-of-contact of the two spheres. Then, the two spheres
will penetrated each other in the deepest distance at t(3), and contact again
for separation on t(2), as shown in Fig. 2(a). However, if t(2) < t0, the two
spheres do not have any contact during [t0, t1].
Case 2: t(1), t(2) /2 R. If t(3) 2 [t0, t1], t(3) is the moment that the two
spheres are closest, as shown in Fig. 2(b). If f(t(3)) = 0, t(3) is the first time-
of-contact of the two spheres. Otherwise, the two spheres are in separation
during [t0, t1].

i
i

“cis-template” — 2020/9/14 — 14:07 — page 10 — #10 i
i

i
i

i
i

10 S. Song, L. Lan, J. Yao and X. Guo

(a) (b)

Figure 2: (a) Case 1: two spheres contact each other at first time at t(1), if
t(1) � t0 and f(t(1)) = 0. From left to right, red spheres represent its loca-
tions at t0, t(1), t(3), t(2), and t1 respectively. (b) Case 2: t(3) is the moment
that the two spheres are closest. From left to right, red spheres represent its
locations at t0, t(3), and t1 respectively.

Figure 3: Non-convergence
case when using t0 as initial
value. Primitives are more
transparent when t is closer
to t0. White spheres are the
nearest sphere pair {↵0,�0}
at t0.

Besides the two cases, there is one spe-
cial situation when the parabola is degen-
erated at P1 = P2 = 0. It indicates that rel-
ative velocity between two medial cones
equals zero, and they contact on their rest
positions. This situation will prevent the
termination of the iteration. We will discuss
how to handle it in section 4.4.

In our experiments, we have found that
the convergence of iteration is influenced
by the selection of initial values. In the
situation shown in Fig. 3, the distance of
the nearest sphere pair {↵0,�0} at t0 will
increase monotonically over [t0, t1]. This sit-
uation makes the optimal t rollback to t0,
and the iteration will become an endless
loop between {↵0,�0} and t0. To solve this
problem, t1 is choose as initial value since the nearest sphere pair {↵0,�0}
at t1 will be updated once t is changed.

4.4. Termination Conditions

Obviously, the distance between the nearest sphere pair equals zero should be
the primary condition of termination. However, this condition is not enough
to determine whether a collision will occur. Given the result of j-th iteration

i
i

“cis-template” — 2020/9/14 — 14:07 — page 11 — #11 i
i

i
i

i
i

Continuous Collision Detection with Medial Axis Transform 11

tj . if the nearest sphere pair at t = tj is {↵j+1,�j+1} and f(↵j+1,�j+1, tj) =
0 has been met in the next iteration. To prevent false-positive error, the three
roots t(1), t(2), t(3) have to be updated from f(↵j+1,�j+1, t) = 0, then check
whether the medial cones will collide or move away in the next time-step.
The termination conditions are summarized as following:
Condition 1: if two primitives are in contact at t0 and separate away on
[t0, t1]. An illustrating example is shown in Fig. 4(a). In this case, either root
t(2) or t(3) are equal to t0. We return no-collision to terminate the iteration.
Condition 2: if two primitives intersect on [t0, t1] and are in contact at t1.
An illustrating example is shown in Fig. 4(b). This case is caused by using
t1 as initial value and belongs to the tunnelling e↵ect. In this case, the root
t(2) will be equal to t1, and we should update t by root t(1), then go on
iterations.
Condition 3: if the distance keeps greater than zero, which means the two
medial cones never collide. tj and tj+1 are used to terminate the iteration.
If tj is equal to tj+1, we return non-collision directly.

The schematic figures of Condition 1 and Condition 2 are shown in
Fig. 4. Since Condition 3 represents all general no-collision situations, we
will not elaborate on it.

(a) (b)

Figure 4: The trajectory of two medial primitives (using two medial cone
as an example). The closer t is to t0, the higher the transparency of cones.
The white spheres represent the contact sphere pair. (a) Condition 1: two
cones are in contact at t0 and separate away. (b) Condition 2: two cones
are in contact at t1 after passing through each other.

4.5. Collision Response

After collision detection, we can confirm the two rigid bodies are colliding if
we can get a valid solution of Eq. (3) making f(↵,�, t) = 0.Once collisions
happen, we need to update all rigid objects by the global minimum first

i
i

“cis-template” — 2020/9/14 — 14:07 — page 12 — #12 i
i

i
i

i
i

12 S. Song, L. Lan, J. Yao and X. Guo

time-of-contact tmin. Then, all nearest sphere pairs will be discarded if their
time-of-contact are greater than tmin. We use the non-penetration constraint
method [2] to perform collision response. For colliding impulse, we can easily
compute contact point and contact normal through the nearest sphere pair,
as shown in Fig. 9.

5. Experimental Results

In this section, we describe our implementation and highlight the perfor-
mance of our algorithm on several collision-rich scenes. We have implemented
our algorithm with Unity 2019.4.0f1 and run the experiments on a Win-
dows desktop computer with Intel i7 5960X CPU (3.0 GHz) and an NVidia
RTX 2060 SUPER GPU. The source codes will be made publicly available
upon the paper’s publication. Note our CCD algorithm runs parallelly on
the GPU, with high accuracy and real-time rate. Medial axis transform is
extracted and simplified using Q-MAT [25]. Table 1 summarizes 3D mod-
els’ MAT information. Table 2 records the time spent on every stage of the
algorithm and FPS of animation. Fig. 8 records the number of active ele-
mentary pair and the detailed timing statistics of continuous collision. We
build three benchmarks to show the advantages of our algorithm in Fig. 5,
Fig. 6 and Fig. 7. We refer the readers to the accompanying video for the
detailed animation e↵ects.

#Tris. #MS. #MPs. # EPs.
Multi-bodies 276,643 5,214 2,263 8,581,733
T-rex 200,004 5878 2,472 74,755,481
Falling Rings 19,115 876 433 101,192

Table 1: Statistics of 3D models’ MAT information. # Tris. is the total
number of triangles. # MS. and # MPs. are total numbers of medial
spheres and medial primitives on medial mesh. # EPs. are total numbers
of elementary pairs.

5.1. Accuracy of Continuous Collision Detection

In order to verify the accuracy of our algorithm, we test multiple bodies
dropping on some extremely thin pillars, as shown in Fig. 5(a). Each pillar
is enclosed in a medial cone. During the animation, multi-bodies with dif-
ference shapes and volumes will collide with pillars or each other, and no

i
i

“cis-template” — 2020/9/14 — 14:07 — page 13 — #13 i
i

i
i

i
i

Continuous Collision Detection with Medial Axis Transform 13

Init CD CR Upd #FPS.
Multi-bodies 13.781 6.30 0.016 1.489 56
T-rex 10.343 9.57 0.038 0.829 35
Falling Rings 0.438 3.28 0.035 0.137 75

Table 2: Statistics of running time in simulation. Init is the time for gener-
ating elementary pairs and rendered MATs (s). CD is the average collision
detection time (ms). CR is the average collision response time(ms). Upd
is the average time to update rigid bodies(ms). # FPS is the average
frame-per-second for the overall animation.

(a) (b)

Figure 5: Multi-bodies benchmark: (a) Multiple rigid objects collide with
each other and the thin pillars. This scene has over 550K vertices and 270K
triangles. (b) The interpolated MAT. Each MAT retains the shape features
of its original triangle mesh.

collision is missed. Some collisions on thin geometric primitives are high-
lighted in Fig. 9.

To guarantee high bounding quality, we choose the proper number of
medial primitives (MPs) for di↵erent models based on Hausdor↵ error, while
retaining as much model details as possible. The specific statistics are shown
in Table 3. Besides, we also compare the Hausdor↵ error of OBBs and Bound-
ing Spheres with MAT. When BVHs have the same number of leaf primitives

i
i

“cis-template” — 2020/9/14 — 14:07 — page 14 — #14 i
i

i
i

i
i

14 S. Song, L. Lan, J. Yao and X. Guo

(a) (b)

Figure 6: T-rex benchmark: (a) Two T-rexs collide with each other. This
scene has over 200K vertices and 400K triangles. (b) The interpolated
MAT. Each T-rex embeds 1,236 medial primitives, which retains more model
details.

(a) (b)

Figure 7: Falling rings benchmark: (a) The original triangle mesh. (b) The
interpolated MAT. Only 27 medial primitives are needed to accurately
approximate each ring without losing concavity.

as our MPs, MAT visually provides a much more accurate approximation

i
i

“cis-template” — 2020/9/14 — 14:07 — page 15 — #15 i
i

i
i

i
i

Continuous Collision Detection with Medial Axis Transform 15

Figure 8: The statistics of detailed timing of CCD and number of active
EPs. Muti-bodies benchmark(upper), T-rex benchmark(middle) and Falling
rings benchmark(bottom).

to the original triangular mesh than OBBs and Bounding Spheres (shown
in Fig. 10), which is the motivation that we perform CCD on MAT directly.

In order to prove the completeness of our algorithm and the accuracy of
First Time-of-Contact(TOC), we compare our algorithm with triangle-level
CCD in a colliding spider and bunny scene with only CD performed. In
this scene, we generate a series of motions according to di↵erent linear and
angular velocities to cover collisions in various situations. Then, we simulate
each motion with CCD on high-resolution triangle meshes(Ground truth)

i
i

“cis-template” — 2020/9/14 — 14:07 — page 16 — #16 i
i

i
i

i
i

16 S. Song, L. Lan, J. Yao and X. Guo

Figure 9: Colliding sphere pairs between models and thin pillars from Multi-
bodies benchmark. Our algorithm can handle these collisions without pen-
etration or tunnelling.

#MPs 50 500 1k 2k 5k
Bug 0.05 0.044 0.011 0.01 0.009
Bear 0.055 0.03 0.0136 0.135 0.0083
Dolphin 0.06 0.0233 0.023 0.0132 0.01
Spider 0.065 0.0114 0.008 0.007 0.007
Armadillo 0.138 0.059 0.051 0.0383 0.0279
T-rex 0.121 0.045 0.029 0.020 0.017

Table 3: The Hausdor↵ error of each model with di↵erent number of MPs.
All models have been normalized into unit bounding boxes.

and CCD on MAT. As shown in Fig. 11, the TOC errors of each motion
are extremely low, which indicates that our algorithm can handle collisions
accurately and without omission.

5.2. Comparison with Bounding Volume Hierarchy

To highlight the e�ciency of our algorithm, we compare our algorithm with
BVHs of OBBs and Bounding Spheres in a Colliding T-rex and Armadillo
scene, as shown in Fig. 12. We are able to approximate the T-rex model and
Armadillo model with 691 MPs and 617 MPs respectively. In such setting,
we only produce about 3 million elementary pairs. More importantly, our
algorithm avoids performing CCD on triangles, while OBBs and Bounding
Spheres still needs to compute CCD at the triangle-level because of their

i
i

“cis-template” — 2020/9/14 — 14:07 — page 17 — #17 i
i

i
i

i
i

Continuous Collision Detection with Medial Axis Transform 17

Figure 10: The bounding quality of MAT, OBBs, and Bounding Spheres
with their numbers of leaf primitives equal the number of MPs (Bug: 80MPs;
Bear: 100MPs; Dolphin: 114MPs; Spider: 69MPs). OBBs and Bounding
Spheres have poor visual bounding qualities and high Hausdor↵ error, while
our MAT approximates the original mesh accurately.

poor bounding capacity. As the result, our algorithm can be much faster than
common BVHs on CCD. We also compare our algorithm with OBBs and
Bounding Sphere on di↵erent resolution triangle meshes which are remeshed
using instant field-aligned meshing [15], and report the timing statistics
in Fig. 13. When the number of vertices of the triangle mesh is reduced,
the performance of OBB/BS can be equal to our algorithm. But MAT can
provide a better approximation of the original mesh while low resolution
mesh will cause more visual artifacts as shown in Fig. 14.

5.3. Comparison with Bounding Convex Hull

We also compare our algorithm with the bounding convex hull algorithm,
which is integrated in most popular game engines. The convex hull is com-
puted from the triangle mesh based on Quickhull algorithm [3]. Although

i
i

“cis-template” — 2020/9/14 — 14:07 — page 18 — #18 i
i

i
i

i
i

18 S. Song, L. Lan, J. Yao and X. Guo

Figure 11: Comparison of First Time-of-Contact with triangle-level CCD.
The time step of each simulation is fixed to 0.01s. With ttri and tmat repre-
senting the TOC of triangle-level CCD and TOC of MAT-level CCD respec-
tively, TOC Error is defined as |ttri � tmat|. v and ! represent the mag-
nitude of the relative linear velocity and angular velocity.

(a) (b) (c)

Figure 12: MAT, OBBs and Bounding Spheres. (a) Interpolated MAT. (b)
and (c) BVHs of OBBs and Bounding Spheres. Only the intersected leaf-level
bounding boxes/spheres are highlighted.

convex hull can simplify object’s shape, it will lose the concave properties
of triangle mesh and lead to “ghost” collision artifacts. The comparison is
shown in Fig. 15. In this animation, fifteen rings randomly drop on top

i
i

“cis-template” — 2020/9/14 — 14:07 — page 19 — #19 i
i

i
i

i
i

Continuous Collision Detection with Medial Axis Transform 19

Figure 13: Timing statistics of MAT, OBBs and Bounding Spheres on the
colliding T-rex and Armadillo scene. #v is the number of vertices of the
triangle mesh after remeshing. Average CCD time of MAT: 6.72ms. From
#v=1k to #v=7k, average CCD time of OBBs: 7.85ms, 12.24ms, 14.16ms,
18.45ms. Average CCD time of Bounding Spheres: 7.45ms, 9.83ms, 18.71ms,
36.53ms.

of a spider model. Many “ghost” collision artifacts happen when using the
bounding convex hull algorithm.

In all these benchmarks, we are computing the continuous collision detec-
tion directly on simplified medial mesh instead of the original triangle mesh,
due to its excellent bounding capacity as shown in Fig. 10. Since the medial
mesh will produce much less elementary pairs for testing than triangle mesh,
our algorithm improves the performance of collision detection significantly
while preventing penetration and tunnelling e↵ects.

5.4. Comparison of MATs with di↵erent qualities

Di↵erent MAT generation methods will produce MATs of di↵erent quality,
which is reflected in the number of vertices of the medial mesh and the accu-
racy of the original mesh approximation. To illustrate the influence of these
methods on our algorithm, we use Q-MAT to generate a series of MATs of
di↵erent quality and simulate under the same motion. The simulation results
and detailed statistics are shown in Fig. 16 and Table. 4 respectively. There
are noticeable visual artifacts like intersection of original triangle mesh or

i
i

“cis-template” — 2020/9/14 — 14:07 — page 20 — #20 i
i

i
i

i
i

20 S. Song, L. Lan, J. Yao and X. Guo

Figure 14: With both triangle mesh and medial mesh having same number
of vertices(1k), low resolution triangle mesh will collapse in some sharp areas
while MAT o↵ers high quality approximation.

(a) (b)

Figure 15: Simulations based on the bounding convex hull. The concave
properties of T-rex, ring, and spider are basically lost.

“ghost” collision when medial mesh has low resolution. But while high reso-
lution o↵ers better approximation, it will also increase the time-consumption
of the collision detection phase. Like triangle-level CCD, we have to trade
o↵ between quality and speed.

i
i

“cis-template” — 2020/9/14 — 14:07 — page 21 — #21 i
i

i
i

i
i

Continuous Collision Detection with Medial Axis Transform 21

(a) #v=20 (b) #v=40

(c) #v=100 (d) #v=200 (e) #v=500

Figure 16: Simulation with MAT of di↵erent quality. Both interpolated
MAT and original triangle mesh are rendered to illustrate results visually.
Medial meshes are highlighted in blue and colliding sphere pairs are high-
lighted in green. #v is the number of vertices of the medial mesh and 2
models share the same number of #v.

6. Limitation and Future Work

In this paper, we present a MAT-based continuous collision detection algo-
rithm for rigid body simulation. Our algorithm directly performs MAT-level
collision detection, instead of using MAT as a culling method on triangle
mesh [23]. With small amount of medial primitives we can approximate the
original mesh accurately while producing much less pairs of elementary tests
than triangle-level CCD. Our algorithm significantly improves the e�ciency
of CCD, and also avoids losing concave properties like convex hull method.

However, our algorithm also has two main limitations. On the one hand,
since we assume the motion of triangles is linearly interpolated with constant
velocity within a time interval, numerical errors due to rotational motion
are sensitive to the size of time step, especially when the rigid bodies rotate
quickly. It is a common problem for most CCD algorithms. On the other
hand, our first time-of-contact does not have an analytical solution. The

i
i

“cis-template” — 2020/9/14 — 14:07 — page 22 — #22 i
i

i
i

i
i

22 S. Song, L. Lan, J. Yao and X. Guo

#EPs. CD
HE

v.
Bug Bear

Fig. 16(a) 1,273 0.949 0.168 0.079 20
Fig. 16(b) 21,801 1.525 0.047 0.056 40
Fig. 16(c) 254,749 1.837 0.026 0.038 100
Fig. 16(d) 1,516,775 4.003 0.015 0.018 200
Fig. 16(e) 21,821,570 17.814 0.01 0.013 500

Table 4: Statistics of the simulation with MAT of di↵erent quality. #EPs.
is the number of elementary pair. CD is the average collision detection
time (ms). HE is the Hausdor↵ error. #v. is the vertex number of medial
mesh. When #v. is small, its increase will greatly reduce the Hausdor↵ error
without much performance degradation. But with the continuous increase
of # v., its impact on Hausdor↵ error decreases and leads to a large drop
in e�ciency performance.

use of iteration-based numerical computation for each elementary test is
not friendly for parallel computation on GPUs. In addition to addressing
these limitations, we plan to generalize the MAT-based CCD algorithm to
deformable model simulation in the future.

7. Acknowledgements

The project is supported by the science technology bureau of Xiamen munici-
pal government in 2018 (No. 3502Z20184058), the natural science foundation
of science technology bureau of Fujian province in 2019 (No. 2019J01601),
the foreign cooperation project of science technology bureau of Fujian province
in 2018 (No. 2018I0015) and the creation fund project of science technology
bureau of Fujian province in 2018 (No. 2019C0021).

References

[1] Nina Amenta and Marshall Bern, Surface reconstruction by voronoi
filtering. Discrete & Computational Geometry, 22(4):481–504, 1999.

[2] David Bara↵, An introduction to physically based modeling: rigid body
simulation II—nonpenetration constraints. SIGGRAPH course notes,
pages D31–D68, 1997.

i
i

“cis-template” — 2020/9/14 — 14:07 — page 23 — #23 i
i

i
i

i
i

Continuous Collision Detection with Medial Axis Transform 23

[3] C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa, The
quickhull algorithm for convex hulls. ACM Transactions on Mathemat-
ical Software (TOMS), 22(4):469–483, 1996.

[4] Jernej Barbič and Doug L James, Subspace self-collision culling. ACM
Trans. Graph. (TOG), 29(4):81, 2010.

[5] Harry Blum, A transformation for extracting new descriptors of shape.
Models for Perception of Speech and Visual Forms, 1967, pages 362–
380, 1967.

[6] Robert Bridson, Ronald Fedkiw, and John Anderson, Robust treatment
of collisions, contact and friction for cloth animation. ACM Trans.
Graph., 21(3):594–603, July 2002.

[7] Tyson Brochu, Essex Edwards, and Robert Bridson, E�cient geomet-
rically exact continuous collision detection. ACM Trans. Graph., 31(4),
July 2012.

[8] Sean Curtis, Rasmus Tamstorf, and Dinesh Manocha, Fast collision
detection for deformable models using representative-triangles. In Pro-
ceedings of the 2008 Symposium on Interactive 3D Graphics and Games,
I3D ’08, page 61–69, New York, NY, USA, 2008 Association for Com-
puting Machinery.

[9] Mark de Berg, Joao Comba, and Leonidas J. Guibas, A segment-tree
based kinetic bsp. In Proceedings of the Seventeenth Annual Symposium
on Computational Geometry, SCG ’01, page 134–140, New York, NY,
USA, 2001. Association for Computing Machinery.

[10] H. Ding, H. Mitake, and S. Hasegawa, Continuous collision detection
for virtual proxy haptic rendering of deformable triangular mesh models.
IEEE Transactions on Haptics, 12(4):624–634, 2019.

[11] Noura Faraj, Jean-Marc Thiery, and Tamy Boubekeur, Progressive
medial axis filtration. In SIGGRAPH Asia 2013 Technical Briefs,
page 3. ACM, 2013.

[12] Stefan Gottschalk, Ming C Lin, and Dinesh Manocha, Obbtree: A hier-
archical structure for rapid interference detection. In Computer graphics
and interactive techniques, pages 171–180. ACM, 1996.

[13] Qi Guo, Xuchen Han, Chuyuan Fu, Theodore Gast, Rasmus Tamstorf,
and Joseph Teran, A material point method for thin shells with frictional
contact. ACM Trans. Graph., 37(4), July 2018.

i
i

“cis-template” — 2020/9/14 — 14:07 — page 24 — #24 i
i

i
i

i
i

24 S. Song, L. Lan, J. Yao and X. Guo

[14] P. M. Hubbard, Collision detection for interactive graphics applications.
IEEE Transactions on Visualization and Computer Graphics, 1(3):218–
230, 1995.

[15] Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-
Hornung, Instant field-aligned meshes. ACM Transactions on Graphics
(Proceedings of SIGGRAPH ASIA), 34(6), November 2015.

[16] Doug L James and Dinesh K Pai, Bd-tree: output-sensitive collision
detection for reduced deformable models. ACM Trans. Graph. (TOG),
23(3):393–398, 2004.

[17] Chenfanfu Jiang, Theodore Gast, and Joseph Teran, Anisotropic elasto-
plasticity for cloth, knit and hair frictional contact. ACM Trans. Graph.,
36(4), July 2017.

[18] Daniel Kopta, Thiago Ize, Josef Spjut, Erik Brunvand, Al Davis, and
Andrew Kensler, Fast, e↵ective bvh updates for animated scenes. In
Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, I3D ’12, page 197–204, New York, NY, USA,
2012. Association for Computing Machinery.

[19] Shankar Krishnan, M Gopi, M Lin, Dinesh Manocha, and A Pattekar,
Rapid and accurate contact determination between spline models using
shelltrees. In Computer Graphics Forum, volume 17, pages 315–326.
Wiley Online Library, 1998.

[20] Thomas Larsson and Tomas Akenine-Möller, A dynamic bounding
volume hierarchy for generalized collision detection. Comput. Graph.,
30(3):450–459, June 2006.

[21] Christian Lauterbach, Michael Garland, Shubhabrata Sengupta,
David P. Luebke, and Dinesh Manocha, Fast bvh construction on gpus.
Computer Graphics Forum, 28(2):375–384, 2009.

[22] Christian Lauterbach, Qi Mo, and Dinesh Manocha, gproximity: Hierar-
chical gpu-based operations for collision and distance queries. Comput.
Graph. Forum, 29:419–428, 05 2010.

[23] Lan Lei, Luo Ran, Fratarcangeli Marco, Xu Weiwei, Wang Huamin,
Guo Xiaohu, Yao Junfeng, and Yang Yin, Medial elastics: E�cient and
collision-ready deformation via medial axis transform. ACM Trans.
Graph., 39(3), April 2020.

i
i

“cis-template” — 2020/9/14 — 14:07 — page 25 — #25 i
i

i
i

i
i

Continuous Collision Detection with Medial Axis Transform 25

[24] Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois,
Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny Kaufman,
Incremental potential contact: Intersection-and inversion-free, large-
deformation dynamics. ACM Transactions on Graphics, 39:20, 07 2020.

[25] Pan Li, Bin Wang, Feng Sun, Xiaohu Guo, Caiming Zhang, and Wen-
ping Wang, Q-Mat: Computing medial axis transform by quadratic error
minimization. ACM Trans. Graph. (TOG), 35(1):8, 2015.

[26] M. A. Otaduy, O. Chassot, D. Steinemann, and M. Gross, Balanced
hierarchies for collision detection between fracturing objects. In 2007
IEEE Virtual Reality Conference, pages 83–90, 2007.

[27] Simon Pabst, Artur Koch, and Wolfgang Straßer, Fast and scalable
cpu/gpu collision detection for rigid and deformable surfaces. Comput.
Graph. Forum, 29:1605–1612, 07 2010.

[28] Xavier Provot, Collision and self-collision handling in cloth model ded-
icated to design garments. In Daniel Thalmann and Michiel van de
Panne, editors, Computer Animation and Simulation ’97, pages 177–
189, Vienna, 1997. Springer Vienna.

[29] Svetlana Stolpner, Paul Kry, and Kaleem Siddiqi, Medial spheres for
shape approximation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(6):1234–1240, 2012.

[30] Min Tang, Sean Curtis, Sung-Eui Yoon, and Dinesh Manocha, Inter-
active continuous collision detection between deformable models using
connectivity-based culling. In SPM ’08: Proceedings of the 2008 ACM
symposium on Solid and physical modeling, pages 25–36, New York, NY,
USA, 2008. ACM.

[31] Min Tang, Young J. Kim, and Dinesh Manocha, Ccq: E�cient local
planning using connection collision query. In In 9th Workshop on the
Algorithmic Foundations of Robotics (WAFR’10, pages 229–247, 2010.

[32] Min Tang, Dinesh Manocha, Sung-Eui Yoon, Peng Du, Jae-Pil Heo,
and Ruofeng Tong, VolCCD: Fast continuous collision culling between
deforming volume meshes. ACM Trans. Graph., 30:111:1–111:15, May
2011.

[33] Min Tang, Ruofeng Tong, Zhendong Wang, and Dinesh Manocha, Fast
and exact continuous collision detection with bernstein sign classifica-
tion. ACM Trans. Graph., 33(6), November 2014.

i
i

“cis-template” — 2020/9/14 — 14:07 — page 26 — #26 i
i

i
i

i
i

26 S. Song, L. Lan, J. Yao and X. Guo

[34] Gino van den Bergen, E�cient collision detection of complex deformable
models using aabb trees. J. Graph. Tools, 2(4):1–13, January 1998.

[35] Pascal VOLINO and Nadia Magnenat THALMANN, E�cient self-
collision detection on smoothly discretized surface animations using geo-
metrical shape regularity. Computer Graphics Forum, 1994.

[36] Huamin Wang, Defending continuous collision detection against errors.
ACM Trans. Graph., 33(4), July 2014.

[37] Tongtong Wang, Zhihua Liu, Min Tang, Ruofeng Tong, and Dinesh
Manocha, E�cient and reliable self-collision culling using unprojected
normal cones. Computer Graphics Forum, 36(8), 2017.

[38] Xinlei Wang, Min Tang, Dinesh Manocha, and Ruofeng Tong, E�cient
bvh-based collision detection scheme with ordering and restructuring.
Computer Graphics Forum, 37:227–237, 05 2018.

[39] Sai-Keung Wong, Wen-Chieh Lin, Chun-Hung Hung, Yi-Jheng Huang,
and Shing-Yeu Lii, Radial view based culling for continuous self-collision
detection of skeletal models. ACM Trans. Graph., 32(4), July 2013.

[40] Hongyi Xu and Jernej Barbič, 6-dof haptic rendering using continu-
ous collision detection between points and signed distance fields. IEEE
Transactions on Haptics, 10(2):151–161, 2017.

[41] Baorong Yang, Junfeng Yao, and Xiaohu Guo, DMAT: Deformable
Medial Axis Transform for Animated Mesh Approximation. Computer
Graphics Forum, 2018.

[42] Chee K. Yap and Vikram Sharma, Robust Geometric Computation,
pages 1860–1863. Springer New York, New York, NY, 2016.

[43] Sung-Eui Yoon, Sean Curtis, and Dinesh Manocha, Ray tracing
dynamic scenes using selective restructuring. In Proceedings of the
18th Eurographics Conference on Rendering Techniques, EGSR’07, page
73–84, Goslar, DEU, 2007. Eurographics Association.

[44] Gabriel Zachmann, Minimal hierarchical collision detection. In ACM
symposium on Virtual reality software and technology, pages 121–128.
ACM, 2002.

[45] Changxi Zheng and Doug L James, Energy-based self-collision culling
for arbitrary mesh deformations. ACM Trans. Graph. (TOG), 31(4):98,
2012.

	Introduction
	Related Work
	Medial Mesh Representation
	Continue Collision Detection on Medial Mesh
	Continuous Collision Detection
	Elementary Tests of Medial Primitive Pairs
	The First Time-of-Contact
	Termination Conditions
	Collision Response

	Experimental Results
	Accuracy of Continuous Collision Detection
	Comparison with Bounding Volume Hierarchy
	Comparison with Bounding Convex Hull
	Comparison of MATs with different qualities

	Limitation and Future Work
	Acknowledgements
	References

