
Studying Test Annotation Maintenance in the Wild
Dong Jae Kim∗, Nikolaos Tsantalis†, Tse-Hsun (Peter) Chen∗, Jinqiu Yang†

∗Software PEformance, Analysis and Reliability (SPEAR) Lab,
Concordia University, Montreal, Canada

†Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada

{k dongja, nikolaos, peterc, jinqiuy}@encs.concordia.ca

Abstract—Since the introduction of annotations in Java 5, the
majority of testing frameworks, such as JUnit, TestNG, and
Mockito, have adopted annotations in their core design. This
adoption affected the testing practices in every step of the test life-
cycle, from fixture setup and test execution to fixture teardown.
Despite the importance of test annotations, most research on test
maintenance has mainly focused on test code quality and test
assertions. As a result, there is little empirical evidence on the
evolution and maintenance of test annotations. To fill this gap,
we perform the first fine-grained empirical study on annotation
changes. We developed a tool to mine 82,810 commits and detect
23,936 instances of test annotation changes from 12 open-source
Java projects. Our main findings are: (1) Test annotation changes
are more frequent than rename and type change refactorings.
(2) We recover various migration efforts within the same testing
framework or between different frameworks by analyzing com-
mon annotation replacement patterns. (3) We create a taxonomy
by manually inspecting and classifying a sample of 368 test
annotation changes and documenting the motivations driving
these changes. Finally, we present a list of actionable implications
for developers, researchers, and framework designers.

Index Terms—Software Quality, Empirical Study, Annotation,
Software Evolution

I. INTRODUCTION

Modern software systems are becoming more complex
due to the ever-growing demands from customers. To ensure
that the software quality remains on par with consumer
expectations, testing has become a pivotal role in software
development. Developers rely on testing to verify the quality
of every code change and provide an indication on whether
the software can be released to production [1].

To increase the effectiveness of testing, developers need to
maintain and improve test code continuously. Similar to source
code, test code may also contain design issues that hinder the
quality. For example, prior studies have found that the results
of some test cases can be unreliable (i.e., flaky tests) due to
bugs in test code [2], [3]. To that end, developers have begun
to notice a recurring design problem in test code and coined
the term test smells [4] as an indicator of design problems
in tests. Since its inception, researchers have shown that test
smells are prevalent in software systems [5], negatively affect
software maintainability and comprehension [6], [7], and may
impact software quality in terms of post-release defects [8].

The introduction of annotations in Java 5 has driven an-
notation as a critical component of the many Java-based
frameworks, influencing how developers to design and imple-

ment software. Even in software testing, frameworks such as
JUnit, TestNG, and Mockito have all adopted annotations as
critical ingredients in test design and implementation. A prior
study [9] has found that JUnit4 is one of the most widely
utilized testing frameworks for Java-based systems, and test
annotations (e.g., @Test) are also one of the most widely
used annotations in Java development. Table I provides an
overview of the commonly used test annotations in JUnit4.
Although the test annotations may be different across testing
frameworks (e.g., TestNG or JUnit5), in general, they provide
similar functionalities.

Despite the importance of test annotations, most prior
research on test maintenance has only focused on general
test design and test assertions [6], [7], [10]–[14] and has
not considered the peculiarity of test annotations. Therefore,
in this paper, we present the first empirical study on how
developers leverage test annotations in the wild to maintain
the high quality of test code (e.g., readability, test flakiness,
test performance, obsolete test). We first extended the state-of-
the-art refactoring mining tool, RefactoringMiner 2.0 [15], to
detect annotation additions, removals, and modifications. We
study the collected annotation changes both quantitatively and
qualitatively by answering three research questions:
RQ1: How common are test annotation changes? Test
annotation changes are 26.5% more common than regular test
refactorings such as renames and type changes. Despite their
popularity, there is negligible tool support (e.g., antipattern
detection, annotation change suggestions, and annotation API
usages) for test annotation changes.
RQ2: How are test annotations changed in the wild? We
quantitatively study frequent test annotation changes. We find
that developers update test annotations more frequently than
annotation additions and removals. Moreover, test annotation
migration across testing frameworks and within a different
version of the same framework is also common.
RQ3: Why do developers change test annotations? We
qualitatively uncover test annotation usage and misusage, and
how developers bypass the limitations of test annotations. Our
findings highlight potential future directions on helping devel-
opers improve test maintenance and detect potential issues in
test code.

In summary, our findings provide actionable implications
for three groups of audiences:
(1) Researchers: We open an avenue for further research

TABLE I
A BRIEF OVERVIEW ON COMMONLY USED JUNIT4 ANNOTATIONS.

Annotations Annotation Location Description of Commonly used JUnit Annotation

@Rule Field @Rule provides a mechanism to enhance tests by running some code around a test case execution, which is similar to fixture and teardown.
@Parameterize Field/Method Test case annotated with @Parameterize can be invoked by using a predefined input (i.e., parameterized test inputs) and expected output.
@Test Method @Test indicates that the annotated test code should be executed as a test case. @Test takes optional parameters, such as Timeout to indicate that

the test should finish within a given time, or exception to indicate that the test should throw an exception.
@Before/@After Method @Before indicates that the annotated test code should be executed as a precondition before each test case (i.e., Database setup). Similarly, @After

indicates the execution of the annotated test code as a postcondition after each test case.
@BeforeClass/@AfterClass Method @BeforeClass and @AfterClass are similar to @Before and @After annotation types, but indicate the annotated test code to only execute once (i.e.,

before or after the test class is invoked).
@Ignore Method/Class @Ignore indicates that the annotated test case should not execute.
@Category Method/Class @Category provides a mechanism to label and group tests, giving developers the option to include or exclude groups from execution.
@Test(timeout=X) Method/Class A test will fail, if its execution takes longer than the value X specified in timeout.

directions on detecting misuses and test smells related to test
annotations and their relation with other aspects of software
development (i.e., quality, maintainability, and performance
improvements). We also highlight potential directions on au-
tomated test code refactoring by leveraging test annotations.
(2) Developers: Our findings reveal the usage of test annota-
tions in an ad-hoc manner by some developers. A number of
test cases is temporarily disabled until a fix is found; however,
the disabled tests are not re-enabled after the fix. Moreover, in
several cases, developers are unaware of the features offered
by testing frameworks, and thus apply suboptimal custom solu-
tions. These findings indicate the need to educate developers
with the best testing practices and provide recommendation
tools to help developers apply the appropriate test annotations
where needed.
(3) Framework Designers: We find cases where developers
try to bypass the current limitations of test annotations (i.e.,
fixture configuration) and provide suggestions for framework
designers on improving the flexibility of test annotations.

Paper organization. Section II surveys related work. Sec-
tion III discusses our extension on RefactoringMiner 2.0 and
provides preliminary results. Section IV presents our quanti-
tative analysis results, and Section V presents our qualitative
analysis results. Section VI summarizes the implication of our
findings. Section VII discusses threats to validity. Section VIII
concludes the paper.

II. RELATED WORK

In this section, we discuss prior research in the areas of test
maintenance and evolution, Java annotation usage, and test
framework usage.
Test Maintenance and Evolution. Researchers have been
studying testing practice, especially on test quality and evo-
lution. Pinto et al. [16] studied how the test code evolves in
practice for more effective automatic program repair. Zaidman
et al. [17] studied how the test code co-evolves with production
code. Bavota et al. [7] found that test smells are prevalent
in software systems and may hinder test comprehension and
maintenance. Ma’ayan et al. [18] quantitatively studied the
language features of JUnit assertions and identified opportuni-
ties for improvement. Researchers further correlated assertions
with defects [19] and test suite effectiveness [20]. Our work
is the first to study the maintenance of test annotations and
document test annotation usages, misuses, and limitations.

Empirical Studies on Java Annotations. Rocha et al. [21]
mined 106 open-source Java systems to investigate annotation
usage empirically. Similarly, Dyer et al. [22] analyzed 31K
open-sourced projects to analyze how various Java language
features are adopted by developers, including the adoption of
Java annotations. Their study shows that Java annotations are
very commonly adopted. Parnin et al. [23] used 40 open-
source Java projects to study the adoption of Java generics
and contrast it with the adoption of annotations. This study
shows that a champion leads annotation adoption in a de-
velopment team. Yu et al. [24] performed the first large-
scale empirical study about Java annotation usage, evolution
and impact without focusing on test-related annotations. In
contrast to previous studies on Java annotation usage, we
perform the first in-depth study on how test annotations from
various frameworks are utilized and maintained, and derive
the first taxonomy of annotation changes. Moreover, our study
yields actionable implications for researchers, developers, and
testing framework designers to further expand and improve
test annotation practices.
Testing Framework Usage. Researchers have been inves-
tigating how developers use various testing and mocking
frameworks in open-source systems. Zaraouili and Mens per-
formed one of the first studies on the evolution of the testing
frameworks [9]. Their study shows that JUnit was the most
prominent testing library, while many libraries are used si-
multaneously, e.g., PowerMock, Mockito, and EasyMock com-
plement each other. Researchers have conducted quantitative
studies to understand the adoption of mocking frameworks in
mocking file dependencies [25], and in general use [26]. More
recently, Spadini et al. [27] performed a comprehensive study
on how and why developers use mocking in test code, and
how mocking evolves over time. Different from prior work,
we zoom in and perform an in-depth analysis at a more fine-
grained level (i.e., annotation changes at commit level) to
understand how test annotations are evolved and maintained
in practice.

III. METHODOLOGY

RefactoringMiner Extension. In order to detect annotation
additions, removals and modifications, we extended the state-
of-the-art refactoring mining tool, RefactoringMiner 2.0 [15].
We selected this tool for the following reasons:

1) It operates at commit level, allowing us to obtain anno-
tation changes at the finest granularity level of software
evolution (i.e., commits).

2) It can detect refactoring operations, allowing us to include
annotation changes for refactored program elements (i.e.,
methods with changes in their signatures, moved/renamed
classes and fields) in addition to non-refactored program
elements. This makes our dataset more complete and our
findings more reliable.

3) It has the highest precision (96.6%) and recall (94%)
among other refactoring mining and AST diff tools,
allowing us to have an accurate dataset of annotation
changes with a very small number of false positives and
false negatives.

4) It has the fastest execution time among other refactoring
mining tools, allowing us to scale up our data collection
for the entire commit history of large projects with over
20K commits.

Using the RefactoringMiner API, we obtain the pairs of
program elements (i.e., type, method and field declarations),
which have been matched between the currently analyzed
commit and its parent in the directed acyclic graph that models
the commit history of git-based version control repositories.
The pairs of matched program elements may have identical
signatures (e.g., a pair of methods with identical names, pa-
rameter and return types), or may have different signatures due
to refactoring operations (e.g., RENAME METHOD, CHANGE
PARAMETER TYPE, ADD/DELETE PARAMETER).

Java annotations are used in three different forms:

• Marker annotations without member value pairs:
@TypeName.

• Normal annotations with a list of member value pairs:
@TypeName(name1=value1,name2=value2,..),
where names are SimpleName AST nodes and values
are Expression AST nodes.

• Single Member annotations with a single member value:
@TypeName(Expression), where the member name
is omitted (i.e., @foo(bar) is equivalent to the normal
annotation @foo(name=bar)).

We consider two annotations as equal if they have the same
TypeName, and the same member value pairs regardless
of their order. Let us assume that for a given pair of
matched program elements Ap is the annotation set of the
program element in the parent commit, and Ac is the an-
notation set of the matched program element in the child
commit. Then, the added annotations are computed as A+ =
Ac \ (Ap ∩ Ac). The removed annotations are computed as
A− = Ap \ (Ap ∩ Ac). The pairs of modified annotations
are computed as A∼ = {(ap, ac)|ap ∈ Ap ∧ ac ∈ Ac ∧
ap.TypeName = ac.TypeName ∧ ap.MemberValuePairs 6=
ac.MemberValuePairs}.

To evaluate the precision and recall of our RefactoringMiner
extension, we extended the oracle used in [15], which contains
true refactoring instances found in 536 commits from 185
open-source GitHub projects, with instances of Annotation

TABLE II
PRECISION AND RECALL OF OUR EXTENDED VERSION OF

REFACTORINGMINER.

Change Type TP FP FN Precision Recall

Add Method Annotation 312 1 7 99.7% 97.8%
Remove Method Annotation 97 1 0 99% 100%
Modify Method Annotation 19 0 0 100% 100%
Add Parameter Annotation 29 0 0 100% 100%
Remove Parameter Annotation 3 0 0 100% 100%
Modify Parameter Annotation 2 0 0 100% 100%
Add Field Annotation 47 0 1 100% 97.9%
Remove Field Annotation 17 0 0 100% 100%
Modify Field Annotation 7 0 0 100% 100%
Add Class Annotation 52 0 0 100% 100%
Remove Class Annotation 20 0 0 100% 100%
Modify Class Annotation 31 0 0 100% 100%

Overall 636 2 8 99.7% 98.7%

Additions/Removals/Modifications for four different program
elements, namely type, method, field, and parameter declara-
tions. To compute precision, an author of the paper manually
validated 638 annotation change instances reported by our
RefactoringMiner extension. To compute recall, we need to
find all true instances of annotation changes. We followed
the same approach as in [15] by executing a second tool,
namely GumTree [28], and considering as the ground truth
the union of the true positives reported by RefactoringMiner
and GumTree. GumTree takes as input two abstract syntax
trees (e.g., Java compilation units) and produces the shortest
possible edit script to convert one tree to another. We used all
Insert and Delete edit operations on Annotation AST nodes
to extract annotation changes and report them in the same
format used by RefactoringMiner. Table II shows the number
of true positives (TP), false positives (FP), and false negatives
(FN) detected/missed by our RefactoringMiner extension. The
overall precision is 99.7% and the recall is 98.7%.

Studied Systems. We choose the studied systems by following
three selection criteria. First, we selected the top 1,000 Java
projects on GitHub ordered by popularity (i.e., stargazer
count). We also made sure that the repositories are not forks.
Second, we discarded projects that are below 90 percentile
in terms of size (i.e., lines of code), repository popularity
(i.e., stars) and the number of commits. Finally, we discarded
inactive repositories that did not have any commits in 2020.
We ended up with 12 systems, i.e., Druid, Hadoop, Cassandra,
Storm, Flink, Hbase, Camel, Hive, Openfire, Ambari, Ori-
entDB and Kafka. These studied systems cover different do-
mains, ranging from distributed databases, stream processing
frameworks, message brokers, and groupchat servers. Table III
shows an overview of the studied systems.

Our study focuses on test annotation usage, but there may
be some non-test-related annotations in test classes. Hence, we
set off to understand what are the common testing frameworks
or libraries from which test-related annotations are used. We
mined all annotation usages in the versions released in 2015
and 2020, respectively, for the 12 studied systems. In particu-
lar, we analyzed all test files that have a ”.java extension and
“[Tt]est(s*)” as prefix or suffix in their name. We manually
verify the build configuration files (e.g., Maven or Gradle
build file) of the studied systems to use the default heuristic

TABLE III
AN OVERVIEW OF THE STUDIED SYSTEMS (FROM 2015 TO 2020).

Systems Total Test LOC No. Test Method No. Test Class
(2015 → 2020) (2015 → 2020) (2015 → 2020)

Ambari 125K → 273.8K 2,471 → 5,753 501 → 999
Camel 562K → 787K 12,884 → 18,693 6,713 → 8,961
Cassandra 44.3K → 189K 969 → 4,515 217 → 626
Druid 45K → 307K 773 → 5,818 199 → 1,148
Flink 79K → 437K 1,416 → 9,199 412 → 2,150
Hadoop 480K → 914K 9,269 → 17,610 1,798 → 2,954
Hbase 185K → 359K 2,843 → 5,861 660 → 1,476
Hive 124K → 323K 2,572 → 7,541 473 → 1,182
Ignite 261K → 99K 4,146 → 2,286 1,285 → 529
Kafka 2.9K → 191K 77 → 6,059 24 → 688
Openfire 2.2K → 8.3K 84 → 361 25 → 51
Storm 3.7K → 47K 118 → 1,134 35 → 277

Total 1916K → 3939K 37,622 → 84,830 12,342 → 21,041

TABLE IV
USE OF ANNOTATIONS FROM DIFFERENT FRAMEWORKS IN TEST CODE

RELEASED IN 2015 AND 2020, RESPECTIVELY.

Framework Type Frequency Proportion (%)

Testing Framework 32,900 → 102,395 72.6% → 65%
JUnit 31,256 → 101,047 69% → 64%
TestNG 1,644 → 1,348 3.6% → < 1%

Mocking Framework 260 → 1,640 < 1% → 1%
Mockito 236 → 935 < 1% → < 1%
PowerMock 24 → 256 < 1% → < 1%
EasyMock 0 → 449 0% → < 1%

Java lang annotations 8,579 → 16,125 19% → 10%

Custom Annotation 2,738 → 36,300 1.7% → 23%

Spring Framework 442 → 551 1% → < 1%

Other Libraries 410 → 17,369 1% → 1%
E.g., Google, JavaX

specified by Maven/Gradle plugin to identify test files. After
collecting the annotation usages, we manually study them and
identify their corresponding framework. Table IV summarizes
the annotation usage of different frameworks in the 12 studied
systems. We find that JUnit annotations are the most com-
monly used annotations in test code, accounting for 69% of the
mined annotations in 2015 and 64% in 2020. TestNG is a less
commonly used testing framework, accounting for 3.6% of the
mined annotations in 2015 and 1% in 2020. Our finding shows
that developers in the studied systems are migrating away from
TestNG. We also found annotations from frameworks used for
test mocking (i.e., Mockito, PowerMock and EasyMock), the
Spring framework, and other non-test-related libraries. The
annotation usage of testing frameworks, such as JUnit and
mocking frameworks, increases significantly over the years.
However, their percentages decrease due to the increasing use
of custom annotations. In section VI, we discuss some of the
custom annotations related to testing.

To collect annotation changes, we run our RefactoringMiner
extension on every commit that modified at least one Java
test file between 2015-2020 for the 12 studied systems. We
only keep changes on test-related annotations (i.e., from JUnit,
TestNG and mocking frameworks) and discard the rest. In
total, we mined 109,460 test-related annotation changes in the
commit history of the 12 studied systems from 2015 to 2020.1

IV. A QUANTITATIVE STUDY ON TEST ANNOTATIONS

In this section, we conduct a quantitative study to under-
stand the prevalence of test annotation usages and change
patterns. In particular, we answer two research questions:

TABLE V
MINED TEST CODE CHANGES IN 82,810 COMMITS.

Field Method Class Total Num.
Per # # Per # # Per # Commits

Commit Commit Commit

Annotation Changes 396 0.075 18,472 3.52 5,068 0.97 23,936 5,249
Refactoring 7,125 0.40 9,657 0.53 2,136 0.12 18,918 17,914
∆ % Percentage -94.4% -81.3% +91.3% +564.2% +137.2% +708.3% +26.5% -70.7%

RQ1: How common are test annotation changes? As
a stepping stone to understanding how developers leverage
annotations, we examine how frequently test annotations are
changed compared to common source code changes (i.e.,
renames and type changes) at the same program element level.
RQ2: How are test annotations changed in the wild? We
examine what are the common test annotation change patterns
in the wild. Studying predominant annotation changes reveals
frequent maintainability activities developers perform through
test annotation changes as software evolves. Such insights act
as stepping stones for our subsequent qualitative study on the
motivations and challenges behind test annotation changes.

RQ1: How common are test annotation changes?

We study how frequently developers change test annota-
tions. To provide some comparative statistics, we show the
prevalence of test annotation changes compared to common
source code transformations (i.e., renames and type changes)
at the same program element level (i.e., class, method and
field declaration). In particular, we compare test annotation
changes at the method level with Rename Method and Change
Return Type, at field level with Rename Field and Change
Field Type, and at the class level with Rename Class. Such
a comparison is attainable because all compared changes are
performed on the same kind of program elements. We used
the tool implemented by Ketkar et al. [29] to detect renames
and type changes. Ketkar et al. report an average precision of
99.7% and a recall of 94.8% for type change detection, and
an average precision of 99% and recall of 91% for rename
detection, which is very close to the precision/recall values
reported in Table II, allowing for a fair comparison annotation
change and refactoring practices.

Table V compares the prevalence of test annotation changes
with that of the refactoring changes in test code from the
82,810 commits. As shown in Table V, the number of test
annotation changes is comparable to the number of test refac-
torings (i.e., 26.5% difference). Test annotation changes are
performed at a method and class level more than renames
and type changes, i.e., 91.3% and 137.2% more, respectively.
However, at the field level, test annotation changes occurred
less than renames and type changes. Despite the popularity
of test annotation changes, little tool support exists for test
annotations compared to common code transformations such
as renames and type changes.

We find that much fewer commits modify test annotations
than those that perform renames and type changes. Out of the
82,810 commits, 5,249 commits (6%) modify test annotations,
and 17,914 (21%) perform code transformations such as
renaming and type changes. Once normalized by the number

TABLE VI
QUANTITATIVE ANALYSIS: TOP THREE HIGHEST FREQUENCY OF

ANNOTATION ADDITION, REMOVAL AND MODIFICATION.

Addition Freq. Removal Freq. Modification Freq.

Field Level
@Mock 147 @Rule 57 @Mock 23
@Rule 42 @Mock 31 @Parameter 12
@Parameter 23 @ClassRule 19 @Parameterized 4

Method Level
@Ignore 1362 @Ignore 968 @Test 6874
@Before 1238 @Before 482 @Parameterized 94
@After 584 @BeforeClass 293 @Parameters 25

Class Level
@RunWith 770 @Ignore 318 @Category 1506
@Category 734 @RunWith 306 @RunWith 326
@Ignore 482 @Category 201 @PrepareForTest 91

TABLE VII
QUANTITATIVE ANALYSIS OF ANNOTATION REPLACEMENTS.

Granularity Annotation Changes Freq. Total

Field Level 27 (2.4%)
JUnit @Rule ↔ @ClassRule 17
JUnit4 → JUnit5 @ClassRule/@Rule → @RegisterExtension 4

@ClassRule → @Container 3
@Rule → @TempDir 3

Method Level 1,007 (91%)
JUnit @BeforeClass/@AfterClass → @Before/@After 332 500 (45%)

@Before/@After → @BeforeClass/@AfterClass 148
@Before/@After → @After/@Before 11
@Parameters ↔ @Parameterized 6
Timeout=X in @Test → @Timeout 2
@BeforeClass → @AfterClass 1

JUnit4 → JUnit5 @Before → @BeforeEach 216 313 (28%)
@After → @AfterEach 43
@BeforeClass → @BeforeAll 23
@AfterClass → @AfterAll 19
@Ignore → @Disabled 12

TestNG → JUnit @BeforeMethod/@AfterMethod → @Before/@After 108 142 (13%)
@Test(Enabled=False) → @Ignore 30
@BeforeTest → @Before 4

Custom ↔ JUnit @TestTag → @Category 25 27 (2.5%)
@Category(PerformanceTest.class) → @Perfor-
manceTest

2

TestNG @BeforeTest → @BeforeClass/@BeforeMethod 6 21 (1.9%)
@AfterTest → @AfterClass/@AfterMethod 9
@AfterClass → @AfterMethod 3
@AfterMethod → @BeforeMethod 1
@BeforeClass → @BeforeMethod 2

JUnit4 →
SpringBoot

@Category → @IntegrationTest 4 4 (0.4%)

Class Level 70 (6.3%)
JUnit4 → JUnit5 @Ignore → @Disabled 46 68 (6.3%)

@RunWith → @ExtendWith 17
@Ignore → @Category 5

JUnit4 →
SpringBoot

@Category → @IntegrationTest 2 2 (<1%)

Total 1104

of commits, test annotation changes at class and method level
are performed much more frequently than renames and type
changes. This shows that test annotation changes at class
and method levels are more concentrated in fewer commits,
suggesting that annotations may be associated with dedicated
maintenance activities. In RQ3, we will further discuss ways
annotations are utilized in the maintenance of test code.
Test annotation changes are comparable to renames and
type changes at the same program element level and are
even more frequently applied at the method and class
level. Despite the popularity, there is currently negligible
tool support (i.e., antipattern detection, annotation change
suggestions, and annotation API usages) for test annotation
changes.

RQ2: How are test annotations changed in the wild?

We present the quantitative analysis on test annotation
change patterns from two aspects. First, we present the raw

change patterns based on three types of changes: addition,
removal and modification. The three types of changes are the
direct output from our RefactoringMiner extension. Table VI
lists the top three annotation changes per change type at three
program levels (i.e., field, class and method). We observe
that modification has a strong prevalence at a method and
class level across the three types of changes. Developers
frequently update parameters of the @Test (e.g., timeout=X)
and @Category annotations. In general, we notice that de-
velopers frequently change the test annotations from mocking
frameworks, i.e., add @Mock and @RunWith (20% of Pow-
erMockRunner, 14% of MockitoJUnitRunner). Considering
the low prevalence of mocking frameworks in tests (around
1% as shown in Table III), this suggests that the mocking
frameworks are frequently updated as code evolves. We also
find that developers frequently add and modify @Parameter,
@Parameterized and @RunWith (50% of Parameterized) an-
notations, suggesting that expanding test input and diversifying
test execution settings is commonly leveraged to facilitate code
evolution. We also observe a high prevalence of adding and
removing the @Ignore annotation at both method and class
level (i.e., disabling and enabling test cases and test classes).
This suggests that technical debt may occur in test code
evolution. Lastly, we observe a large number of modifications
for the @Category annotation at the class-level to organize
test classes into groups, and a diverse set of fixture additions
and deletions (i.e., @Before, @After, @BeforeClass).

Furthermore, we perform an in-depth analysis to reveal
a composite change pattern, i.e., an annotation replacement.
A replacement @X→@Y occurs when annotation @X is
removed and @Y is added on the same program element
and commit. Annotation replacements may happen, within one
testing framework, or between different testing frameworks.
Replacements show that as software evolves, the original test
annotation (or framework) does not satisfy the testing needs.
Therefore developers may look for alternatives. However, such
alternatives are not directly provided or are hard-to-achieve in
the current framework. Hence, developers need to compromise
with workarounds or adopt another framework. Mining anno-
tation replacements is straightforward, based on the output of
our RefactoringMiner extension. Specifically, for each commit,
we match pairs of removed and added annotations on the
same program elements (i.e., fields, methods, and classes) and
ensure that these pairs involve different annotation types.

In total, we mined 1,104 replacements from all mined
annotation changes. Table VII shows the frequencies of dif-
ferent replacement patterns. Most (91%) of the replacements
are at the method level, and 45% of the replacements are
switching between JUnit fixtures. For example, developers
replace @BeforeClass/@AfterClass with @Before/@After or
vice versa to configure the setup and tear down phases at
the test class or test case level. Similarly, developers replace
@Rule with @ClassRule at field level to expand the impact
of a rule to the entire class. At all program element levels,
we notice that many replacements occur due to migrations,
i.e., between different testing frameworks, or from JUnit4 to

JUnit5. Interestingly, we observe a few replacements between
different frameworks, which are not due to migrations. De-
velopers may find a similar test annotation in SpringBoot
more suitable for a particular development need than the
JUnit @Category annotation. Another common case is to
replace custom annotations with the JUnit ones. Developers
may define custom annotations for particular needs as JUnit
may not yet support the desired features, or developers may
not be aware of such support by JUnit. When the developers
become aware of the unused JUnit features, or the desired
features are shipped in the next JUnit releases, they tend to
replace their custom annotations.

Our study shows that developers modify test annotations
more frequently compared to additions and removals. An-
notations from mocking frameworks are commonly changed
despite their low prevalence. Further analysis of annotation
replacements shows that they commonly occur for migrating
to newer framework versions or other frameworks.

V. A QUALITATIVE STUDY ON TEST ANNOTATIONS

In this section, we conduct a qualitative study to understand
the reasons that developers change annotations by answering
the following research question:
RQ3: Why do developers change test annotations? Our
goal is to provide suggestions to researchers, practitioners,
and framework designers on opportunities to improve test
annotations. We derive a taxonomy of test annotation changes
representing distinctive test maintenance efforts. We believe
our taxonomy will provide insights on the maintenance of test
annotations and how to improve test quality.

RQ3: Why do developers change test annotations?

We manually study and understand the reasons that devel-
opers change test annotations. Our manual study is composed
of the following phases:
Phase I: We use stratified random sampling, with a 95%
confidence level and 5% confidence interval, to acquire 368
samples from the test annotation changes identified by our
RefactoringMiner extension. We adopted stratified random
sampling to sample each studied system independently to re-
duce sampling error when a sub-population within the overall
population varies [30].
Phase II: To create the taxonomy for the test annotations,
we first classified the changes at a high level based on the
annotation type (e.g., @Ignore). Then, the first two authors
of the paper (A1 and A2) independently derived an initial
list of the reasons behind annotation changes by manually
inspecting the relevant commit messages, test source codes,
and bug reports.
Phase III: Authors A1 and A2 unified the derived reasons
and compared the assigned reason for each annotation change.
Any disagreement was discussed until reaching a consensus.
The inter-rater agreement of the coding process has a Cohen’s
kappa of 0.91, indicating almost a perfect agreement level
[31].

Table VIII shows the derived taxonomy of the reasons that
developers changed the JUnit annotations (upper half of the
table) and the annotations from other frameworks (lower half
of the table) that we found in the sample. To encourage the
replication of our results, we have made the dataset available.1

JUnit Test Annotation Changes

@Ignore (32%). @Ignore is the most frequently changed
test annotation (mostly added). Developers often use this
annotation to temporarily disable the execution of tests when
there are software bugs or flaky tests. Developers may also
bypass test failures caused by recent code changes during
a feature addition that breaks a test. For example, in Hive
(7f4a3e17), the developer ignored the failing test code due
to breaking changes during feature addition to pass the test
temporarily. Other instances of adding @Ignore are due to
dependencies with external libraries. For example, developers
disabled a test while waiting for a new software version (e.g.,
JDK update). However, developers may also add @Ignore to
replace automated testing with manual testing when the test
code requires manual startup. Although developers frequently
ignore tests to facilitate maintenance difficulties, this practice
may become ad-hoc and affect code quality. We found in-
stances where developers use @Ignore to pass failing tests
without fixing the issue in the code. For example, in Druid
(da32e1ae), the developer disabled a test due to unknown
failure. Later on, the bug persisted, but the test was enabled,
and the issue was closed. Similarly, in Camel (8ba68e34),
the developer disabled a test due to external dependencies
during feature addition. However, the ignored test is never
enabled. We further conducted an exploratory investigation to
see whether the ignored flaky tests in Table VIII are fixed and
later enabled. We find that developers often do not find the
root cause of test flakiness and ignore the test in the entirety
of software evolution, indicating that ignored tests persist and
are often forgotten.

As @Ignore becomes a common way to bypass challenges
in test maintenance, it may become ad-hoc and a source of
technical debt.

@Test(Timeout=X) (14%). Our analysis reveals innovative
uses of timeout and maintenance problems of such uses
due to software’s ever-evolving nature. We find that time-
out is employed to achieve various goals, i.e., detecting
deadlocks (e.g., Hbase-2428c5f) and performance regressions
(e.g., Hadoop-f131dba8), and providing meaningful debugging
information when accessing external resources. While timeout
is an effective tactic to serve the aforementioned purposes, we
observe that developers constantly need to increase the timeout
threshold (even by removing the use of timeout entirely) to
avoid test failures and to accommodate the evolving software
development. For example, once the running environment
changes (e.g., to a slower cluster or platform), test execution
may become slower and lead to timeout errors. Developers
need to increase the timeout threshold to avoid test failures.

1 https://github.com/SPEAR-SE/TestAnnotationMaintenance Data

TABLE VIII
QUALITATIVE ANALYSIS: TAXONOMY OF ANNOTATION CHANGES.

Annotation Type Motivation Frequency

JUnit Test Annotations Changes
Ignore 115

Bugs Adding @Ignore to bypass test failure caused by bugs in test/source code. 42
Flaky test Adding @Ignore to disable flaky tests. 33
External dependency Adding @Ignore when an external dependency needs to be manually configured (e.g., database), or the developers wait for a new release of an

external dependency to resolve an issue (e.g., JVM).
20

Feature addition/improvement Adding @Ignore to disable tests that are related to incomplete features/code changes. 19

Timeout 51
Relax timeout Increasing @Test(timeout) thresholds to accommodate slow cluster, slow machine or slow tests. 23
Deadlock detection Adding @Test(timeout) to help detect deadlocks (i.e., if tests do not finish within the specified time, there may be a deadlock). 15
External resource retrieval Adding @Test(timeout) to complement tests that retrieve an external resource. For example, without a timeout, the test may fail due to

NullPointerException and suppress the actual fault (e.g., resource unavailability).
6

Perf. regression detection Adding @Test(timeout) to ensure that the test finishes on time for detecting performance regression. 6
Ad-hoc timeout removal Removing @Test(timeout) completely as tests become too slow instead of relaxing the timeout. 1

Fixture 35
Reset fixtures Replacing @BeforeClass with @Before to reset fixtures for each test case (e.g., for bug fixing or test case isolation). 14
Improve test speed Replacing @Before with @BeforeClass to improve test time by removing unnecessarily repeated fixture initialization. 10
Inflexible configuration Removing or changing fixtures since they are not configurable per test case (e.g., @Before method runs for every test case, while @BeforeClass

runs only once before a test case).
6

Maintainability Adding fixtures to remove duplicate initialization in the test code for better maintainability. 1

Category 37
Test prioritization Adding @Category to group tests based on their speed/size to detect failures more quickly (e.g., run faster tests first). 33
Ignore tests Adding @Category in addition to @Ignore to organize ignored tests for future maintainability. 4

Parameterized 31
Increase test coverage Adding or changing @Parameterized to increase coverage for failing corner cases, or newly added features. 16
Refactor test code Adding @Parameterize to refactor tests to improve maintainability (e.g., share common test inputs or test code). 7
Parallelize tests Adding @Parameterized and use a thread pool to run tests in parallel and speed up test execution. 4
Add debugging messages Changing @Parameterized parameter to include optional messages for improved debugging. 3
Slow test Removing @Parameterized to improve test execution time. In JUnit4, @Parameterized is limited to class level. If only subsets of tests use

parameterized annotations, then it may increase test execution time.
1

Expected Exception 18
Adjusting exception handling Changing between different exception handling mechanisms (i.e., JUnit3 Try with fail, JUnit4 @Rule, JUnit5 Assertions.assertThrows, JUnit4

@ExpectedException, or even custom expected exception)
14

Test Driven Development Adding expected exception to complement test-driven development by making the test pass with known exceptions until the feature
implementation is done.

2

Exception too general Changing expected exception from a general exception type to a more specialized one. For example, @ExpectedException(GenericException)
can pass the expected exception test, but does not provide details about the actual exception type.

2

Rule 14
Refactor via @Rule Adding built-in or custom (e.g., extract duplicate fixture) @Rule to improve test code maintainability. 14

Fixed Test Order Adding @FixMethodOrder from JUnit4 to enforce deterministic test orders and fix flaky tests. 5

Other Types of Test Annotations Changes
Migration 21

JUnit4 to JUnit5 migration Manual migration from JUnit4 to JUnit5 (e.g., one package at a time), resulting in sparse JUnit5 adoption. Typically migrated annotations are
related to fixtures (i.e., @Before to @BeforeEach), and sometimes from @RunWith to @ExtendWith, or from @Category to @Tags.

19

JUnit3 to JUnit4 migration Automated migration from JUnit3 to JUnit4 using tool support. 1
TestNG to JUnit5 Remove TestNG in favour of JUnit5 due to its popularity. 1

Mocking 17
Namespace error in mocking Mocking frameworks, such as PowerMock, utilize an independent classloader, which may cause namespace error (i.e., class not found). 11
Mock usage Adding Powermock to mock final, utility and abstract class. 5
Mock vs Injection Removing mocking and use dependency injection instead. 1

Custom 11
Retry on failure/exception Implementing custom annotations to retry test on failure (JUnit4). Developers should leverage JUnit5 @RepeatedTest 8
Experimental Implement custom annotation to categorize tests during feature addition to detect untested code, instead of using JUnit4 @Category. 3

Mixed Framework Usage 3
Using @DependsOn in
TestNG

Using TestNG in addition to JUnit, because TestNG provides the @DependsOn annotation, which enforces test ordering. However, developers
can leverage JUnit4 @FixMethodOrder to avoid using multiple frameworks.

2

Using @Test(group=X) in
TestNG

Using testNG in addition to JUnit, because TestNG provides the group option inside @Test annotation, which categorizes tests. However,
developers can leverage JUnit4 @Category or JUnit5 @Tag to avoid using multiple frameworks.

1

By-product Changing/adding/removing test annotation due to feature deletion or test code relocation. 10

Another example is that detecting performance regressions
may become flaky as code evolves, i.e., the execution time
comes closer to the timeout threshold and leads to unstable
test results in different runs. To avoid flakiness, developers
may increase the timeout threshold. This shows that timeout
may not be suitable for performance testing, and a framework
(e.g., OpenJDK JMH) that allows more sophisticated settings
(e.g., repeated runs, warm-up iterations) should be leveraged.

Developers use @Test(timeout=X) to detect concurrency
issues or performance regressions; however, they may also
relax/remove the timeout when performance regressions
occur.

Fixtures (9.6%). Our fixture change analysis reveals the inher-
ent difficulties and error-proneness in maintaining the balance

between a clean test environment and minimized test execu-
tion time. To minimize test execution time, developers may
continuously refactor test initialization code, i.e., extracting
duplicate initialization code in a separate method with fixture
annotations, or changing a fixture method from @Before to
@BeforeClass (Druid-da32e1ae). However, some fixture code
(e.g., resetting shared variables), if incorrectly placed in a class
fixture (i.e., @BeforeClass), may violate the test independence
assumption [32], introduce bugs in test code, and produce
unstable test results (i.e., flaky test). Therefore, developers
may perform changes to execute such a fixture code for each
test method repeatedly (e.g., Ambari-7153112e). Interestingly,
we noticed that developers expressed performance concerns
on such changes and sometimes, they were even uncertain
about whether such changes would completely fix the buggy

test. Hence, developers may benefit from having a detection
tool that helps them determine the trade-off (e.g., a search-
based approach). Moreover, we observe that developers need
to perform workarounds due to the limitations of expressing
fixtures in JUnit. In particular, developers may remove JUnit
fixture to resort to a direct call to the parameterized helper
methods, increasing redundancies. This happens when there
is a need to adopt different fixtures for each test method.
However, JUnit does not support tailoring fixture, i.e., all the
test cases in one test class share the same fixture. Another
limitation is the lack of fine-tuning JUnit fixtures based on
the test cases. For example, in UpdateActiveRepoVersionOn-
StartupTest - Ambari (2700bd125f), developers replaced JUnit
@Before with a parameterized helper method to conditionally
configure the cluster in the fixture based on test cases. We
find that developers performed such workarounds due to
JUnit limitations complicate test fixture and may increase test
maintenance overhead.
Developers are concerned about the tradeoff between mini-
mizing test code duplication and minimizing test execution
time. Furthermore, the lack of configuration capabilities in
JUnit fixtures causes developers to perform workarounds,
increasing technical debt and maintenance overhead.

@Category (10%). We find that developers mostly add @Cat-
egory to categorize tests for test prioritization. In Hbase, the
category groups test based on timeout thresholds. Developers
acknowledge that categorizing based on timeout can improve
regression testing practice by running faster tests first (i.e., the
ones with smaller timeout threshold) to detect bugs quickly.
We also find that developers add @Category to complement
ignored tests for better maintainability. For instance, a “Fail-
ingTest” category can indicate ignored tests due to test failure.
Developers may also use @Category to specify whether certain
tests are integration tests or unit tests.

Developers customize @Category to assist diverse main-
tenance needs. We find that categorization based on test
execution time can be useful for efficient regression test
analysis, and can also help detect failed or ignored tests
for more reliable maintainability.

@Parameterized (8.5%). We find that most changes to @Pa-
rameterized align to its regular use, i.e., increase the flexibility
of managing test inputs. Developers may add more corner
cases to the input using @Parameterized after adding new
features or fixing bugs to avoid regression. We also find that
developers may refactor the test code using @Parameterized.
We find cases where developers use @Parameterized to reuse
common test input arguments in different test cases. For
example, in a test from Hadoop (ad1b988a8286), developers
use @Parameterized to remove multiple subclasses that share
the same code with only differences in test input. We also
find that developers may use @Parameterized to run tests
with different inputs in parallel to speed up test execution.
However, one limitation of @Parameterized is that it can only
be applied at the class level. Therefore, if only a subset of

the test methods needs the parameterized annotation, there
may be additional setup overhead that slows down the test.
Finally, the JUnit4 Parameterized class contains an optional
string pattern that helps decorate test results with additional
messages for improved debugging. Including such messages is
considered the best practice by some developers, as we found
in our manual study. Nevertheless, most of our manual study
samples do not leverage this best practice, and thus we believe
users of JUnit4 can benefit from knowing about it.

@Parameterized is used to enable test code to take argu-
ments and refactor test code and test input duplications.
Moreover, developers can improve the test execution speed
of a @Parameterized test by using parallel programming.

Expected Exception (4.9%). Developers sometimes need to
test if the code would throw a specified exception for erroneous
behaviours. Over the JUnit history, encoding expected excep-
tions in test cases can be achieved differently, i.e., try with
fail in JUnit3, @Rule and @ExpectedException in JUnit4,
and assertThrows in JUnit5. On the one hand, we find that
new JUnit releases gradually adapt to the increasing need
for handling expected exceptions elegantly, i.e., a specialized
annotation @ExpectedException instead of the workaround
try with fail, and an improved annotation assertThrows to
overcome the limitation of @ExpectedException. On the other
hand, we find that developers may not be fully aware of new
features in their adopted JUnit version.

For example, we find cases that developers may migrate
back to JUnit3 to use the try with fail mechanism, because
@ExpectedException is limited in providing comprehensive
error messages. Such a backward migration is not needed,
since developers could leverage @Rule from JUnit4, or mi-
grate to JUnit5 assertThrows. In other cases, we find that
developers tried to customize their test code to handle expected
exceptions, but later migrated to a more framework-dependent
pattern as described above. Our findings suggest a potentially
ill-defined knowledge of how to handle expected exceptions in
practice. Developers could benefit from having an expected
exception recommendation tool to reduce test maintenance
overhead. We also find that developers may use expected
exceptions to facilitate test-driven development. Namely, the
expected exception avoids test failures while developers ac-
tively work on implementing the features. Finally, we find a
misuse of the expected exception associated with the Exception
type. Developer discussions reveal that the use of general
excepted exception types (e.g., java.lang.Exception)
could hide the actual faults because the test will still pass if an
unexpected sub-type exception is thrown. Therefore, one way
to solve this issue is to use specific exception types instead of
a general exception type.

There is a diverse way to handle expected exception in
test code. Developers sometimes are unaware of which
mechanism to utilize and what mechanisms may be available
in their adopted JUnit version.

@Rule (3.8%). JUnit4 introduced @Rule to provide a flexible

mechanism to enhance tests by running code around a test
execution, similar to @Before and @After. In alignment with
the regular use of the @Rule, we find that developers often
refactor duplicate test code using @Rule to improve maintain-
ability and readability. We also found three common uses of
built-in @Rules, namely the Timeout, TemporaryFolder, and
TestName rules [33]. In these cases, developers preferred using
these built-in @Rules to simplify test code. Future studies may
consider using various annotations to help refactor test code.

Developers utilize @Rule to remove duplicate code in test
fixtures. Moreover, we find that developers can benefit from
using built-in @Rules to simplify their test code.

@FixMethodOrder (1.4%). Prior studies [3], [34]–[36]
found that one of the root causes of flaky tests is test order
dependencies. JUnit4 provides @FixMethodOrder to allow
a deterministic test execution order. For example, we find
in Camel (4e7ec8f79b6) that since JDK7 does not preserve
test execution order, developers fixed test flakiness using
@FixMethodOrder. Hence, there is a future research oppor-
tunity on automated test fixing by applying such annotations.

Developers apply @FixMethodOrder to ensure a determin-
istic test execution order and avoid dependency-related flaky
tests.

Other Types of Test Annotations Changes

Migration (5.8%). In the migration from JUnit3 to JUnit4,
we find that developers use an automated tool that applies
migration in the entire codebase. However, the migration from
JUnit4 to JUnit5 is applied manually and slowly (e.g., one
package at a time). There are many migrations that started
over one year ago (i.e., before 2019), but the issue reports
still remain open today. We believe migrations to JUnit5
are intentionally manual, because some annotations, such as
@Rule, are removed in JUnit5. Moreover, some annotations
are renamed and may further cause confusion to developers
(e.g., @Before is renamed to @BeforeEach). Therefore, devel-
opers could benefit from having an automatic JUnit5 migration
tool. Finally, we find some changes where developers migrate
from TestNG to JUnit5 due to the popularity of JUnit.

We find that the migration from JUnit4 to JUnit5 is done
manually and slowly. To help developers utilize the new
features in JUnit5, future studies should further investigate
migration patterns for JUnit5 in order to assist developers
with automated migration.

Mocking (4.7%). A JUnit class annotated with @RunWith
indicates that the JUnit framework invokes a specified class
using a developer-specified test runner instead of running the
default runner. An issue with using mocking runners is that
these mocking frameworks utilize an independent class loader,
which sometimes causes namespace error due to conflicting
classes. To resolve the issue, developers add @PowerMockIg-
nore to defer loading the conflicting classes. Finally, for one
instance, we find that developers decided to remove mocking
and use dependency injection instead.

Developers often use mocking for external dependencies.
However, they may encounter issues related to namespace
conflicts.

Custom Annotation (3%) and Mixed Framework Usage
(0.8%). We found cases where developers created customized
annotations to repeat the test execution upon failure (e.g., for
detecting flaky test), or to indicate that a test is experimental.
However, JUnit5 provides a new annotation @RepeatedTest,
and both JUnit4 and JUnit5 provide annotations (e.g., @Cate-
gory) to categorize tests. We also find cases where developers
added annotations from TestNG, even though developers were
already using JUnit, which provides similar annotations. The
findings may indicate that sometimes developers might not
know the functionality that is provided by testing frameworks,
and may use customized annotations and increase maintenance
costs.
Developers resort to customized annotations due to the lack
of awareness about the features offered by testing frame-
works, suggesting the need for annotation recommendation
tool support.

By-product (2.7%). We find that developers may modify test
annotations due to a feature removal or test refactoring (e.g.,
relocate the annotation to another test file).

VI. IMPLICATIONS AND FUTURE WORK

Based on our empirical findings, we present actionable
implications and future work for three groups of audiences:
1) researchers, 2) application developers and testers, and 3)
framework designers.

A. Researchers

R1: Test annotation is an integral part of test design
and implementation. Future studies on test maintenance
and refactoring should consider the peculiarity of test
annotations. As we find in RQ1, test annotation changes
are frequent in test maintenance, and developers often use
test annotations to improve test maintenance. As we found in
RQ3, developers use various test annotations, such as fixtures
or @Rule, to remove duplication in test code. Based on our
manual study, such refactorings are commonly performed, but
there is a lack of tool support. Therefore, future refactoring
studies may want to design test code refactoring techniques
that leverage such test annotations.
R2: Developers may use test annotation for ad-hoc fixes,
which may affect test maintenance or even code quality.
Future studies are needed to study such impact and
provide research solutions. In RQ3, we find that develop-
ers may use test annotations for ad-hoc fixes (e.g., adding
@Ignore to failing tests or increasing the timeout threshold in
@Test(timeout=X) without finding the root cause). Although
the fixes make the tests pass, the underlying issues remain
unsolved, which may cause more severe issues in the future.
Moreover, as we found in RQ2, there are much more additions
of @Ignore than removals, which indicates that many tests get
disabled without being re-enabled. Future studies are needed

to study the prevalence of such technical debt in ad-hoc test
fixes and their potential consequences.
R3: There are future research opportunities on detecting
misuses of test annotations. Recently, test smell detection
starts to receive interest from both the academia and industry
due to its practicality [5], [8], [12], [13], [37], [38]. However,
most prior studies only consider test smells related to test code,
yet as we found in RQ3, there exist many test annotation mis-
uses. For example, we found that developers use suboptimal
ways to handle expected exceptions or @Parameterized in tests
(e.g., tests expecting generic exceptions or not recording error
messages when using @Parameterized). Furthermore, there are
also possible test annotation misuses related to fixtures (e.g.,
using @Before without considering its performance impact).
Our study highlights and opens an avenue for future research
to better detect test smells and improve test quality.
R4: Future research is needed to provide automated
test grouping and better utilization of test annotations
to reduce test execution overhead. To reduce test exe-
cution overhead, prior studies have proposed various test
selection [39]–[42] and prioritization techniques [43]–[50]. In
RQ3, we find that developers use @Category to group and
execute small tests first (e.g., run faster tests first to detect
failures early). Future studies may consider integrating their
techniques with test annotations for better research adoption.
Developers may also use parallelization to speed up test
execution (e.g., using @Parameterized with thread pools).
However, we find that JUnit5 provides a new annotation,
@Execution(ExecutionMode.CONCURRENT), which allows
parallel test execution. Future study is needed to assist de-
velopers to automatically adopt such annotations and improve
test execution time without causing concurrency issues or flaky
tests.

B. Application Developers and Testers

A1: Developers need better education about the capabilities
of testing frameworks. As found in a prior study [51], due
to differences in background, some developers may not be
familiar with specific frameworks. In RQ3, we also have
similar observations with testing frameworks. Even though
JUnit is the most commonly used framework in Java [9], we
find that some developers do not fully utilize test annotations.
For example, some developers were unsure which way they
should use to handle expected exceptions, and some developers
created custom test annotations, even though JUnit already
provides the same functionality. A prior study found that
there is often a champion who first adopts new features in
a framework and helps the team with adoption [23]. We
recommend that developers follow similar procedures and
dedicate at least one team member to gain expertise in testing
frameworks and help the development team utilize testing
frameworks.

C. Framework Designers

F1: Framework designers need to provide better flexibility
in their APIs. In RQ3, we find some cases where developers

need to find workarounds or adopt other testing frameworks
to bypass some inflexibility in JUnit. For example, @Before
is executed for every test case in the class, but developers
may only want @Before to be executed for a subset of the
test cases. In this case, developers removed JUnit fixture
annotations and replaced them with a direct call to the helper
method, increasing redundancies. In other cases, fine-tuning
fixtures based on test cases also enforced developers to use
a Parameterized helper method over JUnit @Before. Finally,
we also uncovered some limitations with @Parameterized
in JUnit4, although it can remove test code and test input
duplication and improve test coverage. Firstly, the JUnit4
parameterized class only works at class level, and cannot be
configured at method level. Thus, for the specified test inputs,
the test runner will execute every single test case even if not
all test cases utilize the input. Hence, we believe that software
engineering researchers may work with framework developers
and identify possible issues that framework users encounter
and improve the framework accordingly.
F2: Better annotation support targeting specific testing
issues (e.g., flaky tests). We find that JUnit provides annota-
tions, such as @FixMethodOrder, to resolve issues related to
order dependent flaky tests. Similarly, one of the customiza-
tions we find is retrying on test failure. However, JUnit5 now
provides a new annotation @RepeatedTest to help developers
detect test flakiness more easily. To this end, with the recent
research advances in the detection of flaky tests, we believe
that incorporating more support in a practical framework, such
as JUnit, will help developers quickly address test flakiness
without resorting to other specialized tools that are difficult to
adopt in practice.

VII. THREATS TO VALIDITY

Internal Validity. Our findings depend on the accuracy of
our tool to mine annotation changes from the commit history.
We mitigate this threat by validating our tool thoroughly. The
extension of RefactoringMiner 2.0 detects annotation changes
with a 99.7% precision and 98.7% recall.

External Validity. We study systems that are all open source
implemented in Java, so the result may not be generalizable to
all systems. To minimize the threat, we follow a set of criteria
to select systems that are popular on GitHub, large in scale,
and actively maintained. The studied systems cover various
domains and are frequently used in commercial settings.

Construct Validity. We conduct a manual study to understand
the reasons behind test annotation changes. Due to the large
number of changes, we take a statistically significant sample.
There may be bias or misidentification in our manual study
on characterizing test annotation changes. Thus, two authors
independently examined all available software artifacts and
discussed them until the agreement is made. We do not claim
to find all usage and misusage patterns, and the limitations
of test annotations. However, we show the existence of such
patterns and identify further research opportunities. Thus, fu-

ture work should survey developers based on recent annotation
changes to gain additional insights.

VIII. CONCLUSION

This paper presents the very first empirical study on an-
notation changes in Java tests to fill the knowledge gap
regarding the evolution and maintenance of tests, since prior
studies focused mainly on the test code and ignored the test
annotations. Our study reveals many interesting findings with
actionable implications:
1) Test annotation changes are more common than test refac-

torings. Despite that, there is very limited tool support for
migrating test annotations to newer framework versions or
different frameworks, and automating common annotation
change patterns within the same framework version.

2) Test developers are sometimes unaware of the features
provided by testing frameworks, and thus apply alternative
suboptimal solutions. There is great need for tool support
to detect the misuse (or lack of use) of annotations and
recommend appropriate test annotations.

3) Test developers are forced to apply workarounds to over-
come the current limitations of testing frameworks. Frame-
work designers need to be aware of these workarounds to
improve the design and flexibility of test annotations.

REFERENCES

[1] N. B. Ali, E. Engström, M. Taromirad, M. R. Mousavi, N. M.
Minhas, D. Helgesson, S. Kunze, and M. Varshosaz, “On the search
for industry-relevant regression testing research,” Empirical Software
Engineering, vol. 24, no. 4, pp. 2020–2055, 2019. [Online]. Available:
https://doi.org/10.1007/s10664-018-9670-1

[2] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2014, pp.
643–653.

[3] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root causing flaky tests in a large-scale industrial setting,” in
Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2019, Beijing, China, July 15-19,
2019, D. Zhang and A. Møller, Eds. ACM, 2019, pp. 101–111.
[Online]. Available: https://doi.org/10.1145/3293882.3330570

[4] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok, “Refactoring
test code,” in Proceedings of the 2nd international conference on extreme
programming and flexible processes in software engineering (XP2001),
2001, pp. 92–95.

[5] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni,
and F. Palomba, “On the distribution of test smells in open source
android applications: An exploratory study,” in Proceedings of the 29th
Annual International Conference on Computer Science and Software
Engineering, ser. CASCON ’19, 2019, pp. 193–202.

[6] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “Are
test smells really harmful? an empirical study,” Empirical Software
Engineering, vol. 20, no. 4, pp. 1052–1094, 2015.

[7] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “An
empirical analysis of the distribution of unit test smells and their impact
on software maintenance,” in 2012 28th IEEE International Conference
on Software Maintenance (ICSM), 2012, pp. 56–65.

[8] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli,
“On the relation of test smells to software code quality,” in 2018
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2018, pp. 1–12.

[9] A. Zerouali and T. Mens, “Analyzing the evolution of testing library
usage in open source java projects,” in 2017 IEEE 24th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), 2017, pp. 417–421.

[10] S. Levin and A. Yehudai, “The co-evolution of test maintenance and
code maintenance through the lens of fine-grained semantic changes,”
in 2017 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2017, Shanghai, China, September 17-22,
2017. IEEE Computer Society, 2017, pp. 35–46. [Online]. Available:
https://doi.org/10.1109/ICSME.2017.9

[11] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code qual-
ity and its relation to issue handling performance,” IEEE Transactions
on Software Engineering, vol. 40, no. 11, pp. 1100–1125, 2014.

[12] N. S. Junior, L. R. Soares, L. A. Martins, and I. Machado, “A survey on
test practitioners’ awareness of test smells,” CoRR, vol. abs/2003.05613,
2020. [Online]. Available: https://arxiv.org/abs/2003.05613

[13] A. Qusef, M. O. Elish, and D. W. Binkley, “An exploratory study
of the relationship between software test smells and fault-proneness,”
IEEE Access, vol. 7, pp. 139 526–139 536, 2019. [Online]. Available:
https://doi.org/10.1109/ACCESS.2019.2943488

[14] V. Garousi and B. Küçük, “Smells in software test code: A
survey of knowledge in industry and academia,” Journal of Systems
and Software, vol. 138, pp. 52–81, 2018. [Online]. Available:
https://doi.org/10.1016/j.jss.2017.12.013

[15] N. Tsantalis, A. Ketkar, and D. Dig, “Refactoringminer 2.0,” IEEE
Transactions on Software Engineering, 2020.

[16] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and
realities of test-suite evolution,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, ser. FSE ’12. New York, NY, USA:
Association for Computing Machinery, 2012. [Online]. Available:
https://doi.org/10.1145/2393596.2393634

[17] A. Zaidman, B. V. Rompaey, A. van Deursen, and S. Demeyer,
“Studying the co-evolution of production and test code in open source
and industrial developer test processes through repository mining,”
Empir. Softw. Eng., vol. 16, no. 3, pp. 325–364, 2011. [Online].
Available: https://doi.org/10.1007/s10664-010-9143-7

[18] D. D. Ma’ayan, “The quality of junit tests: an empirical study report,”
in Proceedings of the 1st International Workshop on Software Qualities
and Their Dependencies, SQUADE@ICSE 2018, Gothenburg, Sweden,
May 28, 2018, S. Sentilles, B. W. Boehm, C. Trubiani, X. Franch,
and A. Koziolek, Eds. ACM, 2018, pp. 33–36. [Online]. Available:
https://doi.org/10.1145/3194095.3194102

[19] G. Kudrjavets, N. Nagappan, and T. Ball, “Assessing the relationship
between software assertions and faults: An empirical investigation,”
in 17th International Symposium on Software Reliability Engineering
(ISSRE 2006), 7-10 November 2006, Raleigh, North Carolina, USA.
IEEE Computer Society, 2006, pp. 204–212. [Online]. Available:
https://doi.org/10.1109/ISSRE.2006.14

[20] Y. Zhang and A. Mesbah, “Assertions are strongly correlated with test
suite effectiveness,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2015. New
York, NY, USA: Association for Computing Machinery, 2015, p.
214–224. [Online]. Available: https://doi.org/10.1145/2786805.2786858

[21] H. Rocha and M. T. Valente, “How annotations are used in java: An
empirical study,” in Proceedings of the 23rd International Conference
on Software Engineering & Knowledge Engineering (SEKE’2011), Eden
Roc Renaissance, Miami Beach, USA, July 7-9, 2011. Knowledge
Systems Institute Graduate School, 2011, pp. 426–431.

[22] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen, “Mining billions
of AST nodes to study actual and potential usage of java language
features,” in 36th International Conference on Software Engineering,
ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, P. Jalote,
L. C. Briand, and A. van der Hoek, Eds. ACM, 2014, pp. 779–790.
[Online]. Available: https://doi.org/10.1145/2568225.2568295

[23] C. Parnin, C. Bird, and E. R. Murphy-Hill, “Adoption and use
of java generics,” Empirical Software Engineering, vol. 18, no. 6,
pp. 1047–1089, 2013. [Online]. Available: https://doi.org/10.1007/
s10664-012-9236-6

[24] Z. Yu, C. Bai, L. Seinturier, and M. Monperrus, “Characterizing the
usage, evolution and impact of java annotations in practice,” IEEE
Transactions on Software Engineering, 2019.

[25] M. R. Marri, Tao Xie, N. Tillmann, J. de Halleux, and W. Schulte,
“An empirical study of testing file-system-dependent software with mock
objects,” in 2009 ICSE Workshop on Automation of Software Test, 2009,
pp. 149–153.

[26] S. Mostafa and X. Wang, “An empirical study on the usage of mocking
frameworks in software testing,” in 2014 14th International Conference
on Quality Software, 2014, pp. 127–132.

[27] D. Spadini, M. Aniche, M. Bruntink, and A. Bacchelli, “Mock objects
for testing java systems,” vol. 24, no. 3, p. 1461–1498, Jun. 2019.

[28] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE ’14. New York, NY, USA: ACM, 2014, pp.
313–324.

[29] A. Ketkar, N. Tsantalis, and D. Dig, “Understanding type changes in
java,” in Proceedings of the ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE ’20, Nov 2020.

[30] X. Zhao, J. Liang, and C. Dang, “A stratified sampling based clustering
algorithm for large-scale data,” Knowl. Based Syst., vol. 163, pp.
416–428, 2019. [Online]. Available: https://doi.org/10.1016/j.knosys.
2018.09.007

[31] A. J. Viera, J. M. Garrett et al., “Understanding interobserver agreement:
the kappa statistic,” Family Medicine, vol. 37, no. 5, pp. 360–363, 2005.

[32] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D.
Ernst, and D. Notkin, “Empirically revisiting the test independence
assumption,” ser. ISSTA 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 385–396. [Online]. Available:
https://doi.org/10.1145/2610384.2610404

[33] JUnit team. (2018, Jun.) Rules. [Online]. Available: https://github.com/
junit-team/junit4/wiki/Rules

[34] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “idflakies: A
framework for detecting and partially classifying flaky tests,” in 12th
IEEE Conference on Software Testing, Validation and Verification, ICST
2019, Xi’an, China, April 22-27, 2019. IEEE, 2019, pp. 312–322.
[Online]. Available: https://doi.org/10.1109/ICST.2019.00038

[35] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, (FSE-22), Hong
Kong, China, November 16 - 22, 2014, S. Cheung, A. Orso, and
M. D. Storey, Eds. ACM, 2014, pp. 643–653. [Online]. Available:
https://doi.org/10.1145/2635868.2635920

[36] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding
flaky tests: the developer’s perspective,” in Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE
2019, Tallinn, Estonia, August 26-30, 2019, M. Dumas, D. Pfahl,
S. Apel, and A. Russo, Eds. ACM, 2019, pp. 830–840. [Online].
Available: https://doi.org/10.1145/3338906.3338945

[37] M. Tufano, F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, A. D. Lucia,
and D. Poshyvanyk, “An empirical investigation into the nature of test
smells,” in Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, 2016, pp. 4–15.

[38] N. S. Junior, L. R. Soares, L. A. Martins, and I. Machado, “A survey on
test practitioners’ awareness of test smells,” CoRR, vol. abs/2003.05613,
2020. [Online]. Available: https://arxiv.org/abs/2003.05613

[39] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test
selection with dynamic file dependencies,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis. ACM,
2015, pp. 211–222.

[40] A. Shi, T. Yung, A. Gyori, and D. Marinov, “Comparing and combining
test-suite reduction and regression test selection,” in Proceedings of
the 10th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2015, 2015, pp. 237–247.

[41] G. Rothermel and M. J. Harrold, “A safe, efficient regression test selec-
tion technique,” ACM Transactions on Software Engineering Methodol-
ogy, vol. 6, no. 2, pp. 173–210, 1997.

[42] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “An empirical study
of junit test-suite reduction,” in Proceedings of the IEEE 22nd Interna-
tional Symposium on Software Reliability Engineering, ser. ISSRE ’11,
2011, pp. 170–179.

[43] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, and B. Xie, “Learning
to prioritize test programs for compiler testing,” in Proceedings of the
39th International Conference on Software Engineering, ser. ICSE ’17,
2017, pp. 700–711.

[44] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression
test case prioritization,” IEEE Transactions on Software Engineering,
vol. 33, no. 4, pp. 225–237, 2007.

[45] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel, “A
static approach to prioritizing junit test cases,” IEEE Transactions on
Software Engineering, vol. 38, no. 6, pp. 1258–1275, Nov. 2012.

[46] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing
test cases for regression testing,” IEEE Transactions on Software Engi-
neering, vol. 27, no. 10, pp. 929–948, 2001.

[47] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An information
retrieval approach for regression test prioritization based on program
changes,” in Proceedings of the 37th International Conference on
Software Engineering, ser. ICSE ’15, 2015, pp. 268–279.

[48] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein, “Static test
case prioritization using topic models,” Empirical Software Engineering,
vol. 19, no. 1, pp. 182–212, Feb. 2014.

[49] S. Yoo, M. Harman, and D. Clark, “Fault localization prioritization:
Comparing information-theoretic and coverage-based approaches,” ACM
Transactions on Software Engineering Methodology, vol. 22, no. 3, pp.
19:1–19:29, Jul. 2013.

[50] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging the
gap between the total and additional test-case prioritization strategies,”
in Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE ’13, 2013, pp. 192–201.

[51] T.-H. Chen, W. Shang, A. E. Hassan, M. Nasser, and P. Flora, “Detecting
problems in the database access code of large scale systems: An
industrial experience report,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16, 2016, p. 71–80.

