
Attribute-based Single Sign-On: Secure, Private, and Efficient
Tore Kasper Frederiksen

Zama

Paris, France

tore.frederiksen@zama.ai

Julia Hesse

IBM Research Europe – Zurich

Rüschlikon, Switzerland

JHS@zurich.ibm.com

Bertram Poettering

IBM Research Europe – Zurich

Rüschlikon, Switzerland

POE@zurich.ibm.com

Patrick Towa

Aztec Network

London, United Kingdom

patrick.towa@gmail.com

ABSTRACT

A Single Sign-On (SSO) system allows users to access different

remote services while authenticating only once. SSO can greatly

improve the usability and security of online activities by dispensing

with the need to securely remember or store tens or hundreds of

authentication secrets. On the downside, today’s SSO providers can

track users’ online behavior, and collect personal data that service

providers want to see asserted before letting a user access their

resources.

In this work, we propose a new policy-based Single Sign-On ser-

vice, i.e., a system that produces access tokens that are conditioned

on the user’s attributes fulfilling a specified policy. Our solution

is based on multi-party computation and threshold cryptography,

and generates access tokens of standardized format. The central

idea is to distribute the role of the SSO provider among several

entities, in order to shield user attributes and access patterns from

each individual entity. We provide a formal security model and

analysis in the Universal Composability framework, against proac-

tive adversaries. Our implementation and benchmarking show the

practicality of our system for many real-world use cases.

The full version of this article is at https://ia.cr/2023/915 [35].

KEYWORDS

SSO, MPC, threshold cryptography, identity management

ACKNOWLEDGMENTS

This work has received funding from the EU Horizon 2020 research

and innovation programme under grant agreement No 786725

OLYMPUS. Julia Hesse was supported by the Swiss National Science

Foundation (SNSF) under the AMBIZIONE grant “Cryptographic

Protocols for Human Authentication and the IoT”. The work of Tore

Frederiksen was done while at the Alexandra Institute, and part of

Patrick Towa’s work was done while at ETH Zurich.

1 INTRODUCTION

In 2022, the average number of online accounts maintained by a

single person in the US or in Europe was above 70, most of which

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2023(4), 35–65
© 2023 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2023-0097

secured by passwords. The two main tools to tame the complexity

of memorizing or storing authentication data such as passwords

or cryptographic keys are (1) password managers or wallets se-

cured with one main secret, and (2) Single Sign-On (SSO) systems.

Password managers or cryptographic key wallets store all authen-

tication data of a user, and reveal it if the user provides the main

secret (e.g., a password, biometrics, or a hardware token). An SSO

system dispenses with the need to set up credentials for all different

accounts in the first place, and instead relies on a single “main”

account at an identity provider (IdP). A user who can log in to

that account gets redirected to its account at the service provider

(SP), who trusts the IdP with having authenticated the user cor-

rectly. Hence, the main secret used to authenticate at the IdP takes

a similar role to the main secret in the first solution, and a secure

choice (e.g., two-factor authentication) of the main secret provides

excellent protection of the user against adversaries who try to steal

a user’s identity.

Both the above approaches provide great relief to users when it

comes to managing their accounts. On the other hand, there exist

obvious drawbacks even if the main secret is chosen carefully, and

potentially consists of multiple factors. Namely, wallet applications

and the IdP all constitute single points of failure, and they must

be fully trusted not to impersonate the user. In SSO, IdPs are even

involved in the whole login procedure and can hence potentially

track users’ online behavior. The situation worsens if the IdP addi-

tionally vouches for users’ attributes, such as being of age or not

being from an embargoed country, as it then must even be trusted

to handle users’ private data.

In this work we investigate the design of a policy-based SSO

system where access can be granted based on the user fulfilling a

certain policy (e.g., being over age). The central design goal is to

avoid the above mentioned main drawback of SSO, namely that a

single IdP can impersonate the user or learn their private attributes

(e.g., their birthday).

We recall the concept of SSO in a bit more detail. In SSO (e.g. the

“Sign in with Google” option on a gambling website), a user registers

with only one identity provider (IdP, here Google) and can later

authenticate to that identity provider to obtain an access token for a

service provider (SP, here the gambling website). The access token

is a “bearer” token, i.e., an access request signed by the identity

provider that has time-constrained validity (realized through the

inclusion of timestamps in the signed message). A bearer token

could be a JSONWeb Token (JWT) and hence used for compatibility

with authentication standards such as OAuth [40] and OIDC [62].

35

https://orcid.org/0000-0001-6525-5141
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0097

Proceedings on Privacy Enhancing Technologies 2023(4) Tore Kasper Frederiksen, Julia Hesse, Bertram Poettering, and Patrick Towa

Alternatively the token could be XML and used with SAML [58].

These standards only support few signature schemes, generally only

(EC)DSA or RSA. For compatibility, the bearer tokens of practical

SSO schemes are hence restricted in the same way.

We put forward the notion of attribute-based distributed SSO
(ab-dSSO), which has three features on top of SSO. First, in ab-dSSO,

the role of the IdP can be distributed among arbitrarilymany servers,

thereby obsoleting trust in a single entity or piece of hardware.

Second, users can equip their accounts with arbitrarily many cer-

tified attributes (e.g., the user’s birthday) obtained from attribute

authorities. And third, access tokens are policy-based, and IdPs

only issue a token if a user’s attributes fulfill the token’s policy

(e.g., “age over 18 and resident of an appropriate state” to show

they are legally allowed to do online gambling). Another example

of the use of ab-dSSO could be to show to a loan provider that a

user has a certain monthly income (e.g. through an attribute on

a bank statement) and that they are a “resident of the EU, US, or

Canada”. In ab-dSSO, IdP servers are required to be oblivious of

attributes and, depending on the message signed, the tokens can

be untraceable and unlinkable. Unlinkable means that colluding

SPs cannot find their common set of users, from the tokens they

have received. Untraceable means that even colluding SPs and the

IdP cannot discover which user a token was issued towards. Thus

unlinkability would prevent the loan and gambling providers col-

luding and learning that a user trying to get a loan also does online

gambling. On the other hand untraceability would ensure to the

user that even a subpoenaed IdP and service providers would not

be able to learn that the user does both gambling and has a loan.

We discuss these features more in App. C.3. An ab-dSSO scheme

further allows for efficient attribute revocation, works with any

type of certified attribute that an attribute authority has vouched

for,
1
supports selective disclosure and demonstration of predicates

over attributes, and produces tokens of a standardized format (like

ECDSA). The last property ensures that the loan and gambling

websites would not need to add new code-dependencies on their

backend in order to support more exotic cryptographic signature

schemes.

1.1 Our Approach

We build an ab-dSSO scheme by combining (outsourced [28, 44])

multi-party computation (MPC) techniques with threshold cryp-

tography. MPC can be used to compute any function on inputs

provided by a set of parties, with participants being oblivious of

each other’s inputs. Thus, a first (generic) approach to building

an ab-dSSO scheme would let IdP servers and a user engage in an

MPC instance to obliviously verify the validity of a user’s attribute

certificates and to verify that the attributes fulfill a given policy.

If these checks pass, the servers generate the token using a dis-

tributed signature scheme producing signatures of a standardized

format. However, for a number of reasons the resulting ab-dSSO

scheme does not scale well in the number of tokens generated,

mainly because attribute certificate validation will be tedious. We

hence improve upon the above generic proposal by preprocessing

1
Clarifying terminology: an attribute authority vouches for the validity of user at-

tributes (e.g., a bank or federal office) by issuing attribute certificates. An identity
provider (IdP) assists users with generating presentations of their identities. We often

user the term server to refer to one part of our distributed IdP.

attribute certificates during registration, turning them into effi-

ciently verifiable attribute tokens which have the form of message

authentication codes (MACs) on attributes, generated from a key

that is distributed among the IdP servers. This yields an ab-dSSO

scheme with fast token generation but potentially slow attribute

registration, which is efficient enough for many of the use cases

we consider in this work. Using threshold cryptography, we can

specify a version of this protocol that requires only a subset of IdP

servers to be available during token generation,
2
and which allows

recovery from server corruption or breach (proactive security).
We benchmark token generation of our scheme using the FRESCO

framework [2], for five different policies such as a constraint on the

user’s age, or that they appear on a pre-approved list. We demon-

strate an end-to-end latency of less than a second, for many policies

in a realistic setting with the distributed IdP spread over multiple

data centers in distinct countries. We furthermore show server

throughput of two-digit policy validations per second and core for

most of our test policies. Overall, our contributions are:

• We provide a strong formal model for attribute-based distributed

Single Sign-On (ab-dSSO), compatible with existing standards.

• Wework out the relation of ab-dSSO to competing cryptographic

identity management primitives.

• We combine non-proactively secure maliciously secure, dishon-

est majority MPC with Shamir secret sharing to construct a

scheme where data for MPC computations can be proactively

refreshed and the MPC computation can be run by a 𝑡-out-of-

𝑛 set of MPC servers. We thus reach a compromise between

the security of dishonest majority MPC and the reliability on

𝑡-out-of-𝑛 secret sharing, while gaining proactive security.

• We provide a strong model for proactively secure threshold

signing and a construction thereof, without relying on trusted

hardware such as [9, 15]. We also highlight shortcomings of

previous proofs of security in this setting [61] and discuss how

they can conservatively be handled at low cost in our setting.

• Finally we combine these contributions to obtain an efficient

ab-dSSO construction using MPC and threshold cryptography,

which has a fast token generation phase that requires only a sub-

set of the IdP servers to be responsive, at the cost of a slower but

still feasible registration phase. We formally prove the security

of our construction, provide an implementation, and benchmark

several real-world use cases.

1.2 Related Work

Recently, several SSO services for demonstrating user attributes

have emerged. Verimi [67] is a smartphone app that allows users to

present digitized images of official documents such as ID, driving

license, or vaccination pass. Users control which part of the stored

information is shared with a service provider. Predicate proving is

not possible, and the presentation in form of digitized images pre-

vents compatibility with authentication standards such as OAuth.

ID4me [43] supports OpenID/OAuth based identity management

with “weak identities”: The service verifies that claimed user IDs

indeed belong to specified users; this connection is made on first

login and is independent of real-world user identities. The servers

2
Since we still rely on all servers to be available during registration, we cast our notion

as “distributed” instead of “threshold”.

36

Attribute-based Single Sign-On: Secure, Private, and Efficient Proceedings on Privacy Enhancing Technologies 2023(4)

can fully trace the user login behavior. UPPRESSO [38] achieves

untraceability and unlinkability through the use of homomorphi-

cally computed single-use IDs. The protocol supports the OIDC

flow, although it requires the service providers to run custom code.

The recent PASTA [1] and PESTO [9] protocols represent a ma-

jor privacy-wise improvement. They implement provably secure

distributed SSO protocols that allow users to bootstrap access to-

kens for arbitrary service providers from one password only. The

systems support an arbitrary number of servers and prevent any

proper subset of servers from impersonating users. Both PASTA

and PESTO could trivially become attribute-based by sharing the

attributes in plain with each server, a solution that however does

not meet the strong privacy goals that we aim for in this work. In

relation to our examples from the introduction it would mean that

each IdP server stores all users’ birthday and address information,

making each of them a prime target for attackers looking to extract

as much personal information as possible, on a large set of people.

Another difference is that PASTA and PESTO are in the password

setting, while our protocol relies on secure storage on the user side.

A UC-secure password-based threshold key manager [14] could

be used on top of our ab-dSSO scheme to allow users to store the

required key material under a password in a similar security model.

Self-sovereign identity (SSI) is the concept of individuals or enter-

prises having the sole ownership of their digital identity, and fully

controlling how and when personal data attached to their identity

is shared and used. This implies that certified identity information

or attributes, issued by different trusted third parties towards a

specific user, will never be stored or managed in a centralized lo-

cation. When attributes (e.g., age or liquidity) are needed to prove

certain policies towards a third party (e.g., a vendor or a bank),

a proof is constructed which can be presented towards the third

party without disclosing any other piece of personal information.

This is known as minimal disclosure. Until today, a practically ef-

ficient SSI system fulfilling both sole ownership and full control

with minimal disclosure has remained elusive. Popular approaches

based on a blockchain [49, 55] or attribute-based credentials (ABCs)

[18, 50, 59] each suffer from one or another drawback, such as in-

efficient attribute revocation [50], expensive computations on the

user side [18, 59], or unclear trade-offs between user-side resource

requirements and trust assumptions [49, 55]. Many digital identity

management solutions that are deployed today [18, 43, 57, 59, 67]

rely on a fully trusted identity provider (IdP), which then “owns”

its users’ identities and can impersonate them on the Internet.

In this work, we provide a trade-off system where the user is not

fully dependent on a single server but also not fully self-sovereign,

as they rely on the honesty and availability of some fraction of

servers. Similar to existing SSI schemes, users in our system can

build up their digital identity by obtaining attribute certificates from
external attribute authorities, such as federal offices or banks.

An overview of how the discussed systems and cryptographic

techniques fare with respect to desirable privacy properties can

be found in Tab. 1. We refer the reader to App. A for a formal

comparison of ab-dSSO to related concepts such as attribute-based

signatures or attribute-based credentials.

2 PRELIMINARIES

We write 𝑠 for statistical and 𝜆 for computational security parame-

ters. In Tab. 2 we maintain an overview of these and other symbols

used throughout the article. We write [𝑛] = {1, . . . , 𝑛}. When a

variable depends on another variable, we may use sub-script nota-

tion for emphasis: If the value of variable 𝑣 is defined using another

variable 𝑎, notation 𝑣𝑎 associates 𝑣 with 𝑎.

Writing conventions for ideal functionalities.We use the Universal

Composability (UC) framework [19] and use the following conven-

tions. The adversary gets notified about the contents of inputs and

outputs and involved parties, excluding contents that are marked

as private. If an input or output is completely private, the adversary

did not even get notified that it happened. We further let the ad-

versary acknowledge all inputs it is notified about. For outputs, we

use delayed output to a party when the adversary gets to schedule

its delivery. Immediate outputs are delivered without any delay. For
brevity we assume the functionality to reject malformed inputs, or

those re-using a subsession identifier ssid.

2.1 Adversarial Model

We detail the adversarial model that we assume throughout this pa-

per. We in particular define proactive adversaries, taking departure

in existing definitions [4, 42] but using slightly different terminol-

ogy to better fit our setting. All signature and SSO schemes in this

paper proceed in different phases, as illustrated in Fig. 1: a period

during which servers sign under a certain key is called a signing
epoch. At some point during such an epoch, servers refresh their

key material, but meanwhile continue to sign under their old keys.

This is important as otherwise delays in the interactive refreshing

would cause interruptions to the signing service. As soon as the

refresh is concluded, servers erase their old key material and switch

to signing under the new key, at which point the next signing epoch

starts. We define a corruption span to start right before a refresh is

initiated and to end before the next refresh. While arbitrary corrup-

tion spans could be defined, our choice is motivated by the fact that

refreshes are likely initiated by a server when detecting traces of a

corruption, and/or at regular time intervals. Hence we note that a

refresh can be initiated by either a corrupt or honest server. We call

an adversary static if it announces, right before each corruption

span, who is going to be corrupted during the next span, and servers

remain corrupted throughout the whole span. We call an adversary

malicious if it can fully control a corrupted party’s actions.

It can be observed from the figure that, since a refresh always

overlaps with one signing epoch, a server that is corrupt during

the refresh might leak key material from two consecutive signing

epochs to the adversary. To guarantee unforgeability, in our thresh-

old setting, we cannot allow leakage of more than 𝑡 − 1 keys to the

adversary. Hence, security of our schemes will rely on the adversary

Figure 1: Illustration of proactive security.

37

Proceedings on Privacy Enhancing Technologies 2023(4) Tore Kasper Frederiksen, Julia Hesse, Bertram Poettering, and Patrick Towa

Service Trust model A
d
a
p
ti
v
e
s
e
c
u
r
it
y

P
r
o
a
c
ti
v
e
s
e
c
u
r
it
y

S
ta
n
d
a
r
d
iz
e
d
fo
r
m
a
t

L
ig
h
tw
e
ig
h
t
o
n
u
s
e
r

L
ig
h
tw
e
ig
h
t
o
n
Id
P
(s
)

O
ffl

in
e
to
k
e
n
v
e
r
ifi
c
a
ti
o
n

R
e
v
o
c
a
ti
o
n

S
e
le
c
ti
v
e
d
is
c
lo
s
u
r
e

P
r
e
d
ic
a
te
-
e
n
a
b
le
d

U
n
li
n
k
a
b
il
it
y

Verimi [67] Wallet/Cloud - - # - # #
ID4me [43] Cloud - - - - #
uPort [55] Permissionless ledger - - # - # # #
Sovrin [49] Permissioned ledger, trusted agents - - # # -
BBS+ [50] Trusted IdP (Credential Issuer) - - - # #
CL-ABC [16] Trusted IdP (Credential Issuer) - - # -
UPPRESSO [38] Trusted IdP (Credential Issuer) - - - - -
CanDID [54] Distributed IdP # # # #
PASTA [1] Distributed IdP # # - - -
PESTO [9] Distributed IdP - - -
This work Distributed IdP # #

Table 1: Identity Management/SSI systems, by the properties of Sect. 3. = satisfied, # = not satisfied, = partially satisfied/

inefficient, - = not applicable. Systems that support attributes additionally rely on trusted attribute authorities.

Table 2: Parameters and variables of our ab-dSSO scheme.

𝜆 Computational security parameter.

𝑠 Statistical security parameter.

𝑝 Modulus representing a field where attributes live.

𝑐 A 𝜆 and 𝑝 dependent variable defining F𝑝𝑐 .
𝑁 The modulus of an RSA key used for signing.

𝑡 The threshold for secret sharing.

𝑛 The number of servers.

𝑀 The message to be included in the token.

𝜎 A signature or token.

vk A public verification key for a signature.

sk A private signing key.

𝑃 A policy.

𝐴 A set of user attributes; 𝑎𝑖 ∈ 𝐴 for 𝑖 ∈ [|𝐴|] with 𝑎𝑖 ∈ Z𝑝 .
𝜋 A certificate/non-interactive proof.

𝑆𝑖 A server, being part of the IdP realization.

𝑈 A user of the IdP.

𝑉 A verifier/service provider validating a user’s request.

corrupting at most 𝑡−1 servers in two consecutive corruption spans.

We call such an adversary proactive. In particular and as an exam-

ple, if in the first corruption span in Fig. 1 already 𝑡 − 1 servers are

corrupted, the proactive adversary cannot corrupt anybody in the

second corruption span. Moreover, our refresh phase requires an

honest majority among the servers, and hence we restrict the proac-

tive adversary further to corrupt at most min{𝑡 − 1, 𝑛/2} servers in
two consecutive corruption spans.

2.2 Threshold Signatures

A threshold signature scheme features 𝑛 (signing) servers that ini-

tially run a distributed key generation that establishes individual

shares of a global signing key pair. Servers can later compute par-

tial signatures using their key shares, and a threshold 𝑡 of partial

signatures on the same message are necessary and sufficient to

construct a full signature that verifies against the global public key.

An adversary corrupting at most 𝑡 − 1 servers cannot construct

signatures. Proactive threshold signatures additionally involve a

refresh protocol during which all servers jointly compute a fresh

set of shares of the (unmodified) global secret key, and start a new

signing epoch. Refreshing heals from corruptions and leads to for-

ward security: As long as at most 𝑡 − 1 shares in the same signing
epoch are compromised, signatures remain unforgeable.

We introduce a UC definition of proactively secure threshold

signatures, and demonstrate how to realize it by adapting Rabin’s

signature scheme [61] to our settingwhere only 𝑡 servers participate

in signing. For details see App. E.

3 ATTRIBUTE-BASED DISTRIBUTED SSO

Attribute-Based Distributed SSO (ab-dSSO) refers to Single Sign-On

with additional features: Token generation happens in a distributed

fashion, and the decision of whether a token is issued or not is

based on whether the requesting user’s attributes fulfill some pol-

icy. In principle, ab-dSSO involves four entities: users, attribute

authorities (AA), service providers (SP), and identity providers (IdP,

“servers”). Users hold attributes for which they receive attribute

certificates from the AA. Users further, from the SP, receive token

requests in association with policies; to satisfy such token requests,

users contact the IdPs who, if the policies verify with respect to the

user’s attribute certificates, issue the tokens to the requesting user

who relays them back to the SP.

In a formal model for ab-dSSO, the active entities are effectively

just two, users and IdP, while the role of AA and SP is minimal:

Regarding the AA, note their only task is to cryptographically

vouch for the validity of users’ attributes via attribute certificates 𝜋 .

These certificates depend on (static) attributes of the user that can

be independently verified in a trusted process. In particular, they do

not depend on prior protocol interactions or similar. That is, they

can w.l.o.g. be assumed to have been issued ‘a priori’ and without

interference of an adversary. It is thus conceptually sufficient to

model AA as abstract sources of certificates 𝜋 that can be (non-

interactively) verified by evaluating a predicate CAVfy(vkCA, 𝐴, 𝜋),
where vkCA is the AA’s public key and𝐴 is a user’s claimed attribute

(set). Regarding the SP, observing their task is merely to specify

the message-policy pair that a requested token should satisfy, that

they verify such tokens via a public function, and given they never

38

Attribute-based Single Sign-On: Secure, Private, and Efficient Proceedings on Privacy Enhancing Technologies 2023(4)

communicate with IdPs directly but only by relaying messages via

users, from a modeling perspective, SPs and users can naturally be

joined up to a single entity.

Our work presents a secure and privacy-friendly cryptographic
core of a policy-based SSO system. Building on a trustworthy certi-

fication service by an AA infrastructure as a necessary prerequi-

site, it shall guarantee that all interactions between SP, user, and

IdP preserve privacy yet offer strong authentication. As, in resem-

blance with digital signatures, generated tokens shall be offline-

verifiable, in line with established SSO solutions such as OAuth [40],

SAML [58], and OIDC [62], our formalizations of the above use a

terminology close to that common for signature schemes.

Definition 3.1. An attribute-based distributed Single Sign-On

(ab-dSSO) system is a set of interactive procedures run between a

user𝑈 and servers S := {𝑆1, . . . , 𝑆𝑛}. The scheme is parameterized

by a distributed signature scheme TSIG = (KGen, Sign,Vfy).

• Setup phase. The servers run TSIG.KGen to generate (sk, vk),
where sk is shared among all servers and vk is output. Setup is

run only once.

• Registration phase. On input (uid, 𝐴, 𝜋), where 𝐴 is a set of

attributes 𝐴 := (type𝑗 :𝑎 𝑗) 𝑗 ∈[𝑚] , where type𝑗 is a public label
(e.g., “birthday”) and 𝑎 𝑗 the actual value of the attribute (e.g.,

“1980-02-24”), a certificate 𝜋 and a username uid, 𝑈 engages in

an interactive protocol with servers in S. As a result, each server

𝑆𝑖 either stores record (uid, type𝑗 , st𝑖) for each 𝑗 ∈ [𝑚] and the

user outputs success, or both output failure. Registration can

be called multiple times for the same uid, to subsequently store

more type records for uid.
• Signing phase. On input (uid, 𝑀, 𝑃,𝐴′), where uid is a user-

name,𝑀 is a message, 𝑃 is a policy and 𝐴′ is an attribute set, 𝑈

engages in an interactive protocol with servers in S and outputs

either a token 𝜎 or failure, and the servers output a bit indicating

whether failure happened or not. Signing can be run arbitrarily

many times.

Correctness. Let vk denote the output of the setup phase, and let

𝑇 denote the set of type records stored by the servers for uid at a

given point in time. If a user calls signing with inputs (uid, 𝑀, 𝑃,𝐴),
if 𝑇𝐴 ⊆ 𝑇 for 𝑇𝐴 the set of all types in 𝐴, and 𝑃 (𝐴) = 1, then 𝜎

output by the user is a signature on𝑀, 𝑃 verifying under vk. This
correctness property must hold for all ab-dSSO schemes as long as

the user and all servers behave honestly.

3.1 Desired Properties of ab-dSSO

The set of properties that we demand of an ab-dSSO scheme is

essentially the combination of properties of SSO and attribute-

based credential systems [1, 9, 16, 38, 54], with added protection

against a potentially corrupted central IdP. We start with notions

guaranteeing the functionality and practicality of the system and

relate them to the example of the loan and gambling providers from

the introduction.

Standardized token format. An ab-dSSO scheme shall produce

signatures of a standard format, e.g., ECDSA or RSA. This ensures

that service providers do not need to update any code to become

compatible with our ab-dSSO scheme (unless they use attribute-

based policies), and only minor updates, without the need of new

libraries, if they use attribute-based policies.

Compatibility. An ab-dSSO scheme shall work with attribute cer-

tificates of arbitrary formats. This allows the IdP to integrate with

any AA, without requiring them to do any code or policy update.

Consider for example a governmental AA certifying a birthday and

citizenship, a municipal/state AA certifying residence, and a bank

certifying a regular monthly income.

Combined presentations. An ab-dSSO scheme shall allow users

to combine attributes when requesting tokens. The gambling and

loan providers both require information about the user from dif-

ferent authorities (governmental and municipal/state for gambling

and governmental and bank for the loan).

Revocation. The IdP servers shall learn the types of attributes a
user has registered so that they can revoke them individually and

without relying on a collaboration with the user. Thus the SP can

trust the reliability of the tokens issued by the IdP, while remaining

agnostic to the AA.

Flexible policies. An ab-dSSO scheme shall generate tokens for

any efficiently verifiable policy. The user sees the policy and can

hence decide to refuse policies that would reveal unnecessary in-

formation about them. E.g., the user will know and approve that

the gambling website learn their age is above a certain threshold,

and that their residency is part of a publicly known set, allowing

them to keep a reasonable level of privacy and anonymity, while

providing the gambling provider with the data they legally require.

We next list the security and privacy properties that we demand

from an ab-dSSO scheme.

Unforgeability. The adversary cannot obtain a token verifying

under vk for any pair (𝑀, 𝑃) unless (a) a corrupt user registered
successfully with a set of attributes 𝐴 with 𝑃 (𝐴) = 1, and (b) the

remaining honest servers agree to participate in the token genera-

tion. A few corrupt IdP servers cannot impersonate the user, e.g.

by signing arbitrary tokens, even if also the user is corrupt and

colluding. This ensures both that the user can trust outsourcing

SSO to the IdP and that the SP can put a high degree of trust in

signed tokens even if the SP doesn’t trust the user.

Attribute privacy. The adversary shall not be able to infer any-

thing about the attributes used in registration and signing. The user

can trust that their attributes remain private and hidden towards

the IdPs and SP, even if some of the servers are corrupt.

Proactive security. A corruption of an IdP server followed by a

“refresh” shall reset the adversary to be oblivious of the corrupted

server’s state. This ensures longevity of the system. In this work

we are not interested in “trivial refreshing”, i.e., resetting all entities

and starting from scratch. (Such solutions would require all users

to re-register and hence are impractical.)

Detection of online attacks. The IdP servers shall learn which

uid a signing request is issued for, so that rate-limiting policies can

be applied.

The above functionality requirements are complemented by:

Efficiency. An ab-dSSO scheme shall support multiple attribute

authorities, a large amount of users, and have a throughput that

allows handling many requests per second. Token verification by

the SP must be fast and offline (without a need for the SP to in-

teract with an AA or IdP). The handling of token requests shall

39

Proceedings on Privacy Enhancing Technologies 2023(4) Tore Kasper Frederiksen, Julia Hesse, Bertram Poettering, and Patrick Towa

be parallelizable on the IdP side. The user and SP latency shall be

correspondingly small.

We next describe tracing protection of ab-dSSO. In standard

SSO systems, IdPs and service providers can often trace which ser-

vices a user is accessing, because the message and policy included

in the token might contain the identity of the service provider

and also information uniquely identifying a user, e.g. in 𝑀 =

"CasinoRoyal-20230219-johndoe@gmail.com". Protecting against cu-

rious IdPs collecting the data from the token generation for such

messages on the level of cryptography seems to require IdPs to sign

blindly, but unfortunately there are currently no blind signature

schemes that produce tokens of standardized format.
3
Therefore,

the best protection that an ab-dSSO scheme can currently offer is

protection against service providers who try to get a more complete

picture of a user’s online behavior, beyond the usage of the services

offered by itself. For example, gambling and loan providers could

aim at linking their users, allowing them to infer whether a user

gambles on its loans.

Unlinkability against colluding SPs. Tokens generated by an

ab-dSSO scheme shall not reveal whether they were created for the

same uid. More details in App. C.3.

The above list does not explicitly encompass selective disclo-

sure of attributes, which is a sought-after goal in identity manage-

ment systems. The reason is that it is implied by the policy-based

nature of the system, plus attribute privacy: an ab-dSSO scheme

leaves it to the user to reject policies that would reveal too much

information about the user’s attributes, and it ensures via attribute

privacy that the token does not reveal anything about the attributes

used to generate the token beyond what the policy reveals.

We implicitly assume that the servers S “know” and trust the

attribute authorities. This assumption is, first of all, needed to make

the proof in the registration phase sensible, through boot-strapped

trust in the AA. However, it is also necessary in order to boot-strap

revocation, since S must know where to look to figure out if certain

user attributes have been revoked.

3.2 Comparison ab-dSSO vs. Classic SSO

We compare our approach and solution with what is achieved by

current SSO systems like OIDC through Google. We do this by

evaluating the SSO properties introduced above in the context of

our loan and gambling website examples. While our solution meets

all indicated properties, as we will see this is not the case for OIDC.

Recall that for age verification, loan and gambling applications

would typically require uploading a copy of a governmental ID,

potentially with liveliness verification. The loan website might

additionally require information on the user’s salary, e.g., in form

of a bank statement.

(1) The properties standard token format, compatibility, combined
presentations are not met by OIDC as it handles attributes in a

custom way at each SP depending on the AA, and results are

not efficiently consolidated into a single token at the IdP side.

(2) Threshold, proactive security and unforgeability aren’t met ei-

ther as the single, centralized IdP could impersonate users.

3
Our ab-dSSO construction does achieve some form of protection against IdPs: It hides
tokens from IdPs as long as only a subset of them is corrupt. See discussion in App. C.3.

(3) Attribute privacy is not met since the full attributes are shared
directly with service providers, which both hurts privacy and

allows for linkability.

3.3 Security Model

We introduce a UC functionality F
ab-dSSO

to model an ab-dSSO

scheme with the above guarantees. We use the writing conventions

introduced in Sect. 2. At its core, F
ab-dSSO

is a signature function-

ality. However, opposed to the standard signature functionality

due to Canetti et al. [20], F
ab-dSSO

cannot allow the adversary to

determine how signatures look like. The reason is that signatures

in the context of SSO are objects of value, while normal use cases of

signatures only require their unforgeability, but not their secrecy.
We hence follow the related literature [9, 13] and let the function-

ality itself create the signatures. Aspects of threshold signing are

modeled along the lines of the distributed SSO scheme PESTO [9],

where “Proceed” interfaces were introduced to allow IdPs to refuse

services. We omit the password authentication parts of PESTO, but

newly introduce the attribute aspect to the functionality, which

is however relatively simple: F
ab-dSSO

stores registered attributes

in uid-specific accounts. If user uid wants to obtain a token for

message-policy pair (𝑀, 𝑃) under attribute set 𝐴 later, F
ab-dSSO

only hands out the token if 𝑃 (𝐴) = 1 and 𝐴 is a subset of the at-

tributes registered for uid. Another modification from [9] is that we

allow the token generation phase to work with only a threshold 𝑡

of all 𝑛 servers, while registration is still allowed to involve all

𝑛 servers. Security in both phases holds as long as at most 𝑡 − 1

servers are corrupted. This allows for analyzing protocols that aim

particularly at speeding up the token generation phase. We now

explain the functionality in detail, using the [X.Y] markings in the

functionality code, and indicating in boldface the properties from

above. We first do an honest walkthrough, and explain handling of

corrupt users and servers separately afterwards.

Key generation. F
ab-dSSO

is parameterized with a digital signature

scheme (KGen, Sign,Vfy) and, if [K.1] all servers assist in the setup

procedure, F
ab-dSSO

[K.2] generates its own key pair (vk, sk). From
that point on, the other interfaces of F

ab-dSSO
can be called and

F
ab-dSSO

will produce and verify tokens w.r.t. this one key pair.

Attribute registration. Any party can call F
ab-dSSO

to register at-

tributes by providing a user name uid, attributes 𝐴, and attribute

certificate 𝜋 obtained from an AA.𝐴 parses as (type𝑗 :𝑎 𝑗) 𝑗 ∈[𝑚] for
some𝑚, i.e., can contain𝑚 attributes of different types. F

ab-dSSO

is parameterized with an arbitrary (compatibility) verification

algorithm CAVfy(vkCA, ·, ·) that is used to verify a proof (third ar-

gument) on the attributes (second argument) against the public

key vkCA (first argument) of an AA. If the certificate is not valid,

or 𝐴 does not contain a pair uID :uid, then [R.2,PR.2] registration

fails, indicated by flag 𝑏. Servers [R.4] learn about the registration

request and which attribute types should be added to uid (enabling

efficient revocation on a per-type basis), but crucially [R.1] do

not learn 𝐴 nor 𝜋 (attribute privacy). Servers can then signal

their willingness to participate by sending ProceedReg for the

corresponding subsession. Registration can only be completed if

[PR.1] all servers participate. To complete the registration, F
ab-dSSO

creates [PR.3] one record (account,𝑈 , uid, type𝑗 , 𝑎 𝑗) for each at-

tribute in 𝐴, where 𝑈 is the party identifier of the user who ran

40

Attribute-based Single Sign-On: Secure, Private, and Efficient Proceedings on Privacy Enhancing Technologies 2023(4)

the registration. As soon as such records exist, the functionality is

ready to produce tokens for user𝑈 .

Signing. A successfully registered user 𝑈 can now request token

generation by providing the message to be signed𝑀 , username uid,
policy 𝑃 and attribute set𝐴′ that should be used to satisfy the policy.
The functionality first [S.3] informs the adversary whether this is a

valid request, i.e., the policy is fulfilled, the types match, and the

correct uid is contained. F
ab-dSSO

proceeds with signing [S.4] only

if all these checks pass. F
ab-dSSO

does not care whether all attributes

were registered in the same registration query, enabling combined

presentations of attributes from different authorities. If all the

above checks pass, the servers get [S.5] notified about the signing

request, but without learning 𝐴′ (attribute privacy). To signal

their participation in a token generation session, servers can input

ProceedSign with the corresponding subsession identifier. This

allows to implement arbitrary rate-limiting policies on a per-uid
basis, where policies to counter online attacks can be decided by the

application (detection of online attacks). As soon as the threshold

of 𝑡 participating servers (who all need to be in the same signing

epoch) is reached [PS.1], F
ab-dSSO

[PS.3] generates a signature 𝜎 for

message (𝑀, 𝑃) using the Sign algorithm and sk, installs a [PS.4]
signature record that will allow successful verification of 𝜎 , and

[PS.5] outputs the signature to 𝑈 . Neither the signature nor the

record includes uid. This, together with the fact that no subset of

the 𝑡 servers actually learns the signature, enables the issuance of

untraceable and unlinkable tokens. We note however that the

policy might de-anonymize a user, but it is then up to the user to

not accept such policies from a relying party.

Verification and revocation. Everyone can check validity of signa-

tures from 𝑃,𝑀, 𝜎 under a verification key vk′. If vk′ = vk, i.e., verifi-
cation is requested for the verification key associated with F

ab-dSSO
,

then the signature records are used to determine whether 𝜎 verifies

or not: the output is set to true only if a record (sigrec, 𝑃, 𝑀, 𝜎, vk,
true) exists. Since such records only get created through success-

ful signing requests, unforgeability is enforced. For vk′ ≠ vk,
F
ab-dSSO

uses the Vfy algorithm of the signature scheme to deter-

mine the result. Allowing verification for “incorrect” public keys

is necessary to avoid that F
ab-dSSO

implies a trusted certification

authority. Finally, F
ab-dSSO

enables revocation of attributes on a

per-type-per-uid basis: if one server wishes to expire an attribute

entry, F
ab-dSSO

destroys the corresponding record and hence it

cannot be used in signing requests anymore.

Adversarial influence and leakage. The adversary [PS.2] learns

whether the policy is fulfilled and can still prevent successful token

generation by not sending sign-ok for the corresponding subses-
sion. The adversary also [R.3] learns whether a proof verifies upon

registration, the correct uid is contained in the attributes, and the

types of the attributes match the policy. F
ab-dSSO

implies that a

user has access to cryptographic material that uniquely identifies

them as the one having registered the attributes. This is reflected in

F
ab-dSSO

by binding usage of an account to the party identifier who

registered said account [S.3]. This restriction is lifted [S.2] in case

the cryptographic material is leaked to the adversary, i.e., if the user

gets corrupted. However, F
ab-dSSO

prevents “mix-and-match” at-

tacks of attributes issued for different uid’s or attributes of different
types, by enforcing presentations to use attribute records with all

same uid and the correct public type [S.4]. F
ab-dSSO

does not leak

any attributes or attribute certificates to the adversary ([R.1],[S.1]),

and it keeps the adversary from learning tokens generated by hon-

est users ([PS.6]).

Refresh. Any server can indicate that it wants to move to the next

epoch. The functionality acts only [Rf.1] if the server does not

skip any epoch, and if it has not already started refreshing in the

current epoch. As soon as all servers [Rf.2-3] joined the refreshing

procedure in the current epoch, [Rf.5] the next epoch is entered

and the servers are notified about it. The adversary can [K.3,Rf.4]

delay completion of individual servers, and it can cause all servers to

[Rf.6] abort an ongoing refresh procedure. F
ab-dSSO

keeps [K.3,Rf.5]

individual epoch counters epoch𝑖 for every server 𝑆𝑖 to allow for

asynchronous completion of the refresh phase, i.e., one server signs

under the new keys already while another one is still waiting for

the final message in a refresh invocation. Avoiding such situations

would require costly methods to enforce synchrony, and we hence

design F
ab-dSSO

with individual counters, to enable the analysis

of more efficient SSO schemes where servers might be “off” by 1

regarding their epochs.

4 CONSTRUCTION

We are now ready to present our ab-dSSO scheme. The central idea

is to turn any valid proof 𝜋 of attribute possession held by a user

into an efficiently verifiable attribute token v. Both validity check

and conversion are performed as a secure outsourced multi-party

computation, such that the individual IdP servers neither learn

the actual attributes nor the attribute tokens. The latter consist

essentially of affine-linear (information theoretic) message authen-

tication codes (MACs) in a field F𝑝 representing the domain of an

MPC computation. That is, the MAC is

v𝑎 = 𝑎 · Δ + 𝛽𝑎 mod 𝑝

on the message 𝑎 which is the attribute, generated with MAC key

(Δ, 𝛽𝑎). This key is distributed among all IdPs. Δ is a long-term com-

ponent of the IdPs and 𝛽𝑎 is a (distributed) random attribute-specific

component that IdPs generate for each attribute upon registration,

and specific to each user uid. As part of the registration the user

gets v𝑎 as private output of the outsourced MPC protocol, whereas

the servers each get their share of 𝛽𝑎 . It is then the (distributed)

storage of the tuple (uid, type, 𝛽𝑎) which allows the user with uid
to convince IdPs that they have successfully registered attribute 𝑎

of type type (e.g., type=age) before. Concretely this is done by the

user giving 𝑎 and v𝑎 as private input to the outsourced MPC compu-

tation. The servers then validate the MAC on 𝑎 using their shares of

Δ and 𝛽𝑎 , in MPC. The idea of using an information theoretic MAC

is seen in many non-outsourced MPC schemes, for example in the

SPDZ family [29, 30]. While most recent SPDZ schemes use only Δ
as MAC key, i.e., 𝛽𝑎 = 0, this does not securely work in our ab-dSSO

construction, where a malicious user could linearly combine such

MAC tags into tags for new attributes. Hence, we introduce 𝛽𝑎 as

contribution to the MAC key which is unique per attribute-uid pair.

Since the user obtains at most one MAC constructed with 𝛽𝑎 , the

above attack is prevented. At the same time, we conveniently use 𝛽𝑎
as a privacy-preserving (i.e., hiding) and binding attribute identifier

that can be stored by the IdPs. Furthermore, different from previous

41

Proceedings on Privacy Enhancing Technologies 2023(4) Tore Kasper Frederiksen, Julia Hesse, Bertram Poettering, and Patrick Towa

F
ab-dSSO

is parametrized by security parameter 𝜆, threshold 𝑡 ≤ 𝑛, algorithms

(KGen, Sign,Vfy) and CAVfy(vkCA, ·, ·) , and initially undefined integer

counters epoch
1
, . . . , epoch𝑛 . Fab-dSSO interacts with servers Σ := {𝑆1, ..., 𝑆𝑛 }

(specified in the sid), arbitrary other parties and an adversary A.

Key Generation and Attribute Registration

On receiving (KeyGen, sid) from server 𝑆𝑖

• Ignore if a record (key, sk, vk) exists
• If (KeyGen, sid) was received [K.1] from all 𝑆𝑖

– [K.2] Record (key, sk, vk) , (vk, sk) ←𝑅 KGen
(
1
𝜆
)

– For 𝑖 = 1, . . . , 𝑛 do:

∗ On [K.3] (KeyConf, sid, 𝑆𝑖) from A, set epoch𝑖 ← 0 and immediately

output (KeyConf, sid, vk) to 𝑆𝑖 .

On (Register, ssid, uid, 𝐴 := (type𝑗 :𝑎 𝑗) 𝑗∈[𝑚] , 𝜋) with [R.1] private𝑎 𝑗 , 𝑗 ∈
[𝑚], 𝜋 from party𝑈 :

• Set 𝑏vf ← (CAVfy(vkCA, 𝐴, 𝜋) ∧ uID :uid ∈ 𝐴)
• For 𝑖 ∈ [𝑚] do:

– Find index 𝑗 s.t. type𝑗 = uID and if 𝑎 𝑗 ≠ uid then set 𝑏uid = 0, else set

𝑏uid = 1

– Receive (Register, ssid, uid′, (type′
𝑗
) 𝑗∈[𝑚] , 𝑆𝑖) from A and if there is

any 𝑗 such that type′
𝑗
≠ type𝑗 or if uid ≠ uid′ then set 𝑏type = 0

– Set [R.2] 𝑏 ← 0 if any of 𝑏vf, 𝑏type, 𝑏uid is 0

– Send [R.3] (Register, ssid, 𝑏vf, 𝑏uid) to A
– Record (register, ssid,𝑈 , uid, 𝐴,𝑏)
– Send an [R.4] immediate output (Register, ssid, uid′, (type′

𝑗
) 𝑗∈[𝑚]) to

𝑆𝑖 ∈ Σ

On (ProceedReg, ssid) from server 𝑆𝑖 :

• Retrieve record (register, ssid,𝑈 , uid, 𝐴,𝑏) and parse𝐴 = (type𝑗 :𝑎 𝑗) 𝑗∈𝑚
for some𝑚

• If there exists epoch ∈ N such that (ProceedReg, sid, ssid) was received
from [PR.1] all servers 𝑆𝑖 while epoch𝑖 = epoch, and [PR.2] 𝑏 = 1, then

[PR.3] record (account,𝑈 , uid, type𝑗 , 𝑎 𝑗) for 𝑗 ∈ [𝑚] and send [PR.4]

delayed output (Registered, ssid, uid) to𝑈 and all 𝑆𝑖 ∈ Σ.

Signing

On (Sign, ssid′, uid, 𝑀, 𝑃,𝐴′ := (type′
𝑗

:𝑎′
𝑗
) 𝑗∈[𝑚′]) with [S.1] private𝑎′

𝑗
, 𝑗 ∈

[𝑚′] from party𝑈 :

• Find index 𝑗 s.t. type𝑗 = uID and if 𝑎 𝑗 ≠ uid then set 𝑏uid = 0, else set

𝑏uid = 1. Set 𝑏pol = 𝑃 (𝐴′) . If records (account,𝑈 , uid, type𝑗 , 𝑎 𝑗) exists for
each 𝑗 ∈ [𝑚′], with either𝑈 = 𝑈 or [S.2]𝑈 corrupt, then set 𝑏type = 1, else

set 𝑏type = 0

• Send [S.3] (Sign, ssid′, 𝑏pol, 𝑏uid, 𝑏type) to A
• Proceed only if [S.4] 𝑏pol = 𝑏uid = 𝑏type = 1

• Record (sign, ssid′,𝑈 , uid, 𝑀, 𝑃,𝐴′) and send a [S.5] delayed output

(Sign, ssid′, uid, 𝑀, 𝑃, (type𝑗) 𝑗∈[𝑚′]) to all 𝑆𝑖 ∈ Σ.

On (ProceedSign, ssid′) from server 𝑆𝑖 :

• Retrieve record (sign, ssid′,𝑈 , uid, 𝑀, 𝑃,𝐴′) .
• If there exists epoch ∈ N such that (ProceedSign, sid, ssid) was received
from [PS.1] 𝑡 servers 𝑆𝑖 while epoch𝑖 = epoch:
– Retrieve (key, sk, vk)
– Send [PS.2] (sign-ok, ssid′) to A and receive back (sign-ok, ssid′)
– Set [PS.3] 𝜎 ← Sign(sk, (𝑀,𝑃)) , abort if (sigrec, 𝑀, 𝑃, 𝜎, vk, 0) exists.
– Record [PS.4] (sigrec, 𝑀, 𝑃, 𝜎, vk, 1) and [PS.5] send a delayed output

(Signature, ssid′, 𝜎) with private 𝜎 to𝑈 .

Figure 2: F
ab-dSSO

modeling distributed attribute-based token

generation.

MPC schemes, our usage of the MAC is completely independent of

how the underlying MPC scheme is realized and allows us to keep

a reactive state of user-data for users that can come and go and

who need not participate in the underlying MPC computation. We

allow the values Δ and 𝛽𝑎 to be Shamir secret-shared [63] between

Verification

On (Verify, 𝑀, 𝑃, 𝜎, vk′) from party𝑉 privately:

• If [V.1] (sigrec, 𝑀, 𝑃, 𝜎, vk′, 𝑓 ′) exists, set 𝑓 ← 𝑓 ′

• Else, [V.2] record (sigrec, 𝑀, 𝑃, 𝜎, vk′, 𝑓) where 𝑓 is determined as follows:

– If [V.3] vk = vk′, set 𝑓 ← 0, else set [V.4] 𝑓 ← Vfy(vk′, (𝑀,𝑃), 𝜎) .
• Send an immediate private output (Verified, 𝑀, 𝑃, 𝜎, vk′, 𝑓) to𝑉 .

Revocation

On (Revoke, uid, type) from server 𝑆𝑖 :

• Delete record (account, ∗, uid, type, ∗) .

Refresh

On receiving (Refresh, sid, 𝑒) from server 𝑆𝑖

• Ignore the input if epoch𝑖 ≠ 𝑒 − 1 or if refreshing𝑖 = 1

• Set refreshing𝑖 ← 1

• If refreshing𝑖 = 1 for all 𝑖 ∈ [𝑛]:
– On (Refresh, sid, 𝑒, 𝑆𝑖) from A, set epoch𝑖 = 𝑒 and send an immediate

output (Epoch, sid, 𝑒) to 𝑆𝑖
On receiving (Refresh, sid, abort) from A, set [Rf.5] refreshing𝑖 = 0 for

all 𝑖 ∈ [𝑛].

Figure 3: F
ab-dSSO

, cont’d.

User𝑈 Δ :=
∑
Δ𝑖 IdP 𝑆𝑖

𝛿𝑖 ← Z𝑝
sk𝑖 ← KGen(1𝜆)

-uid, type, 𝑎, 𝜋 -𝑓 (𝑎, 𝜋), uid, type

MPC of

𝑓 (𝑥, 𝑦) :=

CAVfy(vkCA, 𝑥, 𝑦)
and

𝑔 (𝑥) = 𝑥Δ +∑ 𝛽𝑖

𝛽𝑖 ← Z𝑝
�𝛽𝑖 ,Δ𝑖

�v𝑎 := 𝑔(𝑎)
store (uid, type, 𝛽𝑖)

-uid, type, 𝑎, 𝑀, 𝑃, v𝑎 -uid, type, 𝑀, 𝑃

MPC of 𝑏 (𝑥, 𝑦, 𝑧) :=

(𝑃 (𝑥) = 1∧
v𝑥 = 𝑥 · 𝑦 + 𝑧)

�𝛽𝑖 ,Δ𝑖

-𝑏 (𝑎,Δ,∑ 𝛽𝑖)

If 𝑏 = 1 then

𝜎𝑖 ← TSIG.Sign(sk𝑖 , (𝑀, 𝑃))
� 𝜎𝑖

𝜎 ← TSIG.Comb(𝜎1, . . . , 𝜎𝑛)
Abort if Vfy(vk, (𝑀, 𝑃), 𝜎) = 0

Output 𝜎

Figure 4: Core of our ab-dSSO scheme. We show a simpli-

fied setting of a user registering (top) and requesting a token

(bottom) for only one attribute 𝑎, omitting the check of cer-

tificate 𝜋 containing uid during registration.

𝑛 servers, so that a subset (“threshold”) of 𝑡 servers is sufficient for

token generation. While this increases reliability, it also means that

we can tolerate 𝑡 − 1 corrupted servers without losing on unforge-

ability of tokens. Figure 4 shows the flows of the protocol, slightly

simplified with only one attribute instead of many and without

threshold signing. We provide additional explanations of our SSO

scheme in App. B.

Adding proactive security. Recall that proactive security means that

a corrupt server can become honest again after a corruption, in the

42

Attribute-based Single Sign-On: Secure, Private, and Efficient Proceedings on Privacy Enhancing Technologies 2023(4)

Setup phase. Executed by each server 𝑆𝑖 for 𝑖 ∈ [𝑛] on input (KeyGen) :
• If vk not yet defined, 𝑆𝑖 sends (KeyGen, sid) to FpsThrSig and waits to receive
back (KeyConf, sid, vk) .
//Threshold generation of long-term MAC key:

• If [Δ(𝑗)] 𝑗∈0,...,𝑡−1 not yet defined, do [Δ(𝑗)]
rnd←− FssidreqABB for 𝑗 = 0, . . . , 𝑡 − 1.

Let 𝑓[Δ] (𝑋) :=
∑

𝑗=0,...,𝑡−1
[Δ(𝑗)]𝑥 𝑗

mod 𝑝 .

• Compute [Δ𝑗] = [𝑓[Δ] (𝑗)] and send ([Δ𝑗], 𝑆 𝑗)
open
−→ FssidreqABB for 𝑗 ∈ [𝑛].

• Execute Pedersen
+ .MPC-Share of Fig. 10 on [Δ𝑗] for each 𝑗 ∈ [𝑛] s.t.

server 𝑆𝑖 receives back {priv B Δ𝑗,𝑖 , 𝑡 𝑗,𝑖 }, {pub B 𝐴𝑗,0, . . . , 𝐴 𝑗,𝑡−1 }) for
𝑗 ∈ [𝑛].

• Server 𝑆𝑖 stores (Δ𝑖 , {Δ𝑗,𝑖 , 𝑡 𝑗,𝑖 , 𝐴𝑗,0, . . . , 𝐴 𝑗,𝑡−1 } 𝑗∈[𝑛]) and outputs

(KeyConf, sid, vk) .
Registration phase. Run between𝑈 and all 𝑆𝑖 for 𝑖 ∈ [𝑛].
User𝑈 , on input (Register, ssid, uid, 𝐴, 𝜋), does:
//Input attributes and proof into the MPC functionality:

• Send 𝜋
priv
−→ FssidreqABB.

• Parse each element in 𝐴 as type :𝑎 and send type
pub
−→ FssidreqABB and 𝑎

priv
−→

FssidreqABB.

• Find index 𝑗 s.t. type𝑗 = uID, and abort if 𝑎 𝑗 ≠ uid.
• Let 𝑚 denote the number of elements in 𝐴. Send message

(ssid, uid, (type𝑗) 𝑗∈𝑚) to each server 𝑆𝑖 .

Upon receiving message (ssid, uid, (type𝑗) 𝑗∈𝑚) from user 𝑈 , 𝑆𝑖 outputs

(Register, ssid, uid, (type𝑗) 𝑗∈𝑚) .
Upon input (ProceedReg, ssid) , each 𝑆𝑖 does:

//Obliviously evaluate validity of attributes and belonging to uid:

• Send uid
pub
−→ FssidreqABB and vkCA

pub
−→ FssidreqABB.

• Find index 𝑗 s.t. type𝑗 = uID, send ([𝑎 𝑗], {𝑆1, . . . , 𝑆𝑛 })
open
−→ FssidABB, receive

back 𝑎 𝑗 and abort if 𝑎 𝑗 ≠ uid.
• Query (compute, ssid, ...) of FreqABB to compute

CAVfy(vkCA, type1
: [𝑎1], . . . , type𝑚 : [𝑎𝑚], [𝜋]),

and only continues below if the result is 1.

//Obliviously compute a MAC 𝑣 on fresh random value 𝛽 for each attribute:

• Send Δ𝑖

priv
−→ FssidreqABB.

• Send [𝛽 (0)uid, 𝑗], [𝛽
(1)
uid, 𝑗], . . . , [𝛽

(𝑡−1)
uid, 𝑗]

rnd←− FssidABB. Let 𝑓[𝛽uid, 𝑗] (𝑋) :=∑
𝑘=0,...𝑡−1

[𝛽 (𝑘)uid, 𝑗]𝑥
𝑘

mod 𝑝 the 𝑗-th polynomial for 𝑗 = 1, . . . ,𝑚. //Thresh-
old sampling of attribute-specific MAC keys
• Compute [𝛽𝑙,uid, 𝑗] ← 𝑓[𝛽uid, 𝑗] (𝑙) for 𝑙 ∈ [𝑛].
• Compute [Δ] ← 𝑓[Δ] (0) =

∑
𝑗∈[𝑡] [Δ𝑗] ·

∏𝑡
𝑙=1,𝑙≠𝑗

𝑙
𝑙−𝑗 mod 𝑝 .

• For 𝑗 = 1, . . . ,𝑚 compute the attribute-specific MAC

[vuid, 𝑗] ← [𝑎 𝑗] · [Δ] + [𝛽uid, 𝑗] mod 𝑝

and send ([vuid, 𝑗],𝑈)
open
−→ FssidABB. //MACs are given to user.

• Send ([𝛽𝑙,uid, 𝑗], 𝑆𝑙)
open
−→ FssidABB for 𝑙 ∈ [𝑛].

• After having received (output, ssid, 𝛽𝑖,uid, 𝑗) from FreqABB for 𝑗 = 1, . . . ,𝑚,

execute Pedersen
+ .MPC-Share of Fig. 10 on [𝛽𝑙,uid, 𝑗] for each 𝑗 ∈ [𝑚],

𝑙 ∈ [𝑛] s.t. server 𝑆𝑖 receives back {priv B 𝛽𝑙,uid, 𝑗,𝑖 , 𝑡𝑙,uid, 𝑗,𝑖 }, {pub B
𝐴𝑙,uid, 𝑗,0, . . . , 𝐴 𝑗,𝑡−1 }) for 𝑙 ∈ [𝑛].
• Server 𝑆𝑖 stores (uid, type𝑗 , {𝛽𝑖,uid, 𝑗 } 𝑗∈[𝑚] , {{𝛽𝑙,uid, 𝑗,𝑖 } 𝑗∈[𝑚] ,
𝑡𝑙,𝑖 , 𝐴𝑙,0, . . . , 𝐴𝑙,𝑡−1

} 𝑗∈[𝑛]) and outputs (Registered, ssid, uid) .//Store
attribute-specific MAC keys.
Ignore all subsequent messages with identifier ssid.

After having received (output, ssid, vuid, 𝑗) from FreqABB for 𝑗 = 1, ...,𝑚, the

user𝑈 stores (uid, type𝑗 , 𝑎 𝑗 , vuid, 𝑗) 𝑗∈[𝑚] and outputs (Registered, ssid, uid) .

Figure 5: Our ab-dSSO scheme, setup, registration, calling

macro Pedersen
+
of Fig. 10 and functionalities FreqABB

(Fig. 12) and FpsThrSig (Fig. 18).

Signing phase.

Executed by each server 𝑆𝑖 for 𝑖 ∈ [𝑇] where𝑇 ⊂ [𝑛] with |𝑇 | = 𝑡 .

Upon input (Sign, ssid′, uid, 𝑀, 𝑃,𝐴′) , user𝑈 does:

• Ignore the query if 𝑃 (𝐴′) ≠ 1, or if this is not the first one for ssid′. Parse 𝐴′

as (type𝑗 :𝑎 𝑗) 𝑗∈[𝑚] for some𝑚

• Find index 𝑗 s.t. type𝑗 = uID, abort if 𝑎 𝑗 ≠ uid

• Send type𝑗
pub
−→ Fssid′reqABB and vuid, 𝑗 , 𝑎 𝑗

priv
−→ Fssid′reqABB for 𝑗 ∈ [𝑚]; drop the

query if some type𝑗 is not stored
• Input (Sign, ssid′, (𝑀,𝑃)) to FpsThrSig
• Send message (ssid′, uid, 𝑀, 𝑃, {type𝑗 } 𝑗∈[𝑚]) to all 𝑆𝑖 , 𝑖 ∈ [𝑛].
Upon receiving message (ssid′, uid, 𝑀, 𝑃, (type𝑗) 𝑗∈[𝑚]) from user𝑈 ′ and out-

put (Sign, ssid′, (𝑀, 𝑃)) from FpsThrSig, server 𝑆𝑖 does the following:

• Send Δ𝑖

priv
−→ Fssid′reqABB.

• For each type𝑗 , 𝑗 ∈ [𝑚] do:
– Retrieve record (uid, type𝑗 , 𝛽𝑖,uid, 𝑗)
– Find index 𝑗 s.t. type𝑗 = uID, send ([𝑎 𝑗], {𝑆1, . . . , 𝑆𝑛 })

open
−→ FssidABB, re-

ceive back 𝑎 𝑗 and abort if 𝑎 𝑗 ≠ uid.

– Send 𝛽𝑖,uid, 𝑗
priv
−→ Fssid′reqABB

//Check if the MAC provided by user is correct:
– Compute

[Δ] ← 𝑓[Δ] (0) =
∑︁
𝑖∈𝑇
[Δ𝑖] ·

∏
𝑙∈𝑇 ,𝑙≠𝑖

𝑙

𝑙 − 𝑖 mod 𝑝

and, for 𝑗 ∈ [𝑚],
[𝛽uid, 𝑗] ← 𝑓[𝛽uid, 𝑗] (0) =∑︁

𝑖∈𝑇
[𝛽𝑖,uid, 𝑗] ·

∏
𝑙∈𝑇 ,𝑙≠𝑖

𝑙

𝑙 − 𝑖 mod 𝑝.

– Abort if

[vuid, 𝑗] ≠ [𝑎 𝑗] · [Δ] + [𝛽uid, 𝑗] mod 𝑝.

//Check if the policy is fulfilled:
– Query (compute, ssid′, ...) of FreqABB to verify that

𝑃 ({type𝑗 : [𝑎 𝑗] } 𝑗∈[𝑚]) = 1,

• Output (Sign, ssid′, uid, 𝑀, 𝑃, (type𝑗) 𝑗∈[𝑚]) .
On input (ProceedSign, ssid′) , each server 𝑆𝑖 does:

• Input (ProceedSign, ssid′) to FpsThrSig
On receiving output (Signature, ssid′, (𝑀,𝑃), 𝜎) from FpsThrSig, user𝑈 out-

puts (Signature, ssid′, 𝜎) .
Revocation.

Upon input (Revoke, uid, type) , broadcast this message to all 𝑆𝑖 and delete

record (uid, type, ∗) .

Figure 6: Our ab-dSSO scheme, signing and revocation, calling

functionalities FreqABB (Fig. 12) and FpsThrSig (Fig. 18).

sense that the data an adversary has learned from that server can be

rendered useless. This is achieved through rerandomizing shares. In

our ab-dSSO scheme this is done in the Refresh phase, described in

Fig. 7. In Fig. 10 we show the methods needed to provide proactive

security on the MAC shares, in the manner shown in Fig. 1. In

a similar manner, the methods in FpsThrSig show how to achieve

proactive security of the underlying signing keys the servers need

to store, with Fig. 13 and Fig. 14 (App. E) giving a realization based

on RSA.

For (re)sharing the MAC shares we use Pedersen’s verifiable

secret sharing (VSS) scheme [60]. Unlike Feldman’s [31] verifiable

secret sharing scheme, Pedersen’s scheme does not require the mes-

sage shared to be of high entropy, and hence is not brute-forceable.

43

Proceedings on Privacy Enhancing Technologies 2023(4) Tore Kasper Frederiksen, Julia Hesse, Bertram Poettering, and Patrick Towa

Verification.

On input (Verify, 𝑀, 𝑃, 𝜎, vk) , a party sends (Verify, sid, vk, (𝑀, 𝑃), 𝜎)
to FpsThrSig, receives back (Verified, vk, (𝑀, 𝑃), 𝜎, 𝑓) and outputs

(Verified, 𝑀, 𝑃, 𝜎, vk, 𝑓) .

Refresh.

On receiving (Refresh, sid, 𝑆𝑖) , the servers in Σ proceed as follows:

• Send (Refresh, sid, 𝑆𝑖) to FpsThrSig and receive back (Epoch, sid, epoch𝑖 , 𝑆𝑖)
• Define the set𝐺𝑖 = {Δ𝑖 ,

{{
𝛽𝑖,uid, 𝑗

}
𝑗∈[|𝐴uid |]

}
uid∈𝑌

} where 𝐴uid is the set of

registered attributes for user with uid and 𝑌 is the set of all uid used for

registration and for each 𝑠𝑖 ∈ 𝐺𝑖 and let 𝑡𝑖 , {𝑠 𝑗,𝑖 , 𝑡 𝑗,𝑖 , 𝐴 𝑗,0, . . . , 𝐴 𝑗,𝑡−1 } 𝑗∈[𝑛]
be the associated values to 𝑠𝑖 received from Pedersen

+
, //All parties will have

𝐺𝑖 of equal size, but with their individual shares
• For each 𝑠𝑖 ∈ 𝐺𝑖 execute Pedersen

+ .Recover on 𝑆𝑖 ’s val-

ues (𝑠𝑖 , 𝑡𝑖 , {𝑠 𝑗,𝑖 , 𝑡 𝑗,𝑖 , 𝐴 𝑗,0, . . . , 𝐴 𝑗,𝑡−1 } 𝑗∈[𝑛]) and let the result be

(𝑠′
𝑖
, 𝑡 ′
𝑖
, {𝑠′

𝑗,𝑖
, 𝑡 ′

𝑗,𝑖
, 𝐴′

𝑗,0
, . . . , 𝐴′

𝑗,𝑡−1
} 𝑗∈[𝑛]) . Replace the current values with the

result. I.e. 𝑠𝑖 B 𝑠′
𝑖
, 𝑡𝑖 B 𝑡 ′

𝑖
, 𝑠 𝑗,𝑖 B 𝑠′

𝑗,𝑖
, 𝐴𝑗,0 B 𝐴′

𝑗,0
, . . . , 𝐴 𝑗,𝑡−1 B 𝐴′

𝑗,𝑡−1
.

• For each 𝑠𝑖 ∈ 𝐺𝑖 and its associated 𝑡𝑖 , execute Pedersen
+ .Share on 0, 0 such

that each server 𝑆 𝑗 gets {priv B (𝑠′𝑖,𝑗 , 𝑡 ′𝑖,𝑗) }, {pub B 𝐴′
𝑖,0
, . . . , 𝐴′

𝑖,𝑡−1
},

– abort if Pedersen
+ .Verify on (𝑠′

𝑗,𝑖
, 𝑡 ′

𝑗,𝑖
), 𝐴′

𝑗,0
, . . . , 𝐴′

𝑗,𝑡−1
) rejects for any

𝑗 ∈ [𝑛].
– Abort if it is not a 0-sharing, i.e. if 𝐴′

𝑖,0
≠ 1.

– Update backup shares, s.t. 𝑠𝑖 B 𝑠𝑖 +
∑

𝑗∈[𝑛] 𝑠
′
𝑗,𝑖

mod 𝑝 and associated

𝑡𝑖 B 𝑡𝑖 +
∑

𝑗∈[𝑛] 𝑡
′
𝑗,𝑖

along with 𝐴𝑖,𝑙 B 𝐴𝑖,𝑙

∏𝑡−1

𝑗=0
𝐴′

𝑗,𝑙
for 𝑗 ∈ [𝑛] and

𝑙 ∈ [𝑡 − 1] ∪ {0}.
• For each 𝑠𝑖 ∈ 𝐺𝑖 each party executes Pedersen

+ .Share on values (𝑠𝑖 , 𝑡𝑖)
for associated value 𝑡𝑖 , thus each party 𝑆 𝑗 for 𝑗 ∈ [𝑛] learn {priv B
(𝑠′
𝑖,𝑗
, 𝑡 ′
𝑖,𝑗
) }, {pub B 𝐴′

𝑖,0
, . . . , 𝐴′

𝑖,𝑡−1
} and does the following://Note that

𝑠𝑖 , 𝑡𝑖 , 𝐴𝑖,0, . . . , 𝐴𝑖,𝑡−1 have already been refreshed in the previous step
– Execute Pedersen

+ .verify on (𝑠′
𝑗,𝑖
, 𝑡 ′

𝑗,𝑖
, 𝐴′

𝑗,0
, . . . , 𝐴′

𝑗,𝑡−1
) and abort if it

rejects.

– Abort if the newly shared values are inconsistent with the ones from the

previous refresh, i.e. if 𝐴𝑗,0 ≠ 𝐴′
𝑗,0
.

– Update the back-up shares by setting 𝑠 𝑗,𝑖 B 𝑠′
𝑗,𝑖
, 𝑡 𝑗,𝑖 B 𝑡 ′

𝑗,𝑖
and 𝐴𝑗,𝑙 B

𝐴′
𝑗,𝑙

for 𝑙 = 0, . . . , 𝑡 − 1.

• Output (Epoch, sid, epoch𝑖 , 𝑆𝑖) .

Figure 7: Our ab-dSSO scheme, verification and refresh, call-

ing macro Pedersen
+
of Fig. 10.

The messages we need to share are in F𝑝 , where attributes and the

information theoretic MACs live. Thus we imagine 𝑝 to be of 32-

128 bits, hence Feldman would not be secure here. Methods Share,

Verify and Reconstruct of Fig. 10 describe Pedersen’s scheme.

The method Recover is an application of Pedersen’s VSS, showing

how to validate, and potentially reconstruct, shares during Refresh,
after a corruption span (assuming an honest majority). I.e., it is Ped-

ersen’s verifiable secret sharing used to achieve proactive secret

sharing. Method MPC-Share constructs a verifiable secret sharing

of share 𝑠𝑖 within an MPC functionality, in a way that ensures that

𝑠𝑖 can be trusted even if server 𝑆𝑖 contributing it acts maliciously.

Note that later Share ensures consistency using commitments to

shares, which MPC-Share, that is used to produce the initial shar-

ings during Setup and Registration of our ab-dSSO scheme, cannot

rely on.

Efficient integration of VSS and MPC. One final subtle difference

between the methods described in Fig. 10 compared to the proac-

tive secret sharing protocol of Pedersen’s verifiable secret sharing

scheme [60] is that we do sharing over an extension field F𝑝𝑐 , in-
stead of a prime field F𝑞 with a large subgroup. While the protocol

could easily work over F𝑞 , it would then also be required that our

MPC scheme works over a similar field, as otherwise reconstructing

the Shamir secret sharing computed inMPC-Share would yield a

value 𝑠𝑖 + 𝛾 · 𝑝 for some 𝛾 . Doing MPC over a field F𝑞 with a prime

large enough to ensure that the discrete logarithm problem is hard,

would be very slow, since it would require log
2
(𝑞) ≥ 2048. Note we

only use MPC to do computation of smaller numbers, in a domain

of size similar to the domain of a regular CPU. By having 𝑠𝑖 ∈ F𝑝
we can represent it as an element in F𝑝𝑐 , by interpreting it as the

constant term of the polynomial representation of an element in

F𝑝𝑐 , with all non-constant terms being 0. This allows the Peder-

sen commitments to work in the expected manner. During Refresh
we can reconstruct by doing Lagrange interpolation just over F𝑝
instead of F𝑝𝑐 , for the message part of the commitment. Still, the

randomness for the Pedersen commitments do need to be in F𝑝𝑐 ,
as otherwise 𝑠𝑖 would not be statistically hidden. The bindingness

of the commitments now depends on the hardness of the discrete

log problem in F𝑝𝑐 which is easier than in a field F𝑞 where the

discrete logarithm problem is hard, and thus 𝑐 must be picked such

that 𝑝𝑐 > 𝑞. See Sect. 4.1.1 for a discussion of concrete values.

To summarize, we have described how Pedersen’s verifiable se-

cret sharing can integrate with an MPC functionality to afford

proactive security of our ab-dSSO scheme through the methods in

Fig. 10. Concretely these are used as part of the Setup, Registration
and Refresh phases of our ab-dSSO scheme (Fig. 5 and Fig. 7) to

allow proactive secret sharing of the MAC shares and keys. Specif-

ically each server 𝑡-out-of-𝑛 shares each of their shares with all

other servers in a verifiable manner, using MPC-Share during

the Setup and Registration phases. We call these “shares-of-shares”

back-up shares. This allows a quorum of 𝑡 servers to “help” another

server, recovering from a corruption, to relearn their shares using

Recover, which is then executed during the Refresh phase. After

using Recover it is then possible for each server to re-share their

shares using Share, which renders the old shares an adversary

might have learned useless.

4.1 Formal Protocol Description

Our ab-dSSO scheme is an interactive protocol executed between

arbitrary users and 𝑛 servers 𝑆1, . . . , 𝑆𝑛 . It is parameterized with

an algorithm CAVfy(vkCA, ·, ·) and a distributed signature scheme

TSIG = (KGen, Sign,Comb,Vfy). All parties have access to an ideal

outsourced multi-party computation functionality FreqABB (see

App. D.2) where computation on some user𝑈 ’s private input is car-

ried out by 𝑆1, . . . , 𝑆𝑛 by an instance of functionality FreqABB (𝑛, 𝑝)
(or, more shortly, FreqABB). For brevity we omit session identifier

sid from all inputs, outputs and messages of the protocol, and use

the abbreviated notation introduced in App. D.1. We make the

following assumptions about formats:

• We assume each user is conceptually a UC party and they provide

attribute sets 𝐴 as input, the elements of which can be parsed

as (type𝑖 :𝑎𝑖)𝑖∈[𝑛] , where type𝑖 is a public attribute type (e.g.,
birth date, social security number, or country of residence). We

assume policies to be compatible with this format.

• We assume certificates 𝜋 to be issued for attribute sets that con-

tain the attribute uID :uid, which is unique system-wide. This is

not a restriction, since attribute authorities bind certificates to

unique identities anyway. Just as these authorities, we use the

44

Attribute-based Single Sign-On: Secure, Private, and Efficient Proceedings on Privacy Enhancing Technologies 2023(4)

unique identifiers uid to ensure that Alice cannot fill her account

with attributes from stolen certificates.

Theorem 4.1. Our ab-dSSO scheme (see Figs. 5,6,7) securely realizes
Fab-dSSO parameterized with 𝑡, 𝑛, algorithms SIG = (KGen, Sign,Vfy)
andCAVfy(vkCA, ·, ·) in the (FpsThrSig, FreqABB)-hybridmodel, where
FpsThrSig is parameterized with (the same) SIG, and there exist se-
cure and server-side authenticated channels between users and each
𝑆𝑖 , a broadcast channel among all 𝑆𝑖 , and participants face a static
proactive and malicious adversary (as defined in Sect. 2.1) corrupting
at any given time only a minority of the servers. The distinguishing
advantage of any PPT environment is upper bounded by

𝑄𝑟 ·𝑚
2 · 𝑝 +

𝑄𝑝𝑠 ·𝑚
2 · 𝑝 +

5 · (𝑡 − 1) · (𝑄𝑟 ·𝑚 + 1) · (1 +𝑄𝑟𝑒 𝑓)
2 · 𝑝𝑐 +

AdveDL (𝑝𝑐 , 𝑔, ℎ) + AdvEUF−CMA
SIG (1𝜆),

where 𝑄𝑟 is an upper bound on the number of registration queries,
𝑄𝑝𝑠 is an upper bound on the number of ProceedSign queries,𝑄𝑟𝑒 𝑓

is an upper bound on Refresh queries,𝑚 is the number of attribute
types, 𝑝 is the field size and AdveDL (𝑝𝑐 , 𝑔, ℎ) is the advantage of the
adversary in solving the discrete logarithm problem of ℎ with base 𝑔
in the extension field F𝑝𝑐 .

The full proof is deferred to App. F.

Proof sketch. The simulator is in full control of the hybrid

functionalities FreqABB and FpsThrSig and hence can choose the

MAC keys Δ and 𝛽uid, 𝑗 for each attribute, without necessarily know-

ing the attributes itself. The simulator leaves it to F
ab-dSSO

to decide

whether 𝜋 verifies during registration, and whether the policy is

fulfilled during signing. Corrupt users can be checked for malicious

behavior by checking whether they provide the correct MACs for

the attributes they want to use, as they need to input them into the

simulator-controlled FreqABB. Due to usage of a universally com-

posable signature scheme through FpsThrSig, the simulator does not

need to worry about simulating signature shares, as no such objects

exist in a world with FpsThrSig. Hence the complexity of, e.g., share

simulatability is outsourced to the realization of FpsThrSig. The only
values that the simulator is missing for a perfect simulation of a real

execution are attribute values and proofs. However, as described in

Sect. 3.3, the simulator learns from F
ab-dSSO

whether a user inputs

attributes that fulfill the policy, and whether a proof verifies when

a user registers. Since actual signatures are otherwise independent

of the attributes (i.e., only message and policy are signed), this

information is enough to simulate either successful or unsuccessful

registration and signing transcripts. □

4.1.1 Security parameters. Operating our ab-dSSO solution in prac-

tice requires instantiating all its building blocks with reasonable

security parameters. As the employed primitives are of diverse types

(signatures schemes, MPC, secret sharing, information-theoretic

MACs), we provide insight into how we selected parameters for our

implementation (see Sect. 5). Our guideline for all computational

primitives was to achieve what is commonly known as the 128-bit

security level. This arguably represents a robust choice, indepen-

dently of whether proof artifacts like tightness factors are taken

into account or not (like in our case).

Some of the building blocks are defined in the UC framework

and instantiated with solutions presented in independent work. As

is standard in the UC domain, for these primitives we assume a

common asymptotic security parameter 𝜆 and leave it to articles

considering their construction to translate asymptotic to concrete

values. For our RSA-based building blocks we follow the proposals

of standardization bodies [8] and instantiate moduli 𝑁 with com-

posite numbers of bit-length 3072 (or more). For statistical security

definitions (in particular in the MPC setting), we accept bounds in

the order of < 2
−80

. (Bounds of the order < 2
−128, . . . , < 2

−256
seem

overkill for adversaries that are not computational.) For collision

resistant hashing we employ SHA256.

An interesting case where our solution seemingly accepts too

lose bounds is for MAC unforgeability: Recall that, to enable effi-

cient MPC computations, our MAC tags are only 64 bits in size (we

benchmark also with just 32 bits), which, on first sight, might invite

for forgery attacks via MAC tag guessing. As generally recognized

in cryptography, prominently for instance in [56], MAC tags may be

short in practice as invalid tags immediately indicate active attacks

to which servers can react with a variety of non-cryptographic

measures including throttling the number of connection attempts

or even banning users. While, in this sense, we feel that 64 bit tags

offer sufficient security, it is straightforward to increase this to, say,

80 bits, at the expense of slightly less efficient MPC.

As discussed above, our instantiation of Pedersen’s verifiable

secret sharing is over the multiplicative group of F𝑝𝑐 instead of

over that of some F𝑞 . As the binding property of Pedersen’s scheme

is DLP-based, the pair 𝑝, 𝑐 has to be chosen carefully to resist DLP

attacks in extension fields [7, 41]. An overview on the state of the

art of the latter is provided in [37, Tab. 1]. For fields of medium

characteristic, 2 ≪ 𝑝 ≪ 2
1024

, the current DLP-breaking record is

reported for 𝑝 ≈ 2
25

and 𝑝𝑐 ≈ 2
1425

, with no cryptanalysis advances

since 10 years. In this light, our choice of 𝑝 ≈ 2
64

and 𝑝𝑐 ≈ 2
4096

seems reasonable (if not conservative). (Again, at the expense of

less efficient MPC, switching to 𝑝 ≈ 2
80

for a better security margin

is always possible.)

5 IMPLEMENTATION

While MPC allows us to validate any polynomial-time computable

policy, for concreteness we only consider policies over the binary

relations of equality, less-than, and set-membership and assume

the operands are private values from F𝑝 and the output is 0 or 1.

We consider equality ([𝑎], [𝑏]) → [𝑐], less-than ([𝑎], [𝑏]) → [𝑐]
and set membership ([𝑎], {[𝑏𝑖]}𝑖∈[𝑚]) → [𝑐] for 𝑎, 𝑏, 𝑏1, . . . , 𝑏𝑚 ∈
F𝑝 and 𝑐 ∈ {0, 1}. We also allow negation (NOT), conjunction

(AND) and disjunction (OR) on each of these relations. Protocols for

equality and less-than which only use calls to FABB are Protocols

3.6 and 3.7 of [22]. Set membership can be realized by computing

[𝑧] = ∏
𝑖∈[𝑚] ([𝑎] − [𝑏𝑖]) followed by equality ([𝑧], 0). Logical

operators on indicator bits are also efficient to realize. E.g., AND as

[𝑎] ∧ [𝑏] = [𝑎] · [𝑏], OR as [𝑎] ∨ [𝑏] = [𝑎] + [𝑏] − [𝑎] · [𝑏] and NOT
as ¬[𝑎] = 1− [𝑎]. Validating a MAC requires a single multiplication

gate and one equality check.

We illustrate the complexity of all the operations in Tab. 3. The

base policies (equality, less-than, set-membership) can be applied by

themselves or they can be combined to allow for more rich policies.

An example of a base policy for “less-than” could be “born before

1955”, which would prove that the user is a senior citizen. Another

45

Proceedings on Privacy Enhancing Technologies 2023(4) Tore Kasper Frederiksen, Julia Hesse, Bertram Poettering, and Patrick Towa

Table 3: Multiplication gates complexity in MPC over F𝑝 .
Based on the work of Catrina et al. [22]. Promised operands

are in [0; 2
𝑝′].𝑚 is the cardinality of the set.

gates depth

AND / OR / NOT 1 / 1 / 0 1 / 1 / 0

MAC check 2 · (|𝐴 | + 1) 2

equality 𝑝′ + 4 ⌈log
2
(𝑝′) ⌉ 4

less-than 3𝑝′ − 4 log(𝑝′) + 2

set memb. 𝑚 + 𝑝′ + 4 ⌈log
2
(𝑝′) ⌉ − 1 4 + ⌈log

2
(𝑚) ⌉

example could be the usage of “set-membership” to prove that the

user is a citizen of a certain set of countries. Concretely we note

that these base policies are sufficient to implement both our loan

and gambling examples since “less-than” can be made to “greater-

than” by subtracting the input, and value to compare with, from 𝑝 .

Furthermore, state residency and country citizenship are just special

cases of set-membership of sets of at most 50, respectively 195. A

salary bound can again be realized using “greater-than” or even set-

membership if a few possible brackets are used. The gate complexity

for arbitrary policies can the easily be computed by adding together

the relevant operations from Tab. 3. In Tab. 4 we sketch concrete

policies and evaluate their multiplicative gate complexity along

with concrete benchmarks. These numbers can then also be used

to approximate the execution time of more advanced policies, by

adding the execution time of each base policy together. The depth of

the combined policy will then be the maximum of the circuit depth

of each base policy added to log(𝛽), where 𝛽 is the amount of base

policies. This overhead comes in order to account for the logical

operations for combining the policies. Since the overhead of each

benchmark includes setting up a network between servers, along

with handshaking, we expect that for a 𝛽 in the single digit, adding

the execution time of the base policies together will upper-bound

the total time of the advanced policy. We benchmark the following

base policies:

Same value Proving that two attributes from F𝑝 are the same.

This consists of a single equality check.

Same object Proving that an attribute is the same as a publicly

known, potentially big, object. This consists of ⌈256/log
2
(𝑝)⌉ equal-

ity checks and ⌈256/log
2
(𝑝)⌉ − 1 AND gates, by validating equality

checks on each ⌈256/log
2
(𝑝)⌉ component of a SHA-256 hash digest

of an object.

Range Proving an integer attribute is within any range in F𝑝 , e.g.,
proving one’s age is in a certain range. This consists of doing two

comparisons of ⌈log
2
(𝑝)⌉ integers through an AND gate.

Country Proving citizenship among a set of countries. Countries

are represented as integers. This consists of a set membership test

of a set of at most𝑚 = 200 elements.

Pre-approved Proving to have an attribute from a list of 1.000

pre-approved values. This consists of set membership for a set of

𝑚 = 1.000 elements.

We chose to benchmark our protocols using 𝑝 = 32 and 𝑝 = 64,

to reflect the domain sizes of common CPUs. We note that the

MACs will also be in F𝑝 , and while the MACs themselves are in-

formation theoretic and cannot be brute-forced offline by a client,

our ab-dSSO scheme allows a malicious client to authenticate using

Table 4: Server-side policy evaluation benchmark. Gates and

depth express theminimal possible amount ofmultiplication

gates and multiplicative depth of the circuit computing the

specified policy. Computation is on 32 or 64 bits numbers

when operands are promised to be in [0; 2
𝑝′] and using 𝑠 = 40.

Online/offline refers to the SPDZ online/offline parts. All

numbers include computation and validation of MACs, uid,
share interpolation, reconstruction of user-input, but exclude

threshold signatures and user communication.

bits # gates depth 𝑡
Time (ms) Online

Offline Online throughput

Same value

32 56 6

2 370 190 ± 6.7 118 ± 34

3 952 444 ± 20 20.5 ± 5.1

64 88 6

2 1, 060 199 ± 7.1 80 ± 51

3 2, 560 466 ± 26 21 ± 7.1

Same object

32 441 13

2 2, 920 253 ± 8.6 69 ± 20

3 7, 500 589 ± 32 21 ± 7.8

64 365 9

2 4, 380 262 ± 5.8 59 ± 12

3 10, 600 593 ± 30 20 ± 13

Range

32 189 10

2 1, 250 201 ± 8.0 78 ± 23

3 3, 210 449 ± 26 40 ± 11

64 381 11

2 4, 570 200 ± 7.2 66 ± 23

3 11, 100 460 ± 25 36 ± 7.2

Country

32 259 14

2 1, 710 3, 670 ± 70 21 ± 3.6

3 4, 400 8, 450 ± 380 8.2 ± 0.82

64 295 14

2 3, 540 3, 700 ± 75 20 ± 3.6

3 8, 580 8, 560 ± 340 8.6 ± 0.83

Pre-approved

32 1, 055 16

2 6, 970 17, 700 ± 340 5.2 ± 0.81

3 17, 900 40, 200 ± 2, 200 2.1 ± 0.06

64 1, 091 16

2 13, 100 17, 410 ± 340 5.2 ± 0.41

3 31, 700 39, 300 ± 2, 000 2 ± 0.048

only the MAC, and thus could allow an online brute-force attack.
We find it reasonable that the servers would simply throttle brute-

force attempts on MACs since they necessarily knows the uid of

the user trying to authenticate, and thus lock down the user’s ac-

count after some failed attempts. This is similar to passwords or

OTP, the latter of which have significantly less entropy. Further-

more to ensure no adversary can amount a denial of service for

a legitimate user, the servers can require the user to authenticate

before executing the signing phase using a method which is not

brute-forceable. This could for example be realized via U2F or a

passkey [33]. Alternatively 𝑝 could be increased to 128.

We implemented the signing phase of our protocol,
4
and note

that the expected execution time of the registration phase is highly

dependent on how the user’s attributes are issued as discussed

in App. C. We did not benchmark the refresh phase, as it is only

supposed to be run rarely, e.g. once every few months, hence the

efficiency of this is not crucial for our ab-dSSO scheme. Even so, the

refresh phase is very lightweight as it does not require any expen-

sive multiplications in MPC. However, the complexity is linearly

bounded by the total amount of attributes stored in our ab-dSSO

scheme, for each of which must be reshared. Such a resharing re-

quires 𝑂 (𝑡) exponentiations, in order to compute the Pedersen

commitments. Furthermore, each server must also validate 𝑂 (𝑛) of
such sets of commitments (received from the other servers). Thus

the total complexity per server is bounded by 𝑂 (|A| · 𝑡 · 𝑛) large
group exponentiations, where |A| is the total amount of attributes.

The goal of our implementation and benchmarking is to show what

4
Code available at https://github.com/aicis/fresco-outsourcing/tree/macro-bench.

46

https://github.com/aicis/fresco-outsourcing/tree/macro-bench

Attribute-based Single Sign-On: Secure, Private, and Efficient Proceedings on Privacy Enhancing Technologies 2023(4)

bits

Memory

CPU

𝑡 = 2 𝑡 = 3

Server 32 747 809 51%

(Offline) 64 711 729 58%

Servers 32 565 625 26%

(Online) 64 602 607 28%

Client

32 24 44 28%

64 23 42 21%

Table 5: Maximum sys-

tem utilization during

signing phase. Memory is

in megabytes, CPU usage

is maximum of test of

𝑡 = 2, 3.

bits 𝑡 = 2 𝑡 = 3

Same value

32 401 ± 12 778 ± 25

64 407 ± 8.6 800 ± 34

Same object

32 465 ± 12 921 ± 37

64 467 ± 7.8 927 ± 32

Range

32 409 ± 9.3 775 ± 32

64 407 ± 7.7 787 ± 29

Country

32 3, 870 ± 69 8, 780 ± 380

64 3, 900 ± 74 8, 880 ± 338

Pre-approved

32 17, 900 ± 340 40, 500 ± 2200

64 17, 600 ± 340 39, 500 ± 2, 000

Table 6: Client

latency for

MPC over field

of 32 or 64 bits.

Promised

operands are

in [0; 2
𝑝′].

Times are in

milliseconds.

speed to expect from a realistic deployment when constructing

tokens in practice. For this reason we based our implementation

on the MPC framework FRESCO [2], which uses the SPDZ [30]

protocol to realize FABB. To allow for outsourced computation, and

thus to realize FreqABB, we implemented the protocol of Jakobsen

et al. [44]. Concretely we implemented our policy benchmarks off

the FRESCO-Outsourcing project [3], which already implements

the infrastructure for enabling outsourced MPC using FRESCO.

For threshold signing we used an open source implementation

[68] of Rabin’s signature scheme [61] without the zero knowledge

proofs, which has essentially the same complexity as our signature

scheme (presented in Fig. 13).

Setup. We used standard price-friendly T3.xLarge AWS EC2 in-

stances running Amazon Linux 2 and executed all our benchmarks

with servers and a client residing in different datacenter locations.

We observed roundtrip latencies between 8 and 30 ms. Our bench-

mark numbers are average time with errors being the standard

deviation, based on 20 iterations, after 10 uncounted “warm-up”

iterations to limit errors due to the JIT compilation and VM opti-

mizations happening when running Java.

System footprint.We ran our experiments with the command line

arguments -Xms1024m -Xmx1024m -Xnoclassgc to prevent over-

head in dynamic heap memory allocation and garbage collection.

To benchmark the maximum memory (and CPU) usage we ran

tests without -Xnoclassgc. The result of these tests are in Tab. 5.

We only include the maximum regardless of whether the test was

run for 𝑡 = 2 or 3 servers, as there is minimal difference. While

FRESCO uses multi-threading to manage network and scheduling,

the heavy cryptographic operations are single-threaded. Thus we

expect the CPU usage to stay the same regardless of whether the

code is executed on a single-core or multi-core system.

Performance. In Tab. 4 and Tab. 6 we show the performance of

the signing phase of our ab-dSSO scheme running on servers, re-

spectively a client. While Tab. 4 only considers the MPC-related

benchmarks, Tab. 6 shows the full end-to-end latency experienced

by a client. The online throughput expresses how much throughput

a server can handle during the SPDZ online phase of our ab-dSSO

scheme, in the optimal case where it processes multiple client

queries concurrently, while waiting for response from the other

servers. Most of the execution time is wasted on network latency,

in particular if there are only two servers. We chose to run the

experiments for 𝑡 = 2, 3 as this fits the typical benchmark settings

in the MPC/distributed computing space [9, 10, 15, 29] since it rep-

resents a good compromise between speed (as overhead is bound in

amount of servers) and security. While we concretely used 𝑛 = 𝑡 + 1

in our benchmarks, the complexity and speed of the signing phase

is completely independent of 𝑛.

While the raw throughput might not meet the requirements of

providers like Google or Facebook, the throughput can be scaled

by letting the server be a cluster of multiple machines, sharing the

same database. Both same value, same object and range are already
below the 1 second limit of user’s flow of thought.

While we do not benchmark the network communication, for

the client, it is in the order of a few kilobytes and bound by 𝑂 (𝑡 ·
(|𝐴| · (𝑝 +𝑠) +𝜆)) plus the size of the message to be signed. Crucially

it is independent of the computation required to validate the policy.

For the servers the communication is bound by 𝑂 (|𝐶 | · (𝑝 + 𝑠))
where |𝐶 | is the amount of multiplication gates needed to validate

the policy. In general, the servers communication complexity will

be bound by the realization of FABB.
Full deployment performance. While we have not implemented a

full deployment of our protocol we observe that PESTO [9] uses a

similar setup for distributed single-sign on. Specifically they also

use Amazon AWS servers in different countries (for 𝑡 = 2), and

have implemented their protocol in Java. Their benchmarks [9,

Tab. 1] show a latency of 124 ms for authentication, including client-

server communication with a TLS connection. Thus using PESTO

for password-based authentication (where the service provider of

the PESTO SSO execution is actually the servers themselves), or

purely relying or their distributed partially blind OPRF to facilitate

authentication, allows us to estimate the latency for distributed

client server authentication for 𝑡 = 2.
5
. Adding distributed password

authentication on top of our ab-dSSO scheme brings our solution

closer to a real-world scheme, since this provides a second factor

(knowledge) on top of the MACs, which could be considered a

possessive factor if they are stored in secure hardware. See App. C.2

for more details. Thus we expect the additional overhead of a real

deployment of our ab-dSSO scheme to be bounded by the policies

benchmarks in Tab. 4 plus 124 ms.

REFERENCES

[1] S. Agrawal, P. Miao, P. Mohassel, and P. Mukherjee. PASTA: PASsword-based

threshold authentication. In D. Lie, M. Mannan, M. Backes, and X. Wang, editors,

ACM CCS 2018, pages 2042–2059. ACM Press, Oct. 2018.

[2] Alexandra Institute. FRESCO - a FRamework for Efficient Secure COmputation.

https://github.com/aicis/fresco.

[3] Alexandra Institute. FRESCO outsourcing. https://github.com/aicis/fresco-

outsourcing.

[4] J. F. Almansa, I. Damgård, and J. B. Nielsen. Simplified threshold RSA with

adaptive and proactive security. In S. Vaudenay, editor, EUROCRYPT 2006, volume

4004 of LNCS, pages 593–611. Springer, Heidelberg, May / June 2006.

[5] G. Alpár and B. Jacobs. Credential design in attribute-based identity management.

2013.

[6] E. Bach. Discrete logarithms and factoring. 1984.

5
While PESTO does not support arbitrary thresholds, we observe that this is only due

to the partial blindness of the OPRF, which is not needed in our situation since online

brute-force throttling can be done purely based on validation of the MACs.

47

https://github.com/aicis/fresco
https://github.com/aicis/fresco-outsourcing
https://github.com/aicis/fresco-outsourcing

Proceedings on Privacy Enhancing Technologies 2023(4) Tore Kasper Frederiksen, Julia Hesse, Bertram Poettering, and Patrick Towa

[7] R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. A heuristic quasi-polynomial

algorithm for discrete logarithm in finite fields of small characteristic. In P. Q.

Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
1–16. Springer, Heidelberg, May 2014.

[8] E. Barker. NIST Special Publication 800-57 Part 1 Revision 5. Recommendation

for Key Management: Part 1 – General. Technical report, National Institute for

Standards and Technology - NIST, 2020. Accessed: 2023-03-08.

[9] C. Baum, T. K. Frederiksen, J. Hesse, A. Lehmann, and A. Yanai. PESTO: proac-

tively secure distributed single sign-on, or how to trust a hacked server. IEEE
European Symposium on Security and Privacy Workshop, 2020.

[10] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard,

J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I. Schwartzbach, and T. Toft.

Secure multiparty computation goes live. In R. Dingledine and P. Golle, editors,

FC 2009, volume 5628 of LNCS, pages 325–343. Springer, Heidelberg, Feb. 2009.
[11] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin,

editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg,
Aug. 2004.

[12] D. Boneh, B. Bünz, and B. Fisch. Batching techniques for accumulators with

applications to IOPs and stateless blockchains. In A. Boldyreva and D. Micciancio,

editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 561–586. Springer,
Heidelberg, Aug. 2019.

[13] J. Camenisch, M. Drijvers, and A. Lehmann. Universally composable direct

anonymous attestation. In C.-M. Cheng, K.-M. Chung, G. Persiano, and B.-Y.

Yang, editors, PKC 2016, Part II, volume 9615 of LNCS, pages 234–264. Springer,
Heidelberg, Mar. 2016.

[14] J. Camenisch, A. Lehmann, A. Lysyanskaya, and G. Neven. Memento: How to

reconstruct your secrets from a single password in a hostile environment. In

J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS,
pages 256–275. Springer, Heidelberg, Aug. 2014.

[15] J. Camenisch, A. Lehmann, and G. Neven. Optimal distributed password verifi-

cation. In I. Ray, N. Li, and C. Kruegel, editors, ACM CCS 2015, pages 182–194.
ACM Press, Oct. 2015.

[16] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable

anonymous credentials with optional anonymity revocation. In B. Pfitzmann, ed-

itor, EUROCRYPT 2001, volume 2045 of LNCS, pages 93–118. Springer, Heidelberg,
May 2001.

[17] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to

efficient revocation of anonymous credentials. In M. Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 61–76. Springer, Heidelberg, Aug. 2002.

[18] J. Camenisch and E. Van Herreweghen. Design and implementation of the idemix

anonymous credential system. In V. Atluri, editor, ACM CCS 2002, pages 21–30.
ACM Press, Nov. 2002.

[19] R. Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, Oct. 2001.

[20] R. Canetti. Universally composable signature, certification, and authentication.

In 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28-30 June
2004, Pacific Grove, CA, USA, page 219. IEEE Computer Society, 2004.

[21] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. UC non-

interactive, proactive, threshold ECDSA with identifiable aborts. In J. Ligatti,

X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 2020, pages 1769–1787. ACM Press,

Nov. 2020.

[22] O. Catrina and S. de Hoogh. Improved primitives for secure multiparty integer

computation. In J. A. Garay and R. D. Prisco, editors, SCN 10, volume 6280 of

LNCS, pages 182–199. Springer, Heidelberg, Sept. 2010.
[23] D. Chaum. Security without identification: Transaction systems to make big

brother obsolete. Commun. ACM, 28(10):1030–1044, 1985.

[24] M. Chen, R. Cohen, J. Doerner, Y. Kondi, E. Lee, S. Rosefield, and a. shelat. Multi-

party generation of an RSA modulus. In D. Micciancio and T. Ristenpart, editors,

CRYPTO 2020, Part III, volume 12172 of LNCS, pages 64–93. Springer, Heidelberg,
Aug. 2020.

[25] X. Chen, J. Li, X. Huang, J. Li, Y. Xiang, and D. S. Wong. Secure outsourced

attribute-based signatures. IEEE Trans. Parallel Distributed Syst., 25(12):3285–
3294, 2014.

[26] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet

X.509 public key infrastructure certificate and certificate revocation list (CRL)

profile. RFC 5280, May 2008.

[27] A. P. K. Dalskov, C. Orlandi, M. Keller, K. Shrishak, and H. Shulman. Securing

DNSSEC keys via threshold ECDSA from generic MPC. In L. Chen, N. Li, K. Liang,

and S. A. Schneider, editors, ESORICS 2020, Part II, volume 12309 of LNCS, pages
654–673. Springer, Heidelberg, Sept. 2020.

[28] I. Damgård, K. Damgård, K. Nielsen, P. S. Nordholt, and T. Toft. Confidential

benchmarking based on multiparty computation. In J. Grossklags and B. Preneel,

editors, FC 2016, volume 9603 of LNCS, pages 169–187. Springer, Heidelberg, Feb.
2016.

[29] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical

covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In

J. Crampton, S. Jajodia, and K. Mayes, editors, ESORICS 2013, volume 8134 of

LNCS, pages 1–18. Springer, Heidelberg, Sept. 2013.

[30] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from

somewhat homomorphic encryption. In R. Safavi-Naini and R. Canetti, editors,

CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, Heidelberg, Aug.
2012.

[31] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In

28th FOCS, pages 427–437. IEEE Computer Society Press, Oct. 1987.

[32] P. Feldman and S. Micali. Optimal algorithms for byzantine agreement. In 20th
ACM STOC, pages 148–161. ACM Press, May 1988.

[33] FIDO Alliance. How FIDO addresses a full range of use cases. Technical report,

March 2022.

[34] T. K. Frederiksen. A holistic approach to enhanced security and privacy in

digital health passports. In D. Reinhardt and T. Müller, editors, 16th ARES, pages
133:1–133:10. ACM, 2021.

[35] T. K. Frederiksen, J. Hesse, B. Poettering, and P. Towa. Attribute-based single

sign-on: Secure, private, and efficient. Cryptology ePrint Archive, Paper 2023/915,

2023. https://eprint.iacr.org/2023/915.

[36] T. K. Frederiksen, Y. Lindell, V. Osheter, and B. Pinkas. Fast distributed RSA

key generation for semi-honest and malicious adversaries. In H. Shacham and

A. Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 331–361.
Springer, Heidelberg, Aug. 2018.

[37] R. Granger and A. Joux. Computing discrete logarithms. Computational Cryptog-
raphy: Algorithmic Aspects of Cryptology, 2021. See https://ia.cr/2021/1140 and
www.cambridge.org/9781108795937.

[38] C. Guo, J. Lin, Q. Cai, F. Li, Q. Wang, J. Jing, B. Zhao, and W. Wang. UPPRESSO:

untraceable and unlinkable privacy-preserving single sign-on services. CoRR,
abs/2110.10396, 2021.

[39] Y. Harchol, I. Abraham, and B. Pinkas. Distributed SSH key management with

proactive RSA threshold signatures. In B. Preneel and F. Vercauteren, editors,

ACNS 18, volume 10892 of LNCS, pages 22–43. Springer, Heidelberg, July 2018.

[40] D. Hardt. The OAuth 2.0 authorization framework. RFC 6749, October 2012.

[41] J. Håstad. Knuth prize lecture: On the difficulty of approximating Boolean max-

CSPs. In M. Thorup, editor, 59th FOCS, page 602. IEEE Computer Society Press,

Oct. 2018.

[42] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing

or: How to cope with perpetual leakage. In D. Coppersmith, editor, CRYPTO’95,
volume 963 of LNCS, pages 339–352. Springer, Heidelberg, Aug. 1995.

[43] ID4me Login Consortium. ID4me. https://id4me.org.

[44] T. P. Jakobsen, J. B. Nielsen, and C. Orlandi. A framework for outsourcing of

secure computation. In G. Ahn, A. Oprea, and R. Safavi-Naini, editors, CCSW,

pages 81–92. ACM, 2014.

[45] S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party computation.

Cryptology ePrint Archive, Report 2011/272, 2011. https://eprint.iacr.org/2011/

272.

[46] S. Kamara, P. Mohassel, and B. Riva. Salus: a system for server-aided secure

function evaluation. In T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS
2012, pages 797–808. ACM Press, Oct. 2012.

[47] M. Keller, E. Orsini, and P. Scholl. MASCOT: Faster malicious arithmetic secure

computation with oblivious transfer. In E. R. Weippl, S. Katzenbeisser, C. Kruegel,

A. C. Myers, and S. Halevi, editors, ACM CCS 2016, pages 830–842. ACM Press,

Oct. 2016.

[48] M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making SPDZ great again. In J. B.

Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS,
pages 158–189. Springer, Heidelberg, Apr. / May 2018.

[49] D. Khovratovich and J. Lee. Sovrin: digital identities in the blockchain era.

https://sovrin.org/wp-content/uploads/AnonCred-RWC.pdf.

[50] T. Looker and O. Steele. BBS+ signatures 2020. https://identity.foundation/bbs-

signature/draft-looker-cfrg-bbs-signatures.html.

[51] A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. M.

Heys and C. M. Adams, editors, SAC 1999, volume 1758 of LNCS, pages 184–199.
Springer, Heidelberg, Aug. 1999.

[52] H. Maji, M. Prabhakaran, and M. Rosulek. Attribute-based signatures: Achieving

attribute-privacy and collusion-resistance. Cryptology ePrint Archive, Report

2008/328, 2008. https://eprint.iacr.org/2008/328.

[53] H. K. Maji, M. Prabhakaran, and M. Rosulek. Attribute-based signatures. In

A. Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS, pages 376–392. Springer,
Heidelberg, Feb. 2011.

[54] D. Maram, H. Malvai, F. Zhang, N. Jean-Louis, A. Frolov, T. Kell, T. Lobban,

C. Moy, A. Juels, and A. Miller. CanDID: Can-do decentralized identity with

legacy compatibility, sybil-resistance, and accountability. In 2021 IEEE Symposium
on Security and Privacy, pages 1348–1366. IEEE Computer Society Press, May

2021.

[55] N. Naik and P. Jenkins. uPort open-source identity management system: An

assessment of Self-Sovereign Identity and user-centric data platform built on

blockchain. In IEEE International Symposium on Systems Engineering, ISSE 2020,
pages 1–7. IEEE.

[56] NIST. Submission requirements and evaluation criteria for the lightweight cryp-

tography standardization process. Technical report, National Institute for Stan-

dards and Technology - NIST, 2018. Accessed: 2023-03-07.

48

https://eprint.iacr.org/2023/915
https://ia.cr/2021/1140
www.cambridge.org/9781108795937
https://id4me.org
https://eprint.iacr.org/2011/272
https://eprint.iacr.org/2011/272
https://sovrin.org/wp-content/uploads/AnonCred-RWC.pdf
https://identity.foundation/bbs-signature/draft-looker-cfrg-bbs-signatures.html
https://identity.foundation/bbs-signature/draft-looker-cfrg-bbs-signatures.html
https://eprint.iacr.org/2008/328

Attribute-based Single Sign-On: Secure, Private, and Efficient Proceedings on Privacy Enhancing Technologies 2023(4)

[57] OneLogin. OneLogin Trusted Experience Platform. https://www.onelogin.com/

pages/identity-as-a-service-idaas.

[58] Organization for the Advancement of Structured Information Standards. Security

assertion markup language (saml) v2.0, 2005.

[59] C. Paquin. U-Prove Technology Overview V1.1. Tech report, April 2013.

[60] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. In J. Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140.
Springer, Heidelberg, Aug. 1992.

[61] T. Rabin. A simplified approach to threshold and proactive RSA. In H. Krawczyk,

editor, CRYPTO’98, volume 1462 of LNCS, pages 89–104. Springer, Heidelberg,
Aug. 1998.

[62] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore. OpenID

connect core 1.0 incorporating errata set 1. https://openid.net/specs/openid-

connect-core-1_0.html, 2014. Accessed: 2020-03-01.

[63] A. Shamir. How to share a secret. Communications of the Association for Comput-
ing Machinery, 22(11):612–613, Nov. 1979.

[64] M. Shirvanian, S. Jarecki, N. Saxena, and N. Nathan. Two-factor authentication

resilient to server compromise using mix-bandwidth devices. In NDSS 2014. The
Internet Society, Feb. 2014.

[65] N. P. Smart and Y. T. Alaoui. Distributing any elliptic curve based protocol. In

M. Albrecht, editor, Cryptography and Coding - IMACC, volume 11929 of LNCS,
pages 342–366. Springer, 2019.

[66] J. Sun, Y. Su, J. Qin, J. Hu, and J. Ma. Outsourced decentralized multi-authority

attribute based signature and its application in iot. IEEE Trans. Cloud Comput.,
9(3):1195–1209, 2021.

[67] Verimi. Verimi ID Wallet. https://verimi.de/en.

[68] S. Weis. Threshsig. https://github.com/sweis/threshsig. Accessed: 2022-02-27.

[69] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi. Town crier: An authenti-

cated data feed for smart contracts. In E. R. Weippl, S. Katzenbeisser, C. Kruegel,

A. C. Myers, and S. Halevi, editors, ACM CCS 2016, pages 270–282. ACM Press,

Oct. 2016.

[70] F. Zhang, D. Maram, H. Malvai, S. Goldfeder, and A. Juels. DECO: Liberating

web data using decentralized oracles for TLS. In J. Ligatti, X. Ou, J. Katz, and

G. Vigna, editors, ACM CCS 2020, pages 1919–1938. ACM Press, Nov. 2020.

A COMPARISON OF AB-DSSO TO OTHER

CRYPTOGRAPHIC PRIMITIVES

We discuss how ab-dSSO relates to concepts such as attribute-based

signatures and attribute-based credentials.

Attribute-based credentials. An attribute-based credential (ABC) sys-

tem (Fig. 8, right) lets a user obtain a credential cr𝐴 over attributes𝐴

from a trusted credential issuer. To demonstrate statements 𝑃 about

their identity, the user can—without further interacting with the

credential issuer—then derive presentation tokens 𝜋𝑃 from their cre-

dential. While the idea of credentials dates back to Chaum [23], the

first fully-secure ABCwas proposed by Lysyanskaya et al. [51], with
subsequent improvements by Camenisch and Lysyanskaya [16, 17],

which we refer to as CL-ABCs. The general idea is that a credential

consists of signed attributes, and presentations are non-interactive

zero-knowledge proofs about the contents of the signatures. CL-

ABCs, which work with Camenisch-Lysyanskaya signatures [16],

have been turned into commercial products such as Microsoft’s

U-Prove [59] and IBM’s Idemix [18], which can be implemented

on SmartCards [5]. Recently, efforts were taken to build an ABC

called BBS+ [50] from Boneh-Boyen-Shacham signatures [11] in

combination with zero-knowledge proofs. It is currently not known

how to efficiently revoke BBS+ credentials or how to demonstrate

predicates over attributes.

A general drawback of ABCs is their reliance on credential is-

suers that must be trusted with not impersonating users. Further,

ABCs deploy zero-knowledge proofs that must be computed by the

user and are computationally heavy. It is also not trivial to make pre-

sentation tokens on policies that combine credentials from different

credential issuers. Lastly, token presentations are zero-knowledge

proofs that do not adhere to any standardized format that service

providers can process.

Attribute-based signatures. Attribute-based signatures (ABS) [52]

are digital signature schemes with a trusted AA who can generate

signing keys sk𝐴 w.r.t. an attribute set 𝐴. Such a signing key can

be used to sign a message-policy pair (𝑀, 𝑃) iff 𝑃 (𝐴) = 1, i.e., the

attribute set fulfills the policy. We illustrate ABS and their close

relation to P-ABCs in Fig. 8 (left). To reduce the load on the signer,

Chen et al. [25] study outsourced ABS, where an untrusted server

assists the signer with the signature computation but cannot sign on

its own, andMaji et al. [53] study multi-authority ABS, where secret

keys from different trusted attribute authorities can be combined.

This concept was later also realized in the outsourced setting [66].

One can naturally extend ABS to distributed ABS, as illustrated in

Fig. 9 (left). While, intuitively, this primitive seems closely related

to our notion of ab-dSSO, and it seems instructive to precisely

understand the differences, we caution that there does not seem

to exist any formal definition of distributed ABS in the literature

yet. In a distributed ABS scheme, a set of identity providers assist

the user in computing the attribute-based signature. An attacker

must corrupt all IdPs to recover the signing key sk𝐴 , and otherwise,
the user cannot be impersonated by any subset of corrupted IdPs.

To make the IdPs compute with the distributed sk𝐴 , a user must

authenticate themselves as the one having outsourced sk𝐴 to the

distributed IdP.

The main drawback of ABS is that, until today, no scheme is

known that produces signatures of any standardized format. This

and the strong trust model (the AA can impersonate the user) are

the main reasons why ABS has not seen adoption in practice. In

this work we thus change distributed ABS from Fig. 9 (left) in one

crucial aspect: As illustrated in Fig. 9 (right), instead of letting the

distributed IdP compute an ABS signature in a potentially non-

standardized format, we decouple policy verification and signing.

Namely, the IdPs first jointly check whether the policy is satisfied

with the help of what can be seen as a shared (hiding and binding)

commitment com𝐴 on the user’s attributes. If that check passes, the

servers deploy a distributed signature scheme to sign the pair (𝑀, 𝑃).
This approach has two benefits: First, the hiding commitment to

user attributes keeps attributes private, while ABS secret key sk𝐴
unavoidably leaks information about 𝐴. Second, the output format

can now be a standardized signature such as ECDSA. This comes

at the cost of weaker guarantees in case all IdPs are corrupted: In a

distributed ABS scheme such IdPs can compute only signatures for

policies satisfied by𝐴, while they can compute arbitrary signatures

in our ab-dSSO scheme.

B ADDITIONAL PROTOCOL DESCRIPTION

We formalize our ab-dSSO protocol in Figures 5–7 in Sect. 4, with a

high level blueprint in Fig. 4. Here we outline its steps and explain

why they are needed.

Any protocol instance has to start with a single call to the setup
phase. This phase uses the functionality for proactively secure

threshold signatures (FpsThrSig, Fig. 18) to generate a public verifi-

cation key vk, and 𝑛 𝑡-out-of-𝑛-secret-shares of the corresponding

signing key. Each share is sent to exactly one of the servers. The

49

https://www.onelogin.com/pages/identity-as-a-service-idaas
https://www.onelogin.com/pages/identity-as-a-service-idaas
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://verimi.de/en
https://github.com/sweis/threshsig

Proceedings on Privacy Enhancing Technologies 2023(4) Tore Kasper Frederiksen, Julia Hesse, Bertram Poettering, and Patrick Towa

(vk, sk)

SP
authority

𝜎 ← ABS.Signsk𝐴 (𝑀, 𝑃)

𝑀, 𝑃

𝜎𝐴

sk𝐴
SP

authority

𝜋𝑃 ← Der(cr𝐴, 𝑃)

𝑃

𝜋𝑃𝐴

cr𝐴

Figure 8: Cryptographic primitives for attribute-based access token generation, part I. Left: Attribute-Based Signatures (ABS),

where signatures verify with respect to vk. Right: P-ABCs. Both options require costly computation on the user side, and the

produced signatures/proofs are not of standardized format.

SP

attribute authority (vk, sk) IdPs

𝜎 ← ABS.Signsk𝐴 (𝑀, 𝑃)
𝑀, 𝑃

𝜎

𝑀, 𝑃

𝜎

𝐴

sk𝐴

SP

attribute authority
IdPs (vk, sk)

if 𝐴 ∈ com𝐴 ∧ 𝑃 (𝐴) = 1:

𝜎 ← Signsk (𝑀, 𝑃)𝑀, 𝑃

𝜎

𝑀, 𝑃

𝜎

𝐴

com𝐴

Figure 9: Cryptographic primitives for attribute-based access token generation, part II. Left: distributed Attribute-Based

Signatures (dABS). Right: attribute-based distributed SSO (ab-dSSO). Both options are lightweight on the user and produce

signatures (tokens) that verify under vk. The IdP computations are distributed and, unless all IdPs are corrupt, they do not

reveal any information about 𝐴 beyond 𝑃 (𝐴). Both primitives require the user to authenticate to the IdPs, which we omit from

the picture for simplicity.

servers then use the outsourced MPC functionality FreqABB to sam-

ple random coefficients of a degree 𝑡 − 1 polynomial, 𝑓Δ (·). In
MPC, the servers then evaluate this polynomial on each 𝑛 points

to compute a Shamir secret sharing of an unknown, yet random

value Δ, which we will call the global MAC key. The point 𝑓Δ (𝑖) is
opened towards each server 𝑖 ∈ [𝑛] through the use of the macro

Pedersen
+ .Share. This macro ensures that each server’s share of

Δ is reshared with all other servers through backup shares, to al-

low for recovery during the refresh phase in case some servers get

corrupted, drop dead, or lose their data.

Next, the registration phase is executed between a user 𝑈 and

all the 𝑛 servers in order to add a set of attributes, 𝐴, to the user’s

account (under uid) in our ab-dSSO scheme. The user inputs to the

outsourced MPC functionality FreqABB: their unique user ID (uid),
their attributes (𝐴), their public attribute types type𝑗 𝑗 ∈[𝑚] , along
with a proof (𝜋) that these attributes have been certified by an at-

tribute authority with a public key vkCA that the servers trust. This

certificate is verified by executing the verification function CAVfy
in MPC. While this is expensive, the idea of our ab-dSSO scheme

is to carry out this verification only once during registration, and

then substitute this step in the online signing phase by something

that is orders of magnitude more efficient, namely by a MAC verifi-

cation. Proceeding with the description of the registration phase of

our ab-dSSO scheme, the servers restore the global MAC key Δ, by
inputting their Shamir shares of Δ into FreqABB, where the private
value [Δ] is computed using Lagrange interpolation. Then, in a

similar manner to how Δ was constructed, compute an attribute-

specific MAC key 𝛽uid, 𝑗 for each attribute of 𝑎 𝑗 of the user with ID

uid. That is, a value 𝛽uid, 𝑗 is sampled through picking coefficients of

a random 𝑡 −1 degree polynomials, doing interpolation for 𝑛 points,

and then sharing each point using the macro Pedersen
+ .Share to

allow for recovery and refreshing. At the same time the servers

also compute a MAC vuid, 𝑗 = 𝑎 𝑗 · Δ + 𝛽uid, 𝑗 for each attribute 𝑎 𝑗 for

user uid. The MAC vuid, 𝑗 is then opened to the user, whereas each

server learns a Shamir share of 𝛽uid, 𝑗 (along with backup shares

and validation information).

After the setup and registration phases have been completed for

a user𝑈 with uid, the user can collaborate with 𝑡 servers in order

to get a signed token on a message 𝑀 and a policy validating a

predicate 𝑃 on a subset of𝑈 ’s attributes 𝐴. This is done by the user

inputting each relevant attribute (𝑎 𝑗), along with the corresponding

attribute-specific MAC (vuid, 𝑗) into an outsourced MPC instance of

FreqABB. The servers then input their shares of the global MAC key

Δ, along with the relevant attribute-specific MAC keys (𝛽uid, 𝑗), into

FreqABB. In MPC the MAC keys [Δ], [𝛽uid, 𝑗] are computed from

the servers’ shares using Lagrange interpolation, and the MAC is

validated by ensuring that vuid, 𝑗 = 𝑎 𝑗 · Δ + 𝛽uid, 𝑗 . The policy on the

attributes is then also validated in MPC. If both validations pass,

the servers use FpsThrSig to construct a threshold signature on 𝑃

and the message𝑀 . Each partial signature is sent to the user, who

reconstructs the actual signature 𝜎 . Since the 𝑡 −1 partial signatures

leak nothing about the actual signature 𝜎 (which is used as a token

against a relying party) a corrupt server cannot hijack an honest

user’s token.

Revocation of the a user’s attributes is done by the servers delet-

ing their shares of the attribute-specific MAC key for the attribute

in question. Thus, this attribute can never be verified again. This

step is very efficient thanks to the account-based model of our

ab-dSSO scheme.

50

Attribute-based Single Sign-On: Secure, Private, and Efficient Proceedings on Privacy Enhancing Technologies 2023(4)

Global parameters: Constant 𝑐 and static 𝑔,ℎ ∈ F𝑝𝑐 with unknown log𝑔 (ℎ) .
Pedersen

+ .MPC-Share: Executed between all parties in a set Σ B

{𝑆1, . . . , 𝑆𝑛 }, each with input [𝑠𝑖], as follows.
• The servers in Σ use FreqABB as follows:

– Generate [𝑎𝑖,1], . . . , [𝑎𝑖,𝑡−1]
rnd←− FssidABB. Let [𝑎𝑖,0] B [𝑠𝑖] and

𝑃 [𝑠𝑖] (𝑋) B [𝑎𝑖,0] + [𝑎𝑖,1]𝑋 + · · · + [𝑎𝑖,𝑡−1]𝑋 𝑡−1
mod 𝑝 .

– For each 𝑗 ∈ [𝑛] compute [𝑠𝑖,𝑗] = 𝑃 [𝑠𝑖] (𝑗) and send ([𝑠𝑖,𝑗], 𝑆 𝑗)
open
−→

FssidreqABB for 𝑗 ∈ [𝑛] and ([𝑎𝑖,𝑘], 𝑆𝑖)
open
−→ FssidreqABB for each 𝑘 ∈ [𝑡 − 1].

//Server 𝑆𝑖 learns the coefficients of 𝑃 [𝑠𝑖] and all servers learns a point on
that polynomial.

• Server 𝑆𝑖 samples 𝑟𝑖,𝑘 ←𝑅 F𝑝𝑐 for 𝑘 ∈ [𝑡 − 1] ∪ {0} and let 𝑡𝑖 B 𝑟𝑖,0 and

denote 𝑃𝑡𝑖 (𝑋) B 𝑟𝑖,0 + 𝑟𝑖,1𝑋 + · · · + 𝑟𝑖,𝑡−1𝑋
𝑡−1

.

• 𝑆𝑖 computes 𝐴𝑖,𝑘 ← 𝑔𝑎𝑖,𝑘 · ℎ𝑟𝑖,𝑘 ∈ F𝑝𝑐 ,a broadcasts (ssid, 𝐴𝑖,0, . . . , 𝐴𝑖,𝑡−1)
to all servers and sends (ssid, 𝑡𝑖,𝑗 ← 𝑃𝑡𝑖 (𝑗)) to server 𝑆 𝑗 for 𝑗 ∈ [𝑛] \ {𝑖 }.
• Each server 𝑆 𝑗 ∈ Σ executes Verify on (𝑠𝑖,𝑗 , 𝑡𝑖,𝑗 , 𝐴𝑖,0, . . . , 𝐴𝑖,𝑡−1) and aborts
if reject is returned.

• Each 𝑆𝑖 returns (ssid, {priv B (𝑠𝑖,1, 𝑡𝑖,1), . . . , (𝑠𝑖,𝑛, 𝑡𝑖,𝑛) }, {pub B

𝐴𝑖,0, . . . , 𝐴𝑖,𝑡−1 }) .
Pedersen

+ .Share: Executed by each party 𝑆𝑖 ∈ Σ on input 𝑠𝑖 , 𝑡𝑖 , with 𝑠𝑖 ∈ F𝑝
and 𝑡𝑖 ∈ F𝑝𝑐 . Server 𝑆𝑖 proceeds as follows.
• Generate 𝑎𝑖,1, . . . , 𝑎𝑖,𝑡−1 ←𝑅 F𝑝 . Let 𝑎𝑖,0 B 𝑠𝑖 and 𝑃𝑠𝑖 (𝑋) B 𝑎𝑖,0 + 𝑎𝑖,1𝑋 +
· · · + 𝑎𝑖,𝑡−1𝑋

𝑡−1
.

• Sample 𝑟𝑖,1, . . . , 𝑟𝑖,𝑡−1 ←𝑅 F𝑝𝑐 and let 𝑟𝑖,0 B 𝑡𝑖 and denote 𝑃𝑡𝑖 (𝑋) B
𝑟𝑖,0 + 𝑟𝑖,1𝑋 + · · · + 𝑟𝑖,𝑡−1𝑋

𝑡−1
.

• Compute 𝐴𝑖,𝑘 ← 𝑔𝑎𝑖,𝑘 · ℎ𝑟𝑖,𝑘 ∈ F𝑝𝑐 and broadcast (ssid, 𝐴𝑖,0, . . . , 𝐴𝑖,𝑡−1)
to all servers and sends (ssid, 𝑠𝑖,𝑗 ← 𝑃𝑠𝑖 (𝑗), 𝑡𝑖,𝑗 ← 𝑃𝑡𝑖 (𝑗)) to server 𝑆 𝑗 for

𝑗 ∈ [𝑛] \ {𝑖 }.
• Return (ssid, {priv B (𝑠𝑖,1, 𝑡𝑖,1), .., (𝑠𝑖,𝑛, 𝑡𝑖,𝑛) }, {pub B 𝐴𝑖,0, .., 𝐴𝑖,𝑡−1 }) .
Pedersen

+ .Verify: Executed by any party 𝑆𝑖 ∈ Σ on input

(𝑠 𝑗,𝑖 , 𝑡 𝑗,𝑖 , 𝐴 𝑗,0, . . . , 𝐴 𝑗,𝑡−1) . Accept if 𝑔𝑠 𝑗,𝑖 · ℎ𝑡 𝑗,𝑖 =
∏𝑡−1

𝑘=0
(𝐴𝑗,𝑘)𝑖

𝑘
and

otherwise reject.

Pedersen
+ .Reconstruct: Executed by any party 𝑆𝑖 ∈ Σ on input

(𝑇, (𝑠 𝑗,𝑖 , 𝑡 𝑗,𝑖) 𝑗 : 𝑆 𝑗 ∈𝑇) , with𝑇 ⊆ Σ of size 𝑡 as follows.

• Compute 𝜔𝑇 ,𝑗 B
∏

𝑘≠𝑗 : 𝑆𝑘 ∈𝑇 𝑘/(𝑘 − 𝑗) mod 𝑝 .

• Compute 𝑠𝑖 ←
∑

𝑗 : 𝑆 𝑗 ∈𝑇 𝑠 𝑗,𝑖𝜔𝑇 ,𝑗 mod 𝑝 and 𝑡𝑖 ←
∑

𝑗 : 𝑆 𝑗 ∈𝑇 𝑡 𝑗,𝑖𝜔𝑇 ,𝑗 ∈ F𝑝𝑐
and return (𝑠𝑖 , 𝑡𝑖) .

Pedersen
+ .Recover: Executed by each server in Σ on input (𝑠𝑖 , 𝑡𝑖 , {𝑠 𝑗,𝑖 , 𝑡 𝑗,𝑖 ,

𝐴𝑗,0, . . . , 𝐴 𝑗,𝑡−1 }𝑛𝑗=1
) .

• Broadcast (𝐴𝑗,0, . . . , 𝐴 𝑗,𝑡−1)𝑛𝑗=1
.

• Upon receiving such tuples from all the other servers in Σ, if there exists a
tuple that was broadcast by at least 𝑡 servers, overwrite (𝐴𝑗,0, . . . , 𝐴 𝑗,𝑡−1)𝑛𝑗=1

with the values from that tuple. Abort if no such tuple exists (one necessarily

does in case 𝑛 − 𝑡 ≥ 𝑡).

• If 𝑔𝑠𝑖 · ℎ𝑡𝑖 ≠ 𝐴𝑖,0, i.e. if 𝑠𝑖 is inconsistent with value committed in 𝐴𝑖,0, then

do as follows:

– Broadcast to all servers in Σ a request to privately send the back-up shares

for 𝑆𝑖 they hold, i.e. 𝑠𝑖,𝑗 , 𝑡𝑖,𝑗 for server 𝑆 𝑗 ∈ Σ.
– Overwrite the values 𝑠𝑖,𝑗 , 𝑡𝑖,𝑗 with those received from server in 𝑆 𝑗 ∈ Σ.
Then execute Verify on (𝑠𝑖,𝑗 , 𝑡𝑖,𝑗 , 𝐴𝑖,0, . . . , 𝐴𝑖,𝑡−1 for each 𝑗 ∈ [𝑛] and
add (𝑠𝑖,𝑗 , 𝑡𝑖,𝑗) to an initially empty set 𝑇 for each pair (𝑠𝑖,𝑗 , 𝑡𝑖,𝑗) where
Verify returns accept. //If 𝑛 − 𝑡 ≥ 𝑡 , there must be at least 𝑡 correct shares.

– Overwrite 𝑠𝑖 , 𝑡𝑖 with the values returned from Pedersen
+ .Reconstruct

on input (𝑠 𝑗,𝑖 , 𝑡 𝑗,𝑖) 𝑗 : 𝑆 𝑗 ∈𝑇 ′ for any𝑇
′ ⊆ 𝑇 s.t. |𝑇 ′ | = 𝑡 .

• Return (𝑠𝑖 , 𝑡𝑖 , {𝑠 𝑗,𝑖 , 𝑡 𝑗,𝑖 , 𝐴𝑗,0, . . . , 𝐴 𝑗,𝑡−1 }𝑛𝑗=1
) .

a
We implicitly map an element 𝑥 ∈ F𝑝 to an element in F𝑝𝑐 by interpreting 𝑥 as the

constant term of the degree 𝑐 − 1 polynomial F𝑝 [𝑋], which represent an element in F𝑝𝑐 ,
while keeping all non-constant terms as 0.

Figure 10: Macro Pedersen
+
for Pedersen verifiable secret

sharing based on values stored in MPC over an extension

field F𝑝𝑐 . The Macro is used to refresh the MAC shares of our

ab-dSSO scheme, i.e., it is called by Fig. 7.

Verification of a signed token on message 𝑀 and policy 𝑃 is

carried out by calling the verification method of FpsThrSig. By de-

sign, FpsThrSig requires this verification method to be an efficiently

computable algorithm (i.e., not a distributed or interactive proce-

dure). In our instantiation of FpsThrSig, this will be the standard

RSA signature verification algorithm.

If a server has been corrupted, but the adversary has been re-

moved again, then it is needed to execute the refresh phase to

refresh the cryptographic shares the servers hold, in order to de-

validate the shares the adversary has extracted. If the adversary

has deleted or modified a servers shares, then the refresh phase

also ensures that the damaged server can restore correct shares

again. The signing key shares are refreshed using FpsThrSig, and the
MAC shares are refreshed using the macro Pedersen

+
in Fig. 10.

Concretely, Pedersen
+ .Recover is first used to recover the newly

un-corrupted servers’ “old”, yet correct shares, in case the adver-

sary has deleted or modified these. Afterwards, each server uses

Pedersen
+ .Share to perform a 0-sharing, and ask all other servers

to add the resulting shares of 0 to their backup shares and valida-

tion information. This is done in order to rerandomize the backup

shares and validation information the other servers hold on their

shares. Finally the servers validate that the backup shares are still

correct and consistent after the recovery and refresh steps, using

Pedersen
+ .Verify.

C DEPLOYMENT CONSIDERATIONS

C.1 Attribute Authorities (AA)

We first outline different approaches from the literature to imple-

ment the attribute authorities and corresponding oblivious certifi-

cate verification assumed in this work. This requires a method to

convince the servers about the validity of a certified attribute, but

without disclosing it.

Using DECO. The work DECO by Zhang et al. [70] shows how to

leverage the authenticity of a TLS connection between an attribute

authority and a user in a way that allows the user to selectively

disclose data signed by the attribute authority, to a third party. In

our situation the third party will be an IdP server. This allows the

server to only learn relevant and certified attributes about the user.

In the LAN setting this can be achieved with an overhead of less

than 2 seconds, which can be considered reasonable as it is only

needed during setup.

Furthermore, [70] also show how to construct zero-knowledge

proofs on the data signed in the TLS connection, which allows the

user to prove anything in relation to the data. We can leverage this

in our scheme by executing DECO 𝑛 times in parallel, once for each

IdP server, and proceeding as follows:

(1) Let 𝐴 denote the attributes certified by the attribute author-

ity which the user wishes to prove some statement about

towards a server.

(2) The user then constructs a commitment to 𝐴, which we

denote by 𝐶 , and define 𝑅 to be the proof statement men-

tioned above, augmented with the verification that 𝐶 is a

commitment to 𝐴.

(3) The user defines 𝜋 to contain 𝐶 and CAVfy to validate that

𝐶 is to a commitment to 𝑎1, . . . , 𝑎𝑚 ∈ 𝐴 given as input to

FreqABB.
51

Proceedings on Privacy Enhancing Technologies 2023(4) Tore Kasper Frederiksen, Julia Hesse, Bertram Poettering, and Patrick Towa

Through this approach we obtain a linking of the validity of the

signature from TLS into the MPC protocol, while the attribute

authority is oblivious to the fact that this protocol gets carried out.

If the commitments are Pedersen commitments [60] over elliptic

curves, then the approach by Smart and Alaoui [65] or Dalskov et
al. [27] for doing efficient MPC over elliptic curves could be used

to efficiently compute and validate the commitment in MPC.

A similar approach to getting attribute certificates from an at-

tribute authority, through an authenticated TLS channel, can be

taken with Town Crier, although that scheme relies on secure hard-

ware. In particular SGX, which has already been shown to be easily

compromisable [69].

When it comes to revocation it can be done using a time-out

approach. That is, attributes issued through a DECO approach have

a certain life-time associated and when it expires the IdP servers

will remove the associated attributes and request the user to get

them reissued.

Using bearer tokens or X.509. In the setting of bearer tokens [58, 62]

or X.509 [26] certificates, the attributes are certified through a sig-

nature by an authority. The servers must remain oblivious to the

content of the token, and hence validate its signature and any other

relevant information, such as expiration, in MPC. That is, the func-

tion CAVfy must validate the signature against the key vkCA and

other aspects, such as expiration, against the current time. While

validating a signature in MPC on hidden input can be expensive,

efficiency increases significantly if a few simple assumptions hold:

assume a hash-and-sign signature scheme is used (e.g. (EC)DSA

or RSA) and that the token contains a high amount of entropy,

either through a serial number, or a user-defined field that can be

populated with randomness. In this situation, the hash digest can

be opened as a public value. This means that the signature can be

verified outside of MPC.

In relation to OAuth [40] two types of tokens are issued. First,

a short-lived “access token”, which contains data that the servers

can use to get a “refresh token” by the attribute authority. The

refresh token can then be used long-term by the recipient to get

new access tokens issued by the authority, without the interac-

tion of the user. If the user gets their privileges revoked, or they

don’t trust the server any more, then the attribute authority will

stop accepting the refresh token. If the citizen’s attributes are only
contained in the initial access token, then this flow still allows a

server to use the refresh token to get new access tokens to ensure

that the citizen’s attributes are still valid. Once it stops being valid

they will revoke the associated attributes or the user. This approach

however, requires that any access tokens the server requests, using

the refresh token, does not contain the citizen’s attributes. If the

tokens are instead issued more like an x509 certificate, then the IdP

servers can regularly check the certificate revocation list, supposed

to be published by the attribute authority. This list will contain

fingerprints of revoked certificates and the IdP servers can then

remove attributes associated with the fingerprint of the revoked

certificate.

Using a decentralized attribute authority.While our main focus in

this work has been to construct a standards-compliant identity man-

agement system, this necessary means that the attribute authorities

are not distributed. Thus they provide single points of failures

(on the attributes they certify respectively). However, if attribute

authorities are willing to use a distributed approach for issuance

then our entire system could rely entirely on distributed security.

Consider for example a distributed attribute authority that would

construct an elliptic curve Pedersen commitment to the attributes

and sign this with a distributed signature scheme. If the authority

sends the opening information to the user, then this would allow us-

ing public verification of the signature and then to use the approach

of Dalskov et al. [27]. to reconstruct, and hence verify, the Pedersen
commitment efficiently in MPC. Concretely this would mean that

CAVfy gets split into a public and private part, where the public

part validates the signature by the distributed attribute authority

on the commitment. For the private part we must assume the user

use (input, . . .) to private input the opening information of the

commitment, then FreqABB recomputes the commitment and opens

this to all the servers. The server can then validate that this was in

fact the commitment signed by the distributed attribute authority.

Using a pragmatic approach to privacy.While the approaches above

are all feasible they are relatively expensive. Depending on the

model of security assumed, it might be permissible to have the

servers learn the attributes in question, either through DECO with-

out a zero-knowledge proof andMPC validation, or through a bearer

token or X.509-style certificate. While on the surface this seem to

go directly against the privacy goals we have tried to achieve, we

do note that is actually not the case if the entities running the

servers are actually trusted and the motivation for distributing the

server is to ensure protection against hacker or internal attacks,

rather than a deliberate malicious legal entity. In this situation it

can be deemed acceptable that the server learn the users attribute

during registration as they will not be stored in persistent storage.

Furthermore even if a server is compromised during registration

it is still prevent malicious issuance of tokens as all servers must

agree on such issuance. In that situation the registration can be

realized efficiently by having 𝜋 contain the signed token/certificate

by the attribute authority and the function CAVfy does not exe-

cute any private function but instead only validates the signed

token/certificate in plain, against the attributes 𝑎1, . . . , 𝑎𝑚 using

the approach discussed in App. D.1.

C.2 User Deployment

Our ab-dSSO scheme implicitly assumes the user holds a secure

state, concretely consisting of their attributes and the MACs on

these, this is in contrast to PASTA [1] or PESTO [9] which only

require the user to possess an easy-to-remember password. SSO

protocols are often used in a web-based context, where no local

state is necessarily stored. In such a context a user would tradition-

ally authenticate using a password (and perhaps a second factor)

towards the IdP to prove they own the uid they claim, and then

ask the IdP to construct a token for them. Thus PASTA [1] and

PESTO [9] follow this traditional paradigm. However, in practice

authenticating purely based on a password might not provide suffi-

cient security against credential stuffing attacks, hence a secondary

authentication factor might need to be supplied as well. Instead of

restricting our formal security model to a password model, we only

consider the core cryptographic material needed and leave it as a

52

Attribute-based Single Sign-On: Secure, Private, and Efficient Proceedings on Privacy Enhancing Technologies 2023(4)

deployment, or a protocol-composition option, how to manage or

augment this.

However we note, that to deploy our ab-dSSO scheme in such a

password-based context, the user could use password-authenticated

threshold secret sharing to store their MAC values vuid, 𝑗 in a thresh-
old or distributed manner [14, 39]. Alternatively, if authentication

is allowed to happen via a phone app, then secure hardware, such

as the SE/TEE, could be leveraged to store the MAC values, and

optionally additional authentication keys. Finally, an approach com-

bining password-authenticated threshold secret sharing along with

an app leveraging secure hardware, could be deployed for optimal

security [34]. If we assume the user has (somewhat) secure storage

available, then the password security can also be augmented with

a possessive element of multi factor authentication by letting them

be one of the authentication servers [64] or by co-authenticating

the request using secure hardware [34].

C.3 Unlinkability and Untraceability

The tokens issued in real-world SSO systems [40, 58, 62] contain,

at the minimum, a unique token ID, unique identifier of the user,

unique identifier of the service provider, and a validity time. These

together ensure that the token can work as a bearer token for

authentication at a service provider. The unique user ID allows the

notion of a user-account at the service provider’s end, while the

service provider ID for example protects against a malicious service

provider reusing a user’s token towards another service provider.

The validity time ensures that a temporary corruption of a user

cannot be used to issue tokens for the future. Such contents make

the token traceable and linkable (cf. Sect. 3).

Remember that unlinkability means colluding service providers

cannot lean which users they have in common. More formally, let

uid0, uid1 denote two registered users, and let𝑀,𝑀 ′, 𝑃, 𝑃 ′ denote
two adversarially chosen messages and policies that do not contain

uid0 and uid1, and 𝑃, 𝑃
′
are both satisfied by both accounts. Let 𝑏

denote a random bit, and 𝜎 a token on𝑀, 𝑃 generated for uid0, and

𝜎𝑏 a token on𝑀 ′, 𝑃 ′ generated for uid𝑏 . Then, given access to 𝜎, 𝜎𝑏
and the transcripts of the two token generations, no adversary shall

be able to guess 𝑏 with probability significantly greater than 1/2.
Note the unlinkability property implies that tokens are anonymous,
i.e., don’t reveal which uid account at the IdPs was used to generate

them, unless this information is already leaked by 𝑀, 𝑃 itself. In

other words, an ab-dSSO system guarantees that the cryptography

does not leak additional information about uid towards the SP.

In order to exploit the unlinkability our ab-dSSO scheme pro-

vides, one could use pseudonyms, for example one pseudonym per

service provider to ensure unlinkability of tokens created for differ-

ent providers. Usage of fresh pseudonyms for every token genera-

tion in our ab-dSSO scheme results in full unlinkability, and still has

use cases such as proof of negative disease testing [34], although

compatibility with standard token format [40, 58, 62] needs to be

checked.

Concretely, such pseudonyms can be realized for a user with

unique ID uid, service provider with ID spid as follows: During the

setup phase each server 𝑆𝑖 generates a random point 𝑟𝑖 on a random

degree 𝑡 − 1 polynomial, with constant term 𝑟 , in a group where the

discrete logarithm problem is hard. This can be done using Feld-

man secret sharing. The servers then select a cryptographic hash

function 𝐻 , whose image is the set of DL-secure group generators

in the field where 𝑟 lives. They use 𝐻 to compute 𝐻 (uid, spid) = 𝑔.

During the signing phase the servers compute 𝑔𝑟 = pseudo through
polynomial interpolation on the values 𝑔𝑟𝑖 . The value pseudo will
then be the pseudonym used for user uid and service provider spid.
During the refresh phase 𝑟𝑖 can get refreshed in a similar manner

as the MAC keys and MAC shares using Feldman secret sharing.

It is easy to see that the pseudonym pseudo cannot be linked to a

user/service provider unless 𝑟 is know6
. Since pseudo is only related

to the content of the tokens relayed by a user to a service provider,

it does not affect the IdP servers’ ability to revoke attributes of a

user with uid, when learning about a revocation need from the

attribute authorities.

When it comes to untraceability, remember it means that a col-

luding IdP and service provider cannot trace if a token belongs to

the same user. Thus untraceability is intuitively very hard to achieve

in practice as holding identifiable user-information might be legally
required of both the IdP and certain service providers. Thus even if

the token itself does not create a trace, meta-information associated

with the users on each side would. Furthermore, in our case the

data in the token must also be non-unique, i.e. without granular

time-stamps and other information, as this would make it trivial

to trace. However, if we assume these constraints are met, then

our concrete ab-dSSO system does achieve some form of protec-

tion against IdPs, since it hides the combined token from the IdP

server, as long as at most 𝑡 − 1 of them are corrupt. This is due to

the distributed nature of the IdP and the user being the one who

assembles token shares. While the use-case of no identifiable meta-

data stored on both the IdP and SP, and non-unique tokens might

seem contrived, we note that this is exactly the desired case for

vaccine validation. I.e. we do not wish the service provider learning

the identity of the user who is proving they have a valid covid

vaccine (e.g.,𝑀 =valid-covid-vacc). Hence, for non-unique and
SP-anonymous token contents our ab-dSSO system does prevent
IdPs from tracking which service providers a user wants to log in

to. However, such token formats are not allowed in standards such

as SAML or OIDS with which we would like an ab-dSSO scheme

to be compatible with. Specifically these standards require some

notion of a uid to be included and hence we cannot hope to have

both compatibility with standards and protection against a tracking

IdP at the same time. We consider compatibility of greater impor-

tance, and hence refrain from demanding untraceability. Still, for

future SSO standards allowing such anonymous token contents, our

concrete ab-dSSO scheme can provide protection against curious

IdPs.

D MPC PRELIMINARIES

D.1 Secure Multi-Party Computation.

We are building our protocol on top of any already existing MPC

scheme which offers the standard interface of an arithmetic black-

box over a field larger than 2
𝑠
for security parameter 𝑠 . We de-

scribe the ideal functionality in Fig. 11. FABB (𝑛, 𝑝) allows 𝑛 servers

6
The servers are however able to link pseudo to a user and service provider since they

know the uid and spid when computing pseudo, and learn pseudo in plain.

53

Proceedings on Privacy Enhancing Technologies 2023(4) Tore Kasper Frederiksen, Julia Hesse, Bertram Poettering, and Patrick Towa

𝑆1, . . . , 𝑆𝑛 to evaluate any arithmetic function over field F𝑝 , on se-

cret/private inputs provided by the servers. Since FABB () accepts
inputs only from a specific set of hard-coded servers, and also gives

output only to those servers, it requires strong server authentica-

tion from any protocol realizing it. FABB (𝑛, 𝑝) allows the adversary
to (unidentifiable) abort at any point. An abort is implicitly modeled

by an adversary blocking messages of the honest servers.

The functionality is parametrized by the number of servers executing the

computation, 𝑛, and the prime modulo which the computation is over, 𝑝 . The

functionality accepts messages from servers 𝑆1, . . . , 𝑆𝑛 , for identifiers {𝑆𝑖 }𝑖∈[𝑛]
that are encoded in sid, and from arbitrary other parties𝑈 . On input from

any party in {𝑈 , 𝑆𝑖 }𝑖∈[𝑛] , the functionality sends an immediate output to all 𝑆𝑖 ,

including the identifier of the requesting party, and excluding private values.

Input: On input (input, sid, ssid, 𝑥, mode) from some party [I.1] pid ∈
{ U , 𝑆𝑖 }𝑖∈[𝑛] for a fresh ssid, if mode = priv then keep 𝑥 private.

Then do:

• If mode = rnd, sample 𝑥 ←𝑅 F𝑝 ;

• Store (ssid, 𝑥) .
Compute: On input (compute, sid, ssid1, ssid2, ssid3, mode) for a fresh ssid3

from servers 𝑆𝑖 for all 𝑖 ∈ [𝑛], do:
• Retrieve (ssid1, 𝑥) , (ssid2, 𝑦) or else ignore the query.
• If mode = mult then store (ssid3, 𝑥 · 𝑦 mod 𝑝) .
• If mode = add then store (ssid3, 𝑥 + 𝑦 mod 𝑝) .

Output: On input (output, sid, ssid, P) from pid ∈ {𝑆𝑖 }𝑖∈[𝑛] for some set

of party identifiers P, do:
• Retrieve (ssid, 𝑥) or else ignore the query.
• If (output, sid, ssid, P) was received from all 𝑆𝑖 , 𝑖 ∈ [𝑛] then send

a delayed output (output, sid, ssid, 𝑥) with private 𝑥 to all parties

in P.

Figure 11: Ideal MPC functionalities. Arithmetic black-

box: Without boxed code the figure depicts functionality

FABB (𝑛, 𝑝), which implements secure arithmetic field opera-

tions between 𝑛 fixed servers {𝑆1, . . . , 𝑆𝑛}. Outsourced MPC:

With boxed code included, the figure depicts FreqABB (𝑛, 𝑝),
which extends FABB (𝑛, 𝑝) by allowing input from arbitrary

requestors 𝑈 , who do not have to be among the 𝑛 servers

carrying out the secure computation.

We now introduce some shorthand notation for protocols mod-

ularly using FABB. To refer to values (ssid, 𝑥) stored within FABB,
we use either 𝑥 or [𝑥]: if the value is not known to all 𝑆𝑖 , 𝑖 ∈ [𝑛],
we call it secret and use [𝑥], and otherwise we call it public and
refer to it as 𝑥 . We then write, e.g., [𝑧] ← [𝑥] + [𝑦] mod 𝑝 as

shorthand for querying FABB’s compute interface in mode = add
with the corresponding identifiers of 𝑥,𝑦 and 𝑧, and similarly for

other functions that can be combined from addition and multi-

plication. For example, exponentiation [𝑧] ← [𝑥]𝑦 with public

𝑦 can be realized by multiplying [𝑥] 𝑦 times with itself. We use

𝑥
priv
−→ F sid

ABB as shorthand for sending (input, sid, ssid, 𝑥, priv) to

FABB with a fresh ssid, or even use {𝑥,𝑦}
priv
−→ F sid

ABB for issuing one

such query with 𝑥 and one with𝑦. Similarly, we use 𝑥
pub
−→ F sid

ABB for

public inputs. We use ([𝑥],P)
open
−→ F sid

ABB as shorthand for sending

(output, sid, ssid,P) to FABB that has stored (ssid, 𝑥). We denote

by [𝑟] rnd←− F sid
ABB a call (input, sid, ssid,⊥, rnd) to FABB with a

fresh ssid upon which FABB has sampled 𝑟 ←𝑅 F𝑝 and stored

(ssid, 𝑟), and extend this notation also to sampling multiple values

[𝑟], [𝑟 ′] as [𝑟], [𝑟 ′] rnd←− F sid
ABB. Functionality FABB is more general

than similar functionalities from the literature, because it allows

for the sampling of random elements and output to specific servers

only. Most protocols in the literature only shows how to get output

to all servers. However, our more general interface is realizable

by the standard interfaces of arithmetic black boxes found in the

literature. For example, to sample a random value, every server

samples an additive share 𝑟𝑖 ←𝑅 F𝑝 and sends 𝑟𝑖
priv
−→ FABB, and

then servers jointly compute [𝑟] = ∑
𝑖∈[𝑛] [𝑟𝑖]. If at least one server

is honest, 𝑟 is uniformly random. Similarly, to output [𝑥] to only

server 𝑆𝑖 , 𝑆𝑖 sends 𝑟
priv
−→ FABB for a random 𝑟 , then servers jointly

compute [𝑧] = [𝑥] + [𝑟] and have this value be opened to all servers.
The random 𝑟 information theoretically hides 𝑥 to all servers 𝑗 ≠ 𝑖 ,

but server 𝑆𝑖 can restored 𝑥 = 𝑧 − 𝑟 mod 𝑝 . FABB can be realized

using SPDZ [30, 47]. SPDZ is be implemented in the preprocessing
model, where a function-independent computationally secure pre-

processing protocol is executed before the function or data of the

computation is known. This is called the offline phase. While such

preprocessing requires computation assumptions, the correspond-

ing online phase (which uses the preprocessed data once the function
and data to be computed on becomes known) is purely information

theoretically against a static, active adversary corrupted up to 𝑛 − 1

servers [30]. Concretely such preprocessing can for example be

realized using UC-secure oblivious transfer and a pseudorandom

function [47]

Theorem D.1 ([47]). Assume the existence of UC-secure oblivious
transfer and a pseudorandom function (on a seed of at least the length
of the security parameter), then FABB can be UC-securely realized
against a static and malicious adversary corrupting at most 𝑛 − 1

servers where 𝑝 ≥ 2
𝑠 .

The above security statement is not considering proactive secu-

rity, while, looking ahead, the upcoming section will introduce a

signature scheme that is secure against such adversary. The reason

why we do not require FABB to ensure proactive security is that

our SSO protocol will use many short-lived instances of FABB, such
that the corruption schema will not change during the livetime of

each FABB instance. Hence, we do not require proactive security of

this building block. Next to the above theorem, other assumptions

are possible, e.g., using semi-homomorphic encryption [48].

Figure 11 additionally provides an augmented functionality

FreqABB, which accepts arbitrary users next to 𝑆1, ·, 𝑆𝑛 to give input

or receive output from a secure computation ([I.1]). Such a protocol

is known as outsourced MPC, and closely reflects a real-world sce-

nario where a few servers execute an MPC computation, but with

a potentially large set of clients providing private input and receiv-

ing private output of such a computation. The goal of outsourced

MPC is to reduce the computation load on the client. We describe

in App. D.1 how functionality FreqABB can be realized from the

literature.

D.2 Outsourced Computation

We describe here how FreqABB can be realized from the literature.

First, note that FreqABB is not equivalent to FABB, since the clients
do not necessarily participate in the computation, i.e., they do not

54

Attribute-based Single Sign-On: Secure, Private, and Efficient Proceedings on Privacy Enhancing Technologies 2023(4)

User𝑈 Server 𝑆𝑖

On (input, sid, ssid𝑥 𝑗
, 𝑥 𝑗 , priv)

𝑥
(𝑖)
𝑗
←𝑅 F𝑝 for 𝑖 ∈ [𝑛 − 1]

𝑥
(𝑛)
𝑗

= 𝑥 𝑗 −
∑
𝑖∈[𝑛−1] 𝑥

(𝑖)
𝑗

If the above is done ∀𝑗 ∈ [𝑚], then do:

𝑟 (𝑖) ←𝑅 F𝑝 for 𝑖 ∈ [𝑛]
𝑟 =

∑
𝑖∈[𝑛] 𝑟

(𝑖)

𝑘 (𝑖) ←𝑅 F𝑝 for 𝑖 ∈ [𝑛]
𝑘 =

∑
𝑖∈[𝑛] 𝑘

(𝑖)

𝑡 (𝑖) ←𝑅 F𝑝 for 𝑖 ∈ [𝑛 − 1]
𝑡 = 𝑘𝑚+3 + 𝑘𝑚+1 · 𝑟 +∑𝑖∈[𝑚] 𝑘

𝑖 · 𝑥 𝑗
𝑡
(𝑛)
𝑗

= 𝑡 −∑𝑖∈[𝑛−1] 𝑡
(𝑖)

-sid, 𝑡 (𝑖) , 𝑘 (𝑖) , {𝑥 (𝑖)
𝑗
} 𝑗 ∈[𝑚]

{𝑡 (𝑖) , 𝑟 (𝑖) , 𝑘 (𝑖) }
priv
−→ F sid

ABB, {𝑥
(𝑖)
𝑗
} 𝑗 ∈[𝑚]

priv
−→ F sid

ABB
[𝑡] ← ∑

𝑖∈[𝑛] [𝑡 (𝑖)], [𝑟] ←
∑
𝑖∈[𝑛] [𝑟 (𝑖)]

[𝑘] ← ∑
𝑖∈[𝑛] [𝑘 (𝑖)], [𝑥 𝑗] ←

∑
𝑖∈[𝑛] [𝑥

(𝑖)
𝑗
] ∀𝑗 ∈ [𝑚]

([𝑘], {𝑆1, . . . , 𝑆𝑛})
open
−→ F sid

ABB, [𝑞]
rnd←− F sid

ABB
[𝑎] = [𝑡] − 𝑘𝑚+3 − 𝑘𝑚+1 · [𝑟] −∑𝑗 ∈[𝑚] 𝑘

𝑗 · [𝑥 𝑗]
[𝑏] = [𝑞] · [𝑎]

([𝑏], {𝑆1, . . . , 𝑆𝑛})
open
−→ F sid

ABB and abort if 𝑏 ≠ 0

On (compute, sid, . . .) relay this to FABB

On (output, ssid𝑧 𝑗 ,𝑈)
If the above was received ∀𝑗 ∈ [𝑚′] then do:

𝑟 𝑗 ←𝑅 F𝑝 , 𝑗 ∈
[𝑚′]

� Output,𝑚′

Execute above code of (input, ssid𝑟 𝑗 , 𝑟 𝑗 , priv) for 𝑗 ∈ [𝑚′]

[𝑐 𝑗] ← [𝑧 𝑗] + [𝑟 𝑗] ∀𝑗 ∈ [𝑚′]
([𝑐 𝑗], {𝑆1, . . . , 𝑆𝑛})

open
−→ F sid

ABB ∀𝑗 ∈ [𝑚
′]

Set 𝑐
(𝑖)
𝑗
← 𝑐 𝑗 ∀𝑗 ∈ [𝑚′]

� {𝑐 (𝑖)
𝑗
} 𝑗 ∈[𝑚′]

If 𝑐
(𝑘)
𝑗

= 𝑐
(𝑙)
𝑗
∀𝑘, 𝑙 ∈ [𝑛], 𝑗 ∈ [𝑚′]

𝑧 𝑗 = 𝑐 𝑗 − 𝑟 𝑗 mod 𝑝

Output (ssid𝑧 𝑗 , 𝑧 𝑗) ∀𝑗 ∈ [𝑚′]
Otherwise output abort

Figure 12: Protocol

∏
reqABB realizing functionality FreqABB

in the FABB-hybrid model. The top part shows how a batch

of𝑚 inputs 𝑥1, . . . , 𝑥𝑚 of the user can be input into FABB by

the servers in an oblivious way, yielding [𝑥1], . . . , [𝑥𝑚]. The
bottom part shows how a batch of 𝑚′ values [𝑧1], . . . , [𝑧𝑚′]
can be revealed to the user. compute inputs to servers are

relayed to FABB.

issue (compute, ssid1, ssid2, ssid3, mode) commands. It is this small

change that allows for the realizing protocol to require minimal

interaction and computation from clients, and, e.g., perform ex-

pensive interactive multiplication steps only among the servers.

This is in particular the case since many MPC schemes require

computation between every set of computing parties in order to

execute a multiplication. Thus the computation scales quadratically

in the amount of parties participating in the computation. While

we of course could use FABB to implement a similar functionality

for any reasonable usage FreqABB, the point is that it could easily

become prohibitory expensive when scaling to many clients if they

need to perform a quadratic amount of communication in the total
amount of clients and server for each multiplication to be carried

out.

Many papers have considered different notions of this idea, in-

cluding for a single server carrying out a computation on some no-

tion of encrypted data received by clients [45], ormultiple servers [10,

28, 46]. However most protocols for outsourced computation re-

quire a concrete realization of FABB and thus do not present a

protocol for FreqABB in the FABB-hybrid model. The earliest work

we know of which describe a highly efficient approach to outsourc-

ing secure computation in the FABB-hybrid model is described by

Jakobsen et al. [44]. Their scheme only requires the client to exe-

cute simple operation, independent of the function to be carried out

using FABB, and only requires a constant amount of interaction by

each client with the servers and does not require clients to interact

with each other.

Their underlying idea is simply to have parties compute a secret-

shared MAC from an algebraic manipulation detection code on

their input, along with some randomness, and then distribute these

shares to the servers. The servers then relay this into the MPC com-

putation, which verifies the MAC to ensure that no corrupt server

has tried to manipulate the clients’ shares. Once the computation

is done, the randomness supplied by the client is used to one-time

pad the output that the client should learn, and the padded value

is opened towards all servers. Each server then relays this to the

appropriate client. The clients can then easily remove the padding

and learn their respective output. Furthermore, since each client is

supposed to receive the same output from all servers, it can also

ensure that no server has tried to manipulate it, by validating that

they receive the same value from all the servers.

Jakobsen et al. proves their scheme UC-secure assuming access to

an underlying MPC scheme with ideal functionality similar to FABB.
However, the box for their ideal functionality [44, Fig. 3] is slightly

different from the one we present in FreqABB. The difference is that
Jakobsen et al. assume all clients give input and all clients get output,
and that the output follows after all computations have been carried

out. It is easy to see that all clients giving input and receiving output

is simply a super-set of some parties giving input and some parties

giving output as a dummy input and output can always be used.

However, their functionality is not reactive (reactive meaning that

output and computation are interleaved multiple times). That said,

since FABB is inherently reactive, the outsourced MPC scheme can

also be this. We can conclude this from the following observations:

1) the client’s output of the computation is indistinguishable from

random to an adversary, as it is one-time padded by randomness

additively shared by the client. 2) all of the client’s inputs (except

one uniformly random value) are statically indistinguishable from

random if at most 𝑛−1 malicious servers are corrupted. Hence what

55

Proceedings on Privacy Enhancing Technologies 2023(4) Tore Kasper Frederiksen, Julia Hesse, Bertram Poettering, and Patrick Towa

is learned by the servers is indistinguishable from the clients’ input

and output. This allows the clients to do give input and receive

output multiple times, regardless of the underlying computation

being undertaken.

Details. We here sketch the protocol of Jakobsen et al. for allowing
clients to receive input and output in Fig. 12 adapted to the ideal

functionality in Fig. 11. In particular, unlike Jakobsen et al., we
separate the clients’ steps for giving true input and giving random

input (used to pad the output). This is to allow a fully reactive

version of outsourced MPC. However, if it is known in advance

how many outputs each client should get, this can be done in

a single step which is exactly what Jakobsen et al. describe in

their paper. We note that the underlying computation (i.e. calls

to FreqABB .(compute, ssid1, ssid2, ssid3, mode)) can be carried out

with the equivalent calls to the FABB functionality.

D.3 MPC with Partially Public Functions

We note that both FABB and FreqABB can be assumed to implement

computation of a series of arbitrary functions on possibly private

input and possibly public output with a persistent state through

the following folklore approach: Any computation where all val-

ues used are assumed or allowed to be public, the servers simply

use FABB, FreqABB to output these public values to all servers and

all server carry out the computation on these values in plain. Fi-

nally they input the public result back into FABB, FreqABB where

it can then be computed on with private and hidden values. More

concretely this is done through interleaved usage of commands

(input, . . . ,), (output, . . .), and (compute, . . .). That is, each time

series of commands (output, . . .) is issued it defines the com-

putation of a function. This output can then be used outside of

the functionality in FABB, FreqABB. If the outputs are public val-
ues, then they can be used to do some other public computation

whose result, 𝑥 can be inputted back into FABB, FreqABB through

(input, sid, ssid, 𝑥, pub). Thus knowledge of the function to com-

pute using FABB, FreqABB can be used to separate it into public and

private parts. We formalize the details of this below.

Assume the series of commands of the form (compute, sid, ssid1,

ssid2, ssid3, mode) to FreqABB is known before parties start giving

input to FreqABB under sid. In this case we can assume the compu-

tation to be done is expressed as a Directed Acyclic Graph (DAG)

where on a list of inputs (through commands of the form (input, sid,
ssid, 𝑥, mode), of which the leaves can be given as output through

commands of the form (output, sid, ssid, 𝑥,P). That each, each ssid
identifies a node in the DAG and each ssid used in a command of the

form (output, sid, ssid, 𝑥,P) is a leaf7 Such aDAG can be expressed

as a function 𝑓 : Z𝑎𝑝 → Z𝑏𝑝 where 𝑎 expresses the amount of calls of

the form (input, sid, ssid, 𝑥, mode) and 𝑏 expresses the amount of

calls of the form (output, sid, ssid, 𝑥,P). What is explained above

is actually weaker thanwhat is offered byFreqABB. In fact what is ex-
plained above is known as Secure Function Evaluation (SFE) or non-
reactiveMPC. However FreqABB actually offers us to execute a series

of functions 𝑓1, 𝑓2, . . . where 𝑓𝑖 : Z𝑎
′

𝑝 → (Z
¯𝑏
𝑝 ,Z

𝑏′
𝑝) and 𝑏 ′ expresses

the amount of calls of the form (output, sid, ssid, 𝑥,P) for function
7
We assume without loss of generality that once an ssid has been used in an output

command it will not be used in a compute command. If it needs to be it can always be

given as input through the command (input, sid, ssid, 𝑥, pub) .

𝑓𝑖 and ¯𝑏 is the amount of calls to of the form (compute, sid, ssid1,

ssid2, ssid3, mode) or (input, sid, ssid, 𝑥, mode) in 𝑓𝑖 . That is, ¯𝑏 ex-

presses the amount of nodes in the DAG of 𝑓𝑖 minus the nodes

whose ssid has been used in call (output, . . .). It is now clear that

if the output of function 𝑓𝑖 is public to all parties, they can use this,

and potentially auxiliary input, to compute another public function
𝑔𝑖 on this. The output of 𝑔𝑖 can obliviously be used as public input
to any function 𝑓𝑗 for 𝑗 ≥ 𝑖 . In fact, the output of 𝑔𝑖 might influence

which function 𝑓𝑗 to compute. Thus considering the calls to FABB,
FreqABB as interleaved partial functions with a shared state allows

us to “take out” any public computations of this and carry it out in

plain by each of the servers.

With this discussion in mind for computation of functions, which

consists of parts where the values can be publicly known, allows

one to realize FABB, FreqABB more efficiently by executing the

public part outside FABB, FreqABB, by all the servers. That is it

is possible to implement functionalities F CABB, F
C
reqABB for a spe-

cific, known computation C describing multiple public and pri-

vate functions, in the FABB, FreqABB hybrid model. Concretely

this is then done by using calls to (output, . . .) to output val-

ues that can be learned publicly and have parties locally execute

(compute, sid, ssid1, ssid2, ssid3, mode) on these public values. For

public values that must then be used in a (compute, . . .) call with
a private value are given as input through (input, . . .).

In App. C we discuss how we can take advantage of this to

compute the setup phase of our scheme more efficiently in several

real world situations.

E PROACTIVELY-SECURE THRESHOLD

SIGNATURES

E.1 Security Model

We introduce a UC functionality FpsThrSig to model proactively-

secure threshold signatures in Fig. 18. We use the writing con-

ventions introduced in Sect. 2. FpsThrSig acts as a trusted signing

authority: It maintains a key pair (vk, sk) of some signature scheme

(KGen, Sign,Vfy) and issues and verifies signatures with these keys.
Although FpsThrSig can use any set of algorithms (KGen, Sign,Vfy),
we are particularly interested in parametrizing FpsThrSig with signa-
ture algorithms that are existentially unforgeable, and which allow

for threshold computation of signatures.

We now explain the functionality in detail, using the [X.Y] mark-

ings in the functionality code, and indicating in boldface the prop-

erties from above. We first do an honest walk-through and explain

handling of corrupt users and servers separately afterwards.

Key generation. FpsThrSig is parametrized with a digital signature

scheme SIG = (KGen, Sign,Vfy) and, if [K.1] all servers assist in the
setup procedure, FpsThrSig [K.2] generates its own key pair (vk, sk).
From that point on, the other interfaces of FpsThrSig can be called

and FpsThrSig will produce and verify signatures w.r.t this one key

pair. FpsThrSig must be parametrized with a standardized signature

scheme to ensure standardized token format.

Signing. Any user 𝑈 can request a signature from FpsThrSig by pro-

viding the message to be signed𝑀 . The servers get [S.1] notified

about the signing request, including the message to be signed (i.e.,

56

Attribute-based Single Sign-On: Secure, Private, and Efficient Proceedings on Privacy Enhancing Technologies 2023(4)

Key Generation. Executed by each server 𝑆𝑖 ∈ Σ.
On input (KeyGen, sid) , server 𝑆𝑖 calls FDKG on input (Sample, sid, ssid) .
Upon receiving (Receipt, sid, ssid) from FDKG, server 𝑆𝑖 calls FDKG on

(Output, sid, ssid) .
Upon receiving (Output, sid, ssid, 𝑁 ,𝑑0, 𝑑𝑖) from FDKG, server 𝑆𝑖 proceeds as fol-
lows.

• Call the coin-tossing functionality FCT on input (Toss, ssid, 𝑁) .
• Upon receiving (Random, ssid, 𝑔) from FCT, run FeldmanZ𝑁 .Share({param B
𝑔, 𝑡, 𝑛}, ssid, 𝑑𝑖) → (ssid, {priv B 𝛿𝑖,1, . . . , 𝛿𝑖,𝑛 }, {pub B 𝐴𝑖,0, . . . , 𝐴𝑖,𝑡−1 }) .
• Upon receiving, from all 𝑆 𝑗 for 𝑗 ∈ [𝑛]\ {𝑖 }, Feldman shares 𝛿 𝑗,𝑖 and polynomial-

coefficient commitments (𝐴𝑗,0, . . . , 𝐴 𝑗,𝑡−1) proceed as follows:

– Abort if FeldmanZ𝑁 .Verify(𝐴𝑗,0, . . . , 𝐴 𝑗,𝑡−1, 𝛿 𝑗,𝑖) rejects for any 𝑗 ≠ 𝑖 .

– Compute 𝐴𝑘 ←
∏𝑛

𝑗=1
𝐴𝑗,𝑘 for all 𝑘 = 0, . . . , 𝑡 − 1.

– Abort if all server shares do not sum up to 𝑒−1
mod 𝜑 (𝑁) , i.e. if𝐴𝑒

0
≠ 𝑔𝑛!

mod

𝑁 (note that 𝐴0 =
∏𝑛

𝑗=1
𝐴𝑗,0 = 𝑔𝑛!·∑𝑗 𝑑 𝑗 = 𝑔𝑛!·𝑑

mod 𝑁).

– Compute 𝛿𝑖 ←
∑

𝑗∈[𝑛] 𝛿 𝑗,𝑖 (for any 𝑇 ⊆ Σ of size 𝑡 , setting 𝜔𝑖 B 𝜔𝑇 ,𝑖 B

𝑛!

∏
𝑗≠𝑖 : 𝑆 𝑗 ∈𝑇 𝑗/(𝑗 − 𝑖) ∈ Z, it follows that (𝑑 − 𝑑0) · (𝑛!)2 =

∑
𝑗∈[𝑛] 𝑑 𝑗 =∑

𝑗∈[𝑛]
∑

𝑖 : 𝑆𝑖 ∈𝑇 𝛿 𝑗,𝑖𝜔𝑖 =
∑

𝑖

(∑
𝑗 𝛿 𝑗,𝑖

)
𝜔𝑖 =

∑
𝑖 𝛿𝑖𝜔𝑖).

– Distribute 𝑡-out-of-𝑛 back-up shares of 𝛿𝑖 , i.e. run

FeldmanZ𝑁 .Share({param B 𝑔, 𝑡, 𝑛}, ssid′𝑖 , 𝛿𝑖) → ({priv B

𝛿′
𝑖,1
, . . . , 𝛿′

𝑖,𝑛
}, {pub B 𝐴′

𝑖,0
, . . . , 𝐴′

𝑖,𝑡−1
}) .

– Upon receiving, from all 𝑆 𝑗 for 𝑗 ≠ 𝑖 , Feldman shares 𝛿′
𝑗,𝑖

and polynomial-

coefficient commitments (𝐴′
𝑗,0
, . . . , 𝐴′

𝑗,𝑡−1
) ,

∗ abort if FeldmanZ𝑁 .Verify(𝐴′
𝑗,0
, . . . , 𝐴′

𝑗,𝑡−1
, 𝛿′

𝑗,𝑖
) rejects for any 𝑗 ≠ 𝑖 .

∗ abort if the newly shared values are inconsistent with the additive shares,

i.e. if 𝐴′
𝑗,0

≠
∏𝑡−1

ℓ=0
𝐴
𝑛!·𝑗ℓ
ℓ mod 𝑁 for any 𝑗 ≠ 𝑖 (in an honest protocol ex-

ecution, 𝐴′
𝑗,0

= 𝑔𝛿 𝑗 ·𝑛! = 𝑔
𝑛!·∑𝑛

𝑘=1
𝛿𝑘,𝑗 =

∏
𝑘 𝑔

𝛿𝑘,𝑗𝑛!

=
∏

𝑘

(∏𝑡−1

ℓ=0
𝐴

𝑗ℓ

𝑘,ℓ

)𝑛!

=∏
ℓ 𝐴

𝑛!·𝑗ℓ
ℓ mod 𝑁).

• If 𝑖 = 1, for this server 𝑆𝑖 , then compute integers𝑢 and 𝑣 such that𝑢 ·𝑒+𝑣 · (𝑛!)2 =

1 (they exists since 𝑒 > 𝑛 by assumption and is prime) and broadcast (sid,𝑢, 𝑣) .
• If 𝑖 > 1, upon receiving (sid,𝑢, 𝑣) from 𝑆1, abort if 𝑢 · 𝑒 + 𝑣 · (𝑛!)2 ≠ 1.

• Set epoch𝑖 ← 0 and create a key-share record

(KeyShare, epoch𝑖 , 𝑁 , 𝑒,𝑑0,𝑢, 𝑣, 𝛿𝑖 , (𝛿′𝑗,𝑖 , (𝐴′𝑗,𝑘)
𝑡−1

𝑘=0
) 𝑗∈[𝑛]) .

• Broadcast (KeyConf, 𝑆𝑖) to all other servers.

Signing. Executed by each server 𝑆𝑖 ∈ 𝑇 ⊆ Σ, for any𝑇 of size 𝑡 .

On input (Sign, ssid, 𝑀) ,𝑈 broadcasts (ssid, 𝑀) to all servers in𝑇 .

Upon receiving (Sign, ssid, 𝑀) from𝑈 , 𝑆𝑖 outputs (Sign, ssid, 𝑀) .
On input (ProceedSign, sid, ssid) , 𝑆𝑖 proceeds as follows.
• Retrieve the key-share record.

• Compute 𝜎𝑖 ← 𝐻 (𝑀)𝛿𝑖 mod 𝑁 and send (ssid, 𝑁 , 𝑒,𝑑0,𝑢, 𝑣, 𝜎𝑖) to user𝑈 .

Upon receiving tuples (ssid, 𝑁𝑖 , 𝑒𝑖 , 𝑑0,𝑖 ,𝑢𝑖 , 𝑣𝑖 , 𝜎𝑖) from all servers 𝑆𝑖 ∈ 𝑇 , user𝑈
does the following.

• Check that the values 𝑁𝑖 , 𝑒𝑖 , 𝑑0,𝑖 ,𝑢𝑖 , 𝑣𝑖 received from all servers are the same

(they are subsequently denoted by 𝑁 , 𝑒 , 𝑑0, 𝑢, 𝑣), and abort if it is not the case.

• For all 𝑖 ∈ 𝑇 , compute 𝜔𝑖 B 𝜔𝑇 ,𝑖 B 𝑛!

∏
𝑗≠𝑖 : 𝑆 𝑗 ∈𝑇 𝑗/(𝑗 − 𝑖) .

• Compute 𝜎 ← 𝐻 (𝑀)𝑢 ·
(
𝐻 (𝑀)𝑑0 · (𝑛!)2 ∏

𝑖 𝜎
𝜔𝑖
𝑖

)𝑣
mod 𝑁 . (Note that (𝑑 −𝑑0) ·

(𝑛!)2 =
∑

𝑗∈[𝑛]
∑

𝑖 : 𝑆𝑖 ∈𝑇 𝛿 𝑗,𝑖𝜔𝑖 =
∑

𝑖

(∑
𝑗 𝛿 𝑗,𝑖

)
𝜔𝑖 =

∑
𝑖 𝛿𝑖𝜔𝑖 .)

• If 𝐻 (𝑀) = 𝜎𝑒
mod 𝑁 then output (Signature, 𝑀, 𝜎) , else abort.

Verification. On input (Verify, sid, vk′ B (𝑁 ′, 𝑒′), 𝑀, 𝜎) , verifier𝑉 sets 𝑓 ← 1 if

𝐻 (𝑀) = 𝜎𝑒′
mod 𝑁 ′ and 𝑓 ← 0 otherwise, and outputs (Verified, vk′,𝑚, 𝜎, 𝑓) .

Figure 13: Protocol ΠpsThrSig for a threshold RSA signature

scheme (refresh protocol in Fig. 14) using macro Feldman

of Fig. 15.

Refresh. Executed by each server 𝑆𝑖 ∈ Σ.
• On input (Refresh, sid, 𝑆𝑖), retrieve record

(KeyShare, epoch𝑖 , 𝑁 , 𝑒, 𝑑0, 𝑢, 𝑣, 𝛿𝑖 , (𝛿 𝑗,𝑖 , (𝐴 𝑗,𝑘)𝑡−1

𝑘=0
) 𝑗 ∈[𝑛]) and broad-

cast (𝐴 𝑗,0, . . . , 𝐴 𝑗,𝑡−1) 𝑗 ∈[𝑛] .
• Upon receiving such tuples from all the other servers in Σ, if there
exists a tuple that was broadcast by at least 𝑡 servers, overwrite

(𝐴 𝑗,0, . . . , 𝐴 𝑗,𝑡−1)𝑛𝑗=1
with the values from that tuple if at least one value

differs. If no such tuple exists, abort.

• If𝑔𝛿𝑖 ·𝑛! ≠ 𝐴𝑖,0 mod 𝑁 , i.e. if 𝛿𝑖 is inconsistent with the originally shared

value, then:

– Broadcast to all servers in Σ a request to privately send the back-up

shares for 𝑆𝑖 they hold.

– Upon receiving back-up shares 𝛿𝑖, 𝑗 from all servers in Σ, run
FeldmanZ𝑁 .Verify(𝐴𝑖,0, . . . , 𝐴𝑖,𝑡−1, 𝛿𝑖, 𝑗). If 𝑛 − 𝑡 ≥ 𝑡 , there must

be at least 𝑡 correct shares. Let 𝑇 ⊆ Σ of size 𝑡 such that

the shares received by each 𝑆𝑖 ∈ 𝑇 is valid. Then, let 𝛿𝑖 ←
FeldmanZ𝑁 .Reconstruct(𝑇, (𝛿𝑖, 𝑗) 𝑗 : 𝑆 𝑗 ∈𝑇).

• Run procedure FeldmanZ𝑁 .Share({param B 𝑔, 𝑡, 𝑛}, ssid𝑖 , 𝛿𝑖) →
(ssid𝑖 , {priv B 𝛿 ′

𝑖,1
, . . . , 𝛿 ′

𝑖,𝑛
}, {pub B 𝐴′

𝑖,0
, . . . , 𝐴′

𝑖,𝑡−1
}).

• Upon receiving, from all 𝑆 𝑗 for 𝑗 ≠ 𝑖 , Feldman shares𝛿 ′
𝑗,𝑖

and polynomial-

coefficient commitments (𝐴′
𝑗,0
, . . . , 𝐴′

𝑗,𝑡−1
),

– abort if FeldmanZ𝑁 .Verify(𝐴′
𝑗,0
, . . . , 𝐴′

𝑗,𝑡−1
, 𝛿 ′

𝑗,𝑖
) rejects for any 𝑗 ≠

𝑖 ,

– abort if the newly shared values are inconsistent with the ones from

the previous refresh, i.e. if 𝐴′
𝑗,0

≠ 𝐴 𝑗,0.

• Choose a set𝑈 ′
𝑖
⊆ [𝑛] of size 𝑡 uniformly at random, broadcast it, and

compute 𝜔𝑈 ′
𝑖
, 𝑗 B 𝑛!

∏
𝑘≠𝑗 : 𝑆𝑘 ∈𝑈 𝑘/(𝑘 − 𝑗) for all 𝑗 such that 𝑆 𝑗 ∈ 𝑈 ′𝑖 .

• Compute 𝛿 ′
𝑖
← ∑

𝑗 : 𝑆 𝑗 ∈𝑈𝑖
𝛿 ′
𝑗,𝑖
𝜔𝑈𝑖 , 𝑗 . (For any 𝑇 ⊆ Σ of size 𝑡 ,

(𝑑 − 𝑑0) · (𝑛!)2 =
∑

𝑗 𝛿 𝑗𝜔𝑈𝑖 , 𝑗 =
∑

𝑗

(∑
𝑖 : 𝑆𝑖 ∈𝑇 𝛿 ′

𝑗,𝑖
𝜔𝑇,𝑖

)
𝜔𝑈𝑖 , 𝑗 =∑

𝑖

(∑
𝑗 𝛿
′
𝑗,𝑖
𝜔𝑈𝑖 , 𝑗

)
𝜔𝑇,𝑖 .)

• Distribute 𝑡-out-of-𝑛 back-up shares of 𝛿 ′
𝑖
, i.e. run

FeldmanZ𝑁 .Share({param B 𝑔, 𝑡, 𝑛}, ssid ′𝑖 , 𝛿 ′𝑖) → (ssid ′𝑖 , {priv B
𝛿 ′′
𝑖,1
, . . . , 𝛿 ′′

𝑖,𝑛
}, {pub B 𝐴′′

𝑖,0
, . . . , 𝐴′′

𝑖,𝑡−1
}).

• Upon receiving, from all 𝑆 𝑗 for 𝑗 ≠ 𝑖 , Feldman shares𝛿 ′′
𝑗,𝑖

and polynomial-

coefficient commitments (𝐴′′
𝑗,0
, . . . , 𝐴′′

𝑗,𝑡−1
),

– Abort if FeldmanZ𝑁 .Verify(𝐴′′
𝑗,0
, . . . , 𝐴′′

𝑗,𝑡−1
, 𝛿 ′′

𝑗,𝑖
) rejects for any 𝑗 ≠

𝑖 .

– abort if the newly shared values are inconsistent with the

previous ones, i.e. if 𝐴′′
𝑗,0

≠
∏𝑡−1

ℓ=0

(∏
𝑘 (𝐴′𝑘,ℓ)

𝜔𝑈𝑗 ,𝑘

)𝑛!· 𝑗 ℓ
mod 𝑁

for any 𝑗 ≠ 𝑖 (in an honest protocol execution,

𝐴′′
𝑗,0

= 𝑔
𝛿′𝑗 ·𝑛!

= 𝑔
𝑛!·∑𝑘 : 𝑆𝑘 ∈𝑈𝑗

𝛿′
𝑘,𝑗

𝜔𝑈𝑗 ,𝑘 =
∏

𝑘 𝑔
𝛿′
𝑘,𝑗

𝜔𝑈𝑗 ,𝑘
𝑛!

=∏
𝑘

(∏𝑡−1

ℓ=0
(𝐴′

𝑘,ℓ
) 𝑗 ℓ

)𝜔𝑈𝑗 ,𝑘
𝑛!

=
∏

ℓ

(∏
𝑘 (𝐴′𝑘,ℓ)

𝜔𝑈𝑗 ,𝑘

)𝑛!· 𝑗 ℓ
mod 𝑁).

• Set epoch𝑖 ← epoch𝑖 + 1, update the key-share record to

(KeyShare, epoch𝑖 , 𝑁 , 𝑒, 𝑑0, 𝑢, 𝑣, 𝛿
′
𝑖
, (𝛿 ′′

𝑗,𝑖
, (𝐴′′

𝑗,𝑘
)𝑡−1

𝑘=0
) 𝑗) and output

(Epoch, sid, epoch𝑖).

Figure 14: Protocol ΠpsThrSig for a threshold RSA signature

scheme - refresh phase, using macro Feldman of Fig. 15.

signature are not blind). To signal their participation in a signing ses-

sions, servers can input ProceedSign with the corresponding sub-

session identifier. This allows to implement arbitrary rate-limiting

policies on a per-request basis. As soon as the threshold of 𝑡 partic-

ipating servers (who all need to be in the same signing epoch) is

reached [PS.1], FpsThrSig [PS.3] generates a signature 𝜎 for message

𝑀 using the Sign algorithm and sk, installs a [PS.4] signature record
57

Proceedings on Privacy Enhancing Technologies 2023(4) Tore Kasper Frederiksen, Julia Hesse, Bertram Poettering, and Patrick Towa

Global parameters: integer 𝑁 > 1, 𝑔 ∈ Z∗
𝑁
, integers 𝑛 ≥ 𝑡 ∈ Z>1.

• FeldmanZ𝑁 .Share. Executed between a dealer 𝐷 and a set Σ B
{𝑆1, . . . , 𝑆𝑛 } of parties (𝐷 may be in Σ).

On input (Share, sid, ssid, 𝑠) , with 𝑠 ∈ [−𝑛𝑁 2, 𝑛𝑁 2], dealer 𝐷 proceeds

as follows.

• Generate 𝑎1, . . . , 𝑎𝑡−1 ←𝑅 [−𝑛 (𝑛!)2𝑁 3, 𝑛 (𝑛!)2𝑁 3]. Let 𝑎0 B 𝑠 · 𝑛! and

𝑃 B 𝑎0 + 𝑎1𝑋 + · · · + 𝑎𝑡−1𝑋
𝑡−1

.

• For 𝑖 ∈ [𝑛], compute 𝑃 (𝑖) ∈ Z. Compute also 𝐴𝑗 ← 𝑔𝑎 𝑗
mod 𝑁 for

𝑗 ∈ [0, 𝑡 − 1].
• Broadcast (𝐴0, . . . , 𝐴𝑡−1) , and for 𝑖 ∈ [𝑛], send (ssid, 𝑧𝑖 ← 𝑃 (𝑖)) to 𝑆𝑖 .
• Return (ssid, {priv B 𝑧1, . . . , 𝑧𝑛 }, {pub B 𝐴0, . . . , 𝐴𝑡−1 }) .
• FeldmanZ𝑁 .Verify. Executed by any party 𝑆𝑖 ∈ Σ.

On input (Verify, sid, 𝐴0, . . . , 𝐴𝑡−1, 𝑧𝑖) , accept if 𝑔𝑧𝑖 =
∏𝑡−1

𝑗=0
(𝐴𝑗)𝑖

𝑗
mod

𝑁 and otherwise reject.

• FeldmanZ𝑁 .Reconstruct. Executed by any party 𝑆𝑖 ∈ Σ.

On input

(
Reconstruct, sid,𝑇 , (𝑧 𝑗) 𝑗 : 𝑆 𝑗 ∈𝑇

)
, with 𝑇 ⊆ Σ of size 𝑡 , party

𝑆𝑖 does the following.

• Find the smallest prime 𝑞 > 2𝑛𝑁 2
.

• Compute and return 𝑠 ← (𝑛!)−1 · ∑𝑗 : 𝑆 𝑗 ∈𝑇 𝑧 𝑗𝜔 𝑗 mod 𝑞, with 𝜔 𝑗 B∏
𝑘≠𝑗 𝑘/(𝑘 − 𝑗) mod 𝑞.

Figure 15: Macro Feldman for Feldman’s Verifiable Secret-

Sharing scheme in Z𝑁 [61] using by FpsThrSig in Fig. 13 and

Fig. 14.

The functionality is parametrised by a public prime exponent 𝑒 and a prime

length ℓ and interacts with servers Σ = {𝑆1, . . . , 𝑆𝑛 } (specified in sid), and an

adversary A which may statically corrupt a set C ⊂ Σ of servers and abort the

session at any time.

Adversarial Shares. Upon receiving (Shares, sid, ssid, 𝑝𝑖 , 𝑞𝑖) from 𝑆𝑖 ∈ C,
with 𝑝𝑖 , 𝑞𝑖 ∈ Z2

ℓ , record (sid, ssid, 𝑆𝑖 , 𝑝𝑖 , 𝑞𝑖) and send (Receipt, sid, ssid) to
𝑆𝑖 .

Share Generation. Upon receiving (Sample, sid, ssid) from an honest 𝑆𝑖 ,

record (sid, ssid, 𝑆𝑖) and send an immediate output (Receipt, sid, ssid) to 𝑆𝑖 .
Prime Generation. Upon receiving (Output, sid, ssid) from any party 𝑆𝑖 , if

a tuple (sid, ssid, 𝑆𝑖) has been recorded for all honest parties 𝑆𝑖 , and a tuple

(sid, ssid, 𝑆𝑖 , 𝑝𝑖 , 𝑞𝑖) has been recorded for each corrupted party 𝑆𝑖 ∈ C, sample

random ℓ-bit value pairs (𝑝𝑖 , 𝑞𝑖) for each honest party 𝑆𝑖 so that the following

constraints are satisfied.

• 𝑝1 = 𝑞1 = 3 mod 4

• 𝑝𝑖 = 𝑞𝑖 = 0 mod 4 for 𝑖 ∈ [𝑛]\{1}
• 𝑝 =

∑
𝑖∈[𝑛] 𝑝𝑖 and 𝑞 =

∑
𝑖∈[𝑛] 𝑞𝑖 are prime

• gcd(𝑝 · 𝑞, 𝑒) = gcd(𝑝 · 𝑞, 𝑝 + 𝑞 − 1) = 1.

Next, create a record (Primes, sid, ssid, 𝑝, 𝑞) and send

(Generation, sid, ssid, 𝑁 = 𝑝 · 𝑞) to all parties.

Output.

Upon receiving (Proceed, sid, ssid, {𝑑𝑖 }𝑆𝑖 ∈C) fromA, with𝑑𝑖 ∈ [−𝑛𝑁 2, 𝑛𝑁 2]
for all 𝑆𝑖 ∈ C, proceed as follows.

• Retrieve record (Primes, sid, ssid, 𝑝, 𝑞) .
• Generate 𝑑𝑖 ←𝑅 [−𝑛 · 𝑁 2, 𝑛 · 𝑁 2] for each honest 𝑆𝑖 .

• Let 𝑑 ∈ Z be such that 𝑒𝑑 = 1 mod 𝜑 (𝑁) and 𝑑0 ← 𝑑 −∑𝑖∈[𝑛] 𝑑𝑖 .
• Let 𝑁 ← 𝑝 · 𝑞. For all 𝑖 ∈ [𝑛], send to server 𝑆𝑖 a delayed output

(Output, sid, ssid, 𝑁 ,𝑑0, 𝑑𝑖) with private 𝑑𝑖 .

Figure 16: Functionality FDKG.

The functionality interacts with servers Σ = {𝑆1, . . . , 𝑆𝑛 } (specified in sid) and
an adversary A that statically corrupts a subset C ⊂ Σ of servers and can abort

the session at any time.

Toss. Upon receiving (Toss, sid, 𝑀) from all parties, with𝑀 a positive integer,

sample a uniformly random element 𝑥 ∈𝑅 Z𝑀 and send a delayed output

(Random, sid, 𝑥) to all parties.

Figure 17: Functionality FCT.

The functionality is parametrised by algorithms SIG = (KGen, Sign,Vfy) , a
security parameter 𝜆, a threshold 𝑡 and initially undefined integer counters

epoch
1
, . . . , epoch𝑛 . It interacts with servers Σ = {𝑆1, . . . , 𝑆𝑛 } (specified in

sid), arbitrary users, verifiers and an adversary A that can delay any message

or cause an abort of any phase at any point.

On receiving (KeyGen, sid) from server 𝑆𝑖

• Ignore if a record (key, sk, vk) exists
• If (KeyGen, sid) was received [K.1] from all 𝑆𝑖

– [K.2] Record (key, sk, vk) , (vk, sk) ←𝑅 KGen
(
1
𝜆
)

– For 𝑖 = 1, . . . , 𝑛 do:

∗ On [K.3] (KeyConf, sid, 𝑆𝑖) from A, set epoch𝑖 ← 0 and send an im-

mediate output (KeyConf, sid, vk) to 𝑆𝑖 .
On receiving (Sign, sid, ssid, 𝑀) from a user𝑈

• Create a record (session, sid, ssid, 𝑀)
• Send a [S.1] delayed output (Sign, sid, ssid, 𝑀) to all 𝑆𝑖 ∈ Σ.
On receiving (ProceedSign, sid, ssid) from a server 𝑆𝑖 ∈ Σ
• Ignore if no record (session, sid, ssid, 𝑀) exists
• If there exists epoch ∈ N such that (ProceedSign, sid, ssid) was received
from [PS.1] 𝑡 servers 𝑆𝑖 while epoch𝑖 = epoch
– Send [PS.2] (sign-ok, sid, ssid) to A and receive back (sign-ok, sid, ssid)
– [PS.3] 𝜎 ← Sign(sk, 𝑀)
– Create a [PS.4] record (sigrec, vk, 𝑀, 𝜎, 1) , abort if a record

(sigrec, vk, 𝑀, 𝜎, 0) already exists.

– Send a [PS.5] delayed output (Signature, 𝑀, 𝜎) with [PS.6] private 𝜎 to

𝑈 .

On receiving (Verify, sid, vk′, 𝑀, 𝜎) from a verifier𝑉

• If a [V.1] record (sigrec, vk′, 𝑀, 𝜎, 𝑓 ′) exists then 𝑓 ← 𝑓 ′

• Else

– If vk′ = vk then 𝑓 ← 0, else [V.2] 𝑓 ← Vfy(vk′, 𝑀, 𝜎)
– Create a record (sigrec, vk′, 𝑀, 𝜎, 𝑓)

• Send (Verified, vk′, 𝑀, 𝜎, 𝑓) to𝑉 .

Refresh

On receiving (Refresh, sid, 𝑒) from server 𝑆𝑖

• Ignore the input if [Rf.1] epoch𝑖 ≠ 𝑒 − 1 or if refreshing𝑖 = 1

• Set [Rf.2] refreshing𝑖 ← 1

• If [Rf.3] refreshing𝑖 = 1 for all 𝑖 ∈ [𝑛]:
– On [Rf.4] (Refresh, sid, 𝑒, 𝑆𝑖) from A, set [Rf.5] epoch𝑖 = 𝑒 and send an

immediate output (Epoch, sid, 𝑒) to 𝑆𝑖
On receiving (Refresh, sid, abort) from A, set [Rf.6] refreshing𝑖 = 0 for

all 𝑖 ∈ [𝑛].

Figure 18: FunctionalityFpsThrSig modeling proactively secure

threshold signing.Main change from [4, 21] is that signatures

are not adversarially-determined and hence can represent

secret objects, such as tokens in our setting.

that will allow successful verification of 𝜎 , and [PS.5] outputs the

signature to𝑈 .

Verification and revocation. Everyone can check validity of signa-

tures 𝜎 on messages 𝑀 under arbitrary verification keys vk′. If
vk′ = vk, i.e., verification is requested for the verification key

associated with FpsThrSig, then the signature records are used to

58

Attribute-based Single Sign-On: Secure, Private, and Efficient Proceedings on Privacy Enhancing Technologies 2023(4)

determine whether 𝜎 verifies or not: the output is set to true only if

a record (sigrec, vk, 𝑀, 𝜎, true) exists ([V.1]). Since such records

only get created through successful signing requests above, un-

forgeability is enforced. For vk′ ≠ vk, FpsThrSig uses the Vfy
algorithm to determine the result ([V.2]). Allowing verification for

“incorrect” public keys is necessary to avoid that FpsThrSig implies

a trusted certification authority.

Adversarial influence and leakage. The adversary [PS.2] can prevent

signature generation by not sending sign-ok for the corresponding
subsession. FpsThrSig keeps the adversary from learning signatures

generated by honest users ([PS.6]), making it a suitable building

block for applications where the possession of signatures has a

certain value.

Refresh. FpsThrSig keeps track of which “key epoch” a server cur-

rently is in by maintaining [K.3,Rf.5] individual counters epoch𝑖 .
Individual counters allow to analyze protocols that admit asynchro-

nous completion of the refresh phase, i.e., one server signs under

the new keys already while another one is still waiting for the

final message in a refresh protocol. Avoiding such situations would

require costly methods to enforce synchrony, and we hence design

FpsThrSig with individual counters, to enable the analysis of more

efficient SSO schemes where servers might be “off” by 1 regarding

their epochs. Any server can indicate that it wants to move to the

next epoch. The functionality acts only [Rf.1] if the server does not

skip any epoch, and if it has not already started refreshing in the

current epoch. As soon as all servers [Rf.3] joined the refreshing

procedure in the current epoch, [Rf.5] the next epoch is entered

and the servers are notified about it. The adversary can [K.3,Rf.4]

delay completion of individual servers, and it can cause individual

servers to [Rf.6] abort their ongoing refresh procedure.

E.1.1 Signature schemes realizing FpsThrSig. There already exists

threshold signatures which are secure against a proactive adversary

maliciously corrupting up to 𝑡 − 1 parties in the UC-model for both

ECDSA [21] and RSA [4]. Although the protocol by Almansa et
al. requires 𝑡 = 𝑛. Rabin [61] showed a proactively secure thresh-

old signature scheme satisfying a game-based security notion for

any 𝑡 < ⌈𝑛/2⌉. None of these schemes are suitable to instantiate

FpsThrSig, because of the following reasons:
• All of [61] require all servers to participate in the signing proce-

dure, while in our setting we require only 𝑡 servers to be online.

Although Rabin show how to handle missing or corrupt servers

during signing; it comes at the cost of leaking their private key

shares to the honest servers.

• [4] is secure against adaptive corruptions, but requires 𝑡 = 𝑛.

While in our setting we only consider adversaries who fix the

corruption set at the start of each epoch, i.e. static corrupt. Yet

we require a scheme which works for any 𝑡 < ⌈𝑛/2⌉.
• [4, 61] require the trusted generation of safe primes, which we

ideally would like to avoid.

• [4, 21] are proven in a model where the adversary chooses how

signatures look like (which is common in UC notions for signa-

tures). Our setting however requires treating signatures as secret

objects.

• [21], and threshold ECDSA protocols in general, have a signifi-

cantly more expensive signing phase than their RSA-based coun-

terparts due to the non-linear algebra in ECDSA signatures.

Our construction, ΠpsThrSig, shown in Fig. 13 and Fig. 14 take

departure in the proactively secure signature scheme of Rabin [61],

which we now explain in a nutshell. First, during setup additive

shares of the private key are generated, along with a witness for

each share and then Feldman’s verifiable secret sharing scheme

(VSS) is used to threshold-reshare those additive shares. The ad-

ditive shares are used to sign, along with zero-knowledge proofs

proving that the shares used to do partial signing are consistent

with the witness. If a party is unavailable or cheats, then the thresh-

old shares are used to reconstruct the additive share of this party

towards the remaining parties. This allows the other parties to still

complete the signing phase. For refreshing, the additive shares are

reshared additively, and proven consistent with the witness from

setup. Again if a party is cheating or not participating, then the

threshold shares are used to recover their additive share to allow

the other parties to complete the refreshing.

We note that the shares in play becomes quite large, due to the

need to emulate computation of a group of unknown by the use of

the integers. However this does not pose a significant issue when

using the threshold signatures in our ab-dSSO scheme since each

server only need to participate in a single threshold signing scheme.

Our realization of FpsThrSig. Based on Rabin’s scheme we first show

that safe primes are not necessary for security. Then we modify the

signing phase to only require 𝑡 participating servers, by allowing

it to abort in case any of them behave maliciously
8
. This allow us

to skip the additive share part of Rabin’s construction and directly

generate and distribute threshold shares of the signing key.

Figure 13 and Fig. 14 present our threshold RSA signature scheme

that realizes the functionality given in Fig. 18. The building block

Feldman secret sharing, over Z𝑁 due to usage of an RSA group, is

depicted in Fig. 15 for completeness. We next comment on a subtlety

that seem to have been overlooked in the literature regarding the

verifiable VSS in Z𝑁 .

On the Verifiability of Feldman Secret-Sharing in Z𝑁 . We recap Feld-

man’s verifiable secret sharing (VSS) scheme in Fig. 15, where Rabin

claims [61, Theorem 1] that the proof of the verifiability prop-

erty (as defined by Feldman and Micali [32]) of Feldman’s original

scheme [31] also applies to the adaptation of the scheme to Z𝑁 .

The scheme in Fig. 15 can be claimed to be verifiable only if for a

tuple (𝐴0, . . . , 𝐴𝑡−1) broadcast during a sharing phase and 𝑡 correct
shares 𝑧𝑖 , i.e., such that 𝑔

𝑧𝑖 =
∏𝑡−1

𝑗=0
(𝐴 𝑗)𝑖

𝑗
, the value 𝑠 reconstructed

from the 𝑡 shares is such that 𝐴0 = 𝑔𝑠 ·𝑛!
, and there exists integers

𝑎1, . . . , 𝑎𝑡−1 such that 𝐴𝑖 = 𝑔𝑎𝑖 and 𝑃 (𝑖) = 𝑧𝑖 for all 𝑖 ∈ [𝑡 − 1].
However, the setting in the case of Z𝑁 is different from Feld-

man’s original proof [31] as there is no guarantee that a value 𝐴𝑖

broadcast by a dealer during the sharing phase is in the subgroup

⟨𝑔⟩ ⊆ Z∗
𝑁
generated by 𝑔. Indeed, if the verifying parties are labeled

𝑥1, . . . , 𝑥𝑡 ∈ {1, . . . , 𝑛}, the verification equations can be written as

𝑔𝑧1

.

.

.

𝑔𝑧𝑡

 =

1 𝑥1 · · · 𝑥𝑡−1

1

1 𝑥2 · · · 𝑥𝑡−1

2

.

.

.

1 𝑥𝑡 · · · 𝑥𝑡−1

𝑡

∗

𝐴0

.

.

.

𝐴𝑡−1

 ,
8
We note that the entire protocol does not abort, only the specific execution of the

signing phase. The user can try again with a different set of server, but we do not
identify the servers who are misbehaving.

59

Proceedings on Privacy Enhancing Technologies 2023(4) Tore Kasper Frederiksen, Julia Hesse, Bertram Poettering, and Patrick Towa

with ∗ denoting the action of Z on Z∗
𝑁
. Let 𝑉 be the above Vander-

monde matrix. Multiplying the equation on the left by𝑊 B adj(𝑉),
the adjugate matrix of 𝑉 , one gets

𝑊 ∗

𝑔𝑧1

.

.

.

𝑔𝑧𝑡

 =

𝐴

det(𝑉)
0

.

.

.

𝐴
det(𝑉)
𝑡−1

 .
In other words, the verification equations only imply that𝐴

det(𝑉)
𝑖

∈
⟨𝑔⟩ for all 𝑖 = 0, . . . , 𝑡 − 1.

One way to enforce that each 𝐴𝑖 is in ⟨𝑔⟩ would be to have the

dealer prove it in zero-knowledge to each party Σ, and a party in

Σ would broadcast a complaint in case the proof fails. If at least 𝑡

complaints are broadcast, then all honest parties reject their shares

and the sharing phase is aborted. It is worth noting that running

such zero-knowledge proofs would not greatly affect the practi-

cal efficiency of the SSO scheme as they would only occur dur-

ing refreshing phases. Concretely it can be realized with constant

group elements and exponentiations using the approach of Boneh et
al. [12] in the generic group model, or with 𝑂 (𝑠) overhead in the

standard model using a Schnorr proof with a one-bit challenge.

Key Generation. During the key-generation phase, all 𝑛 servers

first generate an RSA modulus 𝑁 and 𝑛-out-of-𝑛 additive shares

𝑑1, . . . , 𝑑𝑛 of the secret key (up to a public offset 𝑑0 that is only use-

ful to simplify the simulation). We abstract from this task through

usage of a distributed key generation functionality, FDKG, in Fig. 16.

Protocols to UC securely realize it exist against a malicious adver-

sary, e.g. [24]. Next, each server 𝑆𝑖 computes 𝑡-out-of-𝑛 shares of

their additive shares to enable threshold signing with new shares

𝛿𝑖 , and they all verify that the shared values indeed add up to

𝑒−1
mod 𝜑 (𝑁), with 𝑒 the public RSA exponent. Each server 𝑆𝑖

then distributes back-up shares of their 𝑡-out-of-𝑛 shares 𝛿𝑖 , and

verifies that the shared values are consistent with the additive

shares 𝑑𝑖 . Finally static and public value 𝑢 and 𝑣 are computed from

𝑒 and (𝑛!)2 using the extended Euclidean Algorithm, and stores

them for later use during the signature computation. We note that

for simplicity we assume in FDKG, in Fig. 16, that 𝑒 is prime; as this

is seen in the literature [36] and ensures that gcd(𝑒, (𝑛!)2) = 1. In

practice 𝑒 is in fact picked as a prime, e.g. 3 or 65,537.

Signing and Verification. To sign a message𝑀 , each server simply

computes a partial signature 𝐻 (𝑀)𝛿𝑖 mod 𝑁 and sends it to the

requesting user, along with additional parameters to the signature

scheme, 𝑑0, 𝑢, 𝑣, 𝑒, 𝑁 . The user can then aggregate 𝑡 such partial

signatures to compute a full, standard RSA signature that can be

verified in the classical way. In particular, the user takes advantage

of 𝑢 and 𝑣 to remove (𝑛!)2 from the exponent, which arrives as

an artifact of the Feldman secret sharing over an RSA group. The

removal of this term is needed, as otherwise the scheme would not

allow signatures to be verified using the standard RSA verification

algorithm. Note that the servers computing partial signatures are

unaware of the other signing servers, which contrasts from the

scheme from [4, 61], and that is precisely why the shares 𝛿𝑖 servers

use to sign (and not just the back-up shares) are 𝑡-out-of-𝑛 shares

and not 𝑛-out-of-𝑛 shares.

Refresh. At the beginning of each refresh phase, each server first

compares the public part of its state with that of the other servers,

since its state may have been tampered with, or even erased if the

server is just now recovering from a malicious corruption. Assum-

ing an honest majority, honest servers agree on those public values

that they can use to also check if the share they hold is correct.

If a server’s private shares cannot be used to validate the public

data, then it can broadcast a request to be sent the back-up shares

of the secret-key share 𝛿𝑖 it computed in the last refresh protocol

execution (or during key generation if this is the first refresh). Be-

cause the refresh protocol is aborted if any value sent is invalid,

even if the server were corrupt during that last refresh execution,

the key share computed was necessary valid since the protocol

successfully terminated. Each server 𝑆𝑖 proceeds by distributing

𝑡-out-of-𝑛 shares of 𝛿𝑖 , checks that the shared values are consistent

with the ones computed in the previous refresh execution, and

then computes from the values it received, a new share 𝛿 ′
𝑖
for the

next epoch. This phase ends with each servers distributing back-up

shares of their new share 𝛿 ′
𝑖
and verifying the consistency of the

newly shared values with the one computed during the last refresh
execution.

Theorem E.1. Protocol ΠpsThrSig in Fig. 13 and Fig. 14 securely
realizes FpsThrSig in Fig. 18 parametrized by non-distributed RSA
algorithms (KGen, Sign,Vfy), a computational security parameter
𝜆, a threshold 𝑡 in the (FDKG, FCT)-hybrid model against a static,
proactive and malicious adversary, assuming secure and server-side
authenticated channels between users and each 𝑆𝑖 , a broadcast channel
among all 𝑆𝑖 , and 𝑛 ≥ 2𝑡 , under the strong RSA assumption and the
assumption that Feldman verifiable secret sharing is verifiable over
Z𝑁 [61] and 𝑛𝑁 > 2

𝜆 .

Proof Sketch of Thm. E.1. Correctness. Correctness of signing
and verification follows the same arguments as previous works of

proactively secure RSA using Feldman secret sharing [4, 61]. One

difference is the lack of the use of value 𝛿𝑖,0 during refresh which

we instead consider server 𝑆𝑖 ’s own share. This does not affect

correctness since it holds that 𝛿𝑖 =
∑

𝑗 𝛿 𝑗,𝑖 .

Security.Most of the simulation proof follows previous approaches [4,

61], in particular when it comes to simulating Feldman verifiable

secret sharing. Although our protocol is slightly different since we

use 𝑡-out-of-𝑛 shares and 𝑡-out-of-𝑛 back-up shares of these shares,

along with a slightly different robustness model. Hence we do some

extra steps in the key generation phase, to ensure consistent shar-

ing of back-up shares. The same is true in the refresh phase where

we must validate and reshare or recover back-up shares.

For the key generation, we can generally not be sure that that

each party correctly 𝑡-out-of-𝑛 shares their 𝑛-out-of-𝑛 share, re-

ceived from FDKG. However, because the shares should all add up

to 𝑑 ≡ 𝑒−1
mod 𝜙 (𝑁), it is sufficient to validate this by doing in-

terpolation in the exponent, using the commitments, 𝐴 𝑗,0, . . . , 𝐴 𝑗,𝑛

to ensure that indeed 𝑑 will have been shared. Next see that we

validate the construction of 𝑡-out-of-𝑛 back-up shares based on

an arbitrary subset of 𝑡 shares. This might seem insufficient, but

because we ensure the degree of the polynomial defined from the

shares is 𝑡 − 1 (through 𝐴′
𝑗,0
, . . . , 𝐴′

𝑗,𝑡−1
), it is enough, since each

server will validate their own share based these commitments.

When it comes refreshing, in situations where there is no need

to use the recovery shares, then again the correctness follows from

60

Attribute-based Single Sign-On: Secure, Private, and Efficient Proceedings on Privacy Enhancing Technologies 2023(4)

previous works, using the same approach as us. If there is a need

to recover, i.e. when the adversary has modified the shares of a

corrupt party, that then becomes honest again, then we notice that

our proactive corruption model (Fig. 1) guarantees us that there will

be an honest majority among all the servers excluding the server

that tries to recover their shares. This is because a given choice of

corruption by the adversary covers two contiguous refresh phases.

Hence, if a corrupt party becomes honest at the beginning of a

refresh phase, it would still “count” as a corrupt party in the previous

corruption span. Thus, we can conclude that there must still be an

honest majority of servers besides the one recovering. Thus, the

recovering server can always identify the set of correct public values.

This allows the server to correctly validate their shares using 𝐴𝑖,0,

and in case of failure, receive 𝑡 correct back-up shares and recover

and validate their share 𝛿𝑖 . The last argument is a bit handwavy,

but follows by the proof of Rabin [61], who showed that if 𝑁 is of

unknown factorization, then the Feldman VSS is sufficient hiding

and binding of 𝛿𝑖 in the commitment 𝐴𝑖,0. Hiding follows since

a view of 𝑡 − 1 shares ensures uniform probability view of other

shares, since they are computed from polynomial interpolation

of a degree 𝑡 − 1 polynomial of a secret with exponentially large

entropy. Binding follows from the hardness of solving the discrete

logarithm in an RSA group with base 𝑔 (which is equivalent to

factoring [6] which the RSA assumption reduces to). Thus validation

can only pass if the initially committed shares were used or elements

𝐴𝑖, · outside the group of 𝑔 were used such that the polynomial

interpolation in the exponent when computing 𝐴𝑖,0 would thus

as a minimum require the adversary to construct a commitment

𝐴𝑖, · = ℎ𝜖𝑖 where ⟨ℎ⟩ ≠ ⟨𝑔⟩ which is equivalent to the strong RSA

assumption. Although this argument is not fully formal and closely

relates to the paragraph on verifiability of Feldman secret sharing

above.

In relation to the validation of back-up shares, we specifically

notice that abort of the given refresh phase is allowed by the adver-

sary. Hence an arbitrary set of 𝑡 back-up shares is sufficient to try

to reconstruct. Besides the different robustness and sharing model,

our protocol has some main differences so it is important to argue

that they do not compromise the overall security.

First of all, previous work [4, 61] requires 𝑁 to be generated

from safe primes. Since this makes secure and efficient realization

of FDKG very difficult, we forgo that requirement. The only place

where this requirement is used is to argue that the random element

𝑔 ∈ Z∗
𝑁
, used in the Feldman secret sharing, has exponentially large

order. However, even if 𝑁 is not constructed from two primes, if

random elements do not have high order then they can be used

to break the RSA assumption. To see this consider the following

observation:

Observation E.2. If 𝑁 is an RSA modulus, i.e. a product of two
large primes, and 𝑒 is the public exponent for RSA encryption, i.e.
gcd(𝑒, 𝜙 (𝑁)) = 1, then a random element 𝑔←𝑅 Z

∗
𝑁

has large order.

Observation explanation. Let 𝑒 be an RSA ‘encryption expo-

nent’ for 𝑁 such that gcd(𝑒, 𝜑 (𝑁)) = 1. For an element 𝑔 ∈ Z∗
𝑁

let

𝑑 be the discrete logarithm of 𝑔 to basis 𝑔𝑒 , i.e., we have (𝑔𝑒)𝑑 =

𝑔 mod 𝑁 and 𝑑 is the ‘decryption exponent’ for 𝑔. If the order of 𝑔 is

not large, this logarithm can be found with Shank’s BSGS algorithm

(in time proportional to the square root of the order of 𝑔). Once 𝑑

is found, it can be used to break all RSA challenges𝑚𝑒 ↦→𝑚 where

𝑚 has the same (small) order as 𝑔. That is, the RSA assumption

cannot hold if randomly picked elements 𝑔 ∈ Z∗
𝑁

do not have large

order. □

Next we argue that the lack of knowledge of the legitimate sig-

nature 𝜎 on𝑀 by the simulator is not an issue as long as we allow

aborts and validate that a signature will verify before outputting it

during the Signing phase. The simulator can validate each signa-

ture share 𝜎𝑖 that the adversary produced on behalf of each corrupt

server, against the simulated shares of the secret key𝑑 the adversary

was given during key generation for each corrupt server. If the set

of malicious shares is inconsistent with the simulated shares then

the simulator knows that it should abort the signing request since

it will not become a valid signature (since the simulator knows

the message𝑚 and RSA is a permutation). On the other hand, if

the adversary actually knows the true signature 𝜎 , which happens

when they corrupt the user 𝑈 , then the simulator will also have

received this signature from the ideal functionality and can thus

simulate in the same manner of the previous works.

Simulation. We show the simulation of ΠpsThrSig in Fig. 19 and

here sketch why an adversary who can distinguish between this

and the real execution with non-negligible probability can break

the RSA assumption (assuming that verifiability [32] of Feldman

commitments in Z𝑁 for RSA modulo 𝑁 holds [61]).

For the simulation of KeyGen S can simulate FDKG and return

𝑣𝑘 = (𝑁, 𝑒) indistinguishable from the real execution since it relays

share choices of A and 𝑣𝑘 = (𝑁, 𝑒) from FpsThrSig. However for
future use S must simulate 𝑑𝑖 for the honest parties. For all honest

parties these are picked exactly according to FDKG. However the
special value 𝑑0 is simulated using 𝑑 = 0 instead of the true 𝑑 , since

it is unknown to S. We observe that 𝑑0 mod 𝑛 · 𝑁 2
is uniformly

random distributed in both the real world and the simulation. This

is so since there is at least one honest party, 𝑆𝑖 , for which variable

𝑑𝑖 ←𝑅 [−𝑛 ·𝑁 2, 𝑛 ·𝑁 2]. Now because the true 𝑑 is less than 𝑁 and

the simulated 𝑑0 = 0 − ∑
𝑖∈[𝑛] 𝑑𝑖 , we observe that the simulated

𝑑0 will have a difference of at most 𝑁 when compared with the

true 𝑑0. However, since 𝑑0 mod 𝑛 · 𝑁 2
will be uniformly random,

this will be statistically indistinguishable if 𝑛𝑁 > 2
𝜆
. This follows

from noise drowning, resulting from least one honestly, randomly

generated 𝑑𝑖 .

Next see that the simulation of 𝑔 will be indistinguishable from

the true 𝑔, since it is simulated from a random 𝑔, picked from

the same distribution (Z∗
𝑁
) as the true 𝑔, which follows from ob-

servation E.2. We then observe that 𝑔 = 𝑔𝑑 mod 𝑁 since 𝑔𝑒 ·𝑑 ≡
𝑔 mod 𝑁 . Thus the shares generated in FeldmanZ𝑁 .Share will

be indistinguishable from the true shares since Feldman verifi-

able secret sharing is hiding (and hence the fact that 𝑑 𝑗 ′ = 0 can-

not be seen from the shares) and the commitment part of sharing

will be simulated to be of the correct distribution for the true 𝑑 ,
since𝐴 𝑗 ′,0 = 𝑔/𝑔𝑑0𝑛!

∏
𝑖∈[𝑛]\{ 𝑗 ′ } 𝐴𝑖,0 mod 𝑁 . More specifically the

shares 𝛿 𝑗 ′,1, . . . , 𝛿 𝑗 ′,𝑛 from FeldmanZ𝑁 .Share will interpolate to 0,

but when verifying each share, using 𝐴 𝑗 ′,0 ≠ 𝑔0
mod 𝑁 , it will

verify against whatever constant is in the exponent of 𝐴 𝑗 ′,0. While

the simulator does not know the value of this constant, we see that

61

Proceedings on Privacy Enhancing Technologies 2023(4) Tore Kasper Frederiksen, Julia Hesse, Bertram Poettering, and Patrick Towa

S runs the real protocol ΠpsThrSig with several exceptions listed below. S
maintains simulated instances of FCT (one) and FDKG (one) and follows their

code depicted in Fig. 14 and Fig. 13.

On receiving (KeyGen, sid) from FpsThrSig:
• Emulate FDKG and simulate the honest parties by following the real protocol

and extract 𝑝𝑖 , 𝑞𝑖 , 𝑑𝑖 for 𝑆𝑖 corrupted by A, through their messages Shares
and Proceed to FDKG and receive 𝑣𝑘 = (𝑁, 𝑒) from FpsThrSig.
• Simulate the honest parties’ shares 𝑑𝑖 ←𝑅 [−𝑛 · 𝑁 2, 𝑛 · 𝑁 2] and set 𝑑0 =

0 −∑𝑖∈[𝑛] 𝑑𝑖 ∈ [−𝑛 · 𝑁 2 + 𝑁,𝑛 · 𝑁 2].
• Emulate FCT by first sampling 𝑔←𝑅 Z

∗
𝑁

and then returning 𝑔 B 𝑔𝑒 mod 𝑁 .

• Run FeldmanZ𝑁 .Share for the honest servers based on the emulated val-

ues of 𝑑𝑖 , except for one honest server 𝑆 𝑗′ where S sets 𝑑 𝑗′ B 0 and

when simulating FeldmanZ𝑁 .Share on 0 it sets commitment 𝐴𝑗′,0 =

𝑔/
(
𝑔𝑑0𝑛!) ∏

𝑖∈[𝑛]\{ 𝑗′} 𝐴𝑖,0

)
mod 𝑁 instead 𝐴𝑗′,0 = 𝑔0 = 1.

• Simulate the rest of KeyGen using the emulated values.

On receiving (Sign, ssid, 𝑀) from FpsThrSig:
• If𝑈 is honest proceed as follows:

– For each message (ssid, 𝑁 , 𝑒,𝑑0,𝑢, 𝑣, 𝜎𝑖) received from each corrupt 𝑆𝑖

send to𝑈 .

– Let C denote the set of indexes of corrupt servers and check that∏
𝑖∈[C] 𝜎𝑖 = 𝐻 (𝑀)

∑
𝑖∈[C] 𝛿𝑖

mod 𝑁 for 𝛿𝑖 computed during the simu-

lation of FeldmanZ𝑁 .Share in KeyGen above or refreshed in Refresh
below, based on the extracted values of the corrupt parties and simulated

values of the honest parties. If not, or if the public values 𝑁, 𝑒,𝑑0,𝑢, 𝑣 are

inconsistent with the simulated ones in KeyGen, then abort at the point

where (sign-ok, sid, ssid) is supposed to be sent to FpsThrSig, otherwise
send (sign-ok, sid, ssid) to FpsThrSig.

– Simulate the rest of Sign using the emulated values.

• If𝑈 is corrupt proceed as follows:

– Simulate the honest parties by following the protocol, ex-

cept for one honest party 𝑆 𝑗′ where S computes 𝜎 𝑗′ =

𝜎/𝐻 (𝑀)𝑢
(
𝐻 (𝑀)𝑑0 · (𝑛!)2 ∏

𝑖∈[𝑛]\{ 𝑗′} 𝐻 (𝑀)𝛿𝑖 ·𝜔𝑖

)𝑣
mod 𝑁 and sends

(ssid, 𝑁 , 𝑒,𝑑0,𝑢, 𝑣, 𝜎 𝑗′) to𝑈 .

On receiving (Verify, sid, 𝑣𝑘,𝑀, 𝜎) from FpsThrSig:
• Proceed as the real protocol with the simulated shared constructed in the

previous phases.

On receiving (Refresh, sid, 𝑆𝑖) from FpsThrSig:
• Proceed as the real protocol with the simulated shared constructed in the

previous phases.

Figure 19: Simulator ΠpsThrSig for Theorem E.1.

𝑔𝑑0 ·𝑛!
∏𝑛

𝑗=1
𝐴 𝑗,𝑘 = 𝑔

𝑛!(𝑑0+
∑𝑛

𝑗=1
𝑑 𝑗)

mod 𝑁 = 𝑔𝑛!𝑑
mod 𝑁 as in the

real execution since 𝑔 = 𝑔𝑑
−1

mod 𝜙 (𝑁)
mod 𝑁 . Finally since the

generator 𝑑 contains exponentially large in the security parameter,

except with negligible probability, these values will also be statisti-

cally indistinguishable. The simulator then simulates the validation

of the Feldman shares, just like the honest servers would. Due to

the correctness of Feldman sharing, and the check that 𝐴𝑒
0
= 𝑔𝑛!

, if

any malicious servers sends a commitment that is not consistent

with their shares of 𝑑 then the validation will fail and hence the

simulation will abort. From this we also observe that the simulator

will receive shares 𝛿 𝑗,𝑖 for every honest server 𝑆𝑖 from each corrupt

server 𝑆 𝑗 . Thus if the Feldman validation succeeds it implies that

corrupt server 𝑆𝑖 shared values consistent with 𝑑𝑖 , and hence the

simulator compute 𝛿𝑖 for all 𝑖 ∈ [𝑛] by interpolating the malicious

shares and combining them with the 𝛿 𝑗,𝑖 values it picked for the

honest servers 𝑆 𝑗 . The rest of the simulation of KeyGen is then

carried out using these emulated values.

For the Signing phase if𝑈 is honest,S receives (Sign, sid, ssid, 𝑀)
from FpsThrSig and forwards (ProceedSign, sid, ssid) to FpsThrSig
on behalf of the corrupted parties and extract the messages (ssid, 𝑁 ,

𝑒, 𝑑0, 𝑢, 𝑣, 𝜎𝑖) from the corrupted servers. It is easy to see that the

Signing phase only completes if the corrupt servers send shares of

the signature which together is the value “correctly” constructed

using the simulated values 𝛿𝑖 . Because RSA is a permutation, there

exist only one signature for the choice of message and keys. Hence

any malicious change of the adversarial multiplicative share of the

signature would cause a failure in the real world when signature is

verified, in the same manner as in the simulation.

If 𝑈 is corrupted, S extracts message (Sign, sid, ssid, 𝑀), for-
wards it toFpsThrSig and in turn receivesmessage (Signature, 𝑀, 𝜎)
from the ideal functionality. Then note that, based on the simulated

𝜎 𝑗 ′ that 𝜎/
(
𝐻 (𝑀)𝑢

(
𝐻 (𝑀)𝑑0 · (𝑛!)2 ∏

𝑖∈[𝑛]\{ 𝑗 ′ } 𝐻 (𝑀)𝛿𝑖 ·𝜔𝑖

)𝑣)
mod

𝑁 ≡𝑠 𝐻 (𝑀)𝛿𝑖 . Even in the case where all servers 𝑆𝑖 for 𝑖 ∈ [𝑛]\{ 𝑗 ′}
are corrupt and can choose non-random values of 𝛿𝑖 , the true value

𝛿 𝑗 ′ is still sampled uniformly random. Hence the distributed of

simulated 𝜎 𝑗 ′ will be indistinguishable from the real distribution

since the distributions𝐻 (𝑀)𝛿 𝑗′
mod 𝑁 except with negligible prob-

ability. See the proof of theorem 2 by Almansa et al. [4] for more

detail.

For the Verify simulate in the straight forward manner by exe-

cuting verification algorithm.

For the Refresh simulate in the straight forward manner using

the arguments of VSS secret sharing. We first see that the adversary

cannot force the honest servers to accept wrong public values, since

there will be a majority of honest servers emulating the sharing of

correct public values. Similarly we see that the check 𝑔𝛿𝑖 ·𝑛! = 𝐴𝑖,0

for honest server 𝑆𝑖 will ensure that recovery steps are taken if the

server has been corrupted and had their value 𝛿𝑖 changed.

For the resharing part of refresh the same argument applies. This

implies that resharing will be consistent with the shares committed

to previously by the honest servers. For the rest of the resharing

phase the simulator validates the new shares of the corrupt parties

against the shares they should hold. I.e. the values that the simulator

originally picked for them, which it can do since it receives at least

𝑡 shares of the corrupt servers’ 𝑡-out-of-𝑛 sharing. If the shares are

not correct then the simulator aborts this execution of the refresh

phase. We now see that, using similar arguments as for the sharing

in key generation, that the commitments are all consistent with

previous shares, which the simulator either extracted from the

initial corrupt servers, or defined for the honest servers.

When it comes to the general indistinguishability aspects of these

distribution we note that it follows from the underlying security of

the VSS secret sharing [31]. □

F FULL PROOF OF THEOREM 4.1

We prove the theorem using a sequence of games, starting with the

real execution, parties running our ab-dSSO scheme and a (dummy)

adversary, and ending with an ideal execution where parties hand

their inputs to F
ab-dSSO

, which interacts with a simulator S. The
distinguishing environment is allowed to determine inputs to par-

ties, see their outputs, and interact with the adversary. Letwin(G𝑥)
denote the probability that the environment outputs 1 in game G𝑥 ,

62

Attribute-based Single Sign-On: Secure, Private, and Efficient Proceedings on Privacy Enhancing Technologies 2023(4)

over the random coins of all machines involved in the execution of

the game.

Proof. Game 1: The real execution. In the real execution the

parties run our ab-dSSO scheme, assisted by hybrid functionalities

FpsThrSig and FreqABB.
Game 2: Abort uponMAC collision.We abort the protocol run in

case ofA substituting any value type𝑗 in a message (ssid, uid, 𝑀, 𝑃,

(type𝑗) 𝑗 ∈[𝑚]) with type𝑗 ′ and any 𝑆𝑖 creating an output (Sign,
ssid, . . .). Any such server would use mac share 𝛽𝑖,uid, 𝑗 ′ instead of

𝛽𝑖,uid, 𝑗 . The probability that [vuid, 𝑗] = [𝑎 𝑗] · [Δ]+ [𝛽uid, 𝑗] mod 𝑝 is

1/𝑝 since 𝛽uid, 𝑗 is uniformly random and information-theoretically

hidden from the adversary who can corrupt at most 𝑡 − 1 servers.

Hence, this and the previous game are indistinguishable except

with probability bounded by the Birthday Bound, where 𝑄𝑟 is the

number of registration queries.

| Pr[win(Game 2)] − Pr[win(Game 1)] | ≤ 𝑄𝑟 ·𝑚
2 · 𝑝

Game 3: Abort upon MAC forgery.We abort the protocol exe-

cution whenever a corrupt party inputs a value vuid, 𝑗 into FreqABB
that was never output by FreqABB, but which leads to a server 𝑆𝑖
producing a corresponding (Sign, ...) output (i.e., vuid, 𝑗 passes the
mac verification step). Due to 𝛽uid, 𝑗 being drawn uniformly random

and information-theoretically hidden from the adversary who can

corrupt at most 𝑡 − 1 servers, the probability that this happens is

bound by 1/𝑝 and hence this and the previous game are indistin-

guishable except with probability bounded by the Birthday Bound,

where 𝑄𝑝𝑠 is the number of ProceedSign inputs to servers.

| Pr[win(Game 3)] − Pr[win(Game 2)] | ≤
𝑄𝑝𝑠 ·𝑚

2 · 𝑝
Game 4: Add simulator and functionality machines.We re-

group the real execution into one ITI called simulator or S (S now

includesA, FpsThrSig, and FreqABB. We add an ITI F with interfaces

Register, ProceedReg, Sign and Revoke of F
ab-dSSO

, modified s.t.

F discloses attributes and proofs toA (we stress that we take away

this knowledge from S in later games).

We augment the code of S to act when getting notifications from

F or instructions from A.

• Notification about input (Register, ssid, uid, (type𝑗) 𝑗 ∈[𝑚])
from F : simulate 𝑛 messages (ssid, uid, (type𝑗) 𝑗 ∈[𝑚]) from
the user who provided this input, to every 𝑆𝑖 .

• Notification about input (ProceedReg, sid, ssid, 𝑆𝑖) from F :
S simulates usage of FreqABB by the honest servers, and

delivers a (ProceedReg, . . .) output towards 𝑆𝑖 as soon as

that server has received the MAC share from FreqABB.
• Notification about input (Sign, ssid ′, uid, 𝑀, 𝑃, (type𝑗) 𝑗 ∈[𝑚])
and consecutive message (Sign, ssid ′, true) from F : simu-

latemessage (ssid ′, uid, 𝑀, 𝑃, (type𝑗) 𝑗 ∈[𝑚] towards every 𝑆𝑖 .
• As soon as a simulated 𝑆𝑖 outputs (Registered, ssid, uid) S
delivers the corresponding output of F to 𝑆𝑖 .

• As soon as a simulated 𝑆𝑖 outputs tuple (Sign, ssid, uid, 𝑀, 𝑃,

(type𝑗) 𝑗 ∈[𝑚]) S delivers the corresponding output of F
to 𝑆𝑖 .

• If A delivers message (ssid, uid, (type′
𝑗
) 𝑗 ∈[𝑚]) to 𝑆𝑖 then

send (Register, ssid, (type′
𝑗
) 𝑗 ∈[𝑚] , 𝑆𝑖) to F .

We let S extract all secrets from corrupted parties’ inputs to

FreqABB and FpsThrSig and send the corresponding inputs to F
on behalf of those corrupted parties. E.g., if a corrupt user 𝑈 at-

tempts to register by sending𝐴, 𝜋 to FreqABB instance ssid, S sends

(Register, ssid, uid, 𝐴, 𝜋) to F on behalf of 𝑈 , where uid is ex-

tracted from 𝐴.

To argue indistinguishability, it is important to note that F does

not yet verify signatures, and that the simulated protocol run uses

the same inputs as in the previous game (since still in this game

the simulator knows passwords, attributes, and proofs). Hence the

correct content and scheduling of outputs of F such that they are

indistinguishable from the real protocol execution is enough to

argue perfect indistinguishability of this and the previous game.

The scheduling is straightforward to verify given the list of S’s
actions above. The contents of KeyConf, Register, Registered,
and Sign outputs are the same in this and in the previous game

(i.e., the corresponding protocol parts are correctly doing what we

expect them to do) as we argue below.

• Output (Register, ssid, uid, (type𝑗) 𝑗 ∈[𝑚]): uid and type values

are either from the input or adversarial values, and the Register
interface in F ensures that also adversarial values reach 𝑆𝑖 even

though they might not correspond to what the user sent.

• Output (Registered, ssid, uid): if such output is produced, then

uid is guaranteed to match the user’s input uid to Register since
the user inputs 𝐴, which contains uid, into FreqABB without the

adversary being able to tamper. The registration protocol then

lets the server check consistency of uid in the attribute set (using

FreqABB, so in MPC) with uid received from the user, and aborts if

they do not match. This behavior is the same in the Register and
ProceedReg interfaces of F , where bit 𝑏 is set to 0 (yielding an

abort) in case A tampers with uid. It remains to check whether,

in both games, the output is produced in exactly the same cases.

In the previous game, our ab-dSSO scheme produces such output

only if registration is successfully concluded, namely if uid and

types were not modified by the adversary, FreqABB output got

delivered by the adversary, uid is contained in 𝐴, and 𝜋 verifies.

These checks are carried out by setting bit 𝑏 by F in this game,

and hence this and the previous game do not differ in the cases

where Registered output is produced.

• Output (Sign, ssid, uid, 𝑀, 𝑃, 𝑏, (type𝑗) 𝑗 ∈[𝑚]):
– Indistinguishability of the content of this output. Both𝑀 and 𝑃

from the previous game are as input by the user, since the user

directly inputs them into FpsThrSig as message, and FpsThrSig
does not allow the adversary to tamper with the signed mes-

sage. In this game, F also does not allow tampering with 𝑀

or 𝑃 either, so these contents are equal in both games. For uid
and the types, A can tamper with both our ab-dSSO scheme

in the message sent from𝑈 to every 𝑆𝑖 . However, tampering

with uid results in 𝑆𝑖 aborting the signing request due to a

mismatch with the uid contained in 𝐴, so only a correct uid
can be contained in the Sign output. Tampering with types in

a way that is not detected our ab-dSSO scheme by a server is

already exluded in Game Game 2. This behavior is reflected in

this game in F , where both uid and types are guaranteed to

appear in the Sign output as they were input by the client.

– Indistinguishability of the occurrence of this output. In the pre-

vious game, a server 𝑆𝑖 our ab-dSSO scheme produces this

63

Proceedings on Privacy Enhancing Technologies 2023(4) Tore Kasper Frederiksen, Julia Hesse, Bertram Poettering, and Patrick Towa

output only if neither the user nor a server drops this query.

A drop occurs at the user side if the policy is not fulfilled, or

if the uid does not appear among the attributes, or if the user

does not have a mac stored for some attribute type. On the

server side, a drop occurs if there is a uid mismatch between

the received message and the uid among the attributes stored

in FreqABB, or if the user had input the wrong mac vuid, 𝑗 for
any 𝑗 (i.e., does not possess the claimed attribute), or if the

policy does not verify. Note that it is crucial to repeat some

checks on both sides as users can be corrupted and skip them.

In F , the corresponding checks are conducted by the signing

interface, and output is only produced if all of them pass. The

only difference appears in the check for a user possessing an at-

tribute, which is mac verification in the protocol versus record

existence in F . Due to the unforgeability of verifying macs as

of Game Game 3, the outcome of both checks are equal in this

and the previous game.

We hence have

Pr[win(Game 4)] = Pr[win(Game 3)] .

Game 5: Add the Refresh interfaces to F .We add both Refresh
interfaces to F . We changeS as follows.When a simulated server 𝑆𝑖
successfully concludes the refresh protocol (i.e., holds theMAC keys

for the next epoch 𝑒 , and has received (Epoch, sid, 𝑒) from FpsThrSig),
S sends (Refresh, sid, 𝑒, 𝑆𝑖) to Fab-dSSO. In case any simulated

server 𝑆𝑖 runs into an abort, or A sends (Refresh, sid, abort), S
sends (Refresh, sid, abort) to F

ab-dSSO
.

In case of a refresh, indistinguishability follows from the fact that

the refresh interfaces of FpsThrSig and Fab-dSSO are equivalent (i.e.,

the security of refresh of signature keys is outsourced to the proof

of Theorem E.1), and the correctness of the resharing of all elements

from {Δ𝑖 ,
{{
𝛽uid, 𝑗

}
𝑗 ∈[|𝐴uid |]

}
uid∈𝑌

} in Fig. 6, which follows from

the correctness of the VSS scheme in Fig. 10. We hence have

Pr[win(Game 5)] = Pr[win(Game 4)] .

Game 6: Remove Feldman verification. Simulate the logic of

Pedersen
+ .Verify from Fig. 10 on (Verify, sid, 𝑠 𝑗,𝑖 , 𝑡 𝑗,𝑖 , 𝐴 𝑗,0, . . . ,

𝐴 𝑗,𝑡−1) to accept if and only if these matches the values S con-

structed (for honest parties) or received (for corrupt parties) during

one of the other Pedersen
+
macro calls (or the expected arithmetic

computation of these). Concretely Verify is a local procedure that

S simulates for the honest parties on values simulated (for honest

parties) or received from malicious parties, or publicly known com-

binations therefore. Hence the simulator knows which values are

expected.

Similarly in Recover, we let the validation of 𝑔𝑠𝑖ℎ𝑡𝑖 ≠ 𝐴𝑖,0 be

replaced by the simulator validating if (𝑠𝑖 , 𝑡𝑖) are associated to the

𝐴𝑖,0 S constructed (for honest parties) or received (for corrupt

parties) or combined.

Following security of Pedersen verifiable secret sharing [60], the

only way to make this call output accept in this game for 𝑠 ′
𝑗,𝑖

≠ 𝑠 𝑗,𝑖

and 𝑡 ′
𝑗,𝑖

≠ 𝑡 𝑗,𝑖 is to solve the discrete log of ℎ to base 𝑔. This means

that the hybrids will always output the same unless the adversary

can solve the discrete log problem.

Let AdveDL (𝑝𝑐 , 𝑔, ℎ) be the advantage of an adversary trying

to solve the discrete logarithm problem of ℎ with base 𝑔 in the

extension field F𝑝𝑐 . Furthermore let𝑄𝑟𝑒 𝑓 be the number of Refresh
queries and let 𝑄𝑟 be the number of Register queries, for which
each user has at most𝑚 attributes.

| Pr[win(Game 6)] − Pr[win(Game 5)] | ≤
3 · (𝑡 − 1) · (𝑄𝑟 ·𝑚 + 1) ·𝑄𝑟𝑒 𝑓

2 · 𝑝𝑐 + AdveDL (𝑝𝑐 , 𝑔, ℎ)

Game 7: RemoveMPC sharing. Simulate the protocol Pedersen
+ .

MPC-Share from Fig. 10 by extracting 𝑠𝑖 from [𝑠𝑖] (which is pos-

sible since the simulator simulates FreqABB), remembering it (and

the variable with which it is associated) and instead use 𝑠𝑖 = 0 and

simulate the protocol ofMPC-Share as the real protocol using this.

Similarly we simulate the protocol of Pedersen
+ .Reconstruct

by returning the correct values 𝑠𝑖 , 𝑡𝑖 which were stored when exe-

cuting Pedersen
+ .MPC-Share if the values reconstructed by exe-

cuting correctly matches the values used in MPC-Share. If instead

𝑠𝑖 , 𝑡𝑖 were created with Pedersen
+ .Share then execute the proto-

col as normal. Note that the simulator can recognize the two cases

from whether the 𝑡𝑖 it restores is one it picked previously. Since

they are picked over a computationally large domain, the chance

of collision is negligible.

At any point where FreqABB is used,S will use the real, extracted

𝑠𝑖 instead of 0 as given by the honest parties, thus the hybrids remain

indistinguishable.

Let 𝑄𝑟 be the number of Register queries, for which each user

has at most𝑚 attributes.

| Pr[win(Game 7)] − Pr[win(Game 6)] | ≤ (𝑡 − 1) · (𝑄𝑟 ·𝑚 + 1)
2 · 𝑝𝑐

Game 8: Remove Feldman sharing. Simulate the protocol of

Pedersen
+ .Share from Fig. 10 by setting 𝑠𝑖 = 0 and sampling 𝑡𝑖

uniformly at random in situations where 𝑡𝑖 ≠ 0 and otherwise

proceed as the protocol describes.

Since the adversary can at most corrupt 𝑡−1 servers, this remains

indistinguishable from the previous hybrid since: 1) The values

𝑠𝑖, 𝑗 , 𝑡𝑖, 𝑗 are generated from a random degree 𝑡 − 1 polynomial and

A learns at most 𝑡 − 1 of these, thus they are indistinguishable

from random. 2) A value 𝐴𝑖, 𝑗 is a statistically hiding commitment

since the values 𝑟𝑖,𝑘 are randomly sampled from F𝑝𝑐 . 3) The values
used when calling Share are either known (𝑠𝑖 = 𝑡𝑖 = 0) or random.

See Refresh. More specifically 𝑠𝑖 will be a share of 𝐺𝑖 which is a

random additive share for which more than 𝑡 − 1 are needed to

recover the true value and any use of this will already be handled by

the simulator when executing FreqABB as explained in the hybrid

above.

Let 𝑄𝑟𝑒 𝑓 be the number of Refresh queries and let 𝑄𝑟 be the

number of Register queries, for which each user has at most𝑚

attributes.

| Pr[win(Game 8)] − Pr[win(Game 7)] | ≤
2 · (𝑡 − 1) · (𝑄𝑟 ·𝑚 + 1) ·𝑄𝑟𝑒 𝑓

2 · 𝑝𝑐

Game 9: Abort upon forgery. We let the simulator abort in case

Z inputs (Verify, 𝑀, 𝑃, 𝜎, vk) to an honest party, where

• vk is equal to the verification key generated by FpsThrSig within
the KeyGen interface,

• FpsThrSig does not have a record (sigrec, 𝑀, 𝑃, 𝜎, vk, 1),
64

Attribute-based Single Sign-On: Secure, Private, and Efficient Proceedings on Privacy Enhancing Technologies 2023(4)

• and Vfy(vk, (𝑀, 𝑃), 𝜎) = 1.

These conditions imply that 𝜎 was never created by FpsThrSig
using the Sign algorithm and sk and message (𝑀, 𝑃). At the same

time, sk is hidden within FpsThrSig and hence the abort corresponds
toZ holding a forgery. Indistinguishability from the previous game

follows from the existential unforgeability of the signature scheme

(KGen, Sign,Vfy) that FpsThrSig is parametrized with. The reduc-

tion is tight since there is only one signing key.

| Pr[win(Game 9)] − Pr[win(Game 8)] | ≤ AdvEUF−CMA
SIG (1𝜆)

Game 10: Let F compute and verify signatures. We add the

KeyGen, ProceedSign and Verify interfaces to F . We change S
as follows.

• When A delivers FreqABB outputs during KeyGen towards 𝑆𝑖 , S
sends (KeyConf, sid, 𝑆𝑖) to F .
• When FpsThrSig produces output Signature towards a user, S
sends the corresponding sign-ok message to F .
It is straightforward to verify that the modifications to S in this

game do not lead to any difference in when or if Z obtains a par-

ticular output. The only difference hence lies in the way signatures

𝜎 are computed and verified: in the previous game, signatures were

computed and verified by FpsThrSig, and in this game they are com-

puted and verified by F . Both functionalities have equal KeyGen,
ProceedSign and Verify interfaces (except that F includes infor-

mation about attributes in records and messages to A, which does

not influence the sigrec records). In particular, both functionalities
choose a single key pair for computing signatures. Indistinguisha-

bility hence follows from FpsThrSig and F both using the very same

algorithms (KGen, Sign,Vfy), and it hence follows that

Pr[win(Game 10)] = Pr[win(Game 9)] .

Quick orientation.We are at a point in the proof where we added

all interfaces to F . The only difference between F and our target

functionality F
ab-dSSO

is that F informs the simulator about proofs

𝜋 and attribute sets 𝐴. Hence, it remains to take these items away

from S, in a way that is indistinguishable for the environment.

Game 11: Simulate without proofs.Wemodify F to not forward

proofs 𝜋 from Register inputs to S. At the same time, we modify

S to work without these proofs: upon receiving Register for an
honest user𝑈 , S chooses a dummy value 𝜋S to input into FreqABB
on behalf of 𝑈 . During ProceedReg, when servers jointly compute

CAVfy(vkCA, ·, [𝜋S]), S sets the output of this computation to be

equal to bit 𝑏vf received from F ’s Sign interface.
Indistinguishability follows from the fact that 𝑏vf is computed

in the very same way as our ab-dSSO scheme via FreqABB (i.e., in

the previous game), namely as CAVfy(vk, 𝐴, 𝜋). Hence this and the

previous game have equal output distributions towardsZ, i.e.,

Pr[win(Game 11)] = Pr[win(Game 10)] .
Game 12: Simulate registration without the attributes. We

modify F to not forward attributes from Registerinputs to S
anymore. At the same time, we modify S to work without these

attributes, and instead use the bit 𝑏uid received from F during

Register: S chooses dummy attributes to input into FreqABB on

behalf of an honest user, and instead of letting a simulated user

check whether 𝑎 𝑗 = uid through FreqABB, S lets that user abort if

𝑏uid = 0.

S runs the real protocol with several exceptions listed below. S maintains

simulated instances of FreqABB (many) and FpsThrSig (one) and follows their

code depicted in Fig. 11 and Fig. 18.

On receiving (KeyGen, sid, 𝑆𝑖) from Fab-dSSO:
• When A delivers FreqABB outputs during KeyGen towards server 𝑆𝑖 , S sends

(KeyConf, sid, 𝑆𝑖) to Fab-dSSO (Game 10).

On receiving (Register, ssid, uid, (type𝑗) 𝑗∈[𝑚] ,𝑈) and subsequently

(Register, ssid, 𝑏vf, 𝑏uid)from F
ab-dSSO

:

• If 𝑏uid = 0 then ignore the query. (Game 12)

• Otherwise, do:

– If𝑈 is corrupt and subsequently sends 𝜋 and (𝑎 𝑗) 𝑗∈[𝑚] to FreqABB, send
input (Register, ssid, uid, (type𝑗 :𝑎 𝑗) 𝑗∈[𝑚] to Fab-dSSO on behalf of the

corrupt𝑈 (Game 4).

– If𝑈 is honest, (Game 11) pick random proof 𝜋S and (Game 12) random

attribute set𝐴S of length𝑚, and start the simulated𝑈 with 𝜋S, 𝐴S . (Game

4)

Upon A sending message (ssid, uid, (type𝑗) 𝑗∈[𝑚]) to 𝑆𝑖 on behalf of𝑈 , S
sends a corresponding Register message to F

ab-dSSO
(Game 4).

On receiving (ProceedReg, ssid, 𝑆𝑖) from Fab-dSSO:
• If a simulated server 𝑆𝑖 outputs (Registered, ssid, uid) , S delivers the cor-

responding output of F
ab-dSSO

to 𝑆𝑖 (Game 4).

On receiving (Sign, ssid′, uid, 𝑀, 𝑃, (type′
𝑗
) 𝑗∈[𝑚′] ,𝑈) and consecutively

(Sign, ssid′, 𝑏pol, 𝑏uid, 𝑏type) from F
ab-dSSO

:

• If𝑈 is honest and 𝑏pol = 𝑏uid = 𝑏type = 1, then pick a random attribute set

𝐴S of length𝑚′ and run the simulated 𝑈 with 𝐴S (Game 13). Otherwise

ignore the query.

On receiving (sign-ok, ssid′) from F:
• When FpsThrSig produces output (Signature, ssid′, ∗) to a user𝑈 , S sends

(sign-ok, ssid′) to F.

Figure 20: Simulator for Theorem 4.1.

Regarding indistinguishability, observe that our ab-dSSO scheme,

the only purpose of honest users inputting their attributes into

FreqABB is to (a) verify the proof, and (b) check whether uid is

contained in the attributes. In this game, the binary outcomes of

both these computations are replaced by equivalent information

computed by F , and hence the output distribution of this game is

equal to the previous:

Pr[win(Game 12)] = Pr[win(Game 11)] .
Game 13: Simulate signing without the attributes. We modify

F to not forward attributes from Sign inputs to S anymore. At

the same time, we modify S to work without these attributes, and

instead use the bits 𝑏pol, 𝑏uid, 𝑏type received from F during Sign,
very similar to the previous game: S uses dummy attributes as

input to FreqABB and substitutes FreqABB’s attribute-dependent

computations with the received bits from F . That is, S aborts upon

wrong uid if 𝑏uid = 0. S lets a simulated party ignore a Sign input

if the corresponding 𝑏pol is 0, or if 𝑏type is 0.

The indistinguishability argument is as in the previous game,

and we have

Pr[win(Game 13)] = Pr[win(Game 12)] .
We now have F = F

ab-dSSO
and hence Game 13 is equal to

the ideal execution with F
ab-dSSO

and a simulator S that we built

gradually during the sequence of games. It is depicted in Fig. 20.

This concludes the proof.

□

65

	Abstract
	Acknowledgments
	1 Introduction
	1.1 Our Approach
	1.2 Related Work

	2 Preliminaries
	2.1 Adversarial Model
	2.2 Threshold Signatures

	3 Attribute-Based Distributed SSO
	3.1 Desired Properties of ab-dSSO
	3.2 Comparison ab-dSSO vs. Classic SSO
	3.3 Security Model

	4 Construction
	4.1 Formal Protocol Description

	5 Implementation
	References
	A Comparison of ab-dSSO to other cryptographic primitives
	B Additional protocol description
	C Deployment Considerations
	C.1 Attribute Authorities (AA)
	C.2 User Deployment
	C.3 Unlinkability and Untraceability

	D MPC Preliminaries
	D.1 Secure Multi-Party Computation.
	D.2 Outsourced Computation
	D.3 MPC with Partially Public Functions

	E Proactively-Secure Threshold Signatures
	E.1 Security Model

	F Full proof of Theorem ??

