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Abstract 

Owing to the ability to parallel manipulate micro-objects, dynamic holographic opti-
cal tweezers (HOTs) are widely used for assembly and patterning of particles or cells. 
However, for simultaneous control of large-scale targets, potential collisions could 
lead to defects in the formed patterns. Herein we introduce the artificial potential field 
(APF) to develop dynamic HOTs that enable collision-avoidance micro-manipulation. 
By eliminating collision risks among particles, this method can maximize the degree 
of parallelism in multi-particle transport, and it permits the implementation of the Hun-
garian algorithm for matching the particles with their target sites in a minimal path-
way. In proof-of-concept experiments, we employ APF-empowered dynamic HOTs 
to achieve direct assembly of a defect-free 8 × 8 array of microbeads, which starts 
from random initial positions. We further demonstrate successive flexible transforma-
tions of a 7 × 7 microbead array, by regulating its tilt angle and inter-particle spacing 
distances with a minimalist path. We anticipate that the proposed method will become 
a versatile tool to open up new possibilities for parallel optical micromanipulation tasks 
in a variety of fields.

Keywords:  Dynamic holographic optical tweezers, Path planning, Hungarian 
algorithm, Artificial potential field

Introduction
Assembling building blocks like micro- and nano-particles into organized patterns is a 
subject that has fascinated scientists from a spectrum of disciplines. Physicists arrange 
atom arrays for quantum operations [1–3], while biologists create cell patterns to study 
intercellular communication [4–6]. Chemists and material scientists are devoted to 
assembling molecules and colloids into structures that can mimic or surpass nature’s 
complexity and functionality [7–11]. Engineers explore new forms of displays in which 
the pixels are made of patterned particles [12–14].

Among state-of-the-art techniques, dynamic holographic optical tweezers (HOTs) 
have stood out as an assembly method featuring both programmable and reconfigur-
able properties, because it permits simultaneous trapping of multiple particles and their 
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independent control in real-time [15]. Thus far, however, its advanced use has been ham-
pered by the collision problem. In the assembling process, collisions between particles 
may occur, especially for transporting massive particles. Collisions could cause particles 
to be knocked out of their traps or all fall into a single trap, leading to defects in the pat-
terns (Fig. 1a). An effective and traditional route to form a defect-free pattern is to care-
fully steer each particle toward its target position one by one [1, 2], which however is 
inefficient or time-consuming. Potential collisions also impose a challenge in the flexible 
transformation of a pattern, such that usually only simple types of dynamics are allowed, 
such as rigid translation and rotation. Central to these challenges is the long-standing 
question of how to make full use of parallel manipulation by overcoming collisions.

Fortunately, the well-known artificial potential field (APF) [16] has provided a virtual 
force method to avoid obstacles for macroscopic manipulators and mobile robots. The 
APF method is widely used in the cooperative work of multiple robots and the co-nav-
igation of multi-unmanned aerial vehicles [17–19]. Yet this artificial intelligence tech-
nique remains unexploited in optical tweezers. In this work, we integrate the APF into 
dynamic HOTs for direct assembly and transformation of microbead arrays (Fig. 1b). The 
Hungarian algorithm [20] is adopted for matching the microbeads to target sites along a 
minimal path. We show that APF-empowered dynamic HOTs enable rapid assembly of 
large-scale defect-free patterns in a parallel way, and endows the pattern transformation 
with a high degree of freedom. This is attributed not only to the virtual force due to 
the APF, which protects the particles against collisions, but also to the optical gradient 
force [21–25] exerted by HOTs, which overwhelms stochastic Brownian effects so that 
the APF scheme can work as expected. All the experimental results are in accordance 
with theoretical expectations, validating the effectiveness of the proposed method for 
collision avoidance in dynamic HOTs.

Results
The formation of microbead arrays using dynamic HOTs involves three main stages: tar-
get assignment, collision-free path planning, and hologram generation.

Target assignment

We temporarily ignore potential collisions to assign destinations to beads. The coordi-
nates of all target sites are stored in the set T = {ti|1 ≤ i ≤ N } , and the coordinates of all 
trapped beads are put into the set B = {bj|1 ≤ j ≤ N } . The number of target sites is N, 
which is equal to the number of trapped beads. The goal is to find a one-to-one matching 
f : T → B , which minimizes the total distance between the target sites and the beads, 
dtotal = i|ti − f (ti)| . This is a minimum-weight matching problem of bipartite graphs, 
which can be solved by the Hungarian algorithm. For an N × N cost matrix D, whose ele-
ment di,j = |ti − bj| denotes the distance between the target site ti and the bead bj, the 
Hungarian algorithm has a time complexity of O(N3). Figure  2a (left panel) illustrates 
the minimum-weight match of a target array with N = 25 randomly distributed beads. 
We have implemented the Hungarian algorithm by using MATLAB software and run it 
on a CPU (Intel Xeon E5-1620 v3). In this example, the running time of the algorithm is 
approximately 1.4 ms. The fast computational speed allows the Hungarian algorithm to 
handle large values of N.
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Fig. 2  Path planning for both conventional and APF-empowered dynamic HOTs. a The left shows a 
minimum-weight match between a 5 × 5 target array and the same number of random beads by using the 
Hungarian algorithm with the objective function dtotal =

∑

i
|ti − f (ti)| . The right shows bead positions after 

13 travel steps along straight lines, where collisions occur (cyan circles). The red balls indicate beads, the 
magenta circles indicate target sites, the arrows indicate one-to-one matches, and the cyan circles indicate 
collision events. b Experimental results corresponding to (a). The final bead array exhibits defects (Video 1). 
There are three merging sites (red arrows) and three missing sites (yellow dashed circles). The target sites 
are spaced 1.5 μm apart and the beads are 1 μm in diameter. c Simulated and experimental trajectories. d 
The top shows distances from bead positions to target sites with time. The merging beads could not reach 
their targets, so the distances do not decrease to 0 after 5.8 s. The bottom shows the arrival percentage of 
beads and the distribution of trajectory lengths. e Collision-free path planning with the Hungarian algorithm 
followed by the APF method. The target sites and the initial positions of the beads are the same as (a). 
The solid purple lines indicate the travel trajectories. f Enlarged views of the boxes in (e). The green arrows 
indicate the changes in trajectories due to repulsive forces. g Experimentally obtained bead array without 
defects (Video 2). h Simulated and experimental trajectories. i Experimental trajectory analysis. All beads 
arrive at their target sites after 10.2 s, and 36% of the beads have a trajectory length of 5 μm
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In the simulation, the target sites are spaced 1.5 μm apart, the beads have a diameter of 
1 μm, and the step size is 0.25 μm. Figure 2a (right panel) shows the straight-line travel 
paths. There are three collision events (cyan circles) after 13 travel steps, two of which 
are two-bead collisions and another is a three-bead collision. The experimental results 
validate the simulated collisions, and the final bead array has defects (Fig. 2b, Video 1). 
The trajectories of the colliding beads deviate from the predefined straight lines (Fig. 2c), 
and merging beads could not arrive at their target sites after 5.8 s (Fig. 2d, top and lower 
left panels). The trajectory length is in the range of 2 ~ 7 μm (Fig. 2d, lower right panel).

Collision‑free path planning

After the destinations of beads have been assigned, they need to be moved to the cor-
responding target sites. Taking straight lines as travel paths may lead to collisions (cyan 
circles in Fig. 2a,b), which will result in beads being knocked out of their respective traps, 
or all falling into a single trap. In massive microbead transport, the APF can effectively 
reduce collisions, especially the complicated collisions occurring among multiple beads. 
The APF sets repulsive forces between the beads, thus allowing for collision avoidance.

Consider again the example shown in Fig. 2a. We keep target sites and initial positions 
of beads as previously shown, and generate a collision-free path planning by using the 
Hungarian algorithm followed by the APF method. The Hungarian algorithm uses the 
objective function dtotal. The purple lines in Fig. 2e indicate the collision-free travel tra-
jectories. When the beads are close to collisions, the APF generates collision-avoidance 
tendencies via repulsive forces, which is manifested by the change of travel trajectories 
from straight lines to curves (Fig. 2f ). A perfect bead array has been obtained from the 
experiment (Fig. 2g, Video 2). The experimental trajectories almost overlapped with the 
simulated ones (Fig. 2h). 100% of the beads have reached the target after 10.2 s (Fig. 2i, 
left and middle panels), and 36% of the beads have a travel length of about 5 μm (Fig. 2i, 
right panel). We implement the APF by using MATLAB software and run it on the CPU 
(Intel Xeon E5-1620 v3), too. In this example, the number of steps that the beads travel is 
51 (Fig. 2g), and the running time of the APF is 8.4 ms.

By optimizing the match between beads and targets, the number of collisions can be 
reduced at the beginning (Extended Data Fig.  2). We thus modify the objective func-
tion of the Hungarian algorithm with d(2)total =

∑

i |ti − f (ti)|2 to generate an alternative 
match as reported in ref. [20]. Accordingly, the element of cost matrix D becomes d2i,j . 
The match created with d(2)total shows some improvement in terms of collision avoidance. 
Only a two-bead collision event occurs after 12 travel steps (Extended Data Fig.  2a). 
The experimental results are in good agreement with the simulation, and the final array 
has one empty site (Extended Data Fig. 2b, Video 3). The experimental trajectories are 
generally consistent with the simulations, except for the two colliding beads (Extended 
Data Fig. 2c). Statistical analysis of the experimental trajectories shows that 96% of the 
beads have arrived at their targets after 5.2 s, and the trajectory length ranges from 2 to 
6 µm (Extended Data Fig. 2d). The APF still helps the beads avoid collisions. The path 
of the beads is re-planned by using the APF method (Extended Data Fig. 2e). The two 
originally colliding beads travel along the curved trajectories due to the repulsive force 
(Extended Data Fig. 2f ). The final array shows no defects (Extended Data Fig. 2g, Video 
4). The experimental trajectories are consistent with the simulated ones (Extended Data 
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Fig. 2h). All beads have reached the targets after 9.6 s, and 40% of the beads have a tra-
jectory length of about 5 μm (Extended Data Fig. 2i).

The objective function dtotal equals the sum of distances, while d(2)total denotes the sum 
of squared distances. However, d(2)total is more effective to reduce collision events, thus 
helping to alleviate the workload of the APF at the later stage. In the following results, 
d
(2)
total is taken as the objective function of Hungarian algorithm before potential colli-

sions are avoided by using the APF method.
Next, we perform a collision-free path planning for massive beads. As shown in Fig. 3a, 

100 beads are randomly distributed in an area of 30 μm × 30 μm, and the target is a 
10 × 10 array with a spacing distance of 1.5 μm. The beads are 1 μm in diameter, the step 
size is 0.25 μm and the number of travel steps equals 70. Figure 3a shows the travel tra-
jectories of 100 beads. The enlarged views show the trajectories of the two-bead collision 
avoidance. The green arrow indicates that the trajectories are bent due to repulsive 
forces. Note that most of the trajectories are straight and only bend when the beads are 
subjected to repulsive forces. Trajectory lengths range from 1 to 11 μm (Fig. 3b). In this 
example, the total running time of the APF is about 140.4 ms. The quantitative relation-
ship between the single-step running time and the number of optical traps (beads) is 
t

nstep
=

(

1.92N 2
trap + 9.12Ntrap + 135.34

)

· 10−4 , where nstep is the number of travel steps 

and Ntrap is the number of optical traps (Fig. 3c). The single-step running time is typically 
within 2 ms for Ntrap ≤ 100.

Fig. 3  Collision-free path planning for 100 random beads forming a 10 × 10 target array by using the APF 
method. a Simulated trajectories of beads. Enlarged views of the boxes show the trajectories of the two-bead 
collision avoidance, with green arrows indicating the changes in trajectories due to repulsive forces. b 
Distribution of simulated trajectory lengths. c Quantitative relationship between the single-step running time 
and the number of optical traps



Page 7 of 17Li et al. PhotoniX            (2024) 5:32 	

Formation of microbead arrays

After trapping the initial microbeads, the three stages of target assignment, collision-
free path planning, and hologram generation are sequentially undergone. Subsequently, 
the phase-only liquid crystal spatial light modulator (SLM) updates the hologram at 
each timestep to achieve parallel movement of all optical traps. Figure 4a demonstrates 
that 64 random beads move to target sites according to preplanned paths, ultimately 
forming an 8 × 8 array with a spacing distance of 1.5 μm. (Video 5). The step size s = 0.25 
μm and the number of travel steps is 27. The beads usually travel in constant step size, 

Fig. 4  Formation of multiple microbead patterns starting from random initial positions. a Forming 
sequences of an 8 × 8 bead array (Video 5). Initial 64 beads are randomly distributed. The final array has been 
assembled after 27 steps. The spacing distance of beads is 1.5 μm. b Distance from bead positions to targets, 
as well as speed of 25 randomly selected beads. c Percentage of beads reaching their targets, and distribution 
of trajectory lengths. d-f Another three bead patterns after 23, 35, and 47 steps, respectively (Video 6, Video 7, 
Video 8). The insets show the target logos. The microbeads are 1 μm in diameter, and the scale bar is 2 μm
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only decreasing the step size at the collision positions (Fig. 4b). All beads have reached 
their destinations after 5.4 s, and 53% of the beads have a trajectory length of about 3 μm 
(Fig. 4c).

Notice that beads move with slight shaking. This is mainly due to two reasons: first, 
beads have an inherent Brownian motion, and second, optical traps flicker briefly during 
the response time of the SLM, that is, the traps become cluttered when the hologram 
switches. The stability of manipulations could be improved by decreasing the step size or 
by using an SLM with a higher response frequency, which would result in smoother tra-
jectories. In addition, suppressing environmental vibration, especially severe vibration, 
is important to minimize bead escape.

The time for the optical traps to move one step is about 100 ms (the response time of 
the SLM) and the exposure time of the camera is 100 ms. One raw image is acquired 
after each step of movement of the optical traps. Therefore, the time interval between 
two adjacent images is 200 ms.

Figure  4d-f shows a gallery of microbead patterns with user-defined geometries 
containing 60, 58, and 48 beads, respectively (Video 6, Video 7, and Video 8). The 
single-frame images and trajectory analysis are shown in Extended Data Fig. 3-5. The 
forming sequences allow observing the assembly process of patterns (Extended Data 
Fig. 3a, 4a, 5a). The distance plots present the number of beads subjected to repulsive 
forces (Extended Data Fig.  3b, 4b, 5b). The trajectory length distributions illustrate 
the traveling distance of most beads (Extended Data Fig.  3c, 4c, 5c). There are two 
challenges to generating larger patterns. The first is the difficulty in trapping a large 
number of individual beads at the beginning of experiments. The second is the lim-
ited output power of the laser, as well as the finite damage threshold of the optical 
elements.

Transformation of microbead arrays

A microbead array can be transformed into other micropatterns by setting new target 
sites. Figure 5a presents a 7 × 7 microbead array formed from random positions (gray 
circles). The solid lines indicate the travel trajectories extracted from the fluorescence 
images. The first transformation is a rotation of 45° of the array (Fig.  5b). 51% of the 
beads have a trajectory length of about 1.5 μm. The second transformation is a two-
fold enlargement of the spacing distance (Fig.  5c). The next followed transformations 
are rotations of 15°, 30°, and 45°, respectively, as shown in Fig. 5d-f. The gray circles in 
Fig.  5b-f indicate the positions where transformations start. The step size s = 0.25 μm 
and the number of travel steps is 103. Dynamic transformations are recorded in Video 9.

Specifically, it is noted that the transformation here is not the overall rotation of an 
array (Fig. 5b). The path for the transformation is generated by both the Hungarian algo-
rithm and the APF method. For the transformation, the maximum length of the trajec-
tories is 3(

√
2-1)·1.5 μm = 1.86 μm, while the maximum length of the overall rotation is 

3 
√
2·π/4·1.5 μm = 5.00 μm. Compared to the rigid rotation, this style of transformation 

yields shorter paths and therefore takes less time to create a new array.
The arrays shown in Fig. 5 are all square. However, other geometric patterns can also 

be created by transformations. As shown in Fig. 6a, 48 beads first form two concentric 
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circles from random positions, and then transform into octagonal, hexagonal, and 
quadrilateral patterns sequentially. Each of the two circles is transformed into an octa-
gon (Fig. 6a, upper right panel). The trajectory length ranges from 0.8 to 1 μm (Fig. 6b, 
second panel). Figure 6a (lower left panel) shows that two beads move from the outer 
ring to the inner ring in the octagonal-to-hexagonal transformation. The longest trajec-
tories are about 3 μm, and 58% of the beads have a trajectory length of 1.5 μm (Fig. 6b, 

Fig. 5  Successive transformations of a 7 × 7 microbead array (Video 9). a Initial bead array formed 
from random positions (gray circles). The solid lines indicate the travel trajectories. b Bead array after a 
transformation. This transformation style yields shorter paths compared to the rigid rotation. 51% of the 
beads have a trajectory length of about 1.5 μm. c Bead array after a two-fold enlargement of the spacing 
distance. d-f Bead arrays after rotations of 15°, 30° and 45°, respectively. The gray circles in (b-f) indicate the 
positions where transformations start, and the solid lines in (b-f) indicate the travel trajectories extracted 
from the fluorescence images. The spacing distance of beads in (a,b) is 1.5 μm, while in (c-f) it is 3 μm. The 
microbeads are 1 μm in diameter, and the scale bar is 2 μm
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third panel). In contrast, Fig. 6a (lower right panel) shows that two beads move from the 
inner ring to the outer ring during the transformation of hexagons to quads. The longest 
trajectories are about 2.5 μm, and 52% of the beads have a trajectory length of 1.5 μm 
(Fig. 6b, fourth panel). Dynamic transformations are recorded in Video 10.

Up to this point, we have demonstrated theoretically and experimentally methods 
for matching microbeads and targets, as well as for generating collision-free paths. The 
Hungarian algorithm shortens the total length of the path, and the APF method cir-
cumvents potential collisions between the beads. Further, we have performed parallel 
micromanipulation of massive microbeads using the proposed dynamic HOTs. The col-
lision-free paths facilitate to create defect-free bead arrays or patterns as expected.

Discussion
The time taken by the Hungarian algorithm and the APF method is short and negli-
gible, while the hologram generation consumes a lot of time. Therefore, GPU accel-
eration is used to generate multi-frame holograms. Specifically, the time of hologram 
generation depends on the number of beads N and the step size s. On one hand, a 
greater N will undoubtedly increase the computation time. On the other hand, 
a smaller s will result in more travel steps, and thus, a longer computation time. 

Fig. 6  Successive transformations of geometric patterns (Video 10). a 48 beads first form two concentric 
circles from random positions, and then transform into octagonal, hexagonal, and quadrilateral patterns 
sequentially. The gray circles indicate the positions where beads start, and the solid lines indicate the travel 
trajectories extracted from the fluorescence images. The spacing distance of beads is 1.5 μm. The microbeads 
are 1 μm in diameter, and the scale bar is 2 μm. b Distributions of trajectory lengths corresponding to (a)
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However, a small step size helps improve the stability of the bead movement, yielding 
smoother trajectories.

The step size is limited by the size of Gauss-point optical traps and microbeads. In the 
current setup, the wavelength λ = 1.064 μm and NA = 1.27 of the water-immersed objective 
lens (Apo Plan IR, 60 × /NA1.27, Water Immersion, Nikon Corp., Japan). The diffraction 
limit is therefore 0.5λ/NA = 0.42 μm, equal to the full width at half maximum (FWHM) of 
Gauss-point optical traps. The beads used in our experiments have a diameter of 2a = 1 μm. 
Consequently, the theoretical maximum value of the step size is smax = FWHM + a = 0.92 
μm. The moving speed of trapped beads is equal to s·fslm, where fslm is the response fre-
quency of the SLM. For the currently used SLM, the maximum value of the response fre-
quency is about 10 Hz. Therefore, the theoretical limit of the moving speed that can be 
achieved by the current system is about 9 μm/s. Using a faster SLM, the maximum mov-
ing speed will ultimately be determined by the balance between viscous forces and optical 
forces acting on trapped beads. Although digital micromirror devices (DMDs) are faster, 
they are less efficient in terms of light energy utilization. In addition, acousto-optic modula-
tors (AOMs) and galvanometers, etc., are not as flexible as liquid crystal SLMs in achieving 
complicated optical manipulations and multifunctional applications.

The travel trajectories are two-dimensional curves. However, 3D trajectories could be 
easily realized by adding the term exp(ikzzm) associated with the axial coordinate zm into 
Eq. (7). The APF method is still suitable for collision avoidance in the depth direction. 
For further applications, such as those involving particles of different sizes, shapes or 
materials, things become complicated. On the one hand, the particular shape and size 
of each particle needs to be considered when designing the virtual repulsive force of the 
APF. On the other hand, when designing a hologram, it is necessary to assign appropri-
ate light energy to particles of different sizes and materials.

In conclusion, we have developed dynamic HOTs to achieve defect-free assembly and 
transformation of particle arrays, with minimal path lengths and a maximized degree of 
parallelism of optical manipulation. At the center of our strategy is the use of APF, which 
enables collision-free parallel control of particles. Experiments with fluorescent PS micro-
beads verified the practical performance of APF-empowered dynamic HOTs. Our work 
evolves functionally simple optical tweezers into powerful multi-armed robots, which will 
facilitate exciting applications in the generation of atomic arrays for quantum computa-
tion [26, 27], the study of cell sorting and intercellular interactions, and the assembly of 
optomechanical meta-devices [28] for advanced micromanipulation [29–32]. It will also 
inspire the development of other active assembly techniques, such as time-shared scan-
ning optical tweezers [33, 34] and holographic acoustic tweezers [12, 35].

Methods
The principle of APF

The APF method mainly applies repulsive fields to realize collision avoidance. Each bead 
creates its repulsive field with the potential of
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where η is the repulsion coefficient, ρ0 is the acting range of the force, and ρj =|q-bj| is 
the distance from any position q = (x, y) to the bead bj. The repulsive force is

When the distance ρj is less than a given value ρ0, the beads will tend to avoid colli-
sions. Each bead will move in the direction away from its neighboring beads, thus main-
taining a suitable distance between beads, and avoiding collisions.

In addition, since beads need to reach their respective destinations, it is required to set 
up the gravitational field at target sites with a potential of

where ξ is the gravitational coefficient and ρi =|q-ti| is the distance from the current 
point q to the target site ti. The gravitational force is

For any bead bm, it is subject to both the gravitational force Fatt(bm, ti) of the target site 
and the repulsive force of the other beads Frep,m =

∑

j �=m Frep(bm,bj) , with a resultant 
force of

So now, we can update the position of bead bm based on the resultant force Fres(bm) on 
it:

where s is the step size when the repulsion |Frep,m|= 0. When the repulsion is 
greater than 0, potential collisions are avoided by reducing the step size to s/2 or less. 
τ is the time interval between adjacent steps. Each bead updates its position accord-
ing to Eq. (6) until it reaches the target site. The APF parameters affect the trajectories 
of particles. The ρ0 determines the area affected by the repulsive force and should 
be smaller than the spacing of target sites. The η and ξ define the magnitude of the 

(1)Urep

(

q,bj
)

=

{

1
2η

(

1
ρj
− 1

ρ0

)2
if ρj ≤ ρ0

0 if ρj > ρ0

,

(2)

Frep
(

q,bj
)

= −∇Urep

(

q,bj
)

=

{

η

(

1
ρj
− 1

ρ0

)

1
ρ2j
∇ρj if ρj ≤ ρ0

0 if ρj > ρ0

.

(3)Uatt(q, ti) = 1
2ξρ

2
i ,

(4)Fatt(q, ti) = −∇Uatt(q, ti) = −ξρi∇ρi.

(5)
Fres(bm) = Fatt(bm, ti)+ Frep,m

= Fatt(bm, ti)+
∑

j �=m Frep
(

bm,bj
)

.

(6)bm(t + τ ) =

{

bm(t)+ s Fres(bm(t))
|Fres(bm(t))| if

∣

∣Frep,m
∣

∣ = 0

bm(t)+ s
2

Fres(bm(t))
|Fres(bm(t))| if

∣

∣Frep,m
∣

∣ > 0
,
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repulsive and gravitational forces, respectively. The repulsive force should be in the 
same order of magnitude as the gravitational force to keep trajectories smooth.

Hologram generation

By modulating the wavefront of the incident light in the back focal plane of the objec-
tive lens, Gauss-point optical trap array can be created in its front focal plane. Several 
methods have been proposed to generate phase-only holograms [36]. Although itera-
tive methods have a higher quality of optical traps, they are also more time-consum-
ing. For current dynamic manipulations, which require a large number of holograms 
(tens to hundreds), we adopted the randomized superposition (SR) method among 
direct algorithms. Here, the phase distribution φ(r) in the back focal plane is given by:

where r = (x, y) is the coordinate vector in the back focal plane, λ is the wave-
length of the trapping light, f is the focal length of the objective lens, bm is the coor-
dinates of a bead, and θm is a random phase assigned to the bead. The random phase 
θm improves diffraction efficiency and uniformity, especially for optical traps with a 
highly symmetric geometry. A zero-order beam would create an unmodulated Gauss-
ian optical trap. As a result, beads that pass through its neighborhood will fall into 
the same trap and be lost. A blazed grating is used in the experiments to separate the 
target traps from the zero-order beam.

In the case where the number of beads N = 100 and the size of holograms is 
1080 × 1080 pixels, the time to generate a hologram is about 10.8 ms. We performed 
100 calculations in MATLAB software with the GPU (NVIDIA Quadro K2200) and 
then averaged them. In addition, all holograms had been computed in advance to 
achieve fast movement of beads. Therefore, the refresh rate of bead positions is lim-
ited only by the SLM response frequency.

Sample preparation

Fluorescent polystyrene (PS) microbeads (FluoSpheres Carboxylate 1.0 μm Yellow-
green 505/515 nm, Thermo Fisher Scientific Inc., USA) were used as trapping objects 
in the experiments. We used slides, coverslips, and double-sided tape to make sample 
chambers in which a PS solution suspended in water was injected and then sealed 
with glue. The concentration of beads is minimized so that only a few beads are vis-
ible in the field of view. The depth of a sample chamber is controlled to be around 10 
μm so that the beads are roughly in the same layer.

Target site generation

For arrays and geometric patterns, target coordinates were automatically generated by 
using MATLAB (R2021a). For complex patterns (Fig.  4b-d), target coordinates were 
manually designed by using SolidWorks (2018). Because particles with too small a 

(7)φ(r) = arg
(

∑N
m=1 exp

(

i 2π
�f
r · bm + iθm

))

,
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spacing are prone to form barriers, the APF falls into a local optimum. The spacing of 
target sites we designed is not less than 1.5 times the diameter of beads (1 µm in our 
case).

Experiment setup

The HOTs setup was used to conduct optical trapping experiments as reported in our 
previous work [37]. As shown in Extended Data Fig. 1, the trapping beam from a 1064-
nm laser (5000 mW; VFLS-1064-B-SF-HP, Connet Laser Technology Co., Ltd., China) 
was modulated by a phase-only liquid crystal SLM (1920 × 1080 pixels, 8-μm pixel pitch; 
PLUTO-2-NIR-049, Holoeye Photonics AG, Germany) and relayed through a 4-f sys-
tem into the back focal plane of the objective lens (Apo Plan IR, 60 × /NA1.27, Water 
Immersion, Nikon Corp., Japan). The Gauss-point optical trap array were finally gener-
ated in the front focal plane after the Fourier transform. The excitation beam from a 473-
nm laser (500 mW; gem 473, Laser Quantum Ltd., UK) was expanded and collimated by 
a telescope and then utilized to excite the fluorescence of the sample. The fluorescent 
beam from the sample was separated by the dichroic mirrors DM1 (Di03-R488/561-
t1-25 × 36, Semrock Inc., USA) and DM2 (Di02-R1064-25 × 36, Semrock Inc., USA) and 
finally detected by an sCMOS camera (2048 × 2048 pixels, 6.5 μm pixel pitch; ORCA-
Flash 4.0 V2 C11440-22CU, Hamamatsu Photonics K.K., Japan). A motorized XY 
translation stage (PZ-2000FT, Applied Scientific Instrumentation Inc., USA) and a pie-
zoelectric Z-axis stage (PZ-2500FT, Applied Scientific Instrumentation Inc., USA) were 
used to move the sample in three dimensions. A home-made software developed with 
Qt (5.14.2) and MATLAB (R2021a) was employed to synchro control the whole system.

Initial trapping

At the beginning of experiments, microbeads were automatically trapped by feature recog-
nition. This was done by first acquiring a fluorescence image, then identifying the micro-
beads in a certain region at the center of the field of view and obtaining the positions of 
their centers of mass, and finally generating the corresponding hologram and addressing 
it to the SLM. In addition, adding more beads or deleting trapped beads could be achieved 
by mouse-clicking on the camera’s live display window. The initial positions of microbeads 
were randomly distributed. Figure 4a shows an example where beads in the 20 μm × 20 μm 
area at the center of the field of view were automatically trapped. Adding additional beads 
by clicking with the mouse, eventually a total of 64 beads were trapped. For all trapping 
experiments, the optical power of each trap was typically 7 ~ 10 mW.

Fluorescent image acquisition

A 473-nm laser was used to excite the fluorescence of the PS beads, and the fluorescence 
images were acquired by using an sCMOS camera. The image acquisition was synchro-
nized with the movement of the microbeads. An image was recorded for each travel step 
of microbeads. The time for microbeads to move one step was about 100 ms, and the 
exposure time of the camera was 100 ms.
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Statistics and reproducibility

All running times were obtained by averaging 100 calculations. Imaging data were pro-
cessed with Fiji (2.3.0) or MATLAB (R2021a) and were plotted with Origin (2018). Vid-
eos were created by using experimental images with Adobe Premiere (2018).
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Supplementary Material 11: Extended Data Fig. 1 Schematic of experimental setup. The trapping beam (1064 nm) 
is red in color. The HWP and PBS filter horizontally polarized light. The isosceles prism shortens the optical path. 
The SLM modulates the incident beam to generate optical traps. The QWP converts linear polarization to circular 
one. The excitation beam (473 nm) is blue in color. The DM1 and DM2 combine or separate beams with different 
wavelengths. The fluorescent beam (525 nm) is green in color. The F1 and F2 filter the trapping and excitation 
beams, respectively. The tube lens (f = 300 mm) is connected to a 1.8× zoom lens to provide ~160× magnification 
of the imaging path. Samples are placed on a motorized XY stage and a piezoelectric Z-axis stage. Inset: Schematic 
of holographic optical tweezers trapping microbeads. M, mirror; L, lens (f1 = 10, f2 = 100, f3= 150, f4 = 150, f5 = 10, 
f6= 50, f7 = 150 mm); HWP, half-wave plate; QWP, quarter-wave plate; PBS, polarizing beam splitter; SLM, phase-only 
liquid crystal spatial light modulator; DM, dichroic mirror; Obj, objective lens; F, filter.

Supplementary Material 12: Extended Data Fig. 2 Path planning for both conventional and APF-empowered dynamic 
HOTs using the modified objective function. a, The left shows another match by using a modified objective function 
. The initial positions and target sites are the same as those shown in Fig. 2a. The right shows bead positions after 12 
travel steps along straight lines, where one collision occurs (cyan circle). The red balls indicate beads, the magenta 
circles indicate target sites, the arrows indicate one-to-one matches, and the cyan circles indicate collision events. b, 
Experimental results corresponding to (a) (Video 3). The final bead array has an empty site (yellow dashed circle) and 
a merging site (red arrow). The target sites are spaced 1.5 μm apart and the beads are 1 μm in diameter. c, Simulated 
and experimental trajectories. d, Experimental trajectory analysis: distance from bead positions to target sites with 
time, percentage of beads arriving at targets, and distribution of trajectory lengths. e, Collision-free path planning 
with the Hungarian algorithm followed by the APF method. f, Enlarged view of the box in (e). The trajectories of the 
two originally colliding beads turn into curves. g, Experimentally obtained bead array (Video 4). h, Simulated and 
experimental trajectories. i, Experimental trajectory analysis. 100% of the beads reach the targets after 9.6 s, and 40% 
of the beads have a trajectory length of 5 μm.

Supplementary Material 13: Extended Data Fig. 3 Logo pattern formation starting from random initial positions 
(Video 6). a, Forming sequences of a logo pattern. Initial 60 beads are randomly distributed. The final pattern has 
been assembled after 23 steps. The spacing distance of beads is 1.5 μm. b, Distance from bead positions to targets, 
as well as speed of 25 randomly selected beads. The almost constant slopes of distances indicate that the beads are 
not subject to repulsive forces. c, Percentage of beads reaching their targets, and distribution of trajectory lengths.

Supplementary Material 14: Extended Data Fig. 4 Logo pattern formation starting from random initial positions 
(Video 7). a, Forming sequences of another logo pattern. Initial 58 beads are randomly distributed. The final pattern 
has been assembled after 35 steps. The spacing distance of beads is 1.5 μm. b, Distance from bead positions to 
targets, as well as speed of 25 randomly selected beads. The sudden decrease in the slopes of distances indicates 
that the beads are subjected to repulsive forces. c, Percentage of beads reaching their targets, and distribution of 
trajectory lengths.

Supplementary Material 15: Extended Data Fig. 5 Logo pattern formation starting from random initial positions 
(Video 8). a, Forming sequences of third logo pattern. Initial 48 beads are randomly distributed. The final pattern has 
been assembled after 35 steps. The spacing distance of beads is 1.5 μm. b, Distance from bead positions to targets, 
as well as speed of 25 randomly selected beads. The sudden decrease in the slopes of distances indicates that the 
beads are subjected to repulsive forces. c, Percentage of beads reaching their targets, and distribution of trajectory 
lengths.
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