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Introduction
Breast cancer is the most diagnosed cancer in women and the second leading cause of 
cancer-related deaths globally [1]. Obesity not only increases the probability of cancer 
development but also heightens the risk of cancer recurrence and mortality [2]. The con-
nection between obesity and cancer is multifaceted and complex. Adipocytes, a major 
component of the tumoral microenvironment (TME) of breast cancers, have drawn con-
siderable attention for their ubiquitous roles in cancer pathophysiology. Cancer-associ-
ated adipocytes (CAAs) are adipocytes situated at the tumor invasive front that have 
undergone phenotypic and functional changes in response to signals from cancer cells, 
acquiring a pro-tumoral phenotype that supports cancer progression [3]. The CAAs are 
characterized by the loss of adipocyte markers like PPARγ , and they have reduced lipid 
content, giving them a fibroblast-like appearance [3]. CAAs secrete a variety of factors, 
including cytokines, chemokines, growth factors, and adipokines, which can enhance 
the proliferation, survival, and migration of breast cancer cells. Additionally, CAAs 
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undergo metabolic reprogramming, leading to increased lipolysis and fatty acid release. 
These fatty acids can be used by cancer cells as an energy source, promoting their sur-
vival, proliferation, and migration [4]. CAAs also contribute to the remodeling of the 
extracellular matrix through the production of matrix metalloproteinases and other pro-
teases, which facilitate cancer cell invasion and metastasis [5]. Furthermore, CAAs have 
been shown to induce a cancer stem cell phenotype in breast cancer cells, which is asso-
ciated with increased tumor-initiating capacity, resistance to therapy, and metastasis [6]. 
Finally, CAAs can influence the immune response in the TME, creating an immunosup-
pressive environment that promotes tumor progression [7].

Despite the growing body of evidence implicating adipocytes in cancer progression, 
the precise mechanisms underlying CAAs formation remain poorly understood. Target-
ing the CAAs-cancer cells crosstalk and their metabolic interdependence may provide 
innovative and more effective treatments aimed at disrupting this interplay.

One promising technology that can address these needs is Raman spectroscopy, a 
non-invasive, and optical label-free analytical method that has shown great potential for 
investigating the complex molecular landscape of cancer [8–10]. Its high chemical spec-
ificity, coupled with the ability to perform ex  vivo and in  vivo measurements without 
the need for tissue processing, renders Raman spectroscopy an attractive technique for 
cancer research. Over the past few decades, Raman spectroscopy has been successfully 
applied to investigate various aspects of cancer, including the identification of tumor 
subtypes [11], probing the tumor microenvironment [12], and monitoring treatment 
response [13, 14].

In this study, we applied Raman spectroscopy to a 2D co-culture model of 3T3-L1 
adipocytes and MDA-MB-231 breast cancer cells. The 3T3-L1 cell line, a murine pre-
adipocyte cell line widely used in adipogenesis studies [15–17], can differentiate into 
mature adipocytes upon exposure to appropriate stimuli [18]. The MDA-MB-231 cell 
line, a triple-negative human breast cancer cell line, has been extensively studied for its 
aggressive and invasive characteristics [19]. This 2D co-culture model facilitated the for-
mation of a contact zone between adipocytes and cancer cells, allowing us to create a 
controlled system to study their interactions, mimicking their proximity in the TME.

However, the cellular variability poses a significant obstacle for studying adipocytes/
cancer cells interaction [20–22]. In the co-culture model used in this work, the differ-
entiation process itself contributes to the heterogeneity in 3T3-L1 adipocyte cultures, 
as not all cells within the population undergo adipogenesis uniformly or synchronously 
[23, 24]. The resulting adipocytes may display a broad range of sizes, lipid droplets (LDs) 
number and sizes, and morphology. Moreover, the adipocyte delipidation, induced by 
breast cancer cells, is also a heterogeneous process [25, 26], depending on the distance 
between the two cell types and possibly other factors. These various sources of heteroge-
neity confound and complicate the data processing. Thus, a comprehensive understand-
ing of this heterogeneity necessitates adapted data processing tools.

Recent advancements in single-cell transcriptomics (scRNAseq) have led to the 
development of specialized tools, known as Trajectory Inference (TI) methods [27], 
to reconstruct cellular trajectories [28] and identify subpopulations [29] by analyzing 
snapshots of cellular variability. These methods leverage the underlying principle that 
biological processes occur primarily asynchronously within cells. From transcriptome 
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measurements conducted on heterogeneous cellular samples, these tools can digitally 
reorder cellular states by analyzing the global topology of the multivariate dataset.

Trajectory Inference (TI) methods consist of three key components: dimensional-
ity reduction, trajectory construction, and pseudotime ordering [30]. Dimensionality 
reduction simplifies complex data by reducing dimensions while preserving essential 
information, making it easier to visualize and interpret. Linear methods like Principal 
Component Analysis (PCA) are commonly used, but for more complex, non-linear rela-
tionships, manifold learning approaches such as UMAP (Uniform Manifold Approxima-
tion and Projection) [31] and t-SNE (t-Distributed Stochastic Neighbor Embedding) [32] 
are preferred [30, 33]. UMAP is widely used in scRNA-seq and was proven to be particu-
larly effective for exploring complex transcriptomic datasets by revealing patterns such 
as distinct cell populations [34]. It constructs a high-dimensional graph of data points, 
with edges reflecting connection likelihood based on proximity, and optimizes this graph 
into a low-dimensional space that preserves both global and local data relationships [31].
UMAP’s effectiveness in visualizing and interpreting complex biological data is demon-
strated across various fields, including spectroscopy, where it has been used to analyze 
Raman microspectroscopy data, distinguish between tissue types and disease states [35], 
study bacterial antibiotic resistance [36], or extracellular vesicules [37].

Trajectory construction involves mapping the progression of cellular states by con-
necting data points to reflect their evolutionary paths [38]. Different methods can be 
employed to achieve this; each with its own strengths suited to specific aspects of cellu-
lar transitions. These include principal curve methods for modelling smooth trajectories 
in high-dimensional spaces [39], clustering-based approaches for connecting grouped 
cells, graph-based techniques [40], and probabilistic models that account for the sto-
chastic nature of state transitions [41].

Pseudotime algorithms estimate the temporal order of cell states from single-cell data, 
creating a pseudotime that reflects the progression of cells along the trajectories. These 
algorithms employ different methods to calculate pseudotime. Some, like TSCAN and 
Waterfall [42, 43], use the minimum spanning tree algorithm to project cells along edges, 
while others, such as Slingshot [39], use smooth curves. Diffusion Pseudotime (DPT) 
calculates pseudotime using diffusion maps and random-walk-based distances from a 
selected root, typically representing the earliest step of the biological process [44].

We have previously demonstrated the possibility of employing these methods on 
Raman data for unraveling dynamic biological processes [45]. We specifically employed 
the partition-based graph abstraction (PAGA) algorithm [40] to construct spectral 
trajectories, both on an artificial dataset and on Raman spectra of lipid droplets (LD) 
acquired during adipocyte differentiation. In the present study, our objectives are to 
(1) highlight subpopulations of adipocytes based on their Raman signature, (2) identify 
the molecular changes associated with CAAs formation, and (3) show the possibility of 
understanding the potential interactions between cancer cells and adipocytes.

Methods
Cell culture

The triple negative (ER-/PR-/HER2-) human breast carcinoma cell line MDA-MB-231 
(HTB-26) was obtained from the American Type Culture Collection (ATCC). The 
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murine pre-adipocyte cell line 3T3-L1 was kindly provided by MC. Rio (IGBMC, 
Illkirch, France). MDA-MB-231 and 3T3-L1 cells were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) supplemented with 4.5 g/L glucose, 10% fetal calf serum (FCS) 
(Dutscher, S1810-500) and 1% penicillin-streptomycin (Invitrogen, 15140). All cell cul-
tures were maintained at 37 °C in 5% CO2 (v/v). Cells were routinely passaged at precon-
fluency using 0.05% trypsin, 0.53 mM EDTA (Invitrogen, 25300) and screened for the 
absence of mycoplasma using PCR methods.

In vitro differentiation of 3T3‑L1 preadipocytes

In brief, 2-day post confluent cells (designated day 0) were treated with DMEM (4.5 g/L 
glucose), 10% FCS, 1% penicillin-streptomycin, 0.5 mmol/L 3-isobutyl-1-methylxanthine 
(IBMX), 0.5 µmol/L dexamethasone, and 10 µg/ml insulin (all Sigma-Aldrich) to induce 
differentiation. After 2 days, medium was replaced by DMEM (4.5 g/L glucose), 10% 
FCS, 1% penicillin-streptomycin, and 10 µg/ml insulin, and further exchanged every 2 
days. From day 12 after initiating differentiation, 3T3-L1 adipocytes were co-cultured 
with MDA-MB-231 human breast cancer cells.

Co‑culture model

For 2D direct co-culture between murine 3T3-L1 adipocytes and MDA-MB-231 human 
breast cancer cells, the CytoSelect™ 24-well Cell Co-culture System (Cell Biolabs, San 
Diego, CA, USA) was used following the manufacturer’s protocol. 3T3-L1 cells were 
seeded on a 0.16 mm-thick glass slide, around the insert of the co-culture system (70,000 
cells per well), and the first step was dedicated to adipocyte differentiation. After 12 
days, the insert is removed, resulting in a well-defined cell-free zone (with a diameter 
of 8 mm) and allowing the seeding of MDA-MB-231 cells (100,000 cells per well). The 
culture medium remains a mixture of DMEM (4.5 g/L glucose), 10% FCS, and 1% peni-
cillin-streptomycin, to which 10 µg/mL insulin is added to maintain adipocyte differen-
tiation. Once the invasion front is formed (24 hours after breast cancer cells seeding), 
the co-culture is maintained for 3 days. The adipocytes distant from the invasive front 
are considered as control adipocytes, and those present at the invasive front are referred 
to as CAAs.

Oil red O staining

To assess the adipocyte phenotype, the cell cultures were fixed in 4% paraformalde-
hyde (Electron Microscopy Sciences) for 15 minutes at room temperature, followed by 
three rinses with distilled water. The fixed cells were then stained with 0.5% Oil-Red-O 
(Sigma-Aldrich) for 20 minutes, washed with distilled water, and counterstained with 
hematoxylin (Sigma-Aldrich).

Raman spectroscopy

For Raman analysis, cells were fixed with 4% paraformaldehyde and left in the water dur-
ing acquisitions. Raman measurements were carried out at room temperature using a 
HORIBA Xplora spectrometer equipped with a 532 nm laser diode for excitation. The 
spectral range of 550–3100 cm-1 was covered with a resolution of approximately 3 
cm-1, employing a 900 gr/mm grating. The slit size was set at 200 µm, and the pinhole 
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diameter was 500 µm. A long working distance ×100 water immersion objective (Olym-
pus LUMPlanFI) on the attached Olympus BX51 microscope provided a lateral resolu-
tion of around 0.5 µm and a depth of field of about 3 µm. The laser power at the sample 
was adjusted to 3 mW. Spectral images were collected with a spatial step of 1 µm in X 
and Y directions. Each spectrum was obtained by recording two accumulations with 
an automatic exposure time to achieve 20,000 counts. This acquisition mode effectively 
prevented signal saturation for lipids while ensuring adequate signal intensity for pro-
teins with longer acquisition times. Prior to data collection, the system was calibrated 
and aligned using silicon and neon references. The cell images are obtained by manually 
delineating the adipocytes. A total of 79,552 spectra were acquired from 51 control adi-
pocytes and 102 CAAs.

Raman data pre‑processing

The Raman dataset was normalized by the Extended Multiplicative Signal Correction 
(EMSC) method integrating neutralization of the water and glass spectral interferences 
[46]. The data pre-processing was carried out under Orange software (v.3.29.3) using the 
spectroscopy package (v.0.6).

Dimensionality reduction

The analysis was performed using the Scanpy [47] package (v1.7.2), a Python package 
designed specifically for single-cell RNA sequencing (scRNA-seq) datasets. It is also 
available within the Dynverse [27] package, an R-based package. Detailed information 
about the trajectory inference analysis can be found in reference publications [30, 48].

To begin the analysis, the Raman data matrix was transformed into an “Anndata” 
file format (https://​github.​com/​theis​lab/​annda​ta), which served as the input for sub-
sequent analysis. First, a dimensionality reduction was applied using the UMAP algo-
rithm. UMAP works through two distinct steps. Initially, a KNN graph is created based 
on proximity between spectra, typically measured using Euclidean distance. In this 
graph, each spectrum is represented by a node connected by edges to a neighborhood 
of its most similar spectra. Instead of having binary connections (either connected or 
not), UMAP assigns probabilities to the edges based on the distances between points. 
These probabilities represent the likelihood of connection or relationship between the 
points. This approach enables UMAP to capture complex and non-linear relationships 
in the data. In the Scanpy package, this step was performed using the scanpy.api.
pp.neighbors function where the “n_neighbors” parameter is introduced. This 
parameter represents the number of neighboring data points considered when con-
structing the neighborhood graph. It controls the balance between preserving local and 
global structures (higher values capturing more global information and lower values 
focusing on local details). Here, a default value of 25 nearest neighbors is used.

Secondly, UMAP optimizes the low-dimensional embedding by minimizing cross-
entropy between the distribution of distances between datapoints in the original high-
dimensional and low-dimensional spaces (typically two dimensions). Stochastic gradient 
descent is used to iteratively adjust the positions of data points in the low-dimensional 
space, preserving topological relationships from the high-dimensional data. In Scanpy, 
this optimization step was done with the scanpy.tl.umap function.

https://github.com/theislab/anndata
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Construction of trajectories with PAGA​

PAGA constructs a statistical model to capture the connectivity between partitions of 
kNN graphs [40]. The kNN graph created previously using UMAP can be reused for 
this purpose. The partitions, representing distinct groups of spectra, are generated 
in an unsupervised manner using clustering tools. Here, K-Means was performed 
directly on UMAP reduced data. The sc.tl.paga function uses the PAGA tool to 
evaluate the level of connectivity among clusters (nodes) in the K-nearest neighbor 
(KNN) graph. We obtain a connectivity matrix that represents all the links existing 
between different clusters. We used the default connectivity cutoff of 0.1 to eliminate 
weaker connections between clusters. The final PAGA paths are obtained by applying 
a Minimum Spanning Tree (MST) to this connectivity matrix. This process simplifies 
connections between nodes minimizing the cumulative weight of the edges.

Segmentation of spectral images

The segmentation was performed by manually outlining the cells using the ’hyper-
spectral’ widget present in the Orange Spectroscopy package (Fig. S1).

Spatial organisation of the clusterised images

Spatial analysis was conducted using the Squidpy package (v1.3.0). This approach, 
described by Schapiro et  al. [49], allows for the assessment of spatial proximity 
between spectral clusters. In the first step, we used pixel coordinates of clustered 
spectral images to compute a graph of spatial neighbors. Here, we created the graph 
by selecting the 10 closest neighbors to each pixel. This number is intentionally small 
to consider only one cell at a time. This step is performed by applying the function 
sq.gr.spatial_neighbors on the adata file.

The next step involves estimating the spatial proximity between each possible cou-
ple of clusters. Firstly, the number of connections between a pair of clusters i and j is 
calculated and denoted xij . In parallel, a similar number is calculated from a random 
configuration of the two clusters, and repeated 1000 times. The average number of 
connections is given by µij , and its standard deviations by σij . Finally, for each pair of 
clusters i and j, we calculate a z-score as follows:

The z-score quantifies the spatial proximity between two clusters. A hierarchically 
clustered heatmap is then used to visualize the spatial organisation of the clustered 
images.

Pseudotime ordering

Pseudotime analysis allows ordering individual spectra along PAGA paths based on 
their spectral similarities. The pseudotime calculation was performed using the diffu-
sion pseudotime algorithm [44], available in the Scanpy package (scanpy.tl.dpt). 
Pseudotime calculation involves selecting a starting point, typically a data point that 
represents the beginning of the studied process. Once the starting point is selected, it 

(1)Zij =
xij − µij

σij
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is then possible to calculate the pseudotime value for each point, which determines 
its position along the trajectory from the starting point. Pseudotime provides direc-
tionality to the trajectories.

Identification and visualization of evolving spectral features

Highlighting of biochemical changes along the trajectories involves identifying spectral 
variables using a feature selection method such as Random Forest, which is a multivari-
ate approach available in the Dynverse package. To explore how Raman features of inter-
est change over pseudotime, a heatmap visualization is employed. This heatmap displays 
the evolution of the selected variables as a function of pseudotime. By observing the 
heatmap, patterns and trends in the data can be identified, highlighting how the vari-
ables change along the trajectories. Additionally, a dendrogram can be constructed to 
group the spectral variables based on their evolution profiles. This dendrogram provides 
a hierarchical clustering of the variables, allowing for the identification of related vari-
ables with similar patterns of change over pseudotime.

Assessment of spectra dispersion on the UMAP embedding

The raw UMAP representations (Fig.  2a) do not permit to see if the data distribution 
is homogeneous or not. To assess more quantitatively the spectra distribution on the 
UMAP representation, we utilize a Gaussian kernel density estimation. This is achieved 
by employing the sc.tl.embedding_density function in Scanpy. To compare con-
trol adipocytes and CAAs, the densities were calculated for each condition separately.

Results
Highlighting of adipocyte subpopulations using raman spectroscopy and PAGA​

Figure 1 illustrates the methodology employed in this study to characterize the cellular 
co-culture model using Raman spectroscopy and PAGA. The top left panel of Fig. 1 pre-
sents the co-culture model used in the experiment. The 2D co-culture system offers a 
framework for observing direct interactions between two distinct types of cells within a 
single well. This approach permits modeling an invasive front of mammary cancer cells 
in proximity to CAAs that exhibit known morphological characteristics. Indeed, they 
have a typically smaller and more elongated form, contrasting markedly with the unaf-
fected adipocytes found at the glass slide periphery, which are subsequently considered 
as control adipocytes. Figure S2 illustrates the distinct morphological characteristics 
typical of both control adipocytes and CAA phenotypes.

Raman images were obtained from control adipocytes and CAAs (top right panel in 
Fig. 1). Upon normalization by EMSC, the Raman spectra follow the process outlined in 
Fig. 1, bottom panel. After dimensionality reduction via Uniform Manifold Approxima-
tion and Projection (UMAP) and segmentation by K-means, the Partition-based Graph 
Abstraction (PAGA) process achieves the construction of a simplified representation of 
the dataset. Subsequently, each point is organized in accordance with the computation 
of pseudotime, indicating the relative distance of each point from a chosen point defined 
as the process origin. In the final stage, the points are arranged along trajectories, which 
enables a continuous depiction of the spectral feature progression along various paths.
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Figure  2a shows the two-dimensional space after dimensionality reduction using 
UMAP where points are color-coded based on the culture conditions. Orange data-
points represent control adipocytes, while blue datapoints denote CAAs. As demon-
strated in Fig.  2a, both conditions globally overlap within the UMAP representation, 
indicating that no region appears to be specific to one condition over another. The same 
observations were obtained using other more conventional processing methods, such as 
PCA or t-SNE (Fig. S3).

Figure 2b shows the UMAP embedding segmented by K-means clustering (k=20). The 
resulting mean cluster spectra are presented in Fig. S4. Based on the clustering results, 
PAGA provides a weighted graph representation, as illustrated in Fig. 2c. This represen-
tation is subsequently simplified by applying the MST algorithm (Fig. 2d), a technique 
used in graph theory, that aims to interconnect all nodes within a graph in a manner 
that minimizes the cumulative weight of the edges. The data points are then color-coded 
according to the paths they are assigned. Finally, high-confidence paths in the PAGA 
graph correspond to 6 terminal states and 4 branching points, which can be highlighted. 

Fig. 1  Characterization of Adipocyte-Cancer Cell interactions using Raman spectroscopy and trajectory 
inference. (i) The 2D co-culture model enables the formation of an interaction zone between murine 
3T3-L1 adipocytes and MDA-MB-231 human breast cancer cells. The visible image, stained with Oil Red O, 
provides a close-up of the interaction zone. Adipocytes located at the periphery of the slide, distant from 
the contact area, are designated as control adipocytes, while those within the contact area are classified 
as cancer-associated adipocytes (CAAs). (ii) Raman imaging differentiates between control adipocytes 
and CAAs by capturing high-resolution spectral data, revealing distinct biochemical profiles. (iii) Trajectory 
inference from Raman data: Dimensionality reduction using UMAP and clustering with K-means identified 
distinct spectral clusters.The Partition-based Graph Abstraction (PAGA) constructed a graph that reflects 
the connectivity between clusters, preserving their topological structure. Pseudotime analysis aligned the 
spectra along inferred trajectories, revealing molecular transitions linked to both intra- and intercellular 
heterogeneity, as well as the formation of cancer-associated adipocytes (CAAs). This method captures 
spectral heterogeneity and dynamic changes, providing valuable insights into the cellular interactions within 
the co-culture system
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Averaged spectra representing the spectral variability associated with the different paths 
identified by PAGA are displayed in Fig. 2e. These spectra present a lipidic profile except 
for State #1, which displays characteristic protein vibrations.

To discern the biological meaning associated with the trajectories emphasized by 
PAGA, an investigation of the spatial organization of clusters on spectral images was 
done (Fig. 2f ). Here we visualize pairwise cluster neighborhood scores ordered by hier-
archical clustering of the Z-scores. For instance, we observe a strong spatial neighboring 

Fig. 2  Topological trajectory construction using PAGA analysis. a Spectral dataset after dimensionality 
reduction with UMAP. Data points are color-coded based on the adipocyte status: control adipocytes in 
orange and CAAs in blue. b Clustering results using K-means (k=20), visualized on a 2D UMAP reduced 
space, with spectra color-coded according to their assigned cluster. c PAGA graph overlaying the UMAP 
visualization. Within this representation, nodes correspond to clusters, while the edges depict inter-cluster 
connections. Node size reflects the number of members in a cluster, and edge thickness indicates the 
degree of connectivity, with thicker edges representing stronger connections. d The weighted PAGA graph 
is denoised through the application of a minimum spanning tree. Spectra are color-coded based on their 
assigned paths. e Averaged spectra of the various paths emphasized by PAGA. f Heatmap illustrating the 
spatial organization of clusters. High Z-scores indicate close spatial relationships between two clusters, 
while low scores suggest spatial separation between them. By applying the trajectory color-code to 
branches, hierarchical clustering reveals spatial relationships among clusters within the same trajectory. g 
Overlay of visible adipocyte images with the color-coded representation, determined by pixels assignment 
to the associated pathways emphasized by PAGA, this overlay reveals the presence of distinct adipocyte 
subpopulations
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between clusters #17, #15, #1, #19, and #6. Interestingly, these clusters all reside within 
a single trajectory, corresponding to State #2 (blue branch of the dendrogram at the top 
of the heatmap). Each dendrogram is color-coded based on the trajectory to which the 
clusters belong, suggesting a spatial coexistence of points within a trajectory.

Figure 2g shows a side-by-side display of a visible image of adipocytes and a recon-
structed Raman image, with color coding based on pixel assignment to pathways iden-
tified by PAGA. This representation confirms that spectra of a cell correspond almost 
exclusively to one single trajectory. This observation indicates, therefore, that the trajec-
tories represent distinct cellular states. Moreover, Fig. S5 confirms this result; indeed, 
when the spectra of an image of a unique cell are projected onto the UMAP representa-
tion, the points are not scattered randomly but follow a single trajectory. Overall, using 
Raman spectroscopy associated with PAGA, we identified, from the spectral heteroge-
neity captured in the cell Raman images, distinct subpopulations of adipocytes, CAAs, 
and control adipocytes indiscriminately.

Biochemical bases of the cellular state distinction

The tree-like structure constructed previously does not present any ordering of the data 
distribution. However, by ordering individual spectra along trajectories, pseudotime 
analysis allows the reconstruction of intricate spectral variations, showing the evolution 
of Raman intensities along the different trajectories as a function of pseudotime value. 
Pseudotime calculation involves selecting a starting point, typically a spectrum that sig-
nifies the beginning of the biological process under study. In our case, a marker often 
used to track adipocyte differentiation is the increase in lipid content. Indeed, during the 
initial phase of 3T3-L1 differentiation, cells exhibit a fibroblast-like phenotype with small 
LDs; thus, the protein signal appears favored over the lipid signal. Conversely, the final 
stage of differentiation is characterized by adipocytes with large LDs, which result in 
spectra dominated by lipidic contributions. Based on these considerations, we selected 
the root as the spectrum exhibiting maximum protein signals, specifically in the C-H 
stretching mode region of proteins at 2930 cm-1. The root is represented by a red dot on 
Fig. 3a. It is located on the branch “State #1” (Fig. 2e). Once the starting point is selected, 
it is then possible to calculate the pseudotime value for each point, which allows com-
puting how far it is along the trajectory from the starting point. Figure 3a shows the pro-
jection of pseudotime value on the UMAP embedding. From Fig. 2d and the pseudotime 
values, it is then possible to construct a directed graph, leading from the starting point 
to 5 cellular states (Fig. 3b). Figure 3c illustrates the pseudotime values according to each 
cellular state, with states #5 and #6 presenting the most advanced values.

For a global visualization of the evolving Raman features involved in the distinctive 
states, we constructed a heatmap (Fig. 3d) depicting the intensities of the most signifi-
cant wavenumbers against the pseudotime. These Raman features were identified by 
employing the Random Forest algorithm as a supervised variable selection method. 
Certain vibrations correspond to lipid signals such as C=C stretching (1660-1665 cm-1) 
indicative of lipid unsaturation, symmetric CH2 stretching (2848 cm-1) linked to carbon 
chain length, and antisymmetric CH2 stretching (2880 cm-1) vibrations associated with 
the acyl chain order, which are indicators of the trans conformation within the hydro-
carbon chain. Protein signals are also noteworthy, such as the aromatic and aliphatic ν
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Fig. 3  Ordering of spectral data thanks to pseudotime and identification of evolving features along the 
different paths. a UMAP representation where points are color-coded according to their pseudotime values, 
representing the distance from the root. Early-stage spectra are depicted in blue, while later-stage spectra 
are shown in yellow. The red point corresponds to the root spectrum, characterized by the strongest protein 
signal, specifically in the C-H stretching mode region of proteins at 2930 cm-1. b Directed graph constructed 
based on the evolution of pseudotime values, representing the progression from the initial point to five 
distinct cellular states. c Heatmap representation showing intensity variations of the 50 most informative 
Raman wavenumbers determined by Random Forest feature selection. d Quantification of pseudotime 
value as a function of cellular states. e Quantification of the ratio between lipids and proteins signal based 
on the intensity ratio between the bands at 2852 and 2934 cm-1 corresponding to symmetric CH2 and CH3 
vibrations. f Quantification of lipid ordering based on the intensity ratio between the bands at 2880 and 2852 
cm-1 corresponding to antisymmetric and symmetric CH2 vibrations, respectively. g Quantification of the 
unsaturation degree based on the intensity ratio between the bands at 1656 and 1442 cm-1 corresponding to 
C=C stretching mode and CH2 scissoring, respectively



Page 12 of 20Goffin et al. PhotoniX            (2024) 5:35 

(CH) vibration around 2930 cm-1, or the Amide I band (1650 cm-1). This analysis allows 
unmasking the pivotal molecular vibrations at play in the biochemical heterogeneity of 
the biological process.

In addition, a Raman ratiometric analysis also offers interpretable information within 
a biological context. Figure  3e shows the measurement of the ratio between lipid and 
protein signals based on the intensity ratio between the bands at 2852 and 2934 cm-1 
corresponding to symmetric CH2 and CH3 stretching vibrations. The starting point is 
rationally marked by a low lipid/protein ratio. The evolution is rapid from the start to the 
intermediate states, and then it grows slowly, indicating a minimal change in the lipid/
protein ratio until the terminal states. Figure 3f shows the quantification of lipid order-
ing (only for final states rich in lipids) based on the intensity ratio between the bands 
2880 and 2852 cm-1 corresponding to antisymmetric and symmetric CH2 vibrations, 
respectively. These results show that State #2 corresponds to lipids that have under-
gone a phase change. Finally, Fig. 3g shows the quantification of the unsaturation degree 
based on the intensity ratio between the bands at 1656 and 1442 cm-1 corresponding to 
C=C stretching and CH2 scissoring modes, respectively. This ratio is a current spectral 
marker to characterize the lipid content.[50] These results demonstrate that, firstly, State 
#2 has the lowest degree of unsaturation, while State #3 has the highest.

After this characterization of the spectral features associated with the biochemical 
heterogeneity observed within both control adipocytes and CAAs, we will investigate 
the spectral differences between these two phenotypes.

Highlighting of differences between control adipocytes and CAAs

We have demonstrated in Fig.  2a that the two cell populations overlap on the UMAP 
plots, indicating that the global spectral variability is equivalent in both populations. 
Nevertheless, the dispersion of points within the UMAP embedding could potentially 
vary between the two populations. By employing Gaussian kernel density estimation, 
we can compute for each population the corresponding spectral density on the UMAP 
embeddings, as illustrated in Fig. 4a. The results clearly show that spectral distribution 
differs between the two conditions. Specifically, it’s noteworthy to see that in the case 
of control adipocytes, there’s a higher density found at the trajectory endpoints, at the 
expense of the beginning and intermediate area of trajectories. Conversely, CAAs dem-
onstrate a high degree of density at the beginning and middle stages. These results can 
further be confirmed by calculating the median pseudotime for each condition. Indeed, 
as shown in Fig.  4b, CAAs possess a significantly reduced pseudotime in comparison 
to control adipocytes. This observation indicates that CAAs follow shorter spectral tra-
jectories. Furthermore, Fig. 4c shows that the CAAs are smaller than the control adipo-
cytes, based on the number of pixels that constitute a cell. In parallel, in Fig. 4d, we also 
quantified the respective proportions of spectra in the different cellular states. Firstly, 
the findings verify the previous results by showing that states associated with the initial 
and intermediate trajectory states are more commonly found in CAAs. Secondly, CAAs 
exhibit an increased population of State #3, which represents the more unsaturated cel-
lular state. This contrasts with the decreasing populations of States #4, #5, and #6, which 
correspond to more saturated states. Lastly, a significant reduction is noticed in the pop-
ulation of State #2, which is about three times lower in CAAs.
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Comparing the breast cancer cells at the invasive front or far from CAAs

It is of interest to also examine cancer cells to elucidate the potential crosstalk and inter-
action between cancer cells and adipocytes in the co-culture system. In this case, we 
compared spectra from the lipid droplets of MDA-MB-231 cells located at the contact 
zone and those located in the central region of the well, which can be considered as con-
trols (Fig.  5a). These spectra were projected onto the UMAP embedding constructed 
from adipocytes spectra. First, Fig.  5b reveals that spectra from MDA-MB-231 cells 
totally overlap with those from adipocytes, highlighting spectral similarities in the LDs 
of both cell types. Similarly, to previous analyses, we conducted a quantitative examina-
tion of the pseudotime values between the two tumoral cell conditions. Figure 5c dem-
onstrates that the median pseudotime is higher for MDA-MB-231 cells located at the 
contact zone. Additionally, we carried out a comparison of the Lipids/Proteins ratios as 
depicted in Fig. 5d. The results show that the MDA-MB-231 cells situated at the contact 
zone contain a higher lipid content, which is coherent with the increased pseudotime 

Fig. 4  Analyses of spectral differences between control adipocytes and CAAs. a UMAP embedding with 
points colored according to the Gaussian kernel density estimation of spectra in the reduced space. This 
measurement was conducted for control adipocytes and CAAs separately, the grey color represents the 
outline of the data distribution for the other condition. b Quantitative analysis of pseudotime value. c 
Quantitative analysis of the number of pixels composing a cell. d Relative occurrence of the different cellular 
states for each condition. For b and c, p-values were determined by two-tailed student’s t-test. ****P < 0.0001 , 
***P < 0.001 , **P < 0.01 , *P < 0.05
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level. This observation indicates that cancer cells located in proximity to CAAs accumu-
late a greater amount of lipids. We also conducted a quantitative examination of the dif-
ferent states occupied by each of the two types of cancer cells (Fig. 5e). The results reveal 
that both cell conditions of MDA-MB-231 exhibit spectral profiles corresponding to dif-
ferent states, namely the states #1 and #2 but also the intermediary state. Moreover, in 
contrast to MDA-MB-231 far from adipocytes, MDA-MB-231 cells at the invasive front 
exhibit a higher abundance of spectra corresponding to more advanced states (interme-
diary state and State #2) and fewer spectra corresponding to the initial state.

Discussion
In recent years, there has been growing interest in understanding the role of adipo-
cytes in cancer progression, particularly in the context of breast cancer. Adipocytes 
are a major component of the TME of breast cancers and have been shown to interact 
with cancer cells in various ways. However, the heterogeneity of adipocytes and their 

Fig. 5  Analysis of spectral differences of LDs between MDA-MB-231 cells at the invasive front (FI) and those 
distant from CAAs (Ctr.). a Schematic representation of the localization of the two conditions. b Projection 
of tumoral cells spectra on the 2D UMAP constructed from adipocytes data. c Quantitative assessment of 
pseudotime value. d Quantitative assessment of lipids/proteins ratio. e Relative occurrence of the different 
cellular states for each condition. For c and d, p-values were determined by two-tailed student’s t-test. ****P 
< 0.0001 , ***P < 0.001 , **P < 0.01 , *P < 0.05
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potential impact on cancer progression remain poorly understood. In this study, we 
used Raman spectroscopy and trajectory inference methods to investigate the inter-
actions between 3T3-L1 differentiated adipocytes and MDA-MB-231 breast cancer 
cells in a 2D co-culture model with cell/cell contact. We employed the Partition-
based graph abstraction algorithm (PAGA) for spectral trajectory construction on 
Raman spectral images of cells.

Trajectory construction is dependent on the choice of dimensionality reduction and 
clustering algorithms. Various algorithms are available, but there is no consensus on 
the optimal choice of methods and their parameters. We benchmarked three well-
known dimensionality reduction methods: PCA, t-SNE, and UMAP. The results are 
available Fig. S2. The choice of using UMAP over other methods, such as PCA or 
t-SNE, is based on several arguments. First, UMAP can highlight fine details while 
preserving both local and global structures of multidimensional datasets [31]. UMAP 
also incorporates negative sampling strategies to handle noise and outliers, reduc-
ing their influence during the optimization step and resulting in a more robust and 
accurate low-dimensional representation [31]. Importantly, UMAP exhibits reduced 
disconnected structures compared to t-SNE, making it well-suited for representing 
continuous phenomena. Concerning clustering, we benchmarked two well-known 
algorithms with different configurations and principles, namely Leiden [51] (graph-
based method) and K-means, to assess their ability to reconstruct relevant trajecto-
ries (Fig. S6 and S6). For our dataset, the visual comparison of these results led to 
select K-means clustering with k=20 clusters to obtain smooth and non-overlapping 
trajectories spanning the UMAP data distribution.

Based on these selected parameters for trajectory construction, we identified distinct 
adipocyte subpopulations, each displaying unique spectral signatures indicative of vary-
ing lipid compositions irrespective of droplet size. The existence of such adipocyte sub-
populations has been reported in 3T3-L1 cell line with immunolabeling methods. For 
example, Shigmatsu et al. [52] found, using that different subpopulations of adipocytes 
respond differently to insulin, suggesting that the signaling pathways involved in glucose 
uptake and lipid metabolism may be regulated differently in these subpopulations. Loo 
et al. [23] highlight four subpopulations based on their adiponectin, a key player in lipid 
metabolism, and LDs levels. In our work using label-free Raman spectroscopy associated 
with PAGA, we identified distinct subpopulations based on their levels of lipid unsatu-
ration. Previous studies using various vibrational techniques like Raman spectroscopy 
[50, 53–56], Coherent Anti-Stokes Raman Spectroscopy (CARS) [57, 58] or Stimu-
lated Raman Spectroscopy (SRS) [59, 60], combined with dimensionality reduction like 
UMAP [61], t-SNE [62], or Autoencoder [11], highlighted the unsaturation variability of 
lipid package but not clearly identified adipocyte subpopulations. Using TI processing, 
we were able to highlight different subpopulations.

Our findings did not reveal discriminant Raman profiles between CAAs and control 
adipocytes. However, when comparing the two conditions, we noticed variations in the 
occurrence of each adipocytes sub-population. This observation is consistent with Tang 
et al. [20], who found with single nucleus transcriptomic approach no specific adipocyte 
population unique to either breast cancer adipose tissues or normal breast adipocytes 
but did notice a variation in the frequency of certain adipocyte subpopulations.
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In CAAs, we noted a higher prevalence of spectra linked to the intermediate state, 
suggesting overall smaller droplets. This trend aligns with the lower pseudotime values 
found in CAAs, indicating they might move backward in the trajectories compared to 
control adipocyte populations, redirecting towards the root in the initial State #1. This 
observation could reflect the delipidation of adipocytes, a well-known process, that 
has been previously demonstrated by Dirat et al. [3]. In addition, our results show that 
CAAs are predominantly composed of adipocytes subpopulations marked by an unsatu-
rated lipid profile. This observation is in line with the study of You et al. [63] in mouse 
and human breast cancer tissue using Raman spectroscopy, where comparing bulk adi-
pose tissue located near and distant from the tumor, but without revealing adipocyte 
subpopulations. Furthermore, Guryleva et  al. [64] found that the fatty acid desaturase 
2 (FADS2), which adds unsaturation to the acyl chains of fatty acids, is upregulated in 
breast adipose tissue compared to normal tissues. Similarly, it has been shown that the 
stearoyl-CoA desaturase-1 (SCD1) is overexpressed in breast cancer and is associated 
with poor prognosis [65, 66].

The reprogramming of energy metabolism is acknowledged as a cancer hallmark 
that plays a significant role in the cancer progression. In addition, metabolic rewiring 
is seen as one of the mechanisms by which adipocytes can impact the progression of 
breast cancer [67, 68]. Indeed, in the local area, tumors located near adipocytes (such as 
breast, prostate cancer, and melanoma) establish a metabolic symbiosis with adipocytes, 
which results in the alteration of the cancer cell’s metabolic program from glycolysis to 
lipid-dependent energy production. Moreover, studies on the bidirectional interactions 
between adipocytes and cancer cells indicate that adipocytes provide fatty acids to can-
cer cells to generate energy, ultimately giving cancer cells a competitive edge through 
lipid oxidation. In this context, we took advantage of the 2D direct contact co-culture 
model to conduct preliminary measurements on MDA-MB-231 breast cancer cells. We 
showed that when in contact with adipocytes, cancer cells exhibited a higher abundance 
of spectra corresponding to more advanced states and lipid-rich profiles.

While Raman spectroscopy has proven to be a powerful tool for providing label-free, 
in situ insights into the biochemical composition of cells, it offers only one facet of the 
information needed to fully understand the complexity of CAAs. Raman spectroscopy 
is a very effective tool in identifying chemical bonds and associated molecular informa-
tion, such as lipid unsaturation levels. However, it does not provide the full molecular, or 
functional context necessary to comprehensively characterize CAAs. To address these 
limitations, it would be very beneficial to be able to couple Raman spectroscopy with 
other complementary techniques, such as flow cytometry, immunofluorescence, and 
single-cell RNA sequencing (scRNA-seq), to gain a more holistic understanding of the 
CAAs phenotype.

Conclusion
Overall, our study contributes to the growing body of research on the role of adipocytes 
in cancer progression and underscores the importance of understanding the heterogene-
ity of adipocyte subpopulations within TME. Using Raman spectroscopy and trajectory 
inference methods, we have highlighted the complex interactions between adipocytes 
and breast cancer cells, providing new insights into the metabolic reprogramming that 
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characterizes the CAA phenotype. Future research should continue to explore these ave-
nues, by combining Raman spectroscopy with flow cytometry, immunofluorescence, and 
scRNA-seq to fully elucidate the complex biology of CAAs. This will not only advance 
our understanding of the TME but also pave the way for the development of more tar-
geted and effective cancer therapies.
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