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Abstract 

Computer holography is a prominent technique for reconstructing customized three-
dimensional (3D) diffraction fields. However, the quality of optical reconstruction 
remains a fundamental challenge in 3D computer holography, especially for the 3D 
diffraction fields with physically continuous and extensive depth range. Here, we pro-
pose a 3D computer-generated hologram (CGH) optimization framework with phase 
space tailoring. Based on phase space analysis of the space and frequency properties 
in both lateral and axial directions, the intensity of the 3D diffraction field is adequately 
sampled across a large depth range. This sampling ensures the reconstructed intensity 
distribution to be comprehensively constrained with physical consistency. A physics-
informed loss function is constructed based on the phase space tailoring to optimize 
the CGH with suppression of vortex stagnation. Numerical and optical experiments 
demonstrate the proposed method significantly enhances the 3D optical reconstruc-
tions with suppressed speckle noise across a continuous and extensive depth range.

Keywords:  Computer-generated holograms, Spatial light modulation, Three-
dimensional display, Phase space optics

Introduction
Computer holography enables the reconstruction of arbitrary wavefront using a sin-
gle synthesized hologram, making it a versatile technology with applications in micro 
fabrication [1], neural photo-stimulation [2, 3], optical tweezers [4, 5], and 3D display 
[6–11]. With advancements in spatial light modulators (SLMs), computer-generated 
holograms (CGHs) can be dynamically reconstructed through phase or amplitude mod-
ulation. Phase holograms, in particular, are extensively investigated due to their high 
diffraction efficiency and absence of conjugate images, which allows a better utilization 
of the space-bandwidth product (SBP) [12]. However, the encoding process of phase 
holograms always introduces speckle noise and artifacts during optical reconstruction, 
leading to image degradation. As a result, synthesizing CGHs to achieve high-quality 3D 
images with a continuous and large depth range remains a significant challenge.

One straightforward approach to generate phase holograms is preserving the phase 
components of complex-valued fields. Typically, a random phase is used to diffuse the 
object wave [13], which always results in severe speckle noise during optical recon-
struction due to the random walk phenomenon of coherent light [14–16]. Another 
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direct technique, known as the double phase method, decomposes a complex ampli-
tude hologram into the superposition of two phase holograms [17, 18], aiming to reduce 
the speckle noise in optical reconstruction [19, 20]. However, the interlacement of the 
decomposed phase holograms would impair the effective utilization of the SLMs’ space-
bandwidth product. Furthermore, the coding error arising from the spatial displacement 
of decomposed phase values further degrades the image quality and diffraction effi-
ciency during optical reconstruction.

Compared with direct methods, optimization methods for generating phase holo-
grams can effectively suppress speckles and artifacts through an iterative process. The 
classic optimization methods include the Gerchberg-Saxton (GS) algorithm and its 
modified versions [21–23]. These methods usually yield inconsistent results between 
simulations and optical experiments, primarily due to the limitations of discrete wave 
propagation models. Inadequate modeling of wave propagation has a more pronounced 
effect on iterative methods compared to the direct methods. This is because the itera-
tive optimization requires multiple diffraction calculations, and the modeling errors will 
accumulate over time. Band-limited angular spectrum method (ASM) [24] is a funda-
mental work that concerns the sampling problem of diffraction calculation. This method 
corrects the sampling of the transfer function in the far field, allowing for an accurate 
sampling of complex amplitude fields. However, accurately sampling the intensity field 
remains challenging, and this limitation significantly affects the performance of iterative 
optimization methods. The state-of-the-art optimization methods, such as the band-
width constraint method [25] and the hardware feedback method (camera-in-the-loop, 
CITL), have demonstrated the ability to achieve superior two-dimensional (2D) images 
during optical reconstructions [26–28]. The effectiveness of the bandwidth constraint 
method stems from its use of a diffraction model consistent with optical reconstruction. 
Go one step further, the CITL method directly replaces the diffraction model with an 
optical reconstruction. However, the lack of a comprehensive space-frequency analysis 
of 3D diffraction fields still hampers these optimization methods from achieving high-
quality 3D optical reconstructions with a continuous and large depth range.

The compression of three-dimensional spatial properties into a flat optical element 
poses a highly ill-posed and non-convex problem. Several methods have been developed 
to address this challenge. For instance, Non-Convex Optimization for VOlumetric CGH 
(NOVO-CGH) utilizes a non-convex optimization strategy that effectively resolves the 
crosstalk issues in 3D diffraction fields [29]. An alternative approach combines stochas-
tic gradient descent (SGD) with a complex loss function, enabling the efficient design 
of 3D CGHs [30]. By leveraging the orthogonality of random vectors, crosstalk-free 
reconstructions across multi-layers can be achieved [31]. As with 2D cases, an appro-
priate diffraction model is essential for accurately sampling the diffraction fields during 
discrete calculations. Nevertheless, in these methods, the diffraction model and sam-
pling strategies were not adequately designed to account for the bandwidth properties 
of the diffraction fields. As a result, there is a violation of Nyquist’s sampling theorem 
throughout the optimization, leading to the degraded optical results. In contrast, the 
3D CITL method, assisted by neural networks, has achieved noiseless 3D optical recon-
structions at 8 discrete depths [32]. This technology has also been developed to combine 
with metasurface waveguides [33]. Nonetheless, the hardware used in this approach has 
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fixed sampling parameters, which fails to account for the varying bandwidth properties 
of 3D diffraction fields at different depths, ultimately limiting the depth range and caus-
ing discontinuities. Another approach involves time-multiplexed CGHs with focal stack 
supervision, which can produce photorealistic 3D optical reconstructions [34, 35]. How-
ever, this method typically requires high frame-rate SLMs. Recently, with advancements 
in deep learning, it has proven to be efficient in various optical applications, including 
computational imaging [36, 37] and computational displays [38]. In the field of computer 
holography, deep learning offers an effective balance between the computation speed 
and the quality of reconstructed images [20, 39]. For deep learning-based CGH, the dif-
fraction model remains crucial, whether it is used to generate datasets [39] or as a physi-
cal prior [40].

To effectively optimize the 3D diffraction fields in computer holography, a compre-
hensive bandwidth analysis is essential. This analysis facilitates the establishment of a 
forward diffraction model with physically consistent sampling. The phase space, which 
combines both space and spatial frequency into a unified coordinate system, serves as a 
powerful tool for analyzing the evolution of the SBP during wave propagation [41–44]. 
By simultaneously considering both space and frequency domains, the bandwidth prop-
erties of the 3D diffraction fields can be thoroughly analyzed. This insights then enables 
the development of an efficient discrete calculation model for synthesizing the forward 
diffraction process under various parameters [43, 44].

In this study, we propose a generalized framework for optimizing CGH using phase 
space tailoring. This framework aims to comprehensively constrain the discrete sam-
pling of the 3D diffraction fields. To achieve this, the lateral and axial bandwidth proper-
ties are analyzed in the phase space domain. Then the phase space tailoring technique 
is applied to the discrete diffraction model, enabling the effective intensity sampling of 
the 3D diffraction fields across all depths. During the optimization process, a physics-
informed loss function comprehensively constraints the intensity and phase distribu-
tions, incorporating the phase space tailoring implementation. This approach enables an 
efficient optimization process while solving the vortex stagnation problem caused by the 
phase singularities in the diffraction fields. Furthermore, the phase space tailoring tech-
nique significantly reduces the sampling requirement in 3D space, making it effective for 
optimizing diffractive fields with a continuous and large depth range. Theoretical analy-
sis and optical experiments demonstrate that the proposed CGH optimization frame-
work can achieve high-quality speckle-free 3D optical reconstructions with a continuous 
and extensive depth range.

Results
Phase‑space analysis for 3D CGH reconstruction

In 3D computer holography, the modulated wavefront U(u,v) from the CGH diffracts in 
free space to reconstruct the 3D diffraction field O(x,y,z). During the reconstruction, the 
ASM is implemented for diffraction calculation without paraxial approximation:

(1)O x, y, z = IFT FT{U(u, v)}H (z) ,
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where FT and IFT denote the Fourier transform and the inverse Fourier transform, 
respectively. H(z) is the transfer function under the propagation distance z and expressed 
as: 

where (fx, fy) are spatial frequencies, i is the imaginary unit, λ is the wavelength.
Before analyzing the phase space evolution of the diffraction fields, we first intro-

duce an upgrading dimension analysis tool known as the Wigner distribution function 
(WDF). The WDF is a useful tool for describing space-frequency relationships. It was 
initially developed in quantum mechanics and later introduced into the optical commu-
nity [45, 46]. For a one-dimensional complex amplitude field O(x), the WDF is defined 
as:

where W(x, fx) is the WDF, x is the spatial coordinate, fx is the spatial frequency coordi-
nate, and * denotes the complex conjugate. The phase space diagram (PSD) represents 
the domain where the WDF values are significantly non-zero. In this study, the PSD is 
used to describe the phase space characteristics of the diffraction fields. Figure 1 illus-
trates the PSDs for both the complex amplitude and intensity of the diffraction fields. In 
these diagrams, the horizontal axis denotes the spatial position, while the vertical axis 
denotes the local spectrum of the spatial frequency at that particular spatial position.

The spectrum of complex field is obtained by projecting the WDF along the space 
direction:

where Ô(fx) is the Fourier transform of O(x). According to this relationship, the spatial 
frequency bandwidth of O(x) corresponds to the extent of the PSD along the spatial fre-
quency axis. Additionally, the local bandwidth refers to the extent of the vertical section 
of the PSD at a particular spatial position, as indicated by the white double-arrow lines 
in Fig. 1b and c. As a result, the sampling criteria that comply with the Nyquist’s sam-
pling theorem can be determined by considering the bandwidth characteristics of the 
diffraction fields.

The phase space of the input field U(u), which has a lateral spatial extent LU and band-
width BU, undergoes the shear deformation during diffraction. The magnitude of this 
shear deformation, as well as the local bandwidth of the diffraction field, depend on 
the propagation distance (Fig. 1b). It is important to note that the WDF of the intensity 
field is the autocorrelation of the WDF of the complex amplitude field. Consequently, 
the local bandwidth of the intensity field is twice that of the complex amplitude field 
(Fig.  1c). Additionally, the WDF of the intensity field along the axial direction can be 
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derived using the same analysis (Fig.  1d). In summary, the global bandwidth of the 
intensity field is always twice the maximum local bandwidth of the corresponding com-
plex amplitude field, which varies with the propagation distance z. For a more detailed 
description of phase-space analysis for 3D CGH, please refer to Sect. 1A and Sect. 1B of 
the Supplementary Materials. Interested readers may also find the papers about sam-
pling analysis of numerical diffraction [42, 43] helpful.

Phase space tailoring
According to the phase space analysis of the reconstructed diffraction fields, we design 
a numerical diffraction model with appropriate sampling, which improves the alignment 
of the wave propagation model with the physical one. The key to this model is the phase 
space tailoring, which reshapes the PSDs of reconstructed intensity fields.

In the ASM implemented with the fast Fourier transform algorithm, the sampling 
interval dx of the output fields is the same as that of the input fields. Thus, the sampling 
frequency of the intensity fields on the image plane is 1/dx. To ensure accurate sam-
pling without aliasing, the maximum allowable spatial frequency of the intensity fields 

Fig. 1  Phase space transformation during diffraction. a Sketch of 3D computerholography. b Phase space 
transformation of the complex amplitude with input field U(u), spatial extent LU, and bandwidth BU along 
the lateral direction. c Phase space transformation of the intensity along the lateral direction. d Phase space 
transformation of the intensity along the axial direction



Page 6 of 18Zhu et al. PhotoniX            (2024) 5:34 

is 1/(2dx), which is equal to half of the input field bandwidth BU/2. In Fig. 2a, the red 
rectangle represents the range of frequency components that can be accurately sampled 
in numerical calculations. However, the speckle noise and artifacts with high-frequency 
components fall outside this range, as depicted with light-gray area (Fig. 2a). Therefore, 
the original ASM fails to effectively depict the reconstructed intensity fields. The band-
width property in the axial direction can be analyzed similarly. For a more detailed anal-
ysis, please refer to Sect. 1C of the Supplementary Materials.

To correctly sample the intensity fields, an effective approach is to tailor the PSDs of 
the complex amplitude fields. This reshapes the PSDs of the intensity fields and ensures 
that they satisfy Nyquist’s sampling theorem. Figure 2b illustrates that by clipping the 
WDF of the complex amplitude fields that exceeds BU/2 along the spatial frequency 
axis, the bandwidth of the intensity fields will be confined to the correct sampling range. 
Direct frequency tailoring of the phase space along the spatial frequency axis is not 

Fig. 2  CGH optimization with phase space tailoring. a PSDs of inaccurate sampling. The signal outside the 
red rectangle would cause aliasing, and is tailored along the spatial frequency axis. b Phase space tailoring 
in space domain, frequency domain, and intensity domain. c Schematic diagram for CGH optimization, the 
loss functions calculated with the reconstructed intensity at different depths are summed and then used to 
optimize the phase hologram by the gradient descent method
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feasible in the space domain. However, in the Fourier domain, the frequency tailoring 
is transformed into spatial tailoring, which can be achieved easily through the spatial 
filtering (Fig. 2b). The diameter of the filter increases with the propagation distance and 
is given by Ax = λz/2dx. The modified ASM is then reformulated as:

where S(z) represents the frequency filtering operation and P(z)
PST

 represents the operator 
of the proposed phase space tailoring technique under the propagation distance of z. 
The variational filter diameter, Ax, can be easily handled in simulations, the Fast Fou-
rier Transform algorithm transforms the input field into its frequency domain, allowing 
for the filtering of the information outside the range determined by Ax. In the optical 
experiments, a 4f system is necessary to perform the Fourier transform and the fre-
quency filtering. In this implementation, the filtering operation is conducted in k-space, 
the diameter of the filter for all diffraction distances is determined according to the focal 
length of the Fourier transform lens (Fig. 2c). Therefore, S(z) and Ax can be defined as 
follows:

where zf is the focal length of the Fourier transform lens in 4f system. As the 4f filtering 
is completed before the free space diffraction, the optimal diameter of the filter remains 
constant for each z location of the 3D volume. And there is no requirement to dynami-
cally adjust the diameter of the filter for different z location. This property makes the 
phase space tailoring technique both convenient and practical for implementation in 
practice. Please refer to Sect.  2D of the Supplementary Materials for a more detailed 
discussion about the 4f system filtering. And see Sect. 1D and Sect. 2A of the Supple-
mentary Materials for a more detailed discussion about the differences between the pro-
posed phase space tailoring and the previous band-limited ASM [24].

CGH optimization with phase space tailoring
The phase space tailoring ensures that the intensity is adequately sampled, enhancing 
the consistency between the numerical diffraction calculation model and the physical 
one. However, simply tailoring the phase space without further optimization leads to the 
degraded image quality of the CGHs due to information loss. To achieve high-quality 3D 
optical reconstructions, the further optimization is essential. This optimization process 
helps to redistribute the information of the reconstructed images into the tailored PSD.

The gradient descent method is used to solve the following loss function:
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where U is the hologram, lossI and lossPer are the data matching terms which measure the 
difference between the reconstructed intensity and the target intensity. lossI is the mean 
square error, while lossPer is a perception-informed SSIM regularization term. In most 
cases, the speckle noise in the reconstructed images is caused by the phase singularities, 
also known as the phase vortices. These phase singularities are difficult to be removed 
using only the intensity constraints lossI and lossPer [47–49] (Fig.  6b, c). Therefore, to 
improve the performance of the optimization algorithm, a vortex regularization term 
lossVor is developed according to the physical structure of phase vortex. lossVor accounts 
for the phase vortices through a specially designed stochastic phase gradient approach. 
To broaden the optimization space and enhance the reconstructed image contrast, a 
modified weighted constraint strategy is implemented (see Methods and Sect. 2G of the 
Supplementary Materials for the details of this method). This strategy assigns different 
weights to the regularization terms lossVor and a masked intensity constraint term lossW 
according to the image contents [50]. λVor, λPer and λW are the weights of the regulariza-
tion terms. The calculation time consumption for each loss term can be found in Sect. 2F 
of the Supplementary Materials.

With a stochastic gradient descent-based optimizer like Adam, the loss function can 
be used to optimize the CGH efficiently. Additionally, this CGH optimization algorithm 
can be naturally combined with layer-oriented method to design the 3D CGHs [14, 51]. 
In the layer-oriented method (Fig. 2c), a 3D scene is divided into N depth layers accord-
ing to the depth map D(x,y), where Oi represents the ith depth layer (i = 1,…,N). Each 
depth layer contains amplitude information within a specific depth range, which can be 
calculated using Oi = MiP

(zi)
PST

{U} . Mi is a binary mask defined as:

where z1 is the distance between the CGH and the first depth layer, dz is the distance 
between adjacent depth layers. Thus, the loss function for 3D CGH optimization is writ-
ten as:

where T is the target image and N is the number of depth layers. The learnable scale fac-
tor s takes into account the difference between the total energy of reconstructed inten-
sity and target image, which helps to accelerate the convergence of the algorithm.
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As an optimization-based CGH design method, an appropriate forward model is cru-
cial to ensure the consistency of the reconstructions in numerical simulations and optical 
experiments. In the proposed method, the optimization process incorporates a forward 
propagation model with phase space tailoring. Benefiting from the appropriate sampling 
strategy of the diffraction fields, any destructive aliasing during the optimization process 
is avoided. Building upon the aforementioned forward model, a physics-informed loss 
function is designed to comprehensively constrain the 3D diffraction fields.

Experimental verification
The feasibility of the proposed phase space tailoring method is validated through simula-
tions and optical experiments. The proposed method is compared to a modified state-
of-the-art GS method [23, 25, 50], double phase method [19], and original SGD method 
[27]. In order to evaluate the quality of the reconstructed images, peak signal-to-noise 
ratio (PSNR), structural similarity index measure (SSIM), and speckle contrast (SC) are 
used. The test images are selected from the DIV2K dataset [52, 53]. The PSNR and SSIM 
evaluate the overall quality of the images, with higher values indicating better image 
quality. On the other hand, the SC reflects the local roughness of the images and lower 
values indicate less local noise. To ensure the consistency with the optical experiments, a 
modified sampling method is employed in the comparisons [25]. The simulation results 
presented here (Fig. 3c), using the modified sampling method, may not match the qual-
ity of those in previous works [27]. However, they are more consistent with the opti-
cal results. The simulation results for 2D images (Fig. 3b) and quantitative comparisons 
(Fig. 3c) demonstrate that the proposed method outperforms other methods in terms of 
image quality.

The superior performance of the phase space tailoring method is demonstrated with 
optical experiments. Figure  3d shows the full-color 2D results, while Table  S2 in the 
Supplementary Materials presents an evaluation of the proposed method compared to 
existing methods using more data. Both the GS and SGD methods produce results with 
significant speckle noise. Although the double phase method performs slightly better, it 
still introduces artifacts in the reconstructed images, as shown in the enlarged images. In 
contrast, the phase space tailoring method achieves the highest image quality, success-
fully eliminating speckle noise and artifacts. The quantitative evaluations, located at the 
top right of each image, confirm that the proposed method achieves the highest PSNR 
and SSIM along with the lowest SC. Additionally, our proposed method provides better 
color fidelity in the optical reconstructions. For a more detailed analysis about the color 
fidelity of the optical results, please refer to Sect. 2E of the Supplementary Materials.

The proposed method is further evaluated for holographic multi-plane reconstruction. 
The optical reconstructions of three 2D images placed at different depths are presented 
in Fig. 4a. From the first row to last row of the enlarged images, the focus shifts from the 
near plane to the middle plane, and finally to the far plane. The enlarged images clearly 
illustrate the in-focus and out-of-focus effects. Compared to the 2D cases, the speck-
les and artifacts in the first three algorithms are more severe. The phase space tailoring 
method effectively handles this type of 3D images, yielding the optical reconstructions 
with the highest overall quality and contrast.
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The phase space tailoring method can reconstruct 3D scenes across a continuous and 
extensive depth range. Figure  4b showcases the optical reconstructions of a continu-
ous 3D scene with a depth range spanning from 7.0 cm to 9.8 cm. Given the hardware 
parameters mentioned, the axial sampling criterion is 1 mm, then dz = 0.7 mm is applied 
here. Details about the axial sampling criterion can be found in Table  S1 of the Sup-
plementary Materials. The images from the first to the last column focus on the near-
est rock, the alarm clock, and the farthest pen, respectively. The phase space tailoring 
method achieves a high level of image quality, along with distinct defocus blur. It can be 
observed that when the focus is set at a specific depth, the scenes at other depths present 
noticeable defocus blur (Fig. 4b).

Fig. 3  Experimental results. a Schematic of optical experimental setup. The modulated light is filtered by a 
4f system to achieve phase space tailoring, then propagating and captured by a camera. b Simulation result. 
c Quantitative comparisons using PSNR and SSIM for different methods. d Optical results, where the phase 
space tailoring method effectively suppresses the speckle noise and artifacts, and achieving the highest 
image quality. Additional monochrome results can be found in Sect. 2 J of the Supplementary Materials
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Discussion
To assess the impact of the proposed phase space tailoring method, all baselines are 
tested with the original ASM [14] and the proposed forward propagation model with 
phase space tailoring. In Fig.  5a, the first row displays the experimental results of the 
GS, SGD, double phase, and SGD method with the original ASM and the proposed loss 
function. The second row shows the experimental results of different methods using the 
proposed phase space tailoring propagation model for the same baselines. The enlarged 
parts on the upper left show that the proposed phase space tailoring method alone 
improves the image quality. Additionally, the proposed physics-informed loss function 
can further eliminate the speckle noise. However, when the phase space tailoring is com-
bined with the GS method, the optical image quality remains subpar due to the unan-
nihilated vortices. These isolated phase vortices interfere with each other, leading to 
unwanted rippling artifacts in the results. The proposed physics-informed loss function 
with the original ASM yields low quality results with poor image contrast. This would 

Fig. 4  3D experimental demonstration of the proposed method. a Optical reconstructions of three images 
placed at different depths. The three images are placed at 7.0 cm, 8.0 cm, and 9.0 cm, respectively. The optical 
reconstructions of the GS and SGD methods are accompanied with speckle noise, which becomes more 
severe at defocus regions. The double phase method produces background noise in this case and reduces 
the image contrast. The optical reconstructions of the phase space tailoring method are of highest image 
contrast and no speckle artifacts. b A 40-layers scene with z1 = 70 mm and dz = 0.7 mm
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be attributed to the strong constraints imposed by the vortex regularized term. This 
experiment demonstrates that while the proposed phase space tailoring method effec-
tively reduces the speckle noise on its own, the physics-informed loss function is highly 
dependent on the phase space tailoring wave propagation model and cannot function 
independently.

A detailed ablation study, qualitatively and quantitatively, shows the contributions 
of each loss term of Eq. 7 from standard lossI to proposed method, step by step. Opti-
cal experiments are used to assess the impact of the individual loss function terms on 
the overall improvement of the CGHs (Fig. 5b). It shows that the intensity constraint 
lossI and lossPer are not effective in eliminating phase vortices. The remaining phase 
vortices introduces the speckles in the optical reconstructions. The quantitative anal-
ysis is presented in Fig. 5c, where the number of remaining phase vortices in non-zero 

Fig. 5  Ablation study. a Apples-to-apples comparison that validates the contribution and efficacy of the 
proposed phase space tailoring wave propagation model. The first row is the experimental results with 
original ASM propagation. The second row is the experimental results with phase space tailoring. b Ablation 
study for different loss terms. c Quantitative comparison of the number of phase vortices for different loss 
terms. L2 is the mean square error. s, v, and w indicate the perceptual loss lossPer, the vortex loss lossVor, and 
the weighted loss lossW, respectively. d Image quality of the CITL method improves with a proper tailoring 
of phase space. The horizontal axis is the scale of tailoring. The left and right vertical axes are the mean PSNR 
and SSIM values of 12 tested images, the error bars are the standard deviations. The phase space tailoring 
point is indicated by a red vertical line
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regions of the image is counted for different loss terms. As a result, the proposed sto-
chastic phase gradient approach, lossVor, is proved to be effective in eliminating the 
phase vortices (Fig. 5b, c). Moreover, the weighted constraint strategy, lossW, improves 
both the uniformity and the contrast of the reconstructions. A more detailed compar-
ison of the phase vortex elimination performance of different methods can be found 
in Sect. 2I of the Supplementary Materials.

The proposed phase space tailoring method can also be integrated to enhance the 
performance of the state-of-the-art CGH methods. Figure 5d illustrates the improve-
ment achieved by applying the phase space tailoring method to the CITL approach. 
Typically, the diameter of the iris in CITL is selected empirically [54]. However, we 
demonstrate that the CITL can achieve optimal performance by using the iris diame-
ter determined through the phase space tailoring (Eq. 6). In Fig. 5d, the iris diameter is 
Ax = λz/ξdx and different scales ξ are tested. When ξ = 2, the iris diameter Ax matches 
the diameter obtained from the phase space tailoring equation (Eq. 6). Beyond ξ = 2, 
increasing the scale does not significantly improve image quality (Fig. 5d); instead, it 
leads to blurred details due to a smaller iris diameter. Optical results can be found in 
Sect. 2B of the Supplementary Materials. Furthermore, the physical model is vital for 
the performance of learning-based CGH algorithms. We demonstrate that the pro-
posed method can also be integrated into deep learning methods and achieve high-
quality results. The training framework and optical results can be found in Sect. 2B of 
the Supplementary Materials.

Conclusion
In summary, we have presented a phase space tailoring framework for optimiz-
ing CGHs to achieve high-quality 2D and 3D optical reconstructions. The proposed 
method enables physically consistent discrete sampling across a continuous and large 
depth range by tailoring the phase space. Furthermore, when combined with the vor-
tex regularization, our proposed method effectively eliminates the speckle noise and 
artifacts, resulting in full-color optical reconstructions with enhanced color fidelity. 
The feasibility of the phase space tailoring method for continuous and large-depth-
range 3D optical reconstruction is validated with a 40-layer 3D scene.

While the proposed method outperforms others in terms of reconstruction accuracy, 
its runtime is not optimal. The computation speed can be further enhanced using a 
lower-level programming language and higher-performance computers. Moreover, this 
3D CGH optimization framework with phase space tailoring can also be leveraged for 
training neural networks to enable real-time CGH synthesis. The proposed method has 
potential applications in various fields where optimizing the 3D diffraction fields is nec-
essary, such as holographic display, optical manipulation, or laser fabrication.

Methods
Optical setup

All the experiments in this study were performed on our holographic display system, the 
setup shown in Fig. 3a is utilized. A FISBA READYBeam laser source with wavelengths 
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of 450  nm, 520  nm, and 638  nm is collimated and incident on the SLM, sequentially. 
A Meadowlark Optics 256  Gy-scale level reflective phase-only SLM with a resolution 
of 1920 × 1152 and a pixel pitch of 9.2 μm is used. The modulated laser beam from the 
SLM is filtered through a 4f system and then captured by a Canon 600D camera.

Details of optimization algorithm

In the implementation, the weights of the regularization terms are set as follows: 
λVor = 0.5, λPer = 0.05, and λW = 0.5. The dark region threshold a is 0.04, the learning rates 
for the hologram and scale parameter are 0.05 and 0.02, respectively. During optimiza-
tion, a step learning rate decay scheduler is adopted with a decay rate of 0.8 per hundred 
iterations. For 3D CGH optimization, the distance from each layer to the hologram is 
rounded to be an integer multiple of the wavelength to avoid phase jumps between lay-
ers. Since the remainder is smaller than the wavelength, the rounding operation has a 
negligible influence on the reconstruction. The pseudocode of the proposed phase space 
tailoring method is outlined in Algorithm 1.

Algorithm 1 Phase  space tailoring method

Vortex regularization
The phase vortex is a helically structured wavefront [55, 56] that diverges from a singu-
larity point. The phase value at the singular point is indeterminate, which is the reason 
for the vanishing gradient and resulting in the iterative stagnation [49]. The closed line 
integral of the phase gradient around the vortex is an integer multiple of 2π:

where ∇ is the vector differential (Nabla) operator, Φ(O) represents the phase term of 
reconstructed complex amplitude O, and q is the topological charge. The phase gradient 

(10)
∮

∇�(O)dl = q2π ,
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kernels (Fig. 6a) can be used to detect the vortices. If the sum of all eight wrapped phase 
gradient distributions results in q2π at a specific location, then there is a singularity 
point. The removal of phase vortices can be achieved by adding phase vortices with the 
opposite topological charge point by point. However, this procedure is time-consuming 
and impractical for high-resolution CGH optimization.

Here, a simplified vortex removal method called stochastic phase gradient regulari-
zation is adopted. The closed line integral in Eq. 10 can be expressed with 8 convolu-
tion kernels, as shown in Fig.  6a. Achieving the closed line integral requires a phase 
unwrapping operation, which unfortunately is non-differentiable. To address this issue, 
an approximation algorithm is adopted. During each iteration, we randomly exclude one 
kernel Kk from the eight available kernels and convolve the remain ones with the recon-
structed phase. Then the vortex regularization term lossVor is defined as:

Fig. 6  The vortex annihilation. a Kernel convolution for phase gradient. b Reconstructed amplitude and 
phase with and without phase vortices removal. The speckle can be eliminated through the proposed 
method
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In lossVor, * denotes convolution and Kj represent convolution kernels that produce the 
approximate phase gradient. For each iteration, Kk is randomly exclude from the eight 
kernels. With the stochastic phase gradient strategy, the issue of phase ambiguity and 
vanishing gradient at the phase vortices is avoided. In this way, the phase vortices can 
be efficiently eliminated without degrading the texture information (Fig.  6b). Detailed 
discussions about the proposed physics-informed loss function can be found in Sect. 2G 
of the Supplementary Materials.

Weighted constraint strategy
In this study, a weighted constraint strategy is adopted to expand the optimizing space. 
Specifically, as the phase vortices in zero-amplitude region would not cause the speckle 
noise, they are not considered in the vortex regularization. The weighted constraint is 
achieved through a binary mask m, as shown in Eq. 12. This mask indicates the nonzero 
region in target images, which is defined as:

where a is a threshold defining the dark region. The dark region is further constrained 
through an intensity regularization:

In conclusion, the weighted constraint adopted is as follows:

Abbreviations
3D	� Three-dimensional
2D	� Two-dimensional
CGH	� Computer-generated holography
SLM	� Spatial light modulator
SBP	� Space-bandwidth product
GS	� Gerchberg-Saxton method
CITL	� Camera-in-the-loop method
SGD	� Stochastic gradient descent method
NOVO-CGH	� Non-Convex Optimization for VOlumetric CGH
ASM	� Angular spectrum method
WDF	� Wigner distribution function
PSD	� Phase space diagram
PSNR	� Peak signal-to-noise ratio
SSIM	� Structural similarity index measure
SC	� Speckle contrast
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