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Abstract 

Pulsed polarized vortex beams, a special form of structured light, are generated 
by tailoring the light beam spatiotemporally and witness the growing application 
demands in nonlinear optics such as ultrafast laser processing and surface plasma 
excitation. However, existing techniques for generating polarized vortex beams suffer 
from either low compactness due to the use of bulky components or limited con-
trolment of pulse performance. Here, an all-fiber technique combining plasmonic 
metafibers with mode conversion method is harnessed to generate high-performance 
pulsed polarized vortex beams. Plasmonic metafibers are utilized as saturable absorb-
ers to produce Q-switched pulses with micro-second duration, while the offset splicing 
method is employed to partially convert the fundamental transverse mode (LP01 ) 
to higher-order mode (LP11 ). Eventually, a polarized vortex beams laser is achieved 
at the telecom band with a repetition frequency of 116.0 kHz. The impact of geo-
metrical parameters including period of metafibers and offset of splicing on the spati-
otemporal properties of pulsed polarized vortex beams is systematically investigated. 
Our findings could pave the way for design, control and generation of all-fiber pulsed 
polarized vortex beams, and also offer insights into the development of other types 
of structured laser sources.
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Introduction
Vortex light is a spatially structured beam with a helical wavefront, characterized by 
a circular spatial intensity distribution and carrying orbital angular momentum [1, 
2]. These unique spatial properties have fueled research in various fields, including 
quantum information, super-resolution microscopy and optical tweezers, to name 
a few [3–5]. Within the scope of vortex beam, polarized vortex beams (PVBs), also 
commonly termed as cylindrical vector beams, have been widely used in both basic 
research and practical applications due to the special polarization distribution [1, 6]. 
According to the spatial distribution of polarization, PVBs can be classified as a radi-
ally polarized beam (TM01 ), an azimuthally polarized beam (TE01 ), and a hybridly 
polarized beam (HEeven/odd

21  ) [7–9]. In particular, radially polarized beam can be 
focused into a tight spot with strong longitudinal field confinement, thus further pro-
moting applications in high-resolution imaging, nanoparticle manipulation, plasma 
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focusing, and Z-scanning techniques [10–12]. The generation of PVBs routinely 
involves techniques such as axial birefringent assemblies [13, 14], spatial light modu-
lators [15, 16], and nanostructured holograms with high efficiency and high power 
[17, 18]. Nevertheless, these methods consist of discrete bulky components, thus pos-
ing challenges in constructing compact, low-loss, and long-haul systems due to the 
complexities of optical alignment [19]. Conversely, all-fiber methods based on mode 
conversion theory provide an alternative approach for developing PVBs with greater 
flexibility and compactness [7, 20]. For instance, long period fiber grating and mode 
selective coupler have been well developed for transforming the fundamental mode 
into PVBs with high modal purity [21–24]. In comparison, offset splicing (OSS) which 
requires less stringent control of geometric parameters of the fiber, also serves as a 
simpler and effective approach to generate PVBs [7, 25].

On the other hand, the operational accuracy and resolution of vortex light are closely 
linked to its temporal-domain properties. Tailoring the PVBs in temporal domain to 
form pulsed PVBs, which have been employed in various applications, such as ultrafast 
laser processing, surface plasma excitation, and other nonlinear light-matter interactions 
[26, 27]. Converting the fundamental mode of pulsed laser into higher-order mode is 
essential to generate the pulsed PVBs [28–31]. Consequently, saturable absorbers (SAs) 
have garnered significant attention due to their practicality and superior effectiveness in 
generating Q-switched and mode-locked pulses in solid-state and fiber lasers [32–37]. 
Pioneering study integrated plasmonic nanorod metasurface on the fiber end facets to 
form the plasmonic metafibers as SAs, resulting in pulsed lasers at designable wave-
lengths [38]. Benefitting from well-defined shapes, sizes and geometries of the unit cell, 
plasmonic metafibers exhibiting outstanding saturable absorption closely related to the 
plasmonic resonances [39–41]. However, the resonance of such nanorod metasurface 
exhibits a strong dependence on polarization. Therefore, pulsed lasers are highly sen-
sitive to environmental vibration and other disturbances. Additionally, the resonance-
shift-based saturable absorption is constrained by the wide full width at half maximum 
due to the intrinsic ohmic and radiative losses [42]. Alternatively, metasurfaces with cen-
trosymmetric shapes, such as nanorings and nanoeyes integrated on the fiber tips have 
been demonstrated to support polarization-independent and sharp resonances for sens-
ing and modulation [39, 43, 44]. However, the effective utilization of plasmonic metafib-
ers to deliberately structure light in terms of both polarization and pulse properties, 
while accounting for spatiotemporal aspects, continues to pose a significant challenge.

In this work, we demonstrate a Q-switched pulsed PVB that features a micro-second 
pulse duration by in collaborating polarization-independent metafibers with the simple 
and efficient OSS technique. As shown in Fig. 1, the unit cell of metafiber is the so-called 
nanoeye structure [39, 44], situated in the core region of a commercial single-mode fiber 
jumper (SMFJ) for plug-and-play operations. The metafiber is used as a SA for the gen-
eration of Q-switched pulses. The output port of the single-mode fiber (SMF) is offset 
spliced with a two-mode fiber (TMF) to partially convert the fundamental transverse 
mode (LP01 ) to higher-order mode (LP11 ), and the pulsed vortex laser is eventually 
achieved at the telecom band. The impact of geometric parameters involving the periods 
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of nanoeye in the metafibers and offset of splicing on the spatiotemporal characteristics 
of pulsed PVB is respectively investigated. This study enhances our understanding of the 
role of metasurfaces in beam manipulation, and paves the way for the generation of all-
fiber structured lights.

Results and discussion
Optical responses of metafibers

As shown in Fig. 1, the plasmonic nanoeye metasurfaces are situated in the core region 
of SMFJ to form the metafiber. The nanoeye structure is chosen as the unit cell of the 
plasmonic metasurfaces due to its extensive study [39, 43, 44]. The nanoeye can provide 
hybridized plasmonic modes stemming from coupling of individual nanodisc and nano-
hole modes, which greatly enhance light-matter interactions [39, 43, 44].

To characterize the optical responses of metafibers, four samples are fabricated with 
the period ranging from 825 nm to 900 nm in a step of 25 nm (see details of “Fabrica-
tion” from Method). The reflectance spectra of metafibers are investigated as functions 
of the period and incident wavelength, as shown in Fig. 2a. Three dips and two peaks are 
observed in the observation window for all periods. The broader resonance dips cen-
tered at 1430 nm, 1450 nm, 1490 nm and 1550 nm correspond to the bonding mode [39, 
43]. Theoretical reflectance spectra and electric field distributions are calculated (see 
details of “Simulation” from Method). As shown in the inset of Fig. 2a, the electric field 
is strongly confined at the edged surfaces of the nanodisc with an orientation parellel 
to the polarization of incident light. Besides, at the reflectance spectra of 1550 nm, the 
reflectance intensity exhibits a monotone decreasing trend as the period increases.

Following the linear optical characterization, the nonlinear transmittance is fur-
ther measured by using a home-made setups for saturable absorption characterization 
(central wavelength: 1550 nm, pulse width: 2 ps, and frequency: 20 MHz, see details of 
“Experimental setups for optical response characterization” from SI). As the input power 
continuously increases, the transmittance spectra for metafibers of all periods show the 
typical line shape of saturable absorption with the saturable power of 1.44 MW/cm2 , as 

Fig. 1  Configuration and working principle of the generation of pulsed polarized vortex beam
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shown in Fig. 2b. The transmittance exhibits a similar dependence on the period as the 
linear excitation, with the maximum modulation depth reaching up to 12.9%. The mod-
ulation depth of metafiber is higher compared with that of the conventional SAs, which 
facilitates the low saturation intensity pulse modulation [28, 29, 32].

Generation of Q‑switched pulse lasers

Based on the optical responses of metafibers, we design a passively all-fiber laser cavity 
to acquire the Q-switched pulses, as shown in Fig. 3a. The laser cavity consists of a pump 
diode (980 nm), a polarization-independent optical integrated module (PI-OIM), an 
erbium-doped gain fiber (EDF, 0.7 m), a polarization controller (PC), and a metafiber SA 
with the period of 825 nm. The PI-OIM can effectively reduce the loss and maintain the 
total length less than 1 m. The inset depicts a well-defined plasmonic nanoeye structure sit-
uated in the core region. The high precision ensures the propagation of light and promotion 
a stable build-up of Q-switched laser. Figure 3b depicts the spectrum of the Q-switched 
pulse laser with the central wavelength of 1559.0 nm. A broader full width at half maximum 
of 1.3 nm is obtained by using the metafiber SA, better than other Q-switched pulses gen-
erated by the traditional SAs [28, 29, 32]. Figure 3c shows a pulse train of the laser with an 
interval of 8.6 µ s, corresponding to the repetition frequency of 116.0 kHz. The RF spectrum 
shown in Fig.  3d displays that 40 dB signal-to-noise ratio of the fundamental frequency 
can be reached. The pulse width of the Q-switched laser is 1.0 µ s as shown in Fig. 3e. To 
compare the improved performance of metafiber SAs with traditional SAs, we select four 
types of SAs, including zero-dimensional, one-dimensional, two-dimensional materials 
and our metafibers. (See details of “Performance comparison between metafiber SAs and 
traditional SAs” from SI) Metafiber SAs exhibit superior performance Q-switched thresh-
old, repetition frequency and pulse width. Specifically, metafibers SAs show a generally low 
threshold which reduces potential thermal damages and promotes the energy conversion 
efficiency [45]. Besides, a high repetition frequency from metafiber SAs is preferred for the 
data transmission in the field of high speed communication network [46].

Further, we systematically investigate the impact of pump power and period of metafiber 
on the output characteristics of Q-switched lasers. Figure 4a, b show dependences of pulse 
width, repetition frequency, pulse energy and peak power on pump power. As the pump 
power increases, the pulse width exhibits a decrease trend to a minimum of 1.0 µ s, while 

Fig. 2  Linear and nonlinear optical characterizations of plasmonic metafibers with the periods ranging 
from 825 nm to 900 nm in a step of 25 nm. a Reflectance spectra of metafibers. The inset is the electric field 
distribution at x-y plane for the plasmonic bonding mode excited at 1600 nm. b Optical transmittances of 
metafiber using a power-variable pulsed laser
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the repetition frequency, pulse energy and peak power increase to 116.0 kHz, 16.6 nJ and 
17.5 mW, respectively. Figure 4c displays that the laser has a low Q-switched threshold of 
35 mW and a maximum output power of 2 mW. The output characteristics of Q-switched 
pulse laser are closely related to the pump power, which is maximized to 190 mW under the 
condition of intact stability of metafibers.

Subsequently, we compare the pulse characteristics of the Q-switched lasers as functions 
of the periods of metafiber. As shown in Fig. 4d, e, we find that pulse width, repetition fre-
quency, output power, pulse energy and the lateral diameter of pulse pattern all deterio-
rate as the periods of metafiber increase. This negative correlation can be attributed to two 
folds of reasons. First, the resonance enhanced absorption becomes remarkable when the 
resonance wavelength shifts to a longer wavelength with the period (cf. Fig. 2a), resulting 
in an increase in total loss of the laser cavity during the linear absorption stage. Second, the 
modulation depth decreases with the periods (cf. Fig. 2b), leading to the deterioration of the 
pulse qualities during the nonlinear absorption stage. As a result, the increase in period of 

Fig. 3  Output characteristics of Q-switched pulsed lasers by using metafiber SA under 190 mW pump power. 
a Schematic diagram of laser setup. Inset is the optical image of a metafiber. The scale bar represents 825 
nm. b Spectrum of Q-switched pulses with a central wavelength of 1559.0 nm. c Oscilloscope trace of the 
Q-switched pulses with a pulse interval of 8.6 µ s. d The RF spectrum of the output pulse train at a repetition 
rate of 116.0 kHz. e Single pulse profile with a duration of 1.0 µs



Page 6 of 11Zhang et al. PhotoniX            (2024) 5:36 

metafiber results in the deterioration of pulse qualities, hindering the generation of higher-
order solitons and the subsequent pulsed PVB.

Generation and regulation of pulsed vortex beams

The number of propagation modes is determined by the normalized frequency parameter 
V in the transmission fiber, and V is formulated according to

where � is the incident laser wavelength, α is the core radius, ncore and ncladding are the 
refractive indexes of fiber core and cladding, respectely [47, 48]. When V is less than 
2.405, the LP01 mode is supported in the fiber. When V lies between 2.405 and 3.832, the 
light wave excites LP11 (HEeven/odd

21  , TE01 , TM01 ) modes. Higher-order modes are excited 
when V exceeds 3.832. Since the SMF has a normalized V of 2.27, smaller than 2.405, 
only the fundamental mode of LP01 is allowed. The TMF utilized in the experiment has 
a core radius of 7 µ m, and a step index difference of 0.005, corresponding to V = 3.42 at 
the incident wavelength of 1550 nm, fulfilling conditions for the excitation of the LP11 
mode. The effective refractive indices of the TM01 and TE01 modes in LP11 mode dis-
play a slight variation when the polarization distribution is taken into account. To excite 
the fundamental mode to higher-order mode, a critical technology is employed, that is 
lateral OSS. By staggering and fusing the SMF and TMF together, higher-order mode 
can by effectively excited. According to mode coupling theory, for a horizontal polar-
ized input (HEx

11 ), the coupling efficient of HEx
11 to TM01 is dominant, while for a vertical 

polarized input (HEy
11 ), the TE01 is manifested [49]. Thus, the TM01 modes can be selec-

tively excited in the TMF by adjusting the input polarization state using PC1 prior to the 
OSS point, thereby making the LP11 mode radially polarize only.

Through OSS, the fundamental mode of Gaussian profile can be converted to a higher-
order mode and propagates in the TMF, as shown in Fig. 5a. Additionally, the PC2 external 

(1)V =
2πα

�
n2core − n2cladding,

Fig. 4  Impact of pump power and period of metafiber on the pulse characteristics. a Pulse width and 
repetition rate versus pump power. b Pulse energy and peak power versus pump power. c Averaged output 
power versus pump power. d Output characteristics of Q-switched pulses versus periods of metafiber. e Spot 
pattern versus periods of metafiber
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to the cavity is added to stabilize the operation state when the output port is moved in the 
optical table. The coupling efficiency is determined by the OSS configuration and the over-
lap of electric field distribution of waveguided modes in SMF and TMF, which follows the 
equation:

where E1(x,y) and E2(x,y) are the electric fields of waveguide mode in the SMF and TMF, 
respectively, and neff,1 and neff,2 are the corresponding effective refractive indices [5, 7, 
9]. Figure 5b illustrates the relationship between coupling efficiency and the offset ( � R) 
of splicing. As � R increases, the coupling efficiency initially rises to its maximum value 
of above 25% . Beyond this point, the coupling efficiency subsequently decreases due to 
the loss of the fundamental mode optical field. This decrease in efficiency continues until 
the cores are completely misaligned, resulting in the disappearance of the optical field. 
As shown in Fig. 5c, the transmission spectra of the LP01 and LP11 modes at � R = 4.5 
µ m reveal the presence of a loss peak point at 1.557 µ m within the LP11 mode. Nota-
bly the transmission spectra of LP01 and LP11 modes are not complementary, which is 
attributed to the mode coupling efficiency and the mode propagation characteristic [50, 
51]. These peaks also reflect the point of the interference extremum and the superposi-
tion of energy. Figure 5d shows the intensity distributions of the LP01 and LP11 modes 
at offsets of 0 and 4.5 µ m. Under the condition of OSS ( � R = 4.5 µm), the LP01 mode 
light instantly excites the LP11 mode. They then propagate in the TMF and interfere with 
each other. This interference leads to the presence of an extreme value of energy inten-
sity, display as a superposition or attenuation of the energy in the TMF, which is further 
supported by the spectrum (see details of “Detection of multimode interference based 
on OSS configuration” from SI). As shown in Fig. 5e, f, extremely bright spots can be 
observed in waveguide mode field when the offset is 0 and 4.5 µ m. A relatively low light 
field distribution can also be observed within the cladding layer aside the OSS point, 
which results from the strong interference.

The intensity of the pulse exerts a profound influence on the efficiency, quality, and stabil-
ity of the subsequent pulsed PVBs generation, especially for the mode conversion method. 
A high pulse intensity is necessary to surpass the threshold for the generation of pulsed 
PVBs [52]. Therefore, the Q-switched pulsed laser generated by the metafiber SA of 825 
nm is chosen since it has the highest pulse intensity. To analyze the polarization state of 
the pulsed PVB, the � R is kept as 4.5 µ m, and a linear polarizer is sandwiched between 
the pulsed PVB source and the CCD that monitors the spot profiles, as shown in Fig. 6a. 
As shown in Fig. 6b, c, spot profiles of the pulsed PVBs exhibit donut-like patterns with 
partially eccentric intensity distributions. The non-uniform spot intensity arises from the 
existence of residual fundamental mode components within the beam, which consequently 
reduces the purity of both TE01 and TM01 modes. Although, the spot pattern can still be 
divided into four different polarized directions after passing through the linear polarizer. 
The direction of the passing light rotates in accordance with the transmission axis of the 
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polarizer. In Fig. 6b, the dark band is consistently perpendicular to the transmission axis of 
the polarizer, indicating the nature of this pulsed PVB is radially polarized. Alternatively, an 
azimuthally pulsed PVB can also be achieved by adjusting the PC1 prior to the OSS point, 
where the dark band is consistently parallel to the transmission axis of the polarizer, as seen 
in Fig.  6c. In our future work, a direct integration of a spatiotemporal metasurface [36], 
which has a large modulation depth and phase control capability, onto the facet of multi-
mode fibers may pave the way for the development of miniaturized laser sources with tai-
lored spatial and temporal profiles.

Methods

Simulation  The reflectance spectra and electric field distributions of the metafiber are 
simulated by using the three-dimensional finite element methods (COMSOL Multiphys-
ics 6.0). The diameters of the inner nanodisc and outer nanohole are 280 nm and 550 
nm, respectively. The thickness of the nanoeye metasurface is 55 nm, while the period of 
the unit cell is swept from 750 nm to 900 nm in the step of 5 nm.

Fabrication  Following the simulation, the metafiber is fabricated by using the advanced 
nanofabrication methods developed in our previous study [38, 39]. The thickness of 
gold film is 55 nm, consistent with the simulation setting. FIB (30 kV, 10 pA, Ga+ ) is 
employed to precisely pattern the nanoeye metasurface with the period ranging from 

Fig. 5  Mechanism of pulsed PVB generation. a Diagram of the device for all-fiber vortex beam generation. 
b Coupling efficiency of OSS versus offset � R. c Transmission spectra of LP01 and LP11 with a � R of 4.5 µ m. d 
Intensity distributions of LP01 and LP11 modes at different points of the fiber. e, f Waveguide mode field power 
transmission when the offset is 0 and 4.5 µm
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825 nm to 900 nm in the step of 25 nm (see details of “Simulation and fabrication of 
plasmonic metafibers” from SI).

Characterization  The linear reflectance spectra of the metafibers are measured by 
using the all-fiber reflectance testing system. The light source is selected as an SCL 
(operating wavelengths: 400-2400 nm). The metafiber is connected with the SCL and 
the OSA by a 50:50 fiber coupler, which can introduce the light to the metafiber and 
interrogate the reflectance signal. The optical signal is detected by the OSA (operating 
wavelengths: 650-1700 nm).

Conclusion
In conclusion, we have proposed and demonstrated an efficient scheme for generating 
pulsed PVBs using an all-fiber technique that incorporates plasmonic metafibers com-
bined with a mode conversion method. Leveraging the plasmonic property of metafib-
ers, a superior SA with a maximum modulation depth of 12.9% is obtained, enabling the 
generation of Q-switched pulses. The OSS method is used to partially convert the funda-
mental mode into the higher-order mode to obtain PVBs with microsecond pulse dura-
tion and 116.0 kHz repetition frequency. A quantitative regulation of the spatiotemporal 
properties of pulsed PVBs by tuning the periods of metafibers and offset of splicing is 
built and given. This work not only promotes in-depth research on the metafibers in the 
field of ultrafast optics, but also enhances their utility in spatially structuring light for the 
next generation of ultrafast pulsed laser source.

Fig. 6  Characterization and detection of pulsed PVBs. a Schematic of detection setups. b, c TM01 and TE01 
vortex beam intensities and the direction of transmission after passing through the polarizer. The white arrow 
indicates the direction of each polarizer
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