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Abstract. The separation of independent sources from an array of sensors is a classical but difficult problem in signal 
processing. Based on some biological observations, an adaptive algorithm is proposed to separate simultaneously all the 
unknown independent sources. The adaptive rule, which constitutes an independence test using non-linear functions, is the 
main original point of this blind identification procedure. Moreover, a new concept, that of INdependent Components 
Analysis (INCA), more powerful than the classical Principal Components Analysis (in decision tasks) emerges from this work. 

Zusammenfassung. Die Trennung unabh~ingiger Quellen stellt ein klassisches jedoch schwieriges Problem bei der Signalverar- 
beitung dar. Aufgrund neurobiologischer Beobachtungen stellen wir in diesem Artikel einen selbstanpassenden Algorithmus 
vor, der gleichzeitig alle unbekannten, unabh~ingigkeitstest unter Anwendung yon nicht linearen Funktionen darstellt, ist der 
zentralste Punkt dieses blindend Identifikationsverfahrens. Ausserdem hebt sich ein neues Konzept, das der unabh~ingigen 
Komponenten-Analyse (INCA), leistungsf'fihiger in den Entscheidungsvorg~ingen als die Analyse der Hauptkomponenten, 
aus dieser Arbeit hervor. 

R6sum6. La s6paration de sources ind6pendantes constitue un probl~me classique mais difficile de traitement du signal. 
D'apr~s des observations neurobiologiques, nous proposons dans cet article un algorithme auto-adaptatif capable de s6parer 
simultan6ment toutes les sources ind6pendantes inconnues. La r~gle d'adaptation, qui effectue un test d'ind6pendance gr$ce 

l'utilisation de fonctions non-lin6aires, est le point le plus central de cette m6thode d'identification aveugle. De plus, un 
nouveau concept, celui d'analyse en composantes ind6pendantes (INCA), plus puissant dans les op6rations de d6cision que 
celui d'analyse en composantes principales, 6merge de ce travail. 

Keywords. Separation of sources, high order moments, principal components, independent components, neural networks, 
linear recursive adaptive filter. 

Introduct ion  

In  a l a rge  n u m b e r  o f  cases ,  t he  s igna l  r e c e i v e d  

by  a s e n s o r  ( a n t e n n a ,  m i c r o p h o n e ,  etc.)  is t he  s u m  

( m i x t u r e )  o f  e l e m e n t a r y  c o n t r i b u t i o n s  tha t  we  can  

cal l  sources. F o r  i n s t ance ,  t he  s igna l  r e c e i v e d  by  

an  a n t e n n a  is a s u p e r i m p o s i t i o n  o f  s igna ls  e m i t t e d  

by all  the  s o u r c e s  w h i c h  a re  in its r e c e p t i v e  field.  

G e n e r a l l y ,  sou rce s  as we l l  as m i x t u r e s  are  

u n k n o w n .  In  th is  case ,  w i t h o u t  any  k n o w l e d g e  on  

t h e  sou rce s  ( e x c e p t  i n d e p e n d e n c e  a s s u m p t i o n ) ,  

th is  p r o b l e m  is ca l l ed  blind separation o f  sources. 

N u m e r o u s  a p p r o a c h e s  h a v e  b e e n  d e v e l o p e d  to 

so lve  the  diff icul t  p r o b l e m  o f  ex t r ac t i ng  the  

d i f fe ren t  s o u r c e s  f r o m  s igna ls  r e c e i v e d  by  the  

sensors .  H o w e v e r ,  it has  b e e n  s h o w n  tha t  the  in for -  

m a t i o n  c o n t a i n e d  in t he  spec t r a l  m a t r i x  is no t  

suff ic ient  to  g ive  a s o l u t i o n  [14].  M o s t  o f  t he  w o r k s  

r e l a t ed  to  th is  p r o b l e m  use  the  i n f o r m a t i o n  con-  

t a i n e d  in t he  r e c e i v e d  s igna ls  t o g e t h e r  wi th  o t h e r  
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information. For instance, the problem becomes 
simpler if  we can assume that one source is a 
deterministic signal while all the others are 

gaussian noises [2]. Of  course, in these cases, the 

problem is no more blind separation of  sources. 

Such a superimposition is also observed in bio- 

logical systems. For instance, during a movement,  

nervous fibres Ia and II  transmit to the central 
nervous system mixtures of  information about joint 

stretch and stretch speed [9, 16]. However, it seems 
that the central nervous system is able to separate 

speed and stretch from these mixtures. Taking into 

account the large number  of  muscular fibers, a 
genetically wired solution is not realistic. 

Moreover, according to tracking abilities imposed 
by the possible time evolution of sensors (lesion, 

aging, etc.), an adaptive network constitutes the 
more consistent solution for this problem of source 

separation. We first addressed this problem in 1985 
[8] and proposed a solution based on a neural 

approach.  The architecture proposed in Section 

1.1 (Fig. 1) is very common at various levels in the 
central nervous system: sensorial, cortical as well 

as cerebellar level. However,  taking into account 
the linearity of  'neurons ' ,  the architecture can be 
viewed as a recursive linear adaptive filter. 

Using a recursive fully interconnected neural 
network with learning abilities, we propose in this 

paper  a blind (without a priori information) iden- 
tification procedure, based on the use of  high order 

moments. Other studies, related to the problem of  

El ~- - C 1 2  .~ S1 -ci~, = I~ 

-C21 
E2 ~ A 

En -cn -cn~ 

-TI 

~._ S2 

Fig.  I. A r c h i t e c t u r e  o f  the  neu ra l  ne twork .  
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blind source separation have been conducted 

recently using cumulants [3, 13] or high-order 

moments  analysis [1, 5]. For a review of  these 
methods, see [4]. 

Section 1 is devoted to theoretical aspects: 
modelling of  the problem and the existence of a 

solution with a recursive neural network. The 

second section defines the learning rule. Some 

experiments are presented in the third section. In 
the conclusion, we discuss on the extension of  the 

algorithm in more realistic situations: the number  
of  sources is unknown and different from the num- 
ber of  sensors, and outputs of  the sensors are 

non-linear combinations of  sources or convol- 
utions of  sources. 

1. Mixture model and theoretical solution 

1.1. Model o f  the mixture 

First, we assume that the number  of  sources n 

is equal to the number  of  sensors p, and we propose 

a simple linear model for the mixture. Letting El(t) 
be the signal measured at the output of  the ith 
sensor, we then assume 

Ei( t) = ~. aikXk( t), (1) 
k 

where Xk(t)  is the unknown signal emitted by the 
kth source and aik is a real unknown scalar. 

In order to separate the sources Xk(t)  from 
signals Ei(t) simultaneously, we proposed in 1985 
[8] a solution, derived from a neural approach,  
the schematic architecture of  which is given in 
Fig. 1. 

The recursive network is constituted by n linear 
'neurons' .  The output Si(t) of  the ith operator is 
a weighted sum of  input signal E~(t) and other 
outputs Sk(t) ( k S  i). In Fig. 1, each bold point 
represents a multiplier providing a partial product 
- C i k S k ( t ) .  The horizontal line and the operator  
(triangle) performs the sum of  the partial products 
and of the input E~(t): 

S i ( t ) = E i ( t ) -  ~.. CikSk(t), l<~i<~n. (2) 
k~ i  
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Let X( t ) ,  E ( t )  and S( t )  be the vectors for which 

the components  are unknown sources X~(t), the 
signals Ei (t) and the network outputs Si (t), respec- 

tively. Let A be the mixture matrix and C the 
matrix of  the network coefficients. Note that the 

diagonal coefficients of  matrix C are equal to zero. 

Equations (1) and (2) can be written using matrix 

and vector notations: 

E ( t ) = A X ( t ) ,  (3) 

S( t )  = E ( t )  - CS( t ) .  (4) 

In (3), the matrix A and the source X ( t )  are 
unknown. Moreover,  there is no extra information 

about signals or mixture. The sole hypothesis is 
the statistical independence of components  of  the 
vector X ( t ) .  Assuming that the operators are very 

fast according to variations of  signals E ( t ) ,  and 

assuming that the recursive network is stable, (4) 

becomes 

S( t )  = ( I  + C ) - I E ( t ) .  (5) 

1.2. Theoretical solution 

Pertinent values of  weights Cik provide source 

separation, that is to say, each output Si(t)  
becomes proportional  to an unknown source, say 
Xk( t ) .  Such a solution is then achieved with some 
undetermination (especially, a permutat ion P 

defining the pairs (i, k)),  which is presented in 
details in Part II, Section 1. 

However,  we propose to examine the simple case 

n = p  = 2. In this case, the network is shown in 

Fig. 2 and (1) and (5) can be written as 

El( t )  = a l lX l (  t )+ al2X2( t), 
(6) 

E2( t ) = az ,Xl(  t ) + a22X2( t ), 

E l ( t ) -  c,~Edt) 
S , ( t )  - 

1 - c12c21 
(7) 

E z ( t ) - c 2 l S l ( t )  
S d t )  - 

1 - C12C21 

By substituting El( t )  and E2(t) from (6) into 

(7). we get 

(all - cl2a2,)Xl( t ) + (a12 - c,2a22)X2( t ) 
S l ( t )  = 

& ( t )  = 

1 - C12C21 

( a21 - c21all) X l (  t ) + (a22-  c21al2)X2( t ) 
(8) 

1 - C12C21 

From (8), two different pairs of  coefficients C~k 
lead clearly toward two correct solutions: 

(i) I f  c,2 = a,2/a22 and c21 = a21/a~l, 
then S j ( t ) =  a l lX l ( t )  and S2(t)= a22X2(t), 

(ii) if c,2 = all/aEj and c21 = a22/a12, 
then S l ( t ) =  al2X2(t) and S2(t)= a21Xl(t). 

In fact, for the sake of stability, the loop gain 

of  the recursive network must be less than one: 

c12c21 ~ 1 ,  and it is easy to verify that only one of 
the two previous solutions is possible. 

Theoretically, the architecture of  the network 

allows to separate the unknown sources. Neverthe- 

less, the theoretical values of  Cik predicted above 

cannot be computed directly: they are functions 

of  unknown coefficients aik. Therefore, we propose 
an adaptive algorithm to estimate the matrix C. 

E1 ~ ~  S1S2 

Fig. 2. The 2-operator network: 2 neurons and 2 coefficients 
only. 

2. Adaptive computation of coefficients Cik 

2.1. Error term 

For simplicity, we suppose here that P - -  I, that 
is to say, that the solution is defined by: Sk(t)  is 
proport ional  to Xk( t ) ,  for all k. This assumption 
does not change the generality of  the solution 
because the index of a source is arbitrary. Assume 
that the network is very close to a solution: n - 1 
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outputs Sk(t) are already proportional  to Xk(t)  
(1 ~< k ~< n - 1). According to (2), the last output 

S,( t )  can be written as 

S, ( t )  = E , ( t ) -  Y~ c, gSk(t). (9) 
k~n 

Using (1), we have 

S , ( t ) =  E (a,k--C,kakk)Xk(t) 
k¢n 

+a, ,X , ( t ) .  (10) 

Let s , ( t )  = S , ( t ) - ( S , ( t ) )  and x , ( t )  = 

X ~ ( t ) - ( X , ( t ) ) .  While signals Xk(t) are assumed 
statistically independent,  (10) leads to 

(s2,(t)) = E (a.k-- Cnkakk)2(x2(t)) 
k~n 

+ aZ,,(x](t)). (11) 

When the nth output becomes proportional to 

X,( t ) ,  i.e., when all the coefficients ( a , k -  e, kakk) 
are equal to zero, the mean square term (sZ(t)) is 

minimum. So, for the ith operator,  the term s~(t) 
can be considered as an error term to which we 

can apply the gradient method. 

2.2. Gradient method 

Let us compute the partial derivative of  s2(t) 
with respect to qk : 

Os2( t ) / OC,k = 2si( t ) Os,( t ) / OCik. (12) 

With zero mean vectorial signals s(t) and e(t) ,  

(5) leads to 

s ( t ) = ( I  +C)-~e(t) .  

After taking the partial derivative, we obtain 

OS( t)/OC,k = --(I + C ) - '  0(I + C)/OC,k 

x ( I + C ) - l e ( t ) ,  

which can be written as 

aS(t)/OC,k = --(I+ C) -10C/OC,kS(t). (13) 

In the last equation, OC/OC~k is a square matrix 
with only one non-zero element: the one located 
on row i and column k. That element is equal to 
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one. Therefore, the partial derivative of  the com- 
ponent  sin(t) is 

Osm( t)/OC,k = --qmisk( t), (14) 

where q,,i is the term with index mi of the matrix 
( I + C )  -l. 

Referring to (12). it is found that 

OS~( t)/OCik = --2qmis,.( t)sk( t), (15) 

and for m = i we obtain 

3S~( t)/OC~k = --2q.s~( t)sk( t). (16) 

By applying the gradient method, we then find 
the following adaptation rule: 

dc~k/dt = aq,s~(t)sk(t) V i ~  k, (17) 

where a is a positive adaptat ion gain. 

2.3. Evaluation of  this adaptation rule 

In fact, the convergence is achieved when the 

time averages (dCik/dt) are equal to zero, i.e. if 
(si(t)Sk(t))=O Vi, k ~  i. These conditions mean 
that the two outputs Si(t) and Sk(t) are not corre- 

lated. Remember  that we assume the statistical 

independence of  the unknown sources X~(t). 
Therefore, when a good solution of the problem 
of source separation is obtained, any pair of  out- 

puts S~(t) and Sk(t) must be independent and not 
only non-correlated. So, (17) should be improved 

towards an independence test of  s~(t) and sk(t). 
Moreover, the error term we proposed in the 

last section is not exact. It was computed assuming 
that the system was very close to a solution. I f  one 
coefficient, say Cik , varies, the corresponding out- 
put S~(t) is no longer proport ional  to one source, 
but becomes a mixture of  sources. Variations of  
output S~(t) then affect all the outputs of  the 
network, through the n - 1 connections c,,i coming 
from output Si(t). 

It seems that the adaptat ion rule cannot be 
associated with a Lyapunov function. More pre- 
cisely, we cannot find an error function, whose 
global minimization provides the solution. 
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2.4. Adaptat ion rule 

In the adaptat ion rule (17), q, is the diagonal 
term with index i of  the matrix ( I  + C)  -~. Diagonal 
coefficients of  matrix C being zero, so long as other 

coefficients C~k ( i ~  k) remain small, first order 
expansion leads to 

q , =  l - c , =  l Vi. (18) 

As a result of  (18), we have dC~k/dt= dckJdt .  
This relation even holds in the case of  n = p  = 2. 
In the following, we consider q, = 1. 

We will see in the last section that the rule (17) 

or its simplified version with q, = 1, leads only to 
a zero-covariance test. To achieve an independence 

test, we propose to use two non-linear and different 
odd functions: 

dC~k/ d t  = af(s ,(  t) )g(sk( t) ). (19) 

Of  course, these functions must be different, 
otherwise we always have dC~k/dt = dckJdt ,  which 

implies symetric modifications of  the matrix C. 
These two functions introduce high-order 

moments.  In fact, let us assume that these functions 

can be expanded in a Taylor series. They contain 

only odd power terms: 

f ( x )  =Xf2~+l x2)+1, g (x )  =X g2m+l x2"+1. 
j m 

Referring to these expansions, (19) can be 
expressed as 

dCik a ~" x~r " S2j+lZt~S2m+ltt ~ (20) 
- -  /~ . ( . . , J2 j+l ,~52m+l  i \ ] k ~, 1" 

dt  j ,, 

The convergence of the algorithm corresponds now 

to the following condition: 

~ d ¢ i k ~  ~,  ¢ ~ / S 2 j + l r t ~ s 2 m + l t . t ~  \ 
= a ~ / ~ J 2 j + l ~ 2 r n + l \  i ~, ] k ~, ]1 

\ d t /  j ,, 

=0.  (21) 

Convergence is then achieved if all the high-order 
moments  (S~J+l(t)s2kr"+'(t)) are equal to zero. 

Statistical independence between s;(t) and sk(t) 
implies (S2~+'(t)s2k"+l(t)) = (S2i+~(t))(SZk"+'(t)). I f  

the probabili ty density of  signal s~(t) is an even 
function, it is easy to verify that all the odd 
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moments of  si(t) are null: (s,Z3÷l(t)) = 0. In practice, 

for audiofrequency signals (speech, music, etc.), 

the even probabili ty density function is not a 
restrictive condition. The adaptat ion rule (19) is 
then an approximation of  an independence test. 

Finally, note that signal Si(t)  is not a zero-mean 

signal, a priori. Therefore, the zero-mean signal 

s~(t) must be estimated by the relation 

s,(t) = S, (t) - (S, (t)), (22) 

where (S~(t)) is an estimation of the time average 
of  signal Si(t) .  In practice, a simple first-order low 

pass filter is a good enough estimation of the 

average: 

(Si( t)) = S,( t) * e x p ( - t /  T) ,  (23) 

where* denotes a convolution product and T is 

the time constant of  the filter. 
As a result of  the reasoning put forward in this 

section, we propose the following adaptation rule: 

dC,k/ d t  = af(s ,(  t) )g(Sk ( t) ), (24) 

which, on the average, is equivalent to 

dC,k/ d t  = af(  S~( t) )g(sk( t ) ). (25) 

As can be experimentally verified, these rules 

are very robust. In particular, a large class of  odd 

functions f and g is acceptable; in most of  the 
simulations presented in the following section, we 
have used f ( x ) = x  3 and g ( y ) = t a n  I(y), but 

g ( y ) = y  or g ( y ) = s i g n ( y )  lead also to source 

separation. Limitations related to the density prob- 
ability distribution of  the signals are proved in 
Parts II  and III .  These limitations seem to be very 

severe, but in many practical situations, for audio- 

frequency signals for instance (speech, music, etc.), 
it can be shown that these limitations do not apply, 
which has been experimentally confirmed. 

Relations (24) and (25) are very close to mathe- 
matic formalizations [6] of  rules for synaptic plas- 
ticity proposed as by Hebb [7] or Rauschecker and 
Singer [15]. These relations are local rules: the 
adaptat ion increment of  synaptic weight C~k, from 
neuron k to neuron i, depends on the weight C~k 
and on outputs Si(t)  and Sk(t)  of neurons i and 
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k. Moreover ,  non-l inear  functions (logarithmic, 

s igmoid,  etc.) are very c o m m o n  in neurosciences:  

the metabol ism of  the central nervous system is 

associated with the compet i t ion o f  chemical  pro- 

cesses which typically induce non-linearities. 

3 .  E x p e r i m e n t a l  r e s u l t s  

In this section, we p ropose  some simulat ion 

results as illustrations o f  the theory developed in 

the previous parts. 

3.1. Signal extractions 

Consider  now a set o f  two sensors receiving an 

unknown  mixture o f  two unknown  independent  

signals. We assume noth ing  else: the nature o f  

these signals (deterministic or  stochastic, with large 

or  narrow bandwidth ,  etc.) has no effect on the 

algorithm. 

In this experiment,  there is a mixture o f  a deter- 

ministic signal X~(t)  and  a r andom noise XE(t) 

with uni form probabil i ty density. The energy of  

the noise X2(t) is about  50 times greater than that  

o f  signal X t ( t ) .  We use here a single 2-neuron 

network (Fig. 2), with the initial condit ions c~2 = 

c2~ = 0. Before the beginning of  learning, f rom (4), 

we deduce  &(t )  = Ei(t) .  In Fig. 3, we can see the 

outputs  Sl( t )  and S2(t): before learning (t < 0, the 

beginning of  the learning is indicated by an arrow), 
outputs  are very similar, because the signal X~(t)  

is d rowned  by the noise X2(t). After the beginning 

o f  learning, the network provides an adaptive esti- 

mat ion o f  the mixture, and  after about  300 learning 

steps, both signals X l ( t )  and X2(t) are separated 

on the outputs  o f  the network,  with a residual 
crosstalk o f  about  - 2 5  dB. 

Depend ing  on the initial condit ions (c~2(t = 0 )  
and c21( t = 0)), the algori thm may converge rapidly 

or  slowly, or  may even diverge (Fig. 4). 

I f  the mixture o f  signals is time dependent ,  the 

algori thm is able to track the solution if the rate 

o f  mixture evolution is less than the rate o f  
learning. 
Signal Processing 
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I 

t 
t=0  

Fig. 3. Separation of two signals with a 2-neuron network. 
Before t =0, coefficients of the matrix C are equal to zero, 
which implies S~(t) = E~(t), t < 0. After t = 0, the learning pro- 
cess becomes active, and after some hundred learning steps, 
each output Si(t) extracts an unknown signal X~(t). (a), (b) 
outputs of the networks, (c), (d) unknown sources to be extrac- 
ted, (e), (f) errors on the outputs. 

3.2. Image preprocessing 

Now consider  Fig. 5(a). With a r andom sampling 

o f  points (x, y)  from this image, we obtain a time 

series o f  points  ( x ( t ) ,  y ( t ) )  that  we may consider  

as a sampled 2-dimensional  signal. This signal was 

processed with a 2-neuron network and the 

algori thm converged after 300 to 500 learning steps. 

c2, \ 
1 ~ U n s t a b l e  

, , 

v .5 - 1 

Fig.4. Evolution of coefficients ofmatrix C during the learning. 
The cross corresponds to the theoretical solution. The bold 
points are the starting points for 4 different convergence trajec- 
tories. For the sake of stability, the recursive 2-neuron network 
must satisfy the condition C~2C2~ < 1. The first quadrant is thus 
separated into two regions (stable or unstable) by the hyperbola 

Cj2C2t = 1. 
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Input 

, J~u 

Output 

Input Output 

¢ d 

Fig. 5. Application to image preprocessing. A 2-neuron network can eliminate dependence between coordinates of the points of  a 
sloped text. After convergence, the initial images in Figs. 5(a) and 5(c) are transformed into the images in Figs. 5(b) and 5(d), 

respectively. Lines of  transformed images are horizontal or vertical, according to the slope of the lines in the initial images. 

Then, the initial image was transformed by the 
network into the image in Fig. 5(b), where lines 
and characters, sloped in the initial image, are 
straightened. This result is due to the fact that a 
sloped line introduces dependence between coor- 
dinates x and y. The algorithm minimizes this 

dependency, which is reached if lines are either 
horizontal or vertical. 

In fact, if the slope of  the lines of the initial text 
is closer to a vertical line than to a horizontal line 
(Fig. 5(c)), after convergence, the lines of  the initial 
image are vertical in the transformed image (Fig. 

5(d)). 

3.3. INdependent Components Analysis (INCA) 

A new concept in data analysis, that of INdepen- 
dent Components Analysis (INCA) emerges from 

this algorithm. This new concept may be compared 
to the classical concept of Principal Components 
Analysis (PCA). In fact, emergence of  independent 
signals and not only non-correlated signals is due 
only to non-linear functions in the learning rule 
which introduce high-order statistical moments 
and not only second-order moments as in most 

classical methods. 
To demonstrate the advantage of  this new con- 

cept, we compare in the following experiment these 
2 methods: INCA and PCA. We consider 3 
unknown noisy digital signals, and assume they 

are transmitted along 3 wires with crosstalk. So, 
at the end of  the wires, we observe 3 signals (E~(t), 
E2(t) and E3(t)) which are unknown mixtures of  
unknown digital signals (Fig. 6(a)). These signals 
may also be represented by their distribution in a 
3-dimensional space (Figs. 6(b) and 7(a)). In these 
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t 
4 

4 

0 

. . . . . .  :. ~ / -~ :  ~~., i~ .J :  ~.i.i~ 

EI E 2 

a 

s!t t 

S!t . . . . . . . . . . . . . .  _t 

b 

si t 
si t 

c d 
Fig. 6. INdependent Components Analysis (INCA) versus Principal Components Analysis (PCA). (a) Inputs are unknown mixtures 
of 3 unknown noisy digital sources. In this figure, the ratio S/B of each source is equal to 10 dB. (b) Isometric representation of 
input distribution in the plane (El, E2, E3). (c) Signals transformed by PCA: digital sources are not found. (d) Signals transformed 
by INCA after convergence of the algorithm: each output extracts a noisy digital source. Noise can easily be eliminated by a simple 

threshold element. 

figures, we can see 8 clusters, associated to the 8 

possible configurat ions o f  3 binary variables. The 

diameter  o f  each cluster depends  on the noise 
energy. 

By comput ing  the covariance matrix o f  this dis- 

tribution, and after diagonal izat ion o f  this matrix, 
we obtain the Ka rhune n -L o~ve  Transform (or 
PCA) by choosing eigen vectors as the new base. 

Figure 6(c) shows the 3 signals observed in this 

new base, and Fig. 7(b) the t ransformed distribu- 
tion o f  Fig. 7(a). 
Signal Processing 

By using our  algorithm, after convergence 

(about  3000 learning steps), the network provides 

a t ransform o f  the original signals and distributions 
(Figs. 6(d) and 7(c)). In Fig. 6(d), it is clear that  
I N C A  extracts 3 noisy binary signals f rom mixtures 

E~(t) ,  E2( t )  and E3(t ) o f  Fig. 6(a). 
Compar ing  Figs. 6(c) and 6(d), it is clear that  

I N C A  is very advantageous  for the extraction o f  
independent  features. The 3 unknown digital sig- 
nals are effectively separated by this algorithm, 
and the residual noise can be easily eliminated, 
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Fig. 7. INdependent  Components  Analysis ( INCA) versus Principal Components  Analysis (PCA). (a) Input distribution of 3 
unknown mixtures of 3 unknown noisy digital signals. In this figure, the ratio S/B of each source is equal to 23 dB. (b) Output 
distribution after PCA. On the principal axis (S~), there is still a mixture of sources. (c) Output distribution after INCA. Each axis 

now corresponds to an unknown source. 

for instance with a simple threshold element. With 

PCA, the signal associated with the first eigen 
vector has the greatest energy, but it is always a 
mixture of  the 3 binary sources. As a conclusion, 

we can say that PCA is an effective method for 
data compression,  while I N C A  is an effective 
method for the extraction of independent features. 

Efficient interpretation or classification needs this 
type of pre-processing. 

4. Discussion 

In this paper,  we have presented a new adaptive 
algorithm for the separation of sources. The main 

characteristic of  this algorithm is the use of  high 

order statistical moments  (with non-linear func- 

tions) to perform an independence test. Although 
the examples given in this paper  are very simple, 

generalization to more realistic situations is easy. 
Non-l inear  mixtures, degenerated mixtures (the 
number  of  sensors n is not equal to the number  

of  sources p) and convolutive mixtures ( 'cocktail 
party '  problem, for instance) have already been 
studied with success [10, 12] and will be published 
in a forthcoming paper. 

In the case of  non-linear mixtures, there is no 
longer an exact solution with a linear network. 
However,  experimental and theoretical results 
show that the solution proposed by the algorithm 

corresponds to that related to the first order linear 

approximation of the non-linear mixture [10]. 

In case numbers of  sources and sensors are 

different, we can mention the following experi- 
mental consistent results: 

- if there are more sources (n) then sensors (p) ,  

there is no exact solution. The algorithm separ- 

ates the p most energetical signals and the 

remaining signals induce noise, which decreases 
• quality of  the separation. 

- if there are less sources (n) than sensors (p) ,  n 
outputs (from p) of  the networks provide the n 

sources, and the p -  n other outputs are on the 
average equal to zero. 

The main drawback of this adaptive algorithm 

is the unknown number  of  learning steps necessary 
before convergence. Statistical explanations on 

how this algorithm works and the design of a non- 
adaptive algorithm has been studied by Comon 

[3]. Statistical explanations are given in the second 
part of  this paper. 

Finally, the stability of  the algorithm has not 

been dealt with here. This difficult problem, com- 
plicated by non-linear functions, has been studied 
by E. Sorouchyari and constitutes the third part 
of  this paper  on a method of sources separation. 

Several hardware configurations have already 
been implemented to run this algorithm. Since 

1985, a discrete analog 2-neuton network [111, 
designed by the authors has been running in the 

Vol. 24, No. 1+ July 1991 
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TIRF laboratory of the INP Grenoble. Another 
configuration, using the Digital Signal Processor 
68930, with the support of  Thomson Semiconduc- 
tors Inc., was implemented in 1987. In 1989, a 

CMOS analog integrated circuit of a 6-neuron 
network was designed by Arreguit and Vittoz [ 17]. 
This circuit can separate three mixed audio- 
frequency signals, as speech or music, in about 
5 ms. 
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