
Copyright c© 2006 by Patrick Alexander Reynolds

All rights reserved

USING CAUSAL PATHS TO IMPROVE PERFORMANCE

AND CORRECTNESS IN DISTRIBUTED SYSTEMS

by

Patrick Alexander Reynolds

Department of Computer Science
Duke University

Date:
Approved:

Amin Vahdat, Supervisor

Jeffrey Chase

Carla Ellis

Alvin Lebeck

Janet Wiener

Jun Yang

Dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Computer Science
in the Graduate School of

Duke University

2006

ABSTRACT

(Computer Science)

USING CAUSAL PATHS TO IMPROVE PERFORMANCE

AND CORRECTNESS IN DISTRIBUTED SYSTEMS

by

Patrick Alexander Reynolds

Department of Computer Science
Duke University

Date:
Approved:

Amin Vahdat, Supervisor

Jeffrey Chase

Carla Ellis

Alvin Lebeck

Janet Wiener

Jun Yang

An abstract of a dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Computer Science
in the Graduate School of

Duke University

2006

Abstract

With the rise of the internet has come a rise in the importance of distributed sys-

tems. Distributed systems—groups of networked computers cooperating to run a

single application or service—power modern web sites and communication services,

infrastructure services like content-distribution networks and overlay networks, and

parallel computations. With the complexity of distributed systems comes bugs: er-

rors that affect a system’s correctness, performance, or both. Traditional debugging

tools and methods do not apply well to distributed systems. Thus, new tools are

needed that will enable programmers to find and fix bugs in distributed systems.

These improvements will in turn improve the performance and reliability that end

users experience.

Many bugs reflect discrepancies between a system’s behavior and the program-

mer’s assumptions about that behavior. In this thesis, we show that expressing

distributed system behavior as a set of causal paths and helping programmers sepa-

rate those paths into expected and unexpected behavior is a powerful technique for

improving the performance and correctness of distributed systems. This dissertation

presents three distinct debugging tools, representing several approaches to tracing,

analyzing, checking, and displaying system behavior.

We applied our debugging tools to several distributed systems of varying size and

complexity, accurately discovering the behavior of each system. We found and fixed

bugs in several of the systems. Our experiences using the tools with real systems

demonstrate a trade-off between the disruptiveness of a debugging methodology and

the accuracy of its results. Namely, Project 5 can be applied without changing

the target application, but its accuracy is limited. Wide-area Project 5 requires

interposition and results in more accurate and more detailed analyses. Pip requires

iv

changes to application source code and generates a behavior model detailed enough

for automatic extraction of errors. It is difficult to quantify the benefits of debugging

tools. However, a number of different programmers were able to use these tools

to rapidly locate and diagnose subtle and previously unknown bugs, validating the

utility of these techniques for improving the reliability and performance of distributed

systems.

v

Contents

Abstract iv

List of Tables xi

List of Figures xii

Acknowledgements xv

1 Introduction 1

1.1 Overview . 6

1.1.1 Target audiences . 7

1.1.2 Project 5 . 7

1.1.3 WAP5 . 9

1.1.4 Pip . 9

1.2 Outline . 10

2 Debugging 12

2.1 Goals for debuggers . 12

2.2 Debugging techniques . 15

2.2.1 Traditional debugging . 17

2.2.2 Causal path analysis . 19

2.2.3 Expectation checking . 22

2.2.4 Model checking . 23

2.3 Proposed approaches . 23

2.3.1 Project 5 . 24

2.3.2 Wide-area Project 5 . 25

vi

2.3.3 Pip . 26

2.4 Summary . 27

3 Project 5: Black-Box Debugging 28

3.1 Overview . 28

3.2 Inference algorithms . 30

3.2.1 The nesting algorithm . 30

3.2.2 The convolution algorithm . 37

3.2.3 Comparison of the two algorithms 41

3.3 Experimental framework . 43

3.4 Experimental results . 45

3.4.1 Traces . 46

3.4.2 Experiments . 49

3.4.3 Results: execution costs . 51

3.5 Summary . 58

4 WAP5: Wide-Area Black-Box Debugging 60

4.1 Overview . 60

4.2 Problem definition . 63

4.2.1 Target applications . 63

4.2.2 DHT issues . 64

4.2.3 Communications terminology 65

4.2.4 Causality model . 65

4.2.5 Naming issues . 66

4.3 Trace collection infrastructure . 72

4.3.1 Runtime overhead . 74

vii

4.3.2 Deployment experience . 74

4.4 Trace reconciliation . 75

4.5 The message linking algorithm . 75

4.5.1 Algorithm description . 76

4.5.2 Node and network latency . 82

4.5.3 Algorithm comparison . 83

4.6 Results for PlanetLab applications 84

4.6.1 Visualization of results . 85

4.6.2 Characterizing causal paths 87

4.6.3 Characterizing node delays . 87

4.6.4 DHT paths in Coral . 88

4.6.5 Algorithm execution costs . 90

4.6.6 Metrics for sorting path patterns 91

4.7 Enterprise applications . 91

4.7.1 Network address translation 93

4.8 Summary . 94

5 Pip: Checking Expectations 95

5.1 Overview . 95

5.1.1 Contributions and results . 96

5.2 Architecture . 97

5.2.1 Behavior model . 97

5.2.2 Tool chain . 99

5.3 Expectations . 101

5.3.1 Design considerations . 101

viii

5.3.2 Approaches to parallelism . 102

5.3.3 Expectation language description 106

5.3.4 Avoiding over- and under-constraint 112

5.3.5 Implementation . 112

5.4 Annotations . 116

5.4.1 Reconciliation . 118

5.4.2 Performance . 119

5.5 Behavior explorer GUI . 120

5.6 Results . 124

5.6.1 FAB . 126

5.6.2 SplitStream . 129

5.6.3 Bullet . 131

5.6.4 RanSub . 132

5.7 Summary . 133

6 Related Work 135

6.1 Path analysis tools . 135

6.2 Causality inference tools . 138

6.3 Expectation checkers . 139

6.4 Model checkers . 141

6.5 Domain-specific languages . 141

6.6 Interposition . 142

6.7 Summary . 142

7 Conclusions and Future Work 144

7.1 Contributions . 144

ix

7.2 Future work . 145

7.2.1 Refinements . 145

7.2.2 Online analysis and monitoring 147

7.2.3 Trace-based simulation . 148

7.2.4 Unifying logging and tracing 148

7.3 Summary . 149

Bibliography 151

Biography 157

x

List of Tables

2.1 Comparison of techniques for debugging distributed systems 17

3.1 Nesting running times for several traces 53

3.2 Convolution running times for several traces 53

4.1 Where different naming information is captured or used in WAP5 . . 69

4.2 CoDeeN and Coral trace statistics . 84

4.3 Abbreviated names for hosts used in WAP5 figures 86

4.4 Mean delays in CoDeeN and Coral proxy nodes 88

4.5 Runtime costs for analyzing the CoDeeN and Coral traces 90

5.1 Statistics for Pip target systems . 125

5.2 Statistics for Pip traces . 125

5.3 Pip run times and results . 126

xi

List of Figures

1.1 Three-tier system with one causal path indicated 5

1.2 Three debugging tools illustrating the tradeoff between intrusiveness
and accuracy . 6

2.1 Classification of selected debugging systems by target system size and
level of effort and disruption . 16

3.1 Timeline view of an example system with four nodes 32

3.2 Parallel calls in a system with three nodes 34

3.3 Effects of nesting penalties on a synthetic trace 36

3.4 Example convolution output . 39

3.5 Sample Maketrace tracelet file . 45

3.6 Sample Maketrace master file . 45

3.7 Example multi-tier system . 48

3.8 Path patterns for pathological cases 50

3.9 Effects of the overlapping-child nesting penalty 51

3.10 Effects of clock offset on nesting algorithm accuracy 54

3.11 Effects of clock-offset window sizes 55

3.12 Effects of message drop rate on nesting algorithm accuracy 55

3.13 Effects of delay variation on nesting algorithm accuracy 56

3.14 Effects of trace parallelism on nesting algorithm accuracy 58

3.15 Effects of noise on nesting algorithm accuracy 59

xii

4.1 Example causal path through Coral 61

4.2 Schematic of the WAP5 tool chain 62

4.3 Example of aggregation across multiple names 71

4.4 Link probability tree and two causal path instances 76

4.5 Timeline showing possible causes for a message 77

4.6 An exponential distribution with λ = 1 80

4.7 Possible-parent trees . 80

4.8 Possible-child trees . 80

4.9 Call-tree visualization . 85

4.10 Causal path for a Coral miss path with DNS lookup 85

4.11 Node delay distributions in CoDeeN 89

4.12 Causal path for a CoDeeN miss path with DNS lookup 89

4.13 Causal paths for two CoDeeN miss paths 89

4.14 Causal path for a DHT call in Coral 90

5.1 Sample causal path from a three-tier system 98

5.2 Pip workflow . 99

5.3 Expectations for the FAB read protocol 104

5.4 Automatically generated expectation for the FAB read protocol . . . 105

5.5 Sample fragment recognizer and a path that matches it. 113

5.6 Pip search tree . 114

5.7 Fragment recognizer with a future statement 115

xiii

5.8 Pip search tree with a future statement 116

5.9 Pip path explorer: tree view . 121

5.10 Pip path explorer: timeline view . 121

5.11 Pip path explorer: communication graph view 122

5.12 Pip path explorer: performance graph view 123

5.13 CDF of end-to-end latency for FAB read operations 127

5.14 FAB read latencies in a system with a high cache hit rate 128

5.15 Duration for the RanSub deliverGossip task as a function of time . 133

xiv

Acknowledgements

I would like to thank the following people who have helped to make my graduate

career a success. It has been a privilege and a pleasure to work with my advisor,

Amin Vahdat. Amin has provided years worth of ideas, support, encouragement,

feedback, and advice. He enthusiastically pushes my half-formed ideas in useful

directions. He helped me hone my research, writing, and presentation skills. Finally,

he has been particularly accommodating toward my desire to split my time between

California and North Carolina.

Janet Wiener, my mentor at HP Labs, has been invaluable. She is an ideal

colleague, co-advisor, editor, and friend. She has contributed to this dissertation

at every level, from big ideas to small refinements of design, implementation, or

presentation. My phone calls and visits with Janet have been a great opportunity to

refine my thinking on existing ideas and to brainstorm new ones.

Jeff Mogul, Mehul Shah, Marcos Aguilera, Chip Killian, and Athicha Muthi-

tacharoen, in addition to Amin and Janet, have been inspiring as collaborators and

invaluable as co-authors. Additionally, Chip, plus Dejan Kostić, David Oppenheimer,

Ryan Braud, Alistair Veitch, and Mustafa Uysal, helped me apply Pip to the systems

they designed or maintained. My research has benefited greatly by my collaborators’

assistance, ideas, and feedback.

HP Labs, particularly my managers there, John Sontag and Rich Friedrich, have

provided resources, encouragement, and access to excellent colleagues. It has been a

privilege to work as an HP intern for much of the last three years.

Jeff Chase, Carla Ellis, Alvin Lebeck, and Jun Yang have been kind enough to

serve on my committee. Their feedback and support have helped me solidify this

dissertation.

xv

Jeannie Albrecht and Margo McAuliffe hosted all of my trips to California. Their

generosity and friendship have made my travels easier and happier.

Diane Riggs tirelessly supports every graduate student in the Duke CS depart-

ment. Diane takes care of the administrative business of graduate life so that we do

not have to. I appreciate her loyal service, her professionalism, and her advocacy

throughout my Duke career.

My parents have supported my education for more than two decades. They made

sure I always had opportunities to learn, particularly about computer science. They

put me through college, and they are still ready with advice to this day. As scholars,

they set an example of excellence that I am still striving to reach.

Finally, my wife Kristina Killgrove makes everything worthwhile and anything

possible. The work ethic she brings to her own graduate studies is an inspiration to

me. I rely on her encouragement, her patience, and her love. None of this would have

been possible without her.

xvi

Chapter 1

Introduction

As the internet grows, so does the academic and commercial importance of distributed

systems. Distributed systems are collections of networked computers cooperating to

run a single application or service, including web sites, email services, storage services,

and peer-to-peer networks. They now power almost every site and service on the

internet. Early internet services ran on single hosts. However, the performance,

reliability, and availability requirements of modern services dictate that they run on

distributed systems.

Distributed systems power much of the modern internet. First, clusters of servers [21]

allow load-balanced systems to run web or email [57] services. Second, wide-area

replication enables content-distribution networks [2, 22, 65], archival storage sys-

tems [41, 46], and localized versions of international websites. Content-distribution

networks and localized websites, in particular, place copies of common content in

many locations so that any given user request can be served from a nearby site.

Finally, peer-to-peer networks connect end nodes directly to enable end-system mul-

ticast [31], file distribution [13, 38], and file sharing [25, 35, 17]. These protocols all

serve to disseminate data from client to client rather than from one central server

to all clients. Direct client communication relieves performance bottlenecks at the

server and can reduce network load.

Four requirements justify the need for distributed systems: performance, relia-

bility, availability, and flexibility. Often, the load delivered to a service is too high

for a single computer to handle. Many internet services are highly parallelizable;

thus, adding more servers increases the throughput a service can achieve. While an

1

individual user request might have to be processed serially on one node, different

requests are largely independent and can be handled in parallel on different nodes.

Additionally, servers may be distributed among many locations close to end users to

take advantage of higher-bandwidth, lower-latency connections.

The second requirement is reliability. Users expect stored data such as email,

uploaded files, and commercial transactions to survive individual server failures. More

precisely, users prefer not to know about failures at all. Because server failures are

inevitable, internet services must be built with some redundancy. User data must be

stored in several locations so that individual disk or server crashes do not permanently

lose information.

Third, internet services must remain available even when individual servers or

network links fail. Availability is distinct from reliability in that it measures the

instantaneous usability of a service, while reliability measures the probability that a

service will lose data permanently. To maintain availability, an internet service must

include redundant servers and network connections to maintain service even when

individual servers or connections fail.

Redundancy can improve both availability and reliability. However, poorly de-

signed redundancy can lead to data corruption or reduced performance, reliability,

and availability. Programmers must design their systems carefully to provide both

the required consistency and the desired performance and availability.

The final reason to use distributed systems is flexibility. New protocols like peer-

to-peer systems, online games, and chat rooms are inherently distributed. There is

no way to connect many users without involving many computers.

Distributed systems, while useful, are hard to build and often contain bugs. Dis-

tributed systems are inherently parallel, and programming parallel tasks is difficult.

They consist of many hosts performing different tasks, which means more code to

2

write and more state to keep track of. Distributed systems are asynchronous, mean-

ing that communication among hosts can be delivered late, out of order, or not at all.

Nodes and network links can fail and recover unpredictably. Designing software to

provide performance, reliability, availability, and flexibility on a distributed system

is far more challenging than writing serial programs for a single host.

Because of the difficulty in building distributed systems, they can suffer from

hard-to-find performance and correctness bugs. An error in the distributed system

providing an internet service affects end users’ experiences—their perceptions of reli-

ability and performance—when using that service. Distributed systems exhibit more,

and more complex, bugs than single-node systems for two reasons. First, parallelism

is challenging. A distributed system may have related processing tasks occurring on

many hosts at once, bound only loosely by asynchronous communication. Second,

distributed systems entail new sources of failure. More components implies more

faults. Communication over a network makes a system vulnerable to network de-

lays and failures. Finally, nodes running different software and communicating on

a public network implies more opportunities for security breaches, which can affect

distributed systems in entirely unpredictable ways.

Bugs are not only more common in a distributed system than in traditional, single-

node systems. They are also harder to find. A distributed system has more nodes,

events, and messages to monitor. Useful performance metrics often involve simulta-

neous measurements on several nodes. A traditional debugger with breakpoints and

access to local and global variables does not scale well to capturing and monitoring

the state on many nodes at once. Distributed applications might cross administra-

tive domains or might involve heterogeneous hardware and software, meaning that

no single debugging tool will be allowed or compatible at all nodes. Finally, a bug

might span multiple nodes. That is, symptoms could appear on one node, while the

3

root cause is on another.

Programmers debug distributed systems today using a combination of single-node

debuggers and logging via print statements. The print statements provide a tunable

amount of information about the state at each node, which the programmer can ex-

amine manually or with scripts to determine where to focus further attention with

a single-node debugger. This ad hoc methodology fails to gather higher-level rela-

tionships among nodes, behavior changes over time, or performance measurements.

It also requires extensive and often disorganized modifications to application source

code. More structured techniques can automate much of the process and improve

the usefulness of the information extracted.

The new debugging methodology we describe here is built on two ideas. First,

performance and correctness bugs are deviations from expected behavior. By recon-

structing an application’s actual behavior and helping the programmer or maintainer

compare it to the intended behavior, debugging tools can help to uncover bugs. De-

viations from expected behavior can indicate several different conditions: errors in

source code, bad user input, or host or network problems, each of which can be fixed

by changes in source code. Deviations from expected behavior can also indicate in-

correct or incomplete expectations. Even so, identifying unexpected behavior helps

programmers identify bugs.

The second idea underlying our debugging methodology is the use of causal paths

as a unit of application behavior. A causal path is a partially ordered set of related

events on one or more nodes in a distributed system. Each event other than the first

is caused by exactly one event that precedes it in time. The path may split; that is,

one event may cause more than one other event. Figure 1.1 shows a sample three-tier

system with one causal path indicated: the client sends a request to the web server,

which sends a message to an authentication server, which reads from a database

4

server
database

application
server

application
server

authentication
server

server
database

server
database

server
database

web serverweb serverweb server web server web server

clientclient client client client clientclient

Figure 1.1: Three-tier system with one causal path indicated.

server. After receiving a reply, the web server communicates with an application

server, which contacts another application server, which contacts a database. Each

server replies in turn, and a response is sent to the client.

Causal paths often begin with a user request, as is the case in Figure 1.1. Less

commonly, causal paths can begin with timers or error conditions. We refer to the

specific set of events beginning with an individual request or impetus as a causal path

instance. A description of causality describing many similar instances is a causal

path pattern. A distributed system will normally have many causal path instances,

conforming to one or more patterns, occurring at any given time. Each recorded

event belongs to exactly one path instance.

Our hypothesis in this dissertation is that expressing distributed system behavior

as a set of causal paths and helping programmers separate those paths into expected

and unexpected behavior is a powerful technique for improving the performance and

correctness of distributed systems. To support this thesis, we introduce three debug-

ging tools and an expectation language, and we describe how we applied them to

5

Figure 1.2: Three debugging tools illustrating the tradeoff between intrusiveness
and accuracy.

understand and debug real systems.

1.1 Overview

In the remainder of this chapter, we introduce three causal path debugging tools:

Project 5, Wide-Area Project 5 (WAP5), and Pip. All three tools extract causal

paths from traces of distributed systems. Each tool lets the programmer explore the

extracted paths, and Pip automatically checks them against programmer-specified

expectations.

All three tools can also serve a purpose beyond debugging: revealing application

structure and performance to programmers unfamiliar with the system. Programmers

inheriting an existing code base or maintaining a deployed system have to perform

discovery, figuring out dependencies, communication patterns, and bottlenecks. Our

three debugging tools can all aid in this process.

Collectively, our debugging tools illustrate the trade-off between intrusiveness and

accuracy, as shown in Figure 1.2. Project 5 requires the least user effort to apply and

works with the widest variety of systems. Pip requires more effort and delivers detail

and accuracy sufficient for automatic checking. WAP5 compromises on both counts:

it is easier than Pip to apply, and it produces more detailed results than Project 5.

6

1.1.1 Target audiences

Our debugging tools have three target audiences:

• Primary programmers: the original authors of a system, who wish to debug

or optimize their own code. They have access to application source code and

are familiar enough with it to know what constitutes expected behavior.

• Secondary programmers: other maintainers or contributors to an applica-

tion, who have access to the source code but might be unfamiliar with it. For

example, secondary programmers might be those who have inherited or joined

an existing project. Their first goal is to learn about an application, and they

might not know what system behavior is expected.

• Operators: programmers or system administrators who must keep a produc-

tion system correct through upgrades and other configuration changes. They

often do not have access to source code, but can still use black-box techniques

or existing source code annotations to monitor an application’s performance

and correctness.

1.1.2 Project 5

In many cases, distributed systems are best thought of as consisting of black boxes.

The components involved can be difficult to examine or modify, because these compo-

nents might be commercial software, hardware, or otherwise closed to system builders.

For example, a web hosting site might consist of load balancers, web servers, applica-

tion servers, databases, and authentication servers, any of which could be commercial

software or even hardware. Even components that are open to examination or modi-

fication can be complex enough that system builders find it easier to apply black-box

techniques first, to focus their efforts before undertaking more intrusive debugging

7

efforts. Someone designing or testing such a system might have to treat each compo-

nent as a black box and examine only the messages that the components exchange.

Our first debugging tool, Project 5 [1], enables analysis and debugging of dis-

tributed systems made up of black boxes. Project 5 treats each distributed applica-

tion as a collection of black-box components. That is, Project 5 uses no information

about the structure of components and does not depend on modifying or perturbing

component behavior. Further, it does not require any knowledge about the semantics

of inter-component messages.

Project 5 infers the causal paths in a local-area distributed system from traces

of messages between components. It does not require any knowledge of components’

internal behavior and does not need to instrument them or modify their operations.

The causal paths that Project 5 finds include processing times at each component, al-

lowing developers to see which paths and which components account for the majority

of processing time.

Project 5 infers the causal paths that requests take through local-area distributed

systems. It uses two distinct algorithms, nesting and convolution, to extract causal

path patterns from traces of network messages. For each path pattern inferred, the

algorithms quantify the time spent at each component. Finally, Project 5 presents

the paths to the developer or system builder to help inform decisions about where to

add more capacity or focus lower-level debugging efforts.

Using several real and simulated systems, we explored the situations in which

Project 5’s inference algorithms can extract paths accurately. In most cases, the

nesting algorithm’s accuracy is high enough to extract the correct structure and

timing for the target system.

8

1.1.3 WAP5

Debugging wide-area distributed systems presents additional challenges beyond those

present when debugging data centers and other local-area systems. Because Project 5

is limited to local-area networks, we developed Wide-Area Project 5 (WAP5) [53] to

enable analysis of distributed systems on a larger scale. WAP5 aids the development,

optimization, and maintenance of wide-area distributed applications by revealing

the causal structure and timing of communication in these systems. It highlights

bottlenecks in both processing and communication.

WAP5 makes three contributions. First, it includes a new algorithm for infer-

ring, message linking, for inferring causal path patterns from network traces. The

message linking algorithm combines strengths from both of Project 5’s inference algo-

rithms. Second, it includes an interposition library for gathering application traces.

Compared to network sniffing, interposition works without administrative privileges,

incurs lower overhead, and provides richer semantic information in trace files. Finally,

WAP5 includes our experiences tracing and analyzing three systems: CoDeeN [65]

and Coral [22], two content-distribution networks in PlanetLab; and Slurpee, an

enterprise-scale configuration and incident-monitoring system.

1.1.4 Pip

Many bugs in distributed systems reflect discrepancies between a system’s behavior

and the programmer’s assumptions about that behavior. Our final debugging tool,

Pip [52], includes a declarative language to allow programmers to express explicitly

their expectations about their application’s structure, timing, and resource consump-

tion. Pip automatically compares actual application behavior to the programmer’s

expectations, revealing structural errors and performance problems.

Pip derives its model of application behavior from traces generated by system

9

instrumentation and annotation tools. Programmers annotate application source

code manually or automatically. Subsequent runs of the application record system

behavior, including processing tasks, network and local communication, and other

interesting events. Pip includes visualization and query tools for exploring expected

and unexpected behavior. Pip allows a developer to quickly understand and debug

both familiar and unfamiliar systems.

1.2 Outline

Our research and experiences have led to four main contributions:

1. We introduce new debugging methodologies implemented in three debugging

tools: Project 5, Wide-Area Project 5 (WAP5), and Pip. We are the first to

extract causal paths from black-box distributed systems, and we are the first

to apply automatic expectation checking to causal paths.

2. We describe three algorithms for inferring causality from communication events

in black-box distributed systems.

3. We describe a language for expressing expectations about the structure and

performance behavior of distributed systems.

4. We develop an understanding of the trade-off between disruptiveness and ac-

curacy in distributed debugging tools.

The remainder of this thesis is organized as follows. The next chapter describes

the context of our work, including an overview of debugging techniques and where

they are most useful. Chapter 3 describes Project 5, Chapter 4 describes Wide-Area

Project 5, and Chapter 5 describes Pip. Chapter 6 describes several related projects

10

in detail. Finally, Chapter 7 concludes with a summary of the contributions of this

thesis and possible future research directions.

11

Chapter 2

Debugging

Programmers employ a variety of techniques to analyze and debug distributed sys-

tems. In this chapter, we describe desired features and traits a debugging technique

can have. We describe some debugging techniques and a few representative tools

that support them. At the end of the chapter, we describe the architecture of our

debugging tools and place them in the context of the debugging techniques detailed

here. A more thorough comparison of our tools to related work is in Chapter 6.

2.1 Goals for debuggers

The goal for any debugging technique is to find the root cause of bugs so that the

programmer knows where to look and what to do to fix them. A good debugging

technique enables this goal with a minimum of effort and disruption. Some debuggers

even help uncover new bugs, in addition to helping programmers explore known bugs.

This section explores these desired traits in more detail.

Minimal effort: Some debugging techniques require the user to recompile or even

modify source code. Source code modifications help the user express expectations

(e.g., invariants) or designate which parts of a program are important. However,

source code modifications are time-consuming to add and can introduce new bugs if

they are not correct. In some cases, they add run-time overhead, slowing a program

down or increasing its memory consumption.

Recompiling or relinking an application’s source code can incorporate debugging-

friendly versions of components, particularly memory allocators. Recompiling can

12

also allow the compiler to add debugging symbols or profiling code. However, recom-

pilation is not always an option: libraries or processes for which source is unavailable

will not support debugging symbols, profiling code, or debugging components.

Lower user effort makes a debugging tool easier and sometimes less error-prone to

apply. However, effort is a trade-off, and increased effort can yield finer granularity

of control or inspection, or higher accuracy. Ideally, a tool should require no more

up-front user effort than necessary to deliver the debugging functionality that the

user needs.

Minimal disruption: Some debugging techniques require the user to restart the

target system or selected components to enable or disable debugging. However, some

techniques, including traditional debuggers, system-call tracers, and network sniffers,

can be attached to a running system with no disruption. Some such tools run on the

same host as the target system, which can interfere with performance, while network

sniffers can run on other hosts and cause no interference.

As with effort, disruption is a tradeoff. Restarting an application or slowing

it down might be required for some debugging tools to operate, but it might not

be acceptable in a production system. A debugging tool should only disrupt an

application as much as necessary for given debugging functionality.

Online operation: Debugging is often part of an edit-build-debug cycle. The

shorter this cycle is, the more efficient a programmer is likely to be at removing bugs.

One way to shorten the cycle is to allow the programmer to debug an application

as it runs, rather than running a test to completion and then analyzing the results.

However, online operation can require significant computing power and can interfere

with time-sensitive applications.

13

Post-mortem analysis: Many bugs are not easily repeatable. Debuggers that

can explore the cause of a crash after it happens can save the user the trouble of

rerunning the program to recreate the bug. Traditional debuggers can analyze core

files as long as the target program did not corrupt its memory space when crashing.

Some other debuggers can operate offline using trace files, if tracing was enabled

during the program execution.

Low-level control: Many bugs can be traced to a single incorrect line of code or

incorrectly assigned variable. Some debuggers allow programmers to examine or even

change the values of individual variables, or to step through code one line at a time.

However, such fine-grained control is not useful or appropriate for bugs that depend

on real-time system execution, like race conditions and performance bugs.

Scalability: The counterpart to low-level control is scalability. A debugger, partic-

ularly for distributed systems, must avoid overwhelming the user with a huge state

space too many threads of execution. A good high-level debugger aggregates data val-

ues or program behavior over space (i.e., over many threads or hosts) and over time.

Many large-system debuggers provide visualizations of program flow and component

or host interaction.

Backwards exploration: Many bug symptoms are far removed from their causes

in space or time. For example, careless access to heap variables, including deref-

erencing a variable after freeing it, might cause heap corruption that doesn’t have

any visible symptoms until the next memory allocation. Techniques for backwards

exploration can help a programmer explore the history of data values known to be

incorrect. Two techniques for backwards exploration are time-travel debugging and

causality analysis. Time-travel debugging supports stepping backwards through code

14

and setting watchpoints on previous changes to variables. It is implemented by run-

ning the target system in a simulator or a virtual machine where previous states are

stored and can be retrieved as needed. Causality analysis reveals the communication

events or variable assignments leading up to the current program state. Causality

analysis can be implemented by logging events and their causal relationships or by

using formal languages that enable direct, static analysis.

Error detection: Some debuggers help programmers explore the causes of known

errors. Other debuggers help programmers find (and then explore) previously un-

known errors. Debuggers can find errors through statistical analysis or by letting

the programmer express expectations about behavior. Statistical analysis looks for

unusual behavior and reports it; the programmer decides if the reported behavior

indicates real errors. Expectations are boolean statements about program state that

are evaluated at specified times. Standard assert statements are one simple way

of expressing expectations that can be locally evaluated. A failed assert statement

causes a core dump, which can then be examined with a debugger. Other debugging

systems allow more complex expectations that refer to performance, communication,

or processing order in addition to simple assert statements.

2.2 Debugging techniques

In this section, we introduce several existing debugging techniques used to trou-

bleshoot distributed systems. Each has some of the above traits, but none exhibits

all of the traits.

Figure 2.1 and Table 2.1 summarize the lessons of this chapter. Figure 2.1 shows

the systems described below in terms of two interesting metrics: their intrusiveness

and accuracy, and the size of the systems they can debug. Intrusiveness, detail, and

15

Magpie

gdb
gprof

VeriSoft
MaceMC

Pip

Pinpoint

WAP5

Project 5

Bl
ac

k
bo

x
N

od
e

ac
ce

ss
So

ur
ce

 (a
cc

es
s)

(m
od

ify
)

Wide−areaOne node Local−area

In
tru

siv
en

es
s,

de
ta

il,
 a

cc
ur

ac
y

Size of target system

printf/logging

Pspec

Figure 2.1: Classification of selected debugging systems by target system size and
level of effort and disruption.

accuracy are a trade-off: a system that requires more effort to apply and use will

normally allow finer-grained analysis and control. System scale is also a trade-off: a

tool for debugging large numbers of nodes must discard some detail to remain efficient

and avoid information overload.

Table 2.1 summarizes the kinds of systems for which each of our tools and each

of the other approaches is most useful. Considerations beyond size and source code

access are important. For example, only GDB can analyze a standard core dump.

PSpec relies on applications to perform their own logging, as does Pinpoint in some

cases. Magpie is restricted to Windows but does not require targeted programs to log

16

Approach Scenario
logging bugs detectable with simple, localized log analysis
GDB and gprof low-level bugs well illustrated by a single node; core dumps
model checking small systems with difficult-to-reproduce bugs
PSpec performance bugs in systems with detailed logging
Magpie bugs in well-understood Windows applications
Pinpoint node or component failures in high-throughput distributed sys-

tems
Project 5 local-area systems (esp. black-box systems) with performance

problems apparent in many paths
WAP5 wide-area systems with performance problems apparent in many

paths; systems where interposition is easier than sniffing
Pip arbitrarily large systems for which source code is available, ex-

hibiting structural bugs or performance problems

Table 2.1: Comparison of techniques for debugging distributed systems.

interesting events. WAP5 relies on interposition, which can make it easier to apply

in cases where sniffing, which P5 normally requires, is impractical.

The remainder of this section introduces several debugging techniques in more

detail.

2.2.1 Traditional debugging

Traditional debuggers like the GNU Debugger (GDB) [24] are mature and power-

ful tools for locating and explaining low-level bugs. Traditional debuggers run on a

single node, allowing a programmer or troubleshooter to step through a targeted pro-

cess one function, one line, or one machine-code instruction at a time. Programmers

can examine or change variable values as the program runs and can set breakpoints

to pause program execution when a certain point is reached or a given condition

is met. Graphical debuggers like the Data Display Debugger (DDD) [16] or debug-

gers included with integrated development environments provide a more user-friendly

interface and can allow visualization of variable values over time.

Using a traditional debugger normally requires recompiling an application’s code

17

to include debugging symbols. Programmers can use a debugger either as a program

runs or after it has crashed. The main advantage of traditional debuggers is that

they provide fine-grained control. Programmers can examine or control a program

on the level of functions, lines of code, or individual instructions. This strength is

also a weakness: traditional debuggers provide no useful tools for aggregating or

visualizing state information across nodes, and only rudimentary tools for visualizing

state information changes over time.

Standard debuggers like GDB are also limited in terms of temporal context for

a bug. A debugger can trap at a breakpoint, a watchpoint, or a signal, any of

which can indicate a bug, but doing so does not display recent or future events

related to the trap. Some debugging systems allow stepping backward in time or

tracing past changes to a variable. Time-traveling virtual machines [37] allow GDB to

examine past states of an operating system running in a virtual machine. Time-travel

debugging is also possible using simulators [7]. Debuggers for functional programming

languages can discover the history (i.e., data dependencies) of programmer-selected

variables [6].

Like single-node debuggers, profilers like the GNU Profiler (gprof) [28] are mature

and are limited to single-node use. Gprof instruments function calls in user code

to identify call chains and to identify the frequency and duration of calls to each

function. Although gprof produces analysis for only one node at a time, it is possible

that multiple nodes’ results could be aggregated offline. Still, gprof has no support

for tracing multi-node operations through the network. It is more useful for tuning

small blocks of code than distributed systems and their emergent behavior.

In practice, the dominant tool for debugging distributed systems has remained

unchanged for over twenty years: print statements to log files. The programmer

analyzes the resulting log files manually or with application-specific validators written

18

in a scripting or string-processing language. In our experience, incautious addition

of logging statements generates too many events, effectively burying the few events

that indicate or explain actual bugs.

Debugging with log files is feasible when bugs are apparent from a small number of

nearby events. If a single invariant is violated, a log file may reveal the violation and

a few events that preceded it. However, finding correctness or performance problems

in a distributed system of any scale is incredibly labor intensive. In our experience,

it can take days to track down seemingly simple errors. Further, scripts to check log

files are brittle because they do not separate the programmer’s expectations from the

code that checks them, and they must be written anew for each system and for each

property being checked.

2.2.2 Causal path analysis

Several recent tools use causal paths as the basis for debugging distributed or single-

node systems. Each tool groups communication and processing events into causal

path instances, then aggregates the path instances. All three of the tools introduced

in this dissertation are causal path analysis tools. Pip is the only causal path analysis

tool to support automatically checking programmer-specified expectations.

Causal path tools vary greatly in how they obtain events, how they combine those

events into paths, how they aggregate paths, and how they present the paths to a

user.

Probably the work most closely related to this dissertation is Magpie [4]. Magpie

enables path-based performance analysis and anomaly detection for single-node and

distributed systems. Magpie uses Event Tracing for Windows, built into the Windows

operating system, to collect thread-level CPU and disk usage information. Magpie

does not require modifying the application, but it does require an application-specific

19

event schema, written by an application expert, to stitch traced information into

causal paths. Associating events on several machines via network communication is

not straightforward, and most of Magpie’s target applications run on one node or

just a few nodes. Magpie identifies paths that exhibit unusual behavior, which the

programmer is left to examine for actual bugs.

Another causal path tool is Pinpoint [12], a system for locating the node or

component in a distributed system likely to be the cause of a fault. A fault is a user-

visible error, which can be due to a hardware failure or a programming bug. Pinpoint

focuses on faults rather than performance or correctness problems. However, it can

be useful for debugging, particularly when a program bug causes a fault. Pinpoint

constructs causal paths by annotating applications or platforms to generate events

and maintain a unique path identifier per incoming request. Like Magpie, Pinpoint

assumes that anomalies indicate bugs. Pinpoint uses a probabilistic, context-free

grammar to detect anomalies on a per-event basis rather than considering whole

paths. In other words, Pinpoint records which events follow any given event, with

which probabilities. If a call to component A can be followed by calls to B or C,

then a call from A to D will indicate a fault. Using event grammars significantly

underconstrains path checking, which, as the authors point out, may cause Pinpoint

to validate some paths with bugs.

Statistical approaches like Magpie and Pinpoint require large traces from which

they detect anomalies. They assume that only anomalies can indicate invalid be-

havior. However, some bugs are present in common paths and would be missed

by statistical debuggers. In particular, a performance bug can affect common-case

behavior, in which case automated anomaly detection would not find it.

Any system that relies on external tracing infrastructure, including sniffing, in-

terposition, or Event Tracing for Windows, is limited by what information it can get

20

using these techniques on unmodified applications. In practice, many causal path

tools, including Project 5 and WAP5, entail a form of gray-box debugging. That is,

they leverage prior algorithmic knowledge, observation, and inferences to learn about

the internal working of an unmodifiable distributed system. In contrast, some causal

path debugging tools, including Pip, assume the ability to modify the source for at

least parts of a distributed system. Source code annotations provide richer informa-

tion for exploring systems without prior knowledge and for automatically checking

systems against high-level expectations.

All of the causal path tools explored here support aggregation to reduce the

amount (and redundancy) of information presented to the user. For aggregation,

they combine individual path instances into some sort of behavior summary. Magpie

uses a clustering algorithm to organize all path instances into sets of similar paths.

Pinpoint forms a probabilistic grammar indicating which components call which other

components, with what probability. Project 5 and WAP5 aggregate all path instances

that reach the same hosts in the same order. WAP5 introduces support for renaming

hosts to combine paths that have similar functionality on different hosts. Pip groups

path instances according to which programmer expectations they do or do not match.

Additionally, Pip can aggregate performance measurements into mean values that can

be reasoned about or into distributions that can be viewed and compared as graphs.

Finally, causal path tools support backwards analysis. When a path instance

is found to be wrong, whether through statistical inference, user examination, or

expectation checking, it inherently provides context. A path instance encompasses

many related events, sorted by causality, location, and time. The programmer can

examine what part of the path instance was unexpected and then examine all of the

events that led up to it. This form of backwards analysis is not as powerful as time-

traveling debuggers, but it is available without specialized execution environments,

21

and it often provides the necessary context with less effort.

2.2.3 Expectation checking

Several existing systems support expressing and checking expectations about per-

formance, structure, liveness, or system state. In general, expectation checkers can

detect bugs, but they operate at too high a level to pinpoint the block of code respon-

sible. They can run online or offline and can depend on either log files or source code

annotations. Many expectation checkers focus on monitoring host-level or system-

wide properties like load, liveness, throughput, or end-to-end delay. Some expectation

checkers focus on debugging.

One expectation checking tool intended for debugging is PSpec [51], which al-

lows programmers to write assertions about the performance (specifically timing) of

systems. PSpec gathers information from existing application logs and checks them

against performance assertions specified by the programmer. The assertions in PSpec

all pertain to the performance or timing of intervals, where an interval is defined by

two events (a start and an end) in the log. PSpec does not explicitly support dis-

tributed systems, and it has no support for causal paths or for checking application

structure in general.

Expectation checking tools in general have important advantages. First, unlike

statistical approaches, they have perfect accuracy when reporting instances of un-

expected behavior. Second, they are more flexible in terms of what anomalies they

can detect. Third, they can find bugs even in common behavior that a statistical

approach would classify as “normal.” Finally, they serve as an external description

of system behavior, which can help summarize and enforce desired properties over

time.

22

2.2.4 Model checking

Model checking is an exhaustive approach to debugging, searching the entire state

space of a program systematically to find any states that violate programmer-specified

invariant conditions. The advantage of model checking is its ability to find uncommon

and difficult-to-reproduce bugs. Model checking can find race conditions, deadlocks,

and even security holes that would be nearly impossible to find through standard

testing. Model checking even reports the sequence of states that led up to an error.

The major disadvantage of model checking is its running time: the time required to

check a program’s entire state space is exponential in the number of decisions the

program makes. Decisions can be implicit or explicit and are frequent: the order of

timer events and message delivery, the content of messages, the scheduling of threads,

and the generation of random numbers. In practice, model checking only works for

short runs of simple programs or for hand-picked portions of larger programs.

Model checking can operate on a program specification or on the program source

itself. Most large systems do not have a formal specification, or the implementation

can differ from the specification; thus, we are most interested in implementation-based

model checkers like VeriSoft [26] and MaceMC [36]. VeriSoft works with programs

written in C and requires source code to be recompiled with VeriSoft’s headers and

library. MaceMC works only with programs written in Mace [45], a domain-specific

language for building distributed systems. It takes advantage of properties of Mace

to provide faster, deeper exploration of a program’s state space.

2.3 Proposed approaches

The three new causal path debugging tools we describe here operate at a higher

level—i.e., a coarser granularity—than most traditional debuggers. They focus on

communication events and on a small number of tasks that happen in response to a

23

received message. They do not focus on variable values or individual lines of code, or

even on individual function calls. Thus, they can make debugging much larger, more

complex applications manageable, but they do not always produce diagnostics specific

enough to pinpoint a programming error. Instead, they identify a misbehaving node

or a block or module of code containing an error, after which a traditional debugger

can be used.

All three of our debugging tools operate offline. That is, the user gathers a trace

from a running system, then stops the system (or at least stops the tracing) and

analyzes the trace. Any of these tools could be modified to monitor systems as they

run (online analysis), given a network fast enough to gather event information to one

host and a host fast enough to perform the analysis. Online analysis could help the

user get results faster and would enable long-term monitoring of running systems.

2.3.1 Project 5

Project 5 enables analysis of unmodified, black-box applications. It infers causal

paths from communication traces, normally gathered using one or more network

sniffers. It then aggregates these causal paths and displays them so that the user can

look for performance bottlenecks and unexpected behavior.

Project 5 treats a target distributed system as a collection of black boxes. The

user does not need access to change, examine, or recompile any source code. The user

does not even need access to run debugging software on any hosts involved in the

application. The event gathering, using a network sniffer, can be entirely external to

the application. This black-box approach has the twin benefits of low up-front user

effort and low disruptiveness. The user need only start a network sniffer and begin

gathering traces.

From network traces, Project 5 uses two inference algorithms to extract causality.

24

The nesting algorithm infers individual causal path instances that are later aggregated

into path patterns. Nesting operates on the assumption that communication has

RPC (call-return) semantics and that a call B caused by a call A will begin after

A begins and end before A ends—i.e., B is nested in A. The second algorithm is

convolution, which uses signal-processing techniques to discover causal path patterns

directly. Convolution examines all messages into a host and all messages out of the

same host, looking for correlations. If an incoming message commonly pairs with an

outgoing message t time later, then a causal relationship might exist. Convolution

does not require RPC semantics, but it requires longer traces and has much longer

running times.

Project 5 is normally limited to local-area distributed systems. It assumes that

both network delays and clock offsets (the absolute difference between unsynchronized

clocks) will be smaller than most processing delays, which is only likely to be true in

local-area networks. Project 5 also usually uses sniffer traces, which are much harder

to obtain in wide-area systems.

Relative to Magpie and Pinpoint, Project 5 is more widely applicable. It does

not rely on any particular platform or source code annotations to produce traces. It

also does not require event schemas written by application experts; instead, it infers

causal relationships statistically. While Project 5 aims to help programmers explore

applications and find performance bugs, Pinpoint aims to detect and locate faults.

2.3.2 Wide-area Project 5

WAP5 shares some of its techniques and all of its high-level goals with Project 5.

WAP5 aims to enable exploring and performance debugging in black-box, wide-area

distributed systems. However, WAP5 introduces a new trace-gathering technique

and a new inference algorithm that make it applicable to a different set of systems.

25

WAP5 uses library interposition instead of network sniffing, meaning that the user

must restart each component using a library that captures communication system

calls. Source code is still not needed, but the user does have to install the library on

each system and restart each component to enable or disable debugging. Interposi-

tion, however, enables debugging at a somewhat finer granularity: it can detect indi-

vidual threads or processes, as well as most interprocess communication. Project 5’s

granularity is entire hosts.

WAP5’s inference algorithm, message linking, extracts individual causal path in-

stances like nesting, but does not require or assume RPC communication semantics.

Thus, WAP5 can be applied to multicast systems, recursive distributed hash tables

(DHTs), and other systems that do not strictly pair call and return messages.

2.3.3 Pip

Pip is applicable to any system for which source code is available. We designed it

primarily for checking distributed systems, but it can also check single-node systems.

Pip relies on annotations in either the application or an underlying middleware sys-

tem. Thus, it is only useful if the programmer can obtain, change, and rebuild the

application source code. It requires substantial up-front effort and cannot be applied

to commercial software or to hardware components.

The granularity of debugging in Pip is arbitrarily fine. Programmers can add

annotations for individual functions and variables at the expense of log size and

execution speed. In practice, the granularity of the annotations is limited by two

factors: per-annotation overhead and the cost of reconciling and checking a trace.

(See Sections 5.4.2 and 5.3.5, respectively, for details.) Annotations at too fine a

granularity will lead to slow program execution and long analysis times. Pip is more

useful for finding components or functions that are misbehaving, which can then be

26

examined further using traditional, single-node debugging tools.

Like PSpec and model checkers, Pip relies on explicit, programmer-written ex-

pectations to detect and locate unexpected behavior. However, PSpec supports only

timing expectations, primarily expectations about how long an operation will take or

how often it will occur. Pip supports these same timing expectations, as well as per-

formance expectations for other metrics and structural expectations for the ordering

and placement of operations. Model checkers support arbitrary expectations, possi-

bly more general than Pip’s, but they can only check short runs of small programs.

Model checkers explore a program’s state space exhaustively, while Pip checks only

the states that actually occur. Thus, Pip can check more and longer paths, but it will

miss bugs such as race conditions that occur only rarely and are hard to reproduce.

2.4 Summary

Many existing systems support debugging on one or several nodes. Several systems

have employed some of the same techniques we use here: causal paths, black-box

causality inference, expectation checking, and interposition. Project 5 was the first

system to support inferring causal paths from black-box network traces. WAP5 was

the first system to apply black-box causal path inference to wide-area systems. Pip

was the first system to apply automatic expectation checking to causal paths. In the

following three chapters, we will describe these systems in greater detail.

27

Chapter 3

Project 5: Black-Box Debugging

This chapter describes the first of three debugging tools, Project 5. Project 5 uses two

novel algorithms to infer causal path patterns from communication traces of black-

box distributed systems. These causal path patterns represent the structural and

performance behavior of the target system, helping a programmer to find unexpected

behavior and processing bottlenecks.

3.1 Overview

Many interesting and commercially important applications now consist of components

distributed across several hosts and communicating over a network. Commercial web

sites are often hosted on clusters of computers, ranging in size up to thousands of

nodes. Any given request will touch several largely independent components: a web

server, an application server, a database server, an authentication server, a credit

card authorization server, and so on. These components are often black boxes: we

have no advance knowledge of their internal functioning, and we cannot modify their

behavior to support accounting or tracing.

Such distributed systems are prone to performance problems. One or more com-

ponents might add significant delays to some or all requests that they process. From

the outside, these problems appear only as added end-to-end latency. In this chap-

ter, we describe Project 5, a system for describing the causal paths that requests

take through a distributed system and identifying how much each individual compo-

nent contributes to total request delays. Project 5 uses message-level traces to build

a graph of request paths through the application to help in isolating bottlenecks.

28

Project 5 requires no advance knowledge of application implementation and little or

no knowledge of the protocols used for transmitting messages between nodes.

Project 5 consists of three phases:

1. Exposing and tracing communication: In this online phase, we gather a

complete trace of all inter-node messages for an operational system, under real

or synthetic load. Depending on the means of communication, we might obtain

a single global trace, or a set of per-edge traces for each pair of communicating

nodes.

2. Inferring causal paths and patterns: In this offline phase, we post-process a

trace using one of several algorithms. The algorithms must cope with traces that

are potentially quite large and noisy (e.g., with missing entries, extraneous calls,

timeouts and retries, unsynchronized clocks, etc.). Although this phase need not

meet real-time performance goals, our algorithms must be reasonably efficient

in time and space. However, the algorithms need not be fool-proof, because our

tools are meant to help humans debug systems, not for automatic control. They

should be robust enough that they generate relatively few false negatives (i.e.,

missed important causal path patterns) or false positives (extraneous, incorrect

patterns). Section 3.2 describes our algorithms.

3. Visualization: A full system should also provide appropriate ways to visualize

the results. However, our research so far has only partially addressed this issue.

An abstract trace format forms the connection between the first and second

phases, which allows us to use several different techniques to gather traces, and sev-

eral different offline algorithms. The trace contains, at a minimum, a <timestamp,

sender, receiver> tuple for each message, but might include some additional infor-

mation. Because the information we need depends on which algorithm is used, we

29

will describe the algorithms before describing the specifics of gathering traces.

3.2 Inference algorithms

Our key challenge in Project 5 is to infer causal path patterns and latencies from

message traces. We have developed two distinct algorithms to perform this inference.

The first, nesting, depends on the use of RPC-style communication and operates on

individual messages in the trace. The second, convolution, is able to handle free-

form message-based communication, and uses signal-processing techniques to extract

causal information from traces.

3.2.1 The nesting algorithm

The nesting algorithm assumes that nodes communicate using remote procedure call

(RPC) semantics, in which one node calls upon another to execute some task or

retrieve some value and the callee eventually replies with the result. RPC calls are

nested; that is, while processing an incoming call, a node is likely to initiate one or

more outgoing calls to other nodes. For example, a web server might communicate

with an authentication server to process a login, resulting in the authentication server

communicating with a database server to retrieve usernames and passwords. Here,

we say that the database request is nested in the authentication request. Request Y is

nested in (and potentially caused by) request X if X’s destination is Y ’s source, X’s

call was transmitted before Y ’s call, and X’s return was received after Y ’s return. In

Figure 3.1, the B → C and B → D calls are nested inside the A → B call. A subset

of the nesting relationships are determined to be causal, after which individual causal

relationships are chained together to form whole path instances. The output of the

nesting algorithm is a collection of all unique paths and a count of how many times

each path appears.

30

The nesting algorithm examines traces primarily at a local level. Each call-return

pair is examined individually and designated either as caused by another call-return

pair or as the root of a request. One major advantage of this local view is that

it can capture unusual effects. If 95% of a trace behaves one way but 5% of it

behaves another way, the nesting algorithm may find the 5%. Finding unusual cases

is particularly important because they are likely to be “interesting” parts of the trace.

For example, a cache miss may occur only 5% of the time but may use otherwise

unused nodes and will likely take much longer than cache hits. The disadvantage

of path-level examination is that it leads to higher levels of noise. A trace with

unsynchronized clocks or high parallelism may lead to some incorrect inferences about

causation.

Any causality determination algorithm makes a trade-off between false positives

and false negatives. False positives are paths that are not truly causal but appear in

the output. False negatives are paths—usually uncommon ones—that are causal but

do not appear in the output. Convolution errs on the side of false negatives because

uncommon paths disappear into the noise. Nesting errs on the side of false positives

because every path that occurs even once will appear in the output.

Implementation details

A call pair is a tuple describing a single call from one node to another and its matching

return. It contains the timestamps of the two messages and the names of the nodes.

The nesting algorithm consists of four steps:

1. Find call pairs in the trace.

2. Find all possible nestings of one call pair in another, and estimate the likelihood

of each candidate nesting.

31

node A

tim
e

node C node Dnode B

1 (call)

2
3 (call)

45 (return)

6

7 (call)

89 (return)

1011 (return)

Figure 3.1: Timelines for an example system with four nodes.

3. Pick the most likely candidate for the causing call for each call pair.

4. Derive call paths from the causal relationships.

We first illustrate the algorithm using the example in Figure 3.1. Step (1) groups

trace entries 1 and 11—the call A → B and the return B → A—into call pair

(A, B, 1, 11); entries 3 and 5 into call pair (B, C, 3, 5); and entries 7 and 9 into call pair

(B, D, 7, 9). (For ease of explanation, in this example we use the message numbers

as the timestamp values.)

Step (2) examines each call pair to determine the set of calls that might have

caused it. Here, (B,C, 3, 5) and (B,D, 7, 9) both occur between the beginning

and end of (A, B, 1, 11). (A, B, 1, 11) is the only call that encloses (B,C, 3, 5) and

(B, D, 7, 9). In a more complex example, a call pair might be nested within several

different “parent” calls, which would have to be ranked by estimated likelihood.

Step (3) chooses the most likely parent call for each call pair in the trace as its

causal parent, based on aggregate information from all other call pairs between the

32

same nodes. Step (4) again examines each call pair and creates a call path starting

from each call pair that was not nested in any other call pair. Since (A, B, 1, 11)

is the parent for two call pairs, it creates the path A → B → C; D. The call

pairs (B, C, 3, 5) and (B, C, 7, 9) do not initiate paths because they are nested in

(A, B, 1, 11).

Scoring potentially-causal nestings: A call pair (B,C, k, l) might be nested in

many (A, B, i, j) call pairs, but it is only directly caused by one such parent. The

nesting algorithm uses a scoreboard to estimate the likelihood that each nesting

relationship is really a causal relationship. The scoreboard records the prevalence, in

the entire trace, of the delays between the two call messages in a potentially-causal

nesting.

The scoreboard represents the set of all nesting-delay tuples (A, B, C, δ), where δ

is the time difference between the call from A to B and the subsequent call from B

to C; each tuple has an associated value. The scoreboard entries for a given nesting

thus form a histogram of these delay values. However, each increment to a histogram

count is weighted by the number of possible parent calls: if there are N possible

parent calls for a given child call, then the scoreboard value for each of these N

tuples is incremented by 1/N .

We actually store each histogram as a set of exponentially-sized bins, efficiently

representing the large range of delay values that might appear in real traces. We find

that 325 bins (indexing the histogram by log1.05 δ) gives reasonably accurate results

for intervals between 1 ms and 2 hours, a range that encompasses all delays discovered

in our traces. A larger range can be achieved easily by allocating more bins. The

number of histograms is equal to the number of (A, B,C) triples such that a call

B → C is nested in a call A → B at least once. This number, which is independent

of trace length, is at most n3, for n nodes; in practice it is significantly lower.

33

node A node B node C

t2
t3

t1

t4

Figure 3.2: Example of parallel calls.

After scoring all of the call pairs, we optionally smooth the histograms by con-

volving them with a Gaussian normal curve. Smoothing helps accuracy when the

hosts in the trace have unsynchronized clocks (i.e., non-zero clock offset). It has

little effect in traces with well synchronized clocks.

Figure 3.2 shows an example in which two B → C calls are each nested in two

A → B calls, creating four possible sets of parent-child pairings. However, the

“medium-length” delay (t3 − t1 and t4 − t2) occurs twice as often as the “long” delay

(t4 − t1) or the “short” delay (t3 − t2). Thus, the histogram for (A, B, C) has a peak

at the medium-length delay.

Choosing unique parents: After building the scoreboard, the nesting algorithm

chooses the most likely causal parent for each individual call pair. The inference that

any given nesting is a causal relationship is based on the scoreboard and on simple

heuristics about the parent’s calls to other possible children. For each call pair

(B, C, t2, t3) in the trace, we consider each possible parent (A, B, t1, t4) and generate

a score for the relationship. The raw score is simply the value of (A, B, C, t2 − t1) in

34

the scoreboard. The raw score is then scaled using three penalties:

• Overlapping-child penalty: We count the number of children coverlap already

assigned to the given parent that overlap in time with the current call pair, and

multiply the score by coverlap
−x.

• Same-child penalty: We count the number of children csame already assigned to

the given parent that have the same destination as the current call pair, and

multiply the score by csame
−y.

• Generic-child penalty: We count the number of children cany already assigned

to the given parent, and multiply the score by cany
−z.

The parameters x, y, and z are configurable. In our experiments, we get the most

predictable, near-optimal performance across all workloads with x ≈ 2 and y = z = 0.

An experiment to determine good values for x is described in Section 3.4.2. Some

traces suggest other values for x, y, and z than those specified here. For example,

a trace in which a node makes several calls in parallel should have x near zero. A

value of exactly zero is often worse, because a non-zero penalty helps prevent too

many parallel children from being assigned to a parent. A trace in which a node

makes parallel calls to different children would benefit more from a non-zero y than

a non-zero x. Even a non-zero z can be useful; for example, a trace in which A calls

B, which makes a short call to either C or D but never both will benefit most from

the generic-child penalty, which broadly penalizes all assignments of more than one

child. The results for this scenario are shown in Figure 3.3. Each line represents

varying a single penalty from 0 to 4 while holding both others constant at 0.

In Figure 3.2, each B → C child call has two possible A → B parents, but each

child has one parent for which the scoreboard includes a peak at the medium-length

delay (t3 − t1 and t4 − t2). Based on this inference, the nesting algorithm assigns

35

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 0.5 1 1.5 2 2.5 3 3.5 4

F
al

se
 n

eg
at

iv
e

ra
te

 (
%

)

Penalty weight

Generic-child penalty
Same-child penalty

Overlapping-child penalty

Figure 3.3: The effect of each penalty on a trace containing the paths A → B → C
and A → B → D.

each B → C child call pair to one of the A → B parent call pairs, as shown with the

solid and dashed lines in the figure. The overlapping-child penalty favors assigning

the two children to different parents. Tie scores when considering parents for a given

child are broken by assigning the child to the earliest tied parent.

Creating and aggregating call paths: The final step in the nesting algorithm

coalesces the causal relationships found in step (3) into call paths, and keeps aggregate

latency statistics for each path pattern. The latency of a node is the total time spent

in processing at that node, including at any nodes that it calls. The call delay of a

node is computed as the time between the call to its parent and the inferred causally-

related call to this node.

Distributions of node times and call delays: In some cases, the processing

time in a node has an interesting distribution not captured well with a simple mean

and standard deviation. The nesting algorithm uses exponentially sized histograms

similar to those in the parent-selection scoreboard to store the distributions of pro-

cessing times and call delays. The code emits these distributions in formats suitable

for plotting with Gnuplot or for viewing with the Project 5 visualization tool.

36

Time and space complexity

Finding call pairs is linear in both time and space in the size of the trace: each trace

entry is examined once and put into one call pair. Finding nested call pairs is linear

in both time and space in the total number of nesting relationships. This number is

the product of the number of trace entries and the mean per-node parallelism during

the trace. We define per-node parallelism as the average number of candidate parents

for each child. However, finding nested call pairs requires that the list of call pairs

be sorted, which takes O(m lg m) time for m messages in the trace. Creating and

aggregating call paths is linear in the number of messages in the trace: each message

either begins a new call path or belongs to exactly one existing call path. Overall,

the algorithm takes O(m lg m + mp) time, for m messages and p mean per-node

parallelism. In practice, the mp term dominates.

3.2.2 The convolution algorithm

Unlike the nesting algorithm, our second algorithm finds causal relationships by con-

sidering the aggregation of multiple messages, rather than by examining messages

individually. The algorithm separates a whole-system trace into a set of per-edge

traces, and treats each of the per-edge traces as a time signal. The central idea of

the algorithm is to convert traces into time signals and then use signal processing

techniques to find the cross correlations between signals. It considers the trace of

messages from A to B separately from the trace of messages from B to A, so this

algorithm can be used on traces of free-form message-based communication, not just

RPC-style traces.

The results of this algorithm are directed graphs, in which a node might appear

several times (e.g., A → B → A → C). To avoid confusion between the graph of the

distributed system itself and the output graph, we use the term vertex for the graph

37

vertices and node for the components of the system.

Given a root node i, the algorithm first creates a vertex xi in the output graph.

Then it considers the messages with source i: for each different destination node j

in those messages, there is a causal relationship between i and j, so the algorithm

creates a vertex xj and adds an edge from xi to xj.

The algorithm then continues the path from j. The algorithm finds the sets of

messages with source j that appear to be caused by the messages from i to j. Each

set contains messages with a single destination node k and a common delay d: the

set indicates that a message from j to k was sent exactly d time units after a message

from i to j. For each set, it adds a vertex xk with label k and edge (xj, xk) with label

d to the graph, and recursively continues along the path from k (i.e., it creates the

graph in depth-first order).

Finding the set of messages leaving j that are caused by messages entering j is

the heart of the algorithm. The algorithm computes the causal delays d, which are

time shifts between the messages arriving at j and the messages leaving j. To find

these time shifts, it converts the messages V from i to j into an indicator function

s1(t). This function is defined to be

s1(t) = 1 if V has a message in time interval [t − ε, t + ε]

0 otherwise

where ε is a small fixed constant and [t − ε, t + ε] is a short closed interval. It

similarly converts all messages sent from node j into an indicator function s2(t).

It then computes the cross correlation C(t) of s2(t) and s1(t). C(t) is defined to

be the convolution of s2 and the time inverse of s1
1, which is why we call this the

“convolution algorithm.” Roughly speaking, C(t) has a spike at position d if and only

1The convolution of two functions f(t) and g(t) is another function, denoted f ⊗ g(t), defined by

f⊗g(t) =
∫ +∞

−∞
f(u)g(t−u)du. The discrete version of this definition is (f⊗g)i =

∑+∞

j=−∞
fjgi−j .

38

60
70
80
90

100
110
120
130
140
150

-10000 -5000 0 5000 10000

Figure 3.4: Example of convolution output, showing two spikes with bold lines. The
x-axis represents the time shift; the y-axis roughly estimates the number of messages
matching a given shift.

if s2(t) contains a copy of s1(t) time-shifted by d. Figure 3.4 shows the convolution

for an example s1(t) and s2(t).

To detect the spikes, if any, in C(t), we compute the mean and standard deviations

of C. We consider a point to be a “spike” if it is a local maximum N standard

deviations above the mean, where the parameter N is a small number (e.g., 4).

There may be many such local maxima close together. Rather than consider each

one to be a separate spike, we require at least one point that is less than S standard

deviations above the mean between spikes, where S < N is another small number

(e.g., 3). Among the candidate points for a given spike, we choose the largest to

represent the spike.

Discretization of the indicator function

The definition for s1(t) assumes that t is a continuous time parameter. In practice,

we need to discretize time. To do so, we choose a time quantum µ and then treat t

39

as an integer multiple of µ. The definition of s1(t) is then modified as follows:

s1(t) = square root of number of messages in V during

time interval [tµ, (t + 1)µ), where t is an integer.

Several discretizations are possible but the above definition produces the most

accurate results and is what we implemented. Note that s1(t) can be represented

by an array. When there are time quanta with lots of messages, if s1(t) = x and

s2(t+d) = x then the (discrete) convolution of s2(t) and s1(−t) at position d includes

an x2 term. The square root in the definition compensates for this square. We

similarly change the definition of s2(t).

Time and space complexity

The convolution algorithm must store the m messages in the trace, and the vectors

containing discretized indicator functions. At any time, there is a constant number

of such vectors. The size of each vector is bounded by S = T/µ, where T is the

duration of the longest trace and µ is the time quantum. Hence, the overall space

complexity is O(m + S).

The time complexity of the algorithm is proportional to the time to traverse

the trace and the time to compute convolutions of discretized indicator functions.

Convolutions of vectors of size S can be computed in time O(S log S) using fast

Fourier transforms. The number of times the trace is traversed and a convolution is

computed is proportional to the number e of edges in the output graph G. Hence,

the overall time complexity is O(em + eS log S). In practice, we find that the second

factor, eS log S, dominates the running time.

40

3.2.3 Comparison of the two algorithms

Our two inference algorithms have different strengths and weaknesses. Often these

strengths are complementary: sometimes one algorithm works better, sometimes the

other. Here we contrast the algorithms in terms of their utility.

RPC vs. free-form messages

The nesting algorithm explicitly works only with systems that use RPC-style com-

munication. The convolution algorithm can find causal relationships in any form

of message-based system. The limited applicability of the nesting algorithm is not

without benefits, though: because it assumes that a system is RPC-based, it provides

a more concise representation of such systems than the convolution algorithm can.

Some common forms of RPC-based systems pose a problem for the nesting al-

gorithm as we have implemented it, and currently can only be analyzed with the

convolution algorithm. If a system forwards RPC calls or returns asymmetrically

(e.g., A calls B, B forwards the call to C, and C replies directly to A) then we fail to

detect this as a single RPC call. Also, if a called node replies to a call before issuing

a causally-related subsequent call, there is no obvious nesting relationship between

the two calls. This can happen when the second call is asynchronous, as in the case

of write-back caching. Finally, the accuracy of the nesting algorithm is sensitive to

accurate pairings of calls and returns. Some protocols provide these pairings, but in

others, the algorithm must infer them, which significantly impairs the accuracy of

the output.

On the other hand, the convolution algorithm has some drawbacks with RPC-

style path patterns. Given a path pattern A → B → C → B → A, the algorithm

will not only report this path, but also A → B → A. This is because there is a causal

relation between A → B and B → A. If a node appears many times on a path, the

41

algorithm will report a large number of derived paths that are not very interesting.

It may be possible to automatically filter out such paths, while preserving legitimate

paths, by using frequency counts. The nesting algorithm correctly finds the right

number of instances of each pattern, as we show in Section 3.4.1.

Rare events

The convolution algorithm looks for spikes in the cross correlation of two signals.

Therefore, it cannot be used to search for rare events, especially those with high

delay variance.

The nesting algorithm explicitly analyzes every RPC message for its relationship

with other messages, and therefore can find rare events. However, distinguishing the

rare events of interest from the more frequent but uninteresting events is an unsolved

problem. Also, the scoreboard mechanism described in Section 3.2.1 currently biases

the algorithm away from rare events: they will be found most easily when there are

few overlapping calls among the same nodes.

Detail required in traces

Our tools would ideally require no information about message formats. In prac-

tice, this goal means that the algorithms should use only information available from

widely deployed standards with self-describing formats. The convolution algorithm

effectively meets this ideal; it requires only timestamps and sender and receiver iden-

tifiers.

The nesting algorithm further requires that trace entries be marked as either RPC

calls or returns. (In a few cases, this information can be inferred based on a priori

knowledge of address formats, such as UDP’s “well-known” port numbers.) The

algorithm also performs much better if the trace system can extract call identifiers

42

from the RPC messages, to pair calls with returns.

Time and space complexity

As discussed in Section 3.2.1, the nesting algorithm runs in linear space and O(m lg m+

mp) time in the number of traced messages m and the mean per-node parallelism p.

Generally, the mp term dominates. As we will show in Section 3.4.3, practical running

times are quite low—much lower than the duration of the traces themselves—and the

space overhead is more likely to be the limiting factor.

The convolution algorithm, as discussed in Section 3.2.2, has space complexity

linear in the length of the trace (measured either by message count or total number

of time quanta, whichever is larger), with a modest constant factor. Running time is

the dominant cost for the convolution algorithm; as we show in Section 3.4.3, it can

be much slower than the nesting algorithm. In practice, there is a tradeoff between

increased precision of the delay results (decreased µ) and longer running time.

Visualization

The two algorithms provide different visualizations, even when applied to the same

trace. For RPC-based systems, the nesting algorithm provides a more compact out-

put, because the convolution algorithm does not combine calls and returns into one

graph edge.

3.3 Experimental framework

To help quantify the performance of both algorithms, we developed Maketrace, a

synthetic trace generator. Maketrace has several advantages over real traces:

• Determinism: In Maketrace, each path is specified explicitly. As a result, we

know exactly what output the algorithms should produce and we can compare

43

this “ground truth” to the experimental output to evaluate the accuracy of each

algorithm.

• Flexibility: Maketrace makes it easy to create traces that differ in only one

aspect: drop rate, noise ratio, parallelism, duration, or presence of a given path.

• Repeatability: Maketrace is a single, deterministic process. From a given

configuration and random seed it will always produce the same trace.

• Speed: Maketrace generates synthetic traces rather than measuring a running

system. Thus, it can run in substantially less than real time.

Maketrace configurations consist of several tracelet files and a master file that

specifies how to combine the tracelets into a trace. Each tracelet file contains the

messages forming a single causal path. A tracelet for the four-message path A →

B → C is shown in Figure 3.5. Each message in the tracelet is either a call or a

return and has a sender, receiver, delay distribution, and call-return ID. The delay

distribution is a Gaussian normal distribution specifying the amount of time between

the given message and the next message in seconds. It is specified as tm ± σ, where

tm is the mean delay time and σ is the standard deviation. All delays below zero are

truncated up to zero. We selected a Gaussian normal distribution for think times to

give them a configurable amount of variation but also a dominant “normal” case.

The trace master configuration file specifies which tracelets to use and how to

interleave them. A master file with two tracelets is shown in Figure 3.6. Each line

indicates a tracelet to run, the think time between instances of the tracelet, how

many threads of the tracelet to run in parallel, and when to start and stop threads

running the tracelet. The think time is specified as the center and radius of a uniform

distribution. Think-time distributions are truncated at zero so that no negative

delays are generated. Think times between invocations are uniformly distributed so

44

call/return sender receiver delay mean delay stddev callpair-id
call a b 0.05 0.005 1
call b d 0.05 0.005 2
return d b 0.01 0.001 2
return b a 0 0 1

Figure 3.5: a-b-d.tl: sample tracelet file for the path A → B → D.

template think radius parallelism start stop
a-b-cc.tl 10 2 5 0 500
a-b-d.tl 10 2 5 250 750

Figure 3.6: Sample trace master file with two tracelets.

that they have no “normal” case, which would lead to apparent causality between

the end of one invocation and the beginning of the next.

Maketrace can also simulate added noise and dropped packets. The amount of

noise is proportional to the number of non-noise messages in the trace. Noise messages

travel from a random source to a random (but different) destination selected from all

sources and destinations in the tracelets. Noise messages are sent at random times

with a 50/50 chance of being a call or return. To model dropped messages, Maketrace

simulates an event capture queue with capture rate r events/sec and queue length s.

Any event that overflows the queue is dropped, often leading to bursts of dropped

events.

3.4 Experimental results

We performed experiments on the nesting algorithm to see how accurately it could

identify paths in several difficult real-world scenarios. In this section, we describe

the metrics we used to quantify the accuracy of the algorithm’s output, the traces

we used for experimentation, and the experiments we performed.

The goal of Project 5 is to highlight the most significant causal paths in a dis-

tributed system, either the paths most frequently called or the paths accounting for

the majority of the delay. Our simplest metric captures this goal in a mostly quali-

45

tative fashion by asking whether or not the top N paths truly present in the system

are the same as the top N paths found by Project 5. In nearly all cases, the nesting

algorithm finds the correct top N paths.

Comparing the top N actual paths to those identified experimentally does not

have fine enough granularity to detect small changes in the accuracy of an experiment.

Therefore, the results presented here compare counts of path instances instead. We

compare the frequencies of all paths found against the true path frequencies. Incorrect

instances found (either an incorrect path or a correct path found too often) are false

positives, while missed instances are false negatives.

False positives and false negatives are represented as a percentage of true path

instances in the system. (These percentages may be more than 100.)

3.4.1 Traces

The main purpose of our experiments was to estimate how well the nesting algorithm

will work in a variety of real-world cases. We performed experiments on two real

traces, one realistic manufactured trace, and several synthetic, corner-case traces. We

also varied several factors that might decrease the accuracy of the nesting algorithm

in order to quantify their effects.

PetStore

The first real trace we used for experiments was PetStore. PetStore is an example

J2EE application running on top of JBoss v.3.0.6 server on a 2-CPU 1GHz Pentium

III with Linux 2.4.9. We used Stanford’s Pinpoint system to capture traces of EJB

component calls and insert artificial delays. We performed experiments on three

different Pinpoint/PetStore configurations: one with no delays, one with a constant

delay of 50 ms in mylist.jsp, and one with a uniformly random delay of 1-100 ms in

46

mylist.jsp. The nesting algorithm had no trouble identifying the major paths in the

PetStore trace and successfully found and characterized both artificial delays.

SFS

The second real trace was from the Self-certifying File System (SFS) project at MIT.

The SFS trace combined information that SFS reported combined with a tcpdump

packet trace. Although the paths in the SFS trace were not interesting (there were

only a few paths, all short and linear), the quirks in the trace gathering highlighted

some weaknesses of the nesting algorithm. First, the nesting algorithm does not han-

dle forwarded requests. That is, if a client sends a call to a redirector, which forwards

the request to a server, which replies directly to the client, the nesting algorithm will

discard the operation. The ability to identify forwarded-request messages might make

handling forwarded requests feasible, but doing so is future work. Second, the nesting

algorithm does not handle asynchronous (delayed) calls such as write-back caching.

If a server responds to the client but then performs an operation on behalf of the

client at a later time, the operation will be assigned to another request or will be

orphaned and will show up as the root of a new path (i.e., as spontaneous behavior).

The nesting algorithm could handle asynchronous calls with a technique similar to

its handling of clock offsets, but doing so is future work.

Multi-tier Maketrace systems

We used Maketrace to generate a variety of traces simulating the multi-tier config-

uration shown in Figure 3.7. Some of these traces have an additional 200 ms delay

inserted at node ws2, between the serial calls to auth and to either ap1 or ap2. The

nesting algorithm found all 34 paths through the multi-tier system in its top 36

outputs, with false positives identified at positions 27 and 28. It had no trouble

47

server
database

application
server

application
server

authentication
server

server
database

client

web server web server
WS2

DB1

AUTHAP2AP1

DB2

WS1

Figure 3.7: Multi-tier configuration.

identifying or locating the added delay.

Figure 3.8 illustrates the primary visualization for the output of the nesting algo-

rithm. The output of the nesting algorithm is a collection of all unique causal paths

found in the trace along with a count for each path. These paths can be converted

to graphs using the program dot [23]. In these graphs, each tree represents a single

causal path discovered by the nesting algorithm. Each node in the tree represents a

host or component, and each edge represents a call. Node labels indicate the time

in seconds spent at the node and all of the nodes it calls. Edge labels indicate the

call delay between the call into the parent and the call from the parent to the child.

Each tree also indicates the number of times the path occurred in the trace and how

much total processing time it consumed.

Synthetic cases

We created several synthetic cases to try specific possible failings of the nesting algo-

rithm. The four cases used here are shown in Figure 3.8. Children-parallel contains

two requests issued in parallel, intended to violate the overlapping-children heuristic.

48

Children-0/2 contains paths with zero and two children, intended to confuse the al-

gorithm into assigning some of the children to parents that make no calls (i.e., should

have no children). Children-d/cc is similar to Children-0/2, with an added call to D.

This scenario makes the A → B calls more similar in length and thus more likely to

swap children accidentally. Penalty-breaker is more complex than either of the above

because it contains two calls each to C and D as well as a path in which B does

not call anything. The A → B → C;C and A → B → D;D paths frequently swap

children. This system is called Penalty-breaker because it violates two of the three

heuristics: generic-child and same-child.

3.4.2 Experiments

The goal of our experiments was to quantify, one at a time, the effects of challeng-

ing features a trace might have. In this section, we present each experiment, its

justification, and the results.

Child penalties

The nesting algorithm has three heuristics regarding the children a parent node is

likely to have, as described in Section 3.2.1. These are free parameters, and we wanted

to determine reasonable default values that would behave acceptably on all of the

traces available. Figure 3.9 shows the results of varying the overlapping-child penalty

with the other penalties set at zero for several different traces. As the figure shows,

values of approximately 2 are the best when all the traces shown are considered.

Another experiment, not shown here, varied the overlapping-child penalty with the

other penalties given non-zero values. The results were sometimes slightly better and

sometimes substantially worse; on average, it is best to use only the overlapping-child

penalty and to leave the generic-child and same-child penalties at zero. In the absence

49

a
0.150

b
0.150

Total:
287 sec.
1919x

c
0.070

0.050

c
0.070

0.070

(a) Children-parallel

a
0.050

b
0.050

Total:
156 sec.
3120x

a
0.170

b
0.170

Total:
303 sec.
1781x

c
0.050

0.050

c
0.050

0.110

(b) Children-0/2

a
0.110

b
0.110

Total:
171 sec.
1559x

d
0.050

0.050

a
0.170

b
0.170

Total:
222 sec.
1310x

c
0.050

0.050

c
0.050

0.110

(c) Children-d/cc

a
0.050

b
0.050

Total:
179 sec.
3575x

a
0.170

b
0.170

Total:
304 sec.
1786x

d
0.050

0.050

d
0.050

0.110

a
0.170

b
0.170

Total:
303 sec.
1780x

c
0.050

0.050

c
0.050

0.110

(d) Penalty-breaker

Figure 3.8: Path patterns for pathological cases.

50

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 0.5 1 1.5 2 2.5 3 3.5 4

F
al

se
 n

eg
at

iv
e

ra
te

 (
%

)

Overlapping-child penalty

Children-parallel
Children-d/cc
Penalty-breaker
Multi-tier
Children-0/2

Figure 3.9: Effects of the overlapping-child penalty on accuracy for several traces.

of the overlapping-child penalty, either the generic-child or same-child penalty should

be non-zero.

3.4.3 Results: execution costs

We measured run time and memory costs for the experiments in the previous sections.

Note that neither program has been fully optimized, and the convolution algorithm

presents several tradeoffs between accuracy and speed that may require some trial

and error.

Table 3.1 shows the costs for the nesting algorithm, and Table 3.2 shows the costs

for convolution. Length gives the trace length in messages; duration gives the elapsed

time of the trace; memory gives the amount of data space allocated (not counting

stack or code); CPU time gives the user-mode CPU time (kernel mode is negligible

in all cases). The table also shows the (computed) mean per-node parallelism for

the nesting algorithm, and the time quantum µ for the convolution algorithm. We

ran the nesting algorithm on a 1.7 GHz Pentium 4 running Linux 2.4.20, and the

51

convolution algorithm on a 667 MHz AlphaServer running Tru64 UNIX V5.1.

We ran experiments to verify the scaling properties described in Sections 3.2.1

and 3.2.2. The nesting algorithm’s run-time and space requirements should be

O(m lg m + mp), where m is the trace length in messages and p is the mean per-

node parallelism. To confirm this analysis, we ran the algorithm on the same trace

configuration (multi-tier) with different trace durations and differing levels of paral-

lelism. Additionally, we ran the algorithm on another trace (PetStore) with a similar

length. The results, which are shown in Table 3.1, confirmed that the running time

is roughly linear given constant parallelism (i.e., the mp term dominates), even with

significantly different trace configurations and with significantly different amounts of

output. The effect of parallelism is less clear. Analytically, both the running time and

the storage requirements should increase at most linearly with increasing parallelism.

In practice, the “high parallelism” trace appears to exhibit poor cache behavior, as

it takes twice as long to run as would be expected.

The convolution algorithm’s running time is mostly dependent on the trace du-

ration and time quantum and not much on the trace length. We did not run the

convolution algorithm on the longest traces in Table 3.1. With our current resources,

the algorithm’s running time becomes prohibitive if the trace duration is more than

about 100,000 times the desired time precision (i.e., the time quantum).

Clock offset

To quantify the effects of clock offset we ran experiments with varying amounts of

clock offset and with the nesting algorithm’s offset compensation techniques turned

on and off. The trace configuration we used was multi-tier, and we added offset at

the ws2 node (i.e., simulated ws2’s clock running fast). Figure 3.10 shows the results

given a clock-offset window fixed at 30 ms and three different levels of compensation.

52

Trace Length Duration Mean per-node Memory CPU time
(messages) (sec) parallelism (MB) (sec)

Multi-tier (short) 20,164 50 1.793 1.5 0.23
Multi-tier 202,520 500 1.641 13.8 2.27
Multi-tier (long) 2,026,658 5,000 1.612 136.8 23.1
Multi-tier (low parallelism) 769,638 5,000 1.146 54.0 7.54
Multi-tier (medium parallelism) 770,344 500 5.116 54.2 11.15
Multi-tier (high parallelism) 775,254 50 45.057 132.1 233.61
PetStore 234,036 2,000 1.322 18 3.09

Table 3.1: Nesting algorithm running times for two traces with varying length and
parallelism.

Trace Length Duration µ (secs) Memory CPU time
(messages) (sec) (MB) (sec)

Multi-tier 202,520 500 0.1 0.2 6684
PetStore 234,036 2,000 0.2 26 12780

Table 3.2: Convolution algorithm running times for two of the same traces as in
Table 3.1.

The choices for compensation are none, offset window only, and offset window with

smoothing. The smoothed offset window is best in all cases. An offset window of

30 ms is sufficient to compensate for up to 40 ms of clock offset, most likely because

the most prominent feature is 10 ms. With offset greater than 10+30 ms this feature

begins to disappear.

The final line in Figure 3.10, marked “Rev,” shows the results when we subtracted

the given amount of offset from ws2 instead. That is, we simulated ws2’s clock running

slow rather than fast. There, the prominent delays are both 10 ms and 50 ms; thus

significant degradation appears at 40 ms and 80 ms given an offset window of 30 ms.

In many cases, we may be able to estimate the worst-case clock offsets. However,

at times we may have to guess and pick a offset-window size that may not be exactly

matched to actual offsets. We ran an experiment in which we varied the offset amount

(again simulating ws2’s clock running fast) and the offset-window size independently.

The results are shown in Figure 3.11. Each curve represents a fixed amount of offset,

53

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90 100

F
al

se
 n

eg
at

iv
e

ra
te

 (
%

)

Skew, ms

No comp
Comp
Comp + smooth
Rev, comp + smooth

Figure 3.10: Effects of clock offset on nesting algorithm accuracy, clock-offset win-
dow = 30.

and the minimum of each curve indicates the optimal size for the offset window for

that given amount of offset. As in Figure 3.10 the optimal size for the offset window

is approximately equal to actual offset minus the size of the most prominent feature

(once again 10 ms). Here, we can see that the penalty for underestimating offset is

severe while the penalty for overestimating it is minor. It is best to err on the side

of slightly larger offset windows.

Drop rate

Many traces have dropped packets, usually in bursts, if traffic is bursty or if the

tracing mechanism gets interrupted. We used Maketrace as described in Section 3.3

to create traces with dropped packets. The effect of dropped packets on accuracy

is shown in Figure 3.12. Note that the x axis is a dependent variable. We varied

the simulated capture rate and plotted the resulting false-negative rate against the

resulting drop rate. As Figure 3.12 shows, the nesting algorithm can tolerate small

numbers of dropped packets, up to about 5% of the total.

54

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60

F
al

se
 n

eg
at

iv
e

ra
te

 (
%

)

Skew window, ms

skew=50 ms
skew=40 ms
skew=30 ms
skew=20 ms
skew=10 ms

skew=0 ms

Figure 3.11: Varying clock-offset window sizes for several levels of offset.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 1 10 100

F
al

se
 n

eg
at

iv
e

ra
te

 (
%

)

Drop percentage

Children-parallel
Children-d/cc
Penalty-breaker
Multi-tier
Children-0/2

Figure 3.12: Effects of message drop rate on nesting algorithm accuracy.

55

 0

 10

 20

 30

 40

 50

 60

 70

0% 20% 40% 60% 80% 100%

F
al

se
 p

os
iti

ve
 r

at
e

(%
)

Standard deviation of delay relative to mean

Children-parallel
Children-d/cc
Penalty-breaker
Multi-tier
Children-0/2

Figure 3.13: Effects of delay variation on nesting algorithm accuracy.

Delay standard deviation

Delays are often not deterministic. In Maketrace, we assume that delays have Gaus-

sian distributions, as described in Section 3.3. In most tracelets, we use a standard

deviation of 10% of the mean. We ran an experiment in which we tried standard

deviations from 0% to 100% of the mean in order to measure the nesting algorithm’s

sensitivity to delay variance. As shown in Figure 3.13, delay variance has a substan-

tial effect. The nesting algorithm performs quite well given deterministic delays, but

its accuracy degrades quickly as the standard deviation increases to approximately

30% of the mean delay. Above 30% accuracy continues to degrade, but more slowly.

Note that this statement only holds for single-mode delay distributions. A bi-

modal distribution may have a large standard deviation, but nesting will handle it

easily as long as the standard deviation within each mode is relatively small.

56

Parallelism

As described in Section 3.4.3, parallelism has at least a linear effect on the running

time and storage requirements of the nesting algorithm. Its effect on accuracy is less

clear. We ran an experiment in which we varied the level of parallelism for each trace

configuration and measured the accuracy. The results are shown in Figure 3.14. Note

that the x axis in Figure 3.14 is a dependent variable. We varied the parallelism scal-

ing (the -p flag) in Maketrace and plotted the accuracy against the resulting number

of messages per second. Children-parallel improves significantly with increases in par-

allelism, while Children-d/cc and Penalty-breaker both see decreased accuracy with

increases in parallelism. However, all five trace configurations eventually see some

improvement with increases in parallelism.

Our working hypothesis is that increased parallelism does not increase the likeli-

hood of choosing the exact right parent, but it does increase the likelihood of choosing

a incorrect parent that is close enough to the correct parent as to be indistinguishable

in terms of path creation and delay averages. Higher parallelism means that possible

parents are closer together, meaning that if a call-return pair picks the wrong parent

it at least has many nearly-right parents to fall back on.

Noise

The nesting algorithm performs acceptably well in most cases with up to 15% noise.

Figure 3.15 shows the effect of noise on accuracy. The x axis shows the percentage of

noise added, which is the ratio of noise packets to non-noise packets as described in

Section 3.3. Thus, the points at 15% represent a trace in which approximately 13%

of the traffic is noise. Note that “noise” here refers only to traffic between hosts of

interest that does not take the form of a causal path. Any noise between other hosts

can be ignored, and any noise that takes the form of a causal path will be detected

57

 0

 10

 20

 30

 40

 50

 60

 100 1000 10000

F
al

se
 p

os
iti

ve
 r

at
e

(%
)

Messages per second

Children-parallel
Children-d/cc
Penalty-breaker
Multi-tier
Children-0/2

Figure 3.14: Effects of trace parallelism on nesting algorithm accuracy.

as such.

Noisy traces exhibit additional types of false positives that do not appear in other

traces. For example, a long-lived call-return pair may get many other call-return

pairs assigned to it as children. To prevent this, we used non-default penalty weights

in the experiment that generated Figure 3.15. The weights we used were 1.5, 0.5, and

1.0 for the overlapping-child, same-child, and generic-child penalties, respectively.

3.5 Summary

Project 5 is an effective tool for characterizing the paths that requests take through

black-box distributed systems and attributing the sources of delay encountered by

each request. In this chapter, we presented two algorithms, nesting and convolution,

for building causal paths from message traces. Further, we described an experimental

framework and experimental results demonstrating the nesting algorithm’s behavior

on several real and synthetic traces. The experimental framework includes a trace

generator and several real and synthetic traces chosen to explore the limits of the

58

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100

F
al

se
 n

eg
at

iv
e

ra
te

 (
%

)

Percentage of noise added

Children-d/cc
Children-0/2
Children-parallel
Penalty-breaker
Multi-tier

Figure 3.15: Effects of noise on nesting algorithm accuracy.

nesting algorithm. The experiments include free parameter exploration, the effect of

trace size and composition on running time, and the effects of clock offset, drop rate,

noise rate, delay variance, and parallelism on accuracy.

59

Chapter 4

WAP5: Wide-Area Black-Box Debugging

This chapter introduces the second of three debugging tools, Wide-Area Project 5

(WAP5). WAP5 extends the goals of Project 5 to wide-area distributed systems,

where network latencies are larger, clocks can be unsynchronized, administrative

privileges are often unavailable, and protocols in use can be more diverse. WAP5

introduces a new inference algorithm, an interposition library for tracing communica-

tion events, and an analysis of two content-distribution networks and a configuration

and incident-monitoring system.

4.1 Overview

Wide-area distributed systems are difficult to build and deploy because not all debug-

ging tools scale well across wide-area network links or across administrative domains.

Compared to local-area distributed systems, wide-area distributed systems introduce

new sources of delays and failures, including network latency, limited bandwidth,

node unreliability, and asynchronous parallel programming. Furthermore, the sheer

size of a wide-area system can make it daunting to find and debug underperforming

nodes or to examine event traces. Often, programmers have trouble understand-

ing the communications structure of a complex distributed system and have trouble

isolating the specific sources of delays.

In this chapter, we describe the Wide-Area Project 5 (WAP5) system, a set of

tools for capturing and analyzing traces of wide-area distributed applications. The

WAP5 tools aid the development, optimization, and maintenance of wide-area dis-

tributed applications by revealing the causal structure and timing of communication

60

Client

DNS server

Coral
DHT

update

Coral
DHT
lookup

Origin server

Web proxy
Coral

Figure 4.1: Example causal path through Coral.

in these systems. They highlight bottlenecks in both processing and communication.

By mapping an application’s communication structure, they highlight when an ap-

plication’s data flow follows an unexpected path. By discovering the timing at each

step, they isolate processing or communication hotspots.

We are focusing on applications running on PlanetLab [5], perhaps the best col-

lection of widely distributed applications for which research access is feasible. In

particular, we have applied our tools to the CoDeeN [65] and Coral [22] content-

distribution networks (CDNs). WAP5 constructs causal structures, such as the one

shown for Coral in Figure 4.1, which matches a path described by Figure 1 in a paper

on Coral [22].

Our tool chain consists of four steps, depicted in Figure 4.2. First, our dynamically

linked interposition library captures one trace of socket-API calls per application

process on each participating machine. Second, we reconcile the socket-API traces to

form a single trace with one record per message containing both a sent and a received

timestamp. These timestamps reflect the clocks at the sender and receiver machines,

respectively, and are used to quantify and compensate for clock skew and to measure

network latency. Third, we run our causality analysis algorithm on the reconciled

trace to find causal paths through the application, like the one in Figure 4.1. Finally,

61

Figure 4.2: Schematic of the WAP5 tool chain.

we render the causal paths as trees or timelines.

In the space of tools that analyze application behavior for performance debugging,

our approach is among the least invasive and works on the largest scale of systems:

wide-area distributed systems. Other causal-path analysis tools differ in their inva-

siveness or in the scale of systems they target. Project 5 (see Chapter 3), targets

heterogeneous local-area distributed systems and is minimally invasive because it

works using only network traces. Pip (see Chapter 5) supports wide-area systems

but requires manual annotations, an instrumented platform, or both.

WAP5 makes the following contributions:

• A new causal-path inference algorithm, the message-linking algorithm, that

introduces support for wide-area systems. Some of the new features of linking

also make it easier to analyze local-area systems. We provide a full comparison

with our previous algorithms [1] in Section 4.5.3.

• A discussion of several previously unaddressed problems with causal path anal-

ysis, including naming issues, DHT issues, wide-area network latencies, clock

skew, and network address translation.

• Results from applying our tools to three real systems, the CoDeeN and Coral

62

CDNs running on PlanetLab, and Slurpee, an enterprise-scale incident-monitoring

system.

In the next section, we define the problem we are solving more explicitly. We then

describe the three main tools in our approach, which perform trace capture, trace

reconciliation, and causal path analysis over the trace. Finally, we present results

from three systems.

4.2 Problem definition

In this section, we define the problem we are solving. We include a description

of the target applications, discussion of some distributed hash table (DHT) issues,

definitions of our terminology for communication between components, our model of

causality, and several issues related to naming of components.

4.2.1 Target applications

Our primary goal is to expose the causal structure of communication within a dis-

tributed application and to quantify both processing delays inside nodes and com-

munication (network) delays. In this chapter, we specifically focus on wide-area

distributed systems (and other systems) where the network delays are non-negligible.

We further focus on PlanetLab applications because we can get access to them easily.

However, nothing in our approach requires the use of PlanetLab.

We aim to use as little application-specific knowledge as possible and not to change

the application. We can handle applications whose source code is unavailable, whose

application-level message formats are unknown, and, in general, without a priori

information about the design of the application.

Our tools can handle distributed systems whose “nodes” span a range of granu-

larities ranging from entire computers down to single threads, and whose communica-

63

tion paths include various network protocols and intra-host IPC. We aim to support

systems that span multiple implementation frameworks; for example, a multi-tier

application where one tier is J2EE, another is .Net, and a third is neither.

We currently assume the use of unicast communications and we assume that

communication within an application takes the form of messages. It might be possible

to extend this work to analyze multicast communications.

4.2.2 DHT issues

Several interesting distributed applications are based on DHTs. Therefore, we devel-

oped some techniques specifically for handling DHT-based applications.

DHTs perform lookups either iteratively, recursively, or recursively with a shortcut

response [15]. In an iterative lookup, the node performing the query contacts several

remote hosts (normally O(lg n) for systems with n total hosts) sequentially, and each

provides a referral to the next. In a recursive lookup, the node performing the query

contacts one host, which contacts a second on its behalf, and so on. A recursive

lookup may return back through each intermediary, or it may return directly along

a shortcut from the destination node back to the client.

With an iterative DHT, all of the necessary messages for analysis of causal paths

starting at a particular node can be captured at that node. With a recursive or

recursive-shortcut DHT, causal path analysis requires packet sniffing or instrumen-

tation at every DHT node. The algorithm presented in this chapter handles all three

kinds of DHT.

DHTs create an additional “aggregation” problem that we defer until Section 4.2.5.

64

4.2.3 Communications terminology

Networked communication design typically follows a layered architecture, in which

the protocol data units (PDUs) at one layer might be composed of multiple, partial, or

overlapping PDUs at a lower layer. Sometimes the layer for meaningfully expressing

an application’s causal structure is higher than the layer at which we can obtain

traces. For example, in order to send a 20 KB HTTP-level response message, a

Web server might break it into write() system call invocations based on an 8 KB

buffer. The network stack then breaks these further into 1460-byte TCP segments,

which normally map directly onto IP packets, but which might be fragmented by an

intervening router.

We have found it necessary to clearly distinguish between messages at different

layers. We use the term packet to refer to an IP or UDP datagram or a TCP segment.

We use message to refer to data sent by a single write() system call or received by

a single read(). We refer to a large application-layer transfer that spans multiple

messages as a fat message. Fat messages require special handling: we combine adja-

cent messages in a flow into a single large message before beginning causal analysis.

Conversely, several sufficiently small application-layer units may be packed into a

single system call or network packet, in protocols that allow pipelining. In the sys-

tems analyzed here, such pipelining does not occur. In systems where pipelining is

present, our tool chain would see fewer requests than were really sent but would still

find causality.

4.2.4 Causality model

We consider message A→B to have caused message B→C if message A→B is re-

ceived by node B, message B→C is sent by node B, and the logic in node B is such

that the transmission of B→C depends on receiving A→B. In our current work, we

65

assume that every message B→C is either caused by one incoming message A→B

or is spontaneously generated by node B. This assumption includes the case where

message A→B causes the generation of several messages, B→X, B→Y, B→Z, etc.

An application where one message depends on the arrival of many messages (e.g.,

a barrier) does not fit this model of causality. WAP5 would attribute the outgoing

message to only one—probably the final—incoming message. Additionally, if struc-

ture or timing of a causal path pattern depends on application data inside a message,

WAP5 will view each variation as a distinct path pattern and will not detect any

correlation between the inferred path instances and the contents of messages.

We cannot currently handle causality that involves asynchronous timers as trig-

gers; asynchronous events appear to be spontaneous rather than related to earlier

events. This restriction has not been a problem for the applications we analyzed for

this chapter. We also cannot detect that a node is delayed because it is waiting for

another node to release a lock.

4.2.5 Naming issues

Our trace-based approach to analyzing distributed systems exposes the need for mul-

tiple layers of naming and for various name translations. Clear definitions of the

meanings of various names simplify the design and explanation of our algorithms and

results. They also help us define how to convert between or to match various names.

Causal path analysis involves two categories of named objects, computational

nodes and communication flow endpoints. Nodes might be named using hostnames,

process IDs, or at finer grains. Endpoints might be named using IP addresses, perhaps

in conjunction with TCP or UDP ports, or UNIX-domain socket pathnames. These

multiple names lead to several inter-related challenges:

• Which level of name to use: While we want our tools to avoid incorporating

66

application-specific knowledge, their use may require some knowledge of the

application. In particular, the user of our tools may have to decide whether

to treat a host as a single node or as a collection of process-level nodes. The

process-level view might add useful detail if each process has a distinct role,

or it might just add confusion if processes on a host are interchangeable, as in

servers built using a process pool.

The selection of naming granularity interacts with the choice of tracing tech-

nology. Packet sniffing, the least invasive tracing approach, makes it difficult

or impossible to identify processes rather than hosts. Use of an interposition

library, such as the one we describe in Section 4.3, allows process-level tracing.

• How to match node names and endpoint names: A host might include

several process nodes and multiple communication endpoints. For example,

a Web proxy process could accept HTTP requests on port 8090 and send for-

warded requests using a series of ephemeral port numbers; in this case, all these

connections belong to one process. However, the same host might run both a

Web server and an FTP server, in which case the two different server ports

correspond to distinct processes. Using an interposition library, we capture

enough information to match endpoints to processes; it is much harder using

packet-sniffing.

• How to find both ends of a path: Whenever possible, we capture trace

records at each host in a distributed system. Thus, each message within the

system generates two trace records: one at the sender and one at the receiver.

In order to get both sender and receiver timestamps for a message, we need

to match up the two trace records – in effect, finding a common name for

each message. This task is usually straightforward but can be complicated by

multihomed hosts, reordered or lost datagrams, or clock offset.

67

The distinction between node names and endpoint names allows the analysis of

a single distributed application using multiple traces obtained with several differ-

ent techniques. For example, we could trace UNIX-domain socket messages using

the interposition library and simultaneously trace network messages using a packet

sniffer.

Table 4.1 shows the various names (the columns) captured by our interposition

library, and where they are used in our analysis. We include this table to illustrate

the complexity of name resolution; it may be helpful to refer to it when reading

Sections 4.4 and 4.5.

The table columns are as follows:

• IP addr, port. The addresses for the source and destination of a network

connection or of a connectionless message.

• Socket path. The file-system location of a Unix-domain socket.

• File descriptor. The system-level handle for an open socket. It is normally

bound to a source and destination endpoints, or to a Unix-domain socket path.

• Length. The length in bytes of a message.

• Hostname. The host on which part of a distributed system runs.

• PID. The process identifier. The combination of hostname and PID identifies

a single process, where an incoming message may cause an outgoing message.

• Peer PID. The process identifier of the remote endpoint of a Unix-domain

socket. The peer PID is used to differentiate among several connections active

through a single socket in the file system.

68

Socket API parameters Other captured information
both ends: socket file peer

(IP addr,port) path descriptor length hostname PID PID checksum timestamp

trace file header C C C
new connection: TCP C C C
new connection: UDP or raw IP C C C
new connection: UNIX domain C C C C
message: TCP or UNIX domain C C C
message: UDP or raw IP C C C C C

reconciliation: matching send & rcv recs U U U U U U
causal analysis (message linking) U U U
aggregating nodes U U

Table 4.1: Where different naming information is captured (C) or used (U).

69

• Checksum. A 16-bit summary of the contents of a message. The checksum, in

combination with message size, is used to reconcile the send and receive events

for UDP messages.

• Timestamp. A 64-bit counter of the second and microsecond that an event

occurred.

Aggregation across multiple names

Causal path analysis aggregates similar path instances into path patterns, presenting

to the user a count of the instances inferred along with average timing information.

The simplest form of aggregation is combining path instances with identical structure,

i.e., those that involve exactly the same nodes in exactly the same order. More

advanced aggregation techniques look for isomorphic path instances that perform the

same tasks via different nodes, perhaps for load balancing. Without aggregation, it

is difficult to visualize how a system performs overall: where the application designer

thinks of an abstract series of steps through an application, causal path analysis finds

a combinatorial explosion of rare paths going through specific nodes. Aggregation is

particularly important for DHTs, which are highly symmetric and use an intentionally

wide variety of paths for reliability and load balancing. Aggregating paths is useful

for finding performance bugs that are due to a design or coding error common to all

hosts.

Once causal path analysis has identified a set of isomorphic paths, it is possible to

aggregate the results based on the role of a node rather than its name. For example,

Coral and CoDeeN have thousands of clients making requests; trees starting at one

client would not normally be aggregated with trees starting at another. As another

example, Figure 4.3(a) shows two causal paths with the same shape but different

hostnames. In the top path, Host D fills the role of the first-hop proxy, and Host

70

Host X
Client

Host B
1st proxy

Host C
2nd proxy

Host B
1st proxy

Host X
Client

Host Y
Client

Host D
1st proxy

Host B
2nd proxy

Host D
1st proxy

Host Y
Client

(a) unaggregated paths

Any host as
Client

Any host as
1st proxy

Any host as
2nd proxy

Any host as
1st proxy

Any host as
Client

(b) corresponding aggregated path

Figure 4.3: Example of aggregation across multiple names.

B fills the role of the second-hop proxy; in the other path, Host B is the first-hop

proxy and and Host C is the second-hop proxy. What we might like to see instead

is the aggregated path in Figure 4.3(b), which aggregates the clients, first-hop, and

second-hop proxies. Of course, the unaggregated paths should still be available, in

case a performance problem afflicts specific nodes rather than a specific task.

Currently, our code aggregates clients, but we have not yet implemented aggre-

gation across servers. To aggregate clients, we designate each TCP or UDP port as

fixed or ephemeral and each node as a client or a server. A port is fixed if it com-

municates with many other ports. For example, a node making a DNS request will

allocate a source port dynamically (normally either sequentially or randomly), but

the destination port will always be 53. Thus, causal path analysis discovers that 53

is a fixed port because it talks to hundreds or thousands of other ports. A node is

considered a server if it uses fixed ports at least once, and a client otherwise. Our

algorithm replaces all client node names with a single string “CLIENT” and replaces

all ephemeral port numbers with an asterisk before building and aggregating trees.

71

Thus, otherwise identical trees beginning at different clients with different ephemeral

source-port numbers can be aggregated.

4.3 Trace collection infrastructure

We now describe how we capture traces of inter-node communication. We wrote

an interposition library, LibSockCap, to capture network and inter-process commu-

nication. LibSockCap captures mostly the same information as strace -e network

(i.e., a trace of all networking system calls), plus additional needed information, with

much lower overhead. The extra information is needed for reconciliation and includes

fingerprints of UDP message contents, the PID of peers connecting through a Unix

socket, the peer name even when accept does not ask for it, the local name bound

when connect is called, and the number assigned to a dynamic listening port not spec-

ified with bind. Further, LibSockCap imposes less than 2µs of overhead per captured

system call, while strace imposes up to 60µs of overhead per system call. Finally,

LibSockCap generates traces about an order of magnitude smaller than strace.

LibSockCap traces dynamically linked applications on any platform that sup-

ports library interposition via LD PRELOAD. LibSockCap interposes on the C library’s

system call wrappers to log all socket-API activity, for one or more processes, on all

network ports and also on UNIX-domain sockets. For each call, LibSockCap records a

timestamp and all parameters (as shown in Table 4.1), but not the message contents.

In addition, LibSockCap monitors calls to fork so that it can maintain a separate log

for each process. On datagram sockets, it also records a message checksum so that

dropped, duplicated, and reordered packets can be detected.

There are several advantages to capturing network traffic through library inter-

position rather than through packet sniffing, either on each host or on each network

segment.

72

• Logical message semantics: messages are captured with the same order and

boundaries that the application sees, rather than after the network potentially

fragments or combines them.

• Finer granularity: LibSockCap attributes communication to individual pro-

cesses rather than to whole hosts. Also, LibSockCap can capture UNIX-domain

sockets, while sniffing cannot.

• Efficiency: LibSockCap adds less overhead than running a sniffer on the same

host, as is necessary on PlanetLab, because it runs in the memory space of the

processes being traced and so does not require context switches or buffer copies

to record messages.

Interposition does have disadvantages relative to sniffing.

• No control packets: only sniffing can capture network control messages.

However, our work focuses on the causal relationships between logical messages,

not control messages.

• Lack of packet boundaries, fragments, and retransmissions: problems

arising in the network stack or in the network, such as excessive fragmentation

or retransmission, are not visible to our interposition library.

• Timestamps added by user process: any delays introduced by the network

stack happen after LibSockCap timestamps the event and get attributed to

network delay.

The advantages are significant enough that even in environments where sniffing

is feasible, we prefer to use LibSockCap.

73

4.3.1 Runtime overhead

To verify that LibSockCap imposes negligible overhead on the applications being

traced, we ran Seda’s HttpLoad [66] using Java 1.4.1 01 against Apache 1.3.1. Both

the client and the server were dual 2.4 GHz Pentium 4 Xeon systems running Linux

2.4.25. LibSockCap had no measurable effect on throughput or on average, 90th-

percentile, or maximum request latency for any level of offered load. However, the

server CPU was not saturated during this benchmark, so LibSockCap might have

more impact effect on a CPU-bound task.

We measured the absolute overhead of LibSockCap by comparing the time to

make read/write system calls with and without interposition active, using the server

described above. LibSockCap adds about 0.02µs of overhead to file reads and writes,

which generate no log entries; 1.03µs to TCP reads; 1.02µs to TCP writes; and

0.75µs to UDP writes. In our benchmark, Apache made at most 3,019 system calls

per second, equal to an overhead of about 0.3% of one CPU’s total cycles.

4.3.2 Deployment experience

To capture the traces used for our experiments, we sent LibSockCap sources to the

authors of Coral and CoDeeN. Both reported back that they used their existing

deployment mechanisms to install LibSockCap on all of their PlanetLab nodes. After

the processes ran and collected traces for a few hours, they removed LibSockCap,

retrieved the traces to a single node, and sent them to us.

While LibSockCap is more invasive than packet sniffing (in that it requires ad-

ditional software on each node), packet sniffing is more logistically challenging in

practice, as we discuss in Section 4.7.

74

4.4 Trace reconciliation

The trace reconciliation algorithm converts a set of per-process traces of socket ac-

tivity (both network and inter-process messages) to a single, more abstract, trace

of inter-node messages. This algorithm includes translation from socket events to

flow-endpoint names and node names. The output is a trace containing logical mes-

sage tuples of the form (sender-timestamp, sender-endpoint, sender-node, receiver-

timestamp, receiver-endpoint, receiver-node).

Name translation: In the LibSockCap traces, each send or recv event contains a

timestamp, a size, and a file descriptor. Reconciliation converts each file descriptor to

a flow-endpoint name. With UNIX domain and TCP sockets, we can easily find the

flow-endpoint name (i.e., UNIX path or <IP address, port> pair) in prior connect,

accept, or bind API events in the trace. File descriptors for datagram (UDP or raw IP)

sockets, however, may or may not be bound to set source and destination addresses.

If not, the remote address is available from the sendto or recvfrom parameter and we

use the host’s public IP address or the loopback address as the local address.

Timestamps: We include the timestamps from both the sender and receiver

traces in the final trace. With both timestamps, it is simple to obtain the network

latency of each message, as we describe in Section 4.5.2. Whenever we have only one

timestamp for a message (because we only sniffed one endpoint), we use nil for the

other timestamp.

4.5 The message linking algorithm

Causal path analysis looks for causal relationships in the logical messages produced by

trace reconciliation. Its output is a collection of path patterns, each annotated with

one or more scores indicating importance. Message linking, or linking for short, is a

75

A->B

B->C

0.8

B->D

0.2

B->E

0.1

B->F

0.48

C->G

0.9

(a)

p=0.270 p=0.249

A

B

C

G

A

B

C F

G

(b)

Figure 4.4: Sample link probability tree and the two causal path instances it gen-
erates. Solid, dotted, and dashed arrows indicate “probably-true,” “probably-false,”
and “try-both” links, respectively.

new causality analysis algorithm for distributed communication traces. Linking works

with both local-area and wide-area traces, which may be captured using LibSockCap,

a sniffer, or other methods. We compare linking with other causal path analysis

algorithms at the end of this section.

4.5.1 Algorithm description

For each message in the trace, linking attempts to determine if the message is spon-

taneous or is caused by another message. In many cases, the cause is ambiguous, in

which case linking assigns a probability for the link between the parent message into

the node and the child message out of the node. The probabilities of the links for all

parent messages to a given child message sum to one.

Linking then constructs path instances from these links and assigns each path

instance a confidence score that is the product of all of the link probabilities in the

tree. The total score across all instances of a given path pattern represents the

algorithm’s estimate of the number of times the pattern appeared in the trace. If a

link is sufficiently ambiguous (e.g., if it has a probability near 0.5), two path instances

will be built, one with the link and one without it. Figure 4.4 shows an example link

76

Figure 4.5: Three calls into B that might have caused B→C.

probability tree and the causal path instances it generates. The tree on the left shows

all of the messages that might have been caused, directly or indirectly, by one specific

A→B message, with a probability assigned to each possible link. From this tree, the

linking algorithm generates the two causal path instances on the right, each with a

probability based on the decisions made to form it. Here, two path instances are

generated because the link between A→B and B→F has probability close to p = 0.5.

In broad terms, the linking algorithm consists of three steps: (1) estimating the

average causal delay for each node, (2) determining possible parents for each message,

and (3) building path instances and then aggregating them into path patterns. We

describe the algorithm in more detail in the sections that follow.

Step 1: Estimating the average causal delay

The probability of each link between a parent message into B and a child message

out of B is a function of how well it fits the causal delay distribution. Causal de-

lays represent the service times at each node. Therefore, as is common in system

modeling, we fit them to an exponential distribution f(t) = λe−λt[62], where λ is

a scaling parameter to be found. Figure 4.6 shows a sample exponential distribu-

77

tion. An exponential distribution exactly models systems in which service times are

memoryless—that is, the probability that a task will complete in the next unit time

is independent of how long the task has been running. However, not all systems have

memoryless service times. Even in systems with other service time distributions, the

exponential distribution retains a useful property: because it is a monotonically de-

creasing function, the linking algorithm will assign the highest probability to causal

relationships between messages close to each other in time. Thus, the exponential

distribution works well even if its scaling factor is incorrect or the system does not

exhibit strictly memoryless service times.

We also considered f(t) = λte−λt, a gamma distribution in which α = 2. This

gamma distribution assigns the highest probabilities to delays near 1/λ, which causes

the linking algorithm to produce more accurate results if λ is estimated correctly, but

much worse results otherwise.

We use an independent exponential distribution for each B→C pair, by estimating

the average delay dB→C that B waits before sending a message to C. The delay

distribution scaling factor λB→C is equal to 1/dB→C .

Correctly determining dB→C requires accurate knowledge of which message caused

which; thus, linking only approximates dB→C and hence λB→C . Linking estimates

dB→C as the average of the smallest delay preceding each message. That is, for each

message B→C, it finds the latest message into B that preceded it and includes that

delay in the average. If there is no preceding message within x seconds, B→C is

assumed to be a spontaneous message and no delay is included. The value of x

should be longer than the longest real delay in the trace. We use x = 2 sec for the

Coral and CoDeeN traces, but x = 100 ms for the Slurpee trace. The value of x is

user-specified, depends only on expected processing times, and does not need to be

a tight bound.

78

In the presence of high parallelism, the estimate for each d may be too low, because

the true parent message may not be the most recent one. However, because the

exponential distribution is monotonically decreasing, the ranking of possible parents

for a message is preserved even when d and λ are wrong. It is possible to iterate over

steps (1) and (2) to improve the estimate of λ, but linking does not currently do so.

Step 2: Finding and scoring parent messages

After estimating λB→C for each communicating pair of nodes B→C, the linking al-

gorithm assigns each causal link a weight based on its delay. The weight of the link

between X→B and B→C in the example in Figure 4.5 is set to

f(t4 − t1) = e−λB→C(t4−t1),

where (t4 − t1) is the delay between the arrival of X→ B and the departure B→C.

Additionally, B→C may not have been caused by any earlier message into B, and

instead might have been spontaneous. This possibility is given a weight equal to a

link with delay y · dB→C . y should be a small constant; we use y = 4. A larger

y instructs the algorithm to prefer longer paths, while a smaller y generates many

short paths that may be suffixes of correct paths. Spontaneous action is the most

likely choice only when there are no messages into B within the last y · dB→C time.

Figure 4.6 shows the weights assigned to all three possible parents of B→ C, as well

as the weight assigned to the possibility that it occurred spontaneously.

Once all of the possible parents for this B→C message have been enumerated, the

weights of their links are normalized to sum to 1. These normalized weights become

the probability for each link. Figure 4.7 shows the possible parents for the B→C and

B→D calls, with their assigned probabilities.

Hosts or processes that were not traced result in nil timestamps in the reconciled

trace. That is, if node A was traced and B was not, then A→B messages will

79

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

W
ei

gh
t

Delay, t

f(t4-t3) = 0.368

f(t4-t2) = 0.135

f(t4-t1) = 0.050
f(4) = 0.018

f(t) = e-1*t

Figure 4.6: An exponential distribution with λ = 1, showing the weights assigned to
all possible parents of B→C. f(4) represents the possibility of a spontaneous message,
given y = 4.

Z->B

B->C

0.64

Y->B

0.24

X->B

0.09

Spontaneous

0.03

Z->B

B->D

0.61

Y->B

0.22

X->B

0.08

Spontaneous

0.03

Figure 4.7: Possible-parent trees for the messages in Figure 4.5.

Z->B

B->C

0.64

B->D

0.61

Y->B

B->C

0.24

B->D

0.22

X->B

B->C

0.09

B->D

0.08

Figure 4.8: Possible-child trees formed from the trees in Figure 4.7.

80

be present with send timestamps but not receive timestamps, and B→A messages

will have only receive timestamps. Both estimating dB→A and assigning possible

parents to B→A rely on having timestamps at both nodes. In this case, we use A’s

timestamps in place of B’s and only allow causality back to the same node: A→B→A.

This assumption allows calls from or to nodes outside the traced part of the system

but avoids false causality between, e.g., several unrelated calls to the same server.

After enumerating and weighting all possible parents for each message, the linking

algorithm uses these links to generate a list of the possible children for each message,

preserving the link probabilities. This inversion, shown in Figure 4.8, is necessary

because causal path instances are built from the root down.

Step 3: Building trees

The final step of the linking algorithm builds path instances from the individual links,

then aggregates them into path patterns. That is, if step (2) finds the relationships

shown in Figure 4.4(a), it would generate the two causal path instances shown in

Figure 4.4(b), with the following probabilities:

p1 = 0.8 · 0.9 · (1 − 0.2) · (1 − 0.1) · (1 − 0.48)

≈ 0.270

p2 = 0.8 · 0.9 · (1 − 0.2) · (1 − 0.1) · 0.48

≈ 0.249

Each causal link included contributes a factor p corresponding to its probability. Each

causal link omitted contributes a 1 − p factor.

For each link in the tree (e.g., did A→B cause B→ C?), step (3) treats it as

probably-false, probably-true, or try-both, based on its probability. Decisions are des-

ignated try-both if their probability is close to 0.5 or if they represent one of the

81

most likely causes for a given message. That is, in Figure 4.4, if A→B is the most

likely cause of B→D, then the A→B→D link will be made a try-both even though

its probability is not near 0.5, ensuring that at least one cause of B→D is considered

even if each possible cause has probability p < 0.5. The number of path instances

generated from a given root message is O(2k), where k is the number of ambiguous

links from that message or its descendants that are treated as try-both. Therefore,

k must be limited to bound the running time of linking.

Linking assigns a probability to each tree equal to the product of the probabilities

of the individual decisions—using (1 − p) for decisions to omit a causal link—made

while constructing it. If a specific path pattern is seen several times, we keep track

of the total score (i.e., the expected number of times the pattern was seen) and the

maximum probability. Path patterns in the output are generally ordered by total

score.

Big trees will have low scores because more decisions (more uncertainty) go into

creating them. This behavior is expected.

4.5.2 Node and network latency

The latency at each node B is the time between the receive timestamp of the parent

message arriving at a node B and the send timestamp of the child message that node

B sends. Since both timestamps are local to B, clock offset and clock skew do not

affect node latency. For aggregated trees, the linking algorithm calculates the average

of that node’s delays at each instance of the tree, weighted by the probability of each

instance. In addition to the average, we optionally generate a histogram of delays for

each node in the tree.

The network latency of each message is the difference between its send and re-

ceive timestamps. These timestamps are relative to different clocks (they come from

82

LibSockCap logs at different hosts), so the resulting latency includes clock offset and

skew unless we estimate it and subtract it out. We use a filter on the output of the

linking algorithm to approximate pairwise clock offset by assuming symmetric net-

work delays, following Paxson’s technique [50]. For simplicity, we ignore the effects

of clock skew. As a result, our results hide clock offset and exhibit symmetric average

delays between pairs of hosts.

4.5.3 Algorithm comparison

Project 5 presented two causal-path analysis algorithms, nesting and convolution.

The nesting algorithm works only on applications using call-return communication

and can detect infrequent causal paths (albeit with some inaccuracy as their frequency

drops). However, messages must be designated as either calls or returns and paired

before running the nesting algorithm. If call-return information is not inherently part

of the trace, as in the systems analyzed here, then trying to guess it is error-prone

and is a major source of inaccuracy. Linking and nesting both try to infer the cause,

if any, for each message or call-return pair in the trace individually.

The nesting algorithm only uses one timestamp per message. It is therefore forced

either to ignore clock offset or to use fuzzy timestamp comparisons, which only work

when all clocks differ by less time than the delays being measured. Since clocks

are often unsynchronized—PlanetLab clocks sometimes differ by minutes or hours—

our approach of using both send and receive timestamps works better for wide-area

traces.

The convolution algorithm uses techniques from signal processing, matching sim-

ilar timing signals for the messages coming into a node and the messages leaving the

same node. Convolution works with any style of message communication, but it re-

quires traces with a minimum of hundreds of messages, runs much more slowly than

83

Number of Trace Number of Number of
Trace Date messages duration hosts processes

CoDeeN Sept. 3, 2004 4,702,865 1 hour 115 230
Coral Sept. 6, 2004 4,246,882 1 hour 68 168

Table 4.2: Trace statistics.

nesting or linking, and is inherently unable to detect rare paths. When we applied

convolution to Coral, it could not detect rare paths like DHT calls and could not

separate node processing times of interest from network delays and clock offset.

The linking and nesting algorithms both have O(n lg n) running time, determined

by the need to sort messages in the trace by timestamp, but both are dominated by

an O(n) component for the traces we have tried. The convolution algorithm requires

O((t/s) lg(t/s)) running time, where t is the duration of the trace and s is the size

of the shortest delays of interest. In practice, convolution usually takes one to four

hours to run, nesting rarely takes more than twenty seconds, and linking takes five to

ten minutes but can take much less or much more given a non-default number of try-

both decisions allowed per causal-link tree. Linking and nesting both require O(n)

memory because they load the entire trace into memory, while convolution requires

an amount of memory proportional to the output size, often under 1 MB. Chapter 3

has more details for nesting and convolution, while Section 4.6 has more details for

linking.

4.6 Results for PlanetLab applications

In this section, we present some results from our analyses of traces from the CoDeeN

and Coral PlanetLab applications. Table 4.2 presents some overall statistics for these

two traces.

84

? ?

10.9 ms
64.7 ms

Client

?
?

48.7 ms
?

?

web6
51.7 ms

dns2

2.2 ms

Web Server (PU)
178.2 ms

Solid arrows show message paths, labeled one-way delays, when known. Dotted arcs
show node-internal delays between message events. Nodes are labeled with name and
total delay for node and its children.

Figure 4.9: Call-tree visualization.

cl PU

64.7

dns2

2.2

PU

48.7

web6

51.7

PU

10.9

cl

Figure 4.10: Linking algorithm output for a Coral miss path with DNS lookup,
delays in ms.

4.6.1 Visualization of results

For a given causal path pattern, we use a timeline to represent both causality and

time; for example, see Figures 4.10, 4.12, 4.13, and 4.14. Boxes represent nodes and

lines represent communication links; each node or line is labeled with its mean delay

in milliseconds. If we do not have traces from a node, we cannot distinguish its

internal delay from network delays, so we represent the combination of such a node

and its network links as a diamond, labeled with the total delay for that combination.

Time and causality flow left to right, so if a node issues an RPC call, it appears twice

in the timeline: once when it sends the call, and again when it receives the return.

These timelines differ from the call-tree pictures traditionally used to represent

system structure (for example, Figure 1 in [65] and Figure 1 in [22], or the diagrams

85

Code name Hostname
A&M planetlab2.tamu.edu
A&T CSPlanet2.ncat.edu
CMU planetlab-2.cmcl.cs.cmu.edu
CT planlab2.cs.caltech.edu
How nodeb.howard.edu
MIT planetlab6.csail.mit.edu
MU plnode02.cs.mu.oz.au
ND planetlab2.cse.nd.edu
PU planetlab2.cs.purdue.edu
Pri planetlab-1.cs.princeton.edu
Ro planet2.cs.rochester.edu
UCL planetlab2.info.ucl.ac.be
UVA planetlab1.cs.virginia.edu
WaC cloudburst.uwaterloo.ca (Coral DHT process)
WaP cloudburst.uwaterloo.ca (Proxy process)
cl Any client
dns N some DNS server
lo local loopback
web N some Web origin server

Table 4.3: Abbreviated names for hosts used in WAP5 figures.

in our earlier work [1]) but we found it hard to represent both causality and delay in

a call-tree, especially when communication does not follow a strict call-return model.

Magpie [4] also uses timelines, although Magpie separates threads or nodes vertically,

while we only do so when logically parallel behavior requires it.

It is possible to transform the timeline in Figure 4.10 to a call tree, as in the hand-

constructed Figure 4.9, but this loses the visually helpful proportionality between

different delays.

To avoid unreadably small fonts, we use short code names in the timelines instead

of full hostnames. Table 4.3 provides a translation.

86

4.6.2 Characterizing causal paths

Our tools allow us to characterize and compare causal path patterns. For example,

Figure 4.10 and Figure 4.12 show, for Coral and CoDeeN respectively, causal path

patterns that include a cache miss and a DNS lookup. One can see that CoDeeN

differs from Coral in its use of two proxy hops (described in [65] as a way to aggregate

requests for a given URL on a single CoDeeN node).

A user of our tools can see how overall system delay is broken down into delays

on individual hosts and network links. Further, the user can explore how application

structure can affect performance. For example, does the extra proxy hop in CoDeeN

contribute significantly to client latency?

Note that we ourselves are not able to compare the end-to-end performance of

Coral and CoDeeN because we do not have traces made at clients. For example, one

CDN might be able to optimize client network latencies at the cost of poorer server

load balancing.

4.6.3 Characterizing node delays

When looking for a performance bug in a replicated distributed system, it can be

helpful to look for large differences in delay between paths that should behave simi-

larly. Although we do not believe there were any gross performance problems in either

CoDeeN or Coral when our traces were captured, we can find paths with significantly

different delays. For example, Figure 4.13 shows two different but isomorphic cache-

miss paths for CoDeeN (these paths do not require DNS lookups). The origin server

delay (a total including both network and server delay) is 321 ms in the top path

but only 28 ms in the bottom path. Also, the proxies in the top path show larger

delays when forwarding requests than those in the bottom path. In both cases, when

a proxy forwards a response, it does so quite rapidly.

87

Node name Mean delay Number of samples

CoDeeN
planet1.scs.cs.nyu.edu 0.29 ms 583
pl1.ece.toronto.edu 1.47 ms 266
planlab1.cs.caltech.edu 0.59 ms 247
nodeb.howard.edu 4.86 ms 238
planetlab-3.cmcl.cs.cmu.edu 0.20 ms 53

Coral
planet1.scs.cs.nyu.edu 4.84 ms 6929
planetlab12.Millennium.Berkeley.EDU 6.16 ms 3745
planetlab2.csail.mit.edu 5.51 ms 1626
CSPlanet2.chen.ncat.edu 0.98 ms 987
planetlab14.Millennium.Berkeley.EDU 0.91 ms 595

Table 4.4: Examples of mean delays in proxy nodes.

Similarly, we can focus on just one role in a path and compare the delays at

the different servers that fill this role. Table 4.4 shows mean delays in proxies for

cache-hit operations (the causal path patterns in this case are trivial).

The message linking algorithm has enough information to generate the entire dis-

tribution of delays at a node or on a link rather than just the mean delay. Figure 4.11

shows the delay distributions for cache-hit operations on five nodes. The nodes in

this figure are also listed in Table 4.4, which shows mean delay values for four of the

nodes between 0 and 2 ms. The distribution for nodeb.howard.edu shows two peaks,

including one at 18 ms that strongly implies a disk operation and corresponds with

this node’s higher mean delay in the table.

4.6.4 DHT paths in Coral

Coral uses a distributed hash table (DHT) to store information about which proxy

nodes have a given URL and to store location information about clients.1 Whenever

1The Coral authors call their structure a distributed sloppy hash table (DSHT) to emphasize design
decisions they made to improve load balancing.

88

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.005 0.01 0.015 0.02 0.025

Fr
eq

ue
nc

y
(n

or
m

al
iz

ed
)

Delay (s)

nodeb.howard.edu
pl1.ece.toronto.edu
planlab1.cs.caltech.edu
planet1.scs.cs.nyu.edu
planetlab-3.cmcl.cs.cmu.edu

Figure 4.11: Node delay distributions in CoDeeN.

cl UVA

0.5
24.9

Pri

0.3

lo

161.9

Pri

28.5

web1

33.1

Pri

0.2
24.9

UVA

0.2

cl

Figure 4.12: Linking algorithm output for a CoDeeN miss path with DNS lookup,
delays in ms.

cl A&M

0.5
26.8

CT

17.1

web3

28.4

CT

0.1
26.8

A&M

0.1

cl

cl How

19.0
18.9

Ro

50.9

web4

320.6

Ro

0.1
18.9

How

0.2

cl

Figure 4.13: Linking algorithm output for two CoDeeN miss paths, delays in ms.

89

WaP
5.5

WaC

0.4
25.2

MIT

0.8
18.2

WaC

1.5
79.3

CMU

1.2
79.3

WaC

1.0
64.8

UCL

0.6
64.8

WaC

132.8
MU

0.5
132.8

WaC

0.5
131.7

MU

0.5
132.2

WaC

0.3
5.5

WaP

A&T

69.2

WaC

23.1
ND

1.0
23.1

WaC

20.9
MIT

0.9
25.2

WaC

Figure 4.14: Linking algorithm output for a DHT call in Coral, delays in ms.

Number of Trace Reconciliation Message Linking
Trace messages duration CPU secs MBytes CPU secs MBytes

CoDeeN 4,702,865 1 hour 982 697 730 1354
Coral 4,246,882 1 hour 660 142 517 1148

Table 4.5: Runtime costs for analyzing the CoDeeN and Coral traces.

a proxy does not have a requested web object in its local cache, it searches the DHT

to find other nodes that have the object, and it inserts a record into the DHT once

it has retrieved the object. Figure 4.14 shows one such DHT call in Coral. The

sets of three parallel calls in this figure reflect Coral’s use of three overlapping DHTs

at different levels of locality. From the figure, it is also clear that Coral’s DHT is

iterative: each hop in a DHT path responds directly to the requester rather than

forwarding the query to the next hop.

4.6.5 Algorithm execution costs

We measured the CPU time and memory required to run the reconciliation and

message linking algorithms on several traces. Table 4.5 shows that these costs are

acceptable. The CPU time requirements are higher than for the nesting algorithm but

lower than for the convolution algorithm [1]. The memory requirements reflect the

need to keep the entire trace in memory for both reconciliation and linking. We expect

the running time to be O(n lg n) for both reconciliation and linking because both

require sorting. However, the O(n) portions of each program dominate the running

90

time. The running time for linking is heavily dependent on the pruning parameters

used, particularly the number of try-both bits allocated per link probability tree.

Memory requirements are O(n) for both programs.

4.6.6 Metrics for sorting path patterns

The linking algorithm produces two scores for each path pattern it identifies: a raw

count of the number of instances and the expected number of instances believed

to be real. The latter is the sum of the probabilities of all instances of the path

pattern. Sorting by the expected number of instances is generally the most useful, in

that the patterns at the top of the list appear many times, have high confidence, or

both. Highlighting paths that appear many times is useful because they are where

optimizations are likely to be useful. Highlighting paths with high confidence helps

suppress false positives (i.e., patterns that are inferred but do not reflect actual

program behavior).

Two additional, composite metrics are: (1) expectation÷count and (2) expectation÷
√

count. The first is the average probability of instances of each path, and it favors

high-confidence paths. The second captures the notion that seeing a path many times

increases the confidence that it is not a false positive, but not linearly.

4.7 Enterprise applications

Although this chapter focuses on wide-area applications, previous work on black-box

debugging using traces [1, 4, 12] focused on LAN applications. We had the oppor-

tunity to try our tools on traces from a moderately complex enterprise application,

Slurpee2. Slurpee is the one system on which we have used linking, nesting, and con-

volution. We learned several things applying WAP5 to Slurpee that are applicable

2Slurpee is not its real name.

91

to wide-area applications.

The Slurpee system aids in supporting customers of a computer vendor. It handles

reports of incidents (failures or potential failures) and configuration changes. Reports

arrive via the Internet, and are passed through several tiers of replicated servers.

Between each tier there are firewalls, load balancers, and/or network switches as

appropriate, which means that the component servers are connected to a variety of

distinct LANs.

Since we could not install LibSockCap on the Slurpee servers, packet-sniffing

was our only option for tracing Slurpee and had the advantage of non-invasiveness.

However, we found the logistics significantly more daunting than we expected. Packet

sniffing systems are expensive, and we could not allocate enough of them to cover

all packet paths. They also require on-site staff support to set them up, configure

switch ports, initiate traces, and collect the results. In the future, these tasks might

be more automated.

We obtained simultaneous packet traces from five sniffers, one for each of the

main LAN segments behind the main firewall. We treated each packet as a message,

and applied a variant of our reconciliation algorithm (see Section 4.4) to generate a

unified trace.

The five sniffers did not have synchronized clocks when the traces were made.

Clock offsets were on the order of a few seconds. Since we had two copies of many

packets (one sniffed near the sender, one sniffed near the receiver), we developed an

algorithm to identify which sniffer’s clock to use as the sender or receiver timestamp

for each server (node) in the trace. If the sniffer is on the same switch as a node,

then every packet to or from that node appears in that sniffer’s traces. If we did not

sniff the node’s switch, then we chose the sniffer that contained the most packets to

or from the node.

92

We applied all three of our causal-path analysis algorithms to the Slurpee trace.

The Slurpee trace conforms to call-return semantics but does not contain the infor-

mation needed to pair calls with returns. We tried several heuristics for pairing calls

and returns, but the inaccuracy in this step limited the usefulness of the nesting

algorithm. Convolution does not require call-return pairing, but it does require a

large number of instances of any given path. Several of the Slurpee paths occurred

infrequently and were not detected by convolution. Some of the Slurpee hosts were

only visible in the trace for a few seconds and so did not send or receive enough

messages to appear in any path detected by convolution. Linking was able to detect

both common and rare paths and was not hampered by the lack of call-return pairing

information.

4.7.1 Network address translation

In analyzing the Slurpee system, we found instances of network address translation,

which did not appear in the Coral or CoDeeN traces but which might appear in other

wide-area systems.

Network address translation (NAT) [18] allows network elements to change the

addresses in the packets they handle. In Slurpee, a load balancer uses NAT to redirect

requests to several server replicas. Wide-area systems often use NAT to reduce the

pressure on IPv4 address space assignments. NAT presents a problem for message-

based causality analysis, because the sender and receiver of a single message use

different “names” (IP addresses) for one of the endpoints.

We developed a tool to detect NAT in packet traces and to rewrite trace records

to canonicalize the translated addresses. This tool searches across a set of traces for

pairs of packets that have identical bodies and header fields, except for IP addresses

and headers that normally change as the result of routing or NAT. While small

93

numbers of matches might be accidental (especially for UDP packets, which lack

TCP’s pseudo-random sequence numbers), frequent matches imply the use of NAT.

The tool can also infer the direction of packet flow using the IP header’s Time-To-

Live (TTL) field, and from packet timestamps if we can correct sufficiently for clock

offsets.

We have not tested this tool on packet traces from a wide-area system, but we

believe it would work correctly. However, because LibSockCap does not capture mes-

sage contents and cannot capture packet headers, LibSockCap traces do not currently

contain enough information to support this tool.

4.8 Summary

We have developed a set of tools collectively called Wide-Area Project 5 (WAP5) that

helps expose causal structure and timing in wide-area distributed systems. Our tools

include a tracing infrastructure, which includes a network interposition library called

LibSockCap and algorithms to reconcile many traces into a unified list of messages;

a message-linking algorithm for inferring causal relationships between messages; and

visualization tools for generating timelines and causal trees. We applied WAP5 to two

content-distribution networks in PlanetLab, Coral and CoDeeN, and to an enterprise-

scale incident-monitoring system, Slurpee. We extracted a causal behavior model

from each system that matched published descriptions (or, for Slurpee, our discussions

with the maintainers). In addition, we were able to examine the performance of

individual nodes and the hop-by-hop components of delay for each request.

94

Chapter 5

Pip: Checking Expectations

In this chapter, we introduce Pip, the last of the three debugging tools. Pip is designed

to help isolate unexpected structural and performance behavior automatically by

allowing programmers to write explicit, declarative expectations about how their

programs should behave. Pip occupies the most intrusive, most accuracy point of

the intrusiveness vs. accuracy trade-off: it normally requires annotations in program

source code and in return constructs causal paths with arbitrarily fine granularity and

perfect accuracy. This improvement in granularity and accuracy permits automatic

checking of expectations.

5.1 Overview

Pip is a system for automatically checking the behavior of a distributed system against

a programmer’s stated expectations about the system. Pip classifies system behaviors

as valid or invalid, groups behaviors into sets that can be reasoned about, and presents

overall behavior in several forms suited to discovering or verifying the correctness and

desired performance of system behavior. Unexpected behavior often indicates a bug.

Pip can indicate the block of code responsible for the bug, as well as the conditions

that led to it.

Bugs in distributed systems can affect structure, performance, or both. A struc-

tural bug results in processing or communication happening at the wrong place or

in the wrong order. A performance bug results in processing taking too much or too

little of any important resource. For example, a request that takes too long may in-

dicate a bottleneck, while a request that finishes too quickly may indicate truncated

95

processing or some other error. Pip supports expressing expectations about both

structure and performance and so can find a wide variety of bugs.

Our experience shows three major benefits of Pip. First, expectations are a sim-

ple and flexible way to express system behavior. Second, automatically checking

expectations helps users find bugs that other approaches would not find or would

not find as easily. Finally, the combination of expectations and visualization helps

programmers explore and learn about unfamiliar systems.

5.1.1 Contributions and results

Pip makes the following contributions:

• An expectations language for writing concise, declarative descriptions of the

expected behavior of large distributed systems. We present our language design,

along with design principles for handling parallelism and for balancing over- and

under-constraint of system behavior.

• A set of tools for gathering events, checking behavior, and visualizing valid and

invalid behaviors.

• Tools to generate expectations automatically from system traces. These expec-

tations are often more concise and readable than any other summary of system

behavior, and bugs can be obvious just from reading them.

We applied Pip to several distributed systems, including FAB [58], SplitStream [10],

Bullet [38, 40], and RanSub [39]. Pip automatically generated most of the instru-

mentation for all four applications. We wrote expectations to uncover unexpected

behavior, starting in each case from automatically generated expectations. Pip found

unexpected behavior in each application and helped to isolate the causes of poor per-

formance and incorrect behavior.

96

The rest of this chapter is organized as follows. Section 5.2 contains an overview of

the Pip architecture and tool chain. Sections 5.3 and 5.4 describe in detail the design

and implementation of our expectation language and annotation system, respectively.

Section 5.5 describes the GUI that is an integral part of finding bugs using Pip.

Section 5.6 describes our results.

5.2 Architecture

Pip traces the behavior of a running application, checks that behavior against pro-

grammer expectations, and displays the resulting valid and invalid behavior in a GUI

using several different visualizations.

5.2.1 Behavior model

We define a model of application behavior for use with Pip. This model does not

cover every possible application, but we found it natural for the systems we analyzed.

The basic unit of application behavior in Pip is a path instance. Path instances

are often causal and are often in response to an outside input such as a user request.

A path instance includes events on one or more hosts and can include events that

occur in parallel. In a distributed file system, a path instance might be a block read,

a write, or a data migration. In a three-tier web service, path instances might occur

in response to user requests. Pip allows the programmer to define paths in whatever

way is appropriate for the system being debugged.

Each path instance is an ordered series of timestamped events. The Pip model

defines three types of events: tasks, messages, and notices. A task is like a profiled

procedure call: an interval of processing with a beginning and an end, and measure-

ments of resources consumed. Tasks may nest inside other tasks but otherwise may

not overlap other tasks on the same thread. Tasks may include asynchronous events

97

Figure 5.1: Sample causal path from a three-tier system.

like timer callbacks, which Pip normally associates with the path instances that

scheduled them. A message is any communication event between hosts or threads,

whether a network message, a lock, or a timer. Pip records messages when they are

sent and again when they are received. Finally, a notice is an opaque string—like a

log message, with a timestamp and a path identifier for context.

Figure 5.1 shows a sample path instance. Each dashed horizontal line indicates

one host, with time proceeding to the right. The boxes are tasks, which run on a

single host from a start time to an end time. The diagonal arrows are messages sent

from one host to another. The labels in quotation marks are notices, which occur at

one instant on a host.

Pip associates each recorded event with a thread. An event-handling system that

dispatches related events to several different threads will be treated as having one

logical thread. Thus, two path instances that differ only on which threads they are

dispatched will appear to have identical behavior.

Our choice of tasks, messages, and notices is well suited to a wide range of dis-

tributed applications. Tasks correspond to subroutines that do significant processing.

In an event-based system, tasks can correspond to event-handling routines. Messages

correspond to network communication, locks, and timers. Notices capture many other

types of decisions or events an application might wish to record.

98

Figure 5.2: Pip workflow. Shaded ovals represent input that must be at least
partially written by the programmer.

5.2.2 Tool chain

Pip is a suite of programs that work together to gather, check, and display the

behavior of distributed systems. Figure 5.2 shows the workflow for a programmer

using Pip. Each step is described in more detail below.

Annotated applications: Programs linked against Pip’s annotation library gen-

erate events and resource measurements as they run. Pip logs these events into trace

files, one per kernel-level thread on each host. We optimized the annotation library

for efficiency and low memory overhead; it performs no analysis while the application

is running.

We found that the required annotations are easiest to add when communication,

event handling, and logging are handled by specialized components or by a supported

middleware library. Such concentration is common in large-scale distributed systems.

For applications linked against a supported middleware library, a modified version of

the library can generate automatic annotations for every network message, remote

procedure call, and network-event handler. Programmers can add more annotations

99

to anything not annotated automatically.

A separate program gathers traces from each host and reconciles them. Rec-

onciliation includes pairing message send and receive events, pairing task start and

end events, and performing a few sanity checks. Reconciliation writes events to a

database as a series of path instances. Reconciliation is run offline, parsing log files

from a short test run. Section 5.4 describes annotations and reconciliation in more

detail.

Expectations: Programmers write an external description of expected program

behavior. The expectations take two forms: recognizers, which validate or invali-

date individual path instances, and aggregates, which assert properties of sets of path

instances. Pip can generate initial recognizers automatically, based on recorded pro-

gram behavior. These generated recognizers serve as a concise, readable description

of actual program behavior. Section 5.3 describes expectations in more detail.

Formally, a set of recognizers in Pip is a grammar, defining valid and invalid

sequences of events. In its current form, Pip allows users to define non-deterministic

finite-state machines to check a regular grammar. We chose to define a domain-

specific language for defining these grammars because our language more closely

mirrors how programmers reason about behavior in their applications. We believe

this choice simplifies writing and maintaining expectations.

Expectation checker: If the programmer provides any expectations, Pip checks

all traced behavior against them. These checks can be done non-interactively, to

generate a list of violations, or they can be incorporated into the behavior explorer

(below). Section 5.3.5 describes the implementation and performance of expectation

checking.

The expectation violations that Pip uncovers do not always indicate bugs in the

100

system being tested. Sometimes, the errors are in the expectations or in the an-

notations. Using Pip entails changing the application, the expectations, and the

annotations until no further unexpected behavior is found. Unexpected paths due

to incorrect expectations or annotations can loosely be called false positives, though

they are not due to any incorrect inference by Pip.

Behavior explorer: Pip provides an interactive GUI environment that displays

causal structure, communication structure, sets of validated and invalidated paths,

and resource graphs for tasks or paths. Even without writing any expectations,

programmers can visualize most aspects of application behavior. The GUI has three

views for exploring the behavior of an individual path instance and a fourth view for

exploring the performance behavior of many aggregated tasks or paths. These are

described in more detail in Section 5.5. In addition to the GUI, Pip stores all of its

path events in a SQL database so that users can write queries or scripts to explore

and check application behavior in ways that Pip may not support directly.

5.3 Expectations

Both checking and visualization in Pip start with expectations. Using Pip’s declar-

ative expectations language, programmers can describe their intentions about a sys-

tem’s structure, timing, and resource consumption.

5.3.1 Design considerations

Our goal is to provide a declarative, domain-specific expectations language that is

more expressive than general-purpose languages, resulting in expectations that are

easier to write and maintain. Programmers using Pip should be able to find more

complex bugs with less effort than programmers checking behavior with scripts or

101

programs written in general-purpose languages.

With expressiveness in mind, we present three goals for any expectations language:

1. Expectations written in the language must accept all valid paths. One recog-

nizer should be able to accept a whole family of paths—e.g., all read operations

in a distributed file system or all CGI page loads in a webserver—even if they

vary slightly. In some systems, particularly event-driven systems, the order of

events might vary from one path instance to the next.

2. Expectations written in the language must reject as many invalid paths as

possible. The language should allow the programmer to be as specific as possible

about task placement, event order, and communication patterns, so that any

deviations can be categorized as unexpected behavior.

3. The language should make simple expectations easy to express.

We designed Pip with several real systems in mind: peer-to-peer systems, multi-

cast protocols, distributed file systems, and three-tier web servers, among others. Pip

also draws inspiration from two platforms for building distributed systems: Mace1 [45]

and SEDA [66]. The result is that Pip supports thread-oriented systems, event-

handling systems, and hybrids. We gave special consideration to event-handling

systems that dispatch events to multiple threads in a pool, i.e., for multiprocessors

or to allow blocking code in event handlers.

5.3.2 Approaches to parallelism

The key difficulty in designing an expectations language is expressing parallelism.

Parallelism in distributed systems originates from three main sources: hosts, threads,

and event handlers. Processing happens in parallel on different hosts or on different

1Mace is an ongoing redesign of the MACEDON [54] language for building distributed systems.

102

threads within the same host, either with or without synchronization. Event-based

systems may exhibit additional parallelism if events arrive in an unknown order.

Pip first reduces the parallelism apparent in an application by dividing behavior

into paths. Although a path may or may not have internal parallelism, a person

writing Pip expectations is shielded from the complexity of matching complex inter-

leavings of many paths at once.

Pip organizes the parallelism within a path into threads. The threads primitive

applies whether two threads are on the same host or on different hosts. Pip’s expec-

tation language exposes threading by allowing programmers to write thread patterns,

which recognize the behavior of one or more threads in the same path instance.

Even within a thread, application behavior can be nondeterministic. Applications

with multiple sources of events (e.g., timers or network sockets) might not always

process events in the same order. Thus, Pip allows programmers to write futures,

which are sequences of events that happen at any time after their declaration.

One early design for Pip’s expectation language treated all events on all hosts as a

single, logical thread. There were no thread patterns to match parallel behavior. This

paradigm worked well for distributed hash tables (DHTs) and three-tier systems, in

which paths are largely linear, with processing across threads or hosts serialized. It

worked poorly, however, for multicast protocols, distributed file systems, and other

systems where a single path might be active on two hosts or threads at the same

time. We tried a split keyword to allow behavior to occur in parallel on multiple

threads or hosts, but it was awkward and could not describe systems with varying

degrees of parallelism. The current design, using thread patterns and futures, can

naturally express a wider variety of distributed systems.

103

// Read3Others is a validating recognizer

validator Read3Others {
// no voluntary context switches: never block
limit(VOL CS, 0);
// one Client, issues a read request to Coordinator
thread Client(*, 1) {

send(Coordinator) limit(SIZE, {=44b}); // exactly 44 bytes
recv(Coordinator);

}
// one Coordinator, requests blocks from three Peers
thread Coordinator(*, 1) {

recv(Client) limit(SIZE, {=44b});
task(“fabrpc::Read”) {

repeat 3 {
send(Peer);

}
repeat 2 {

recv(Peer);
task(“quorumrpc::ReadReply”);

}
future { // these statements match events now or later

recv(Peer);
task(“quorumrpc::ReadReply”);

}
}
send(Client);

}
// exactly three Peers, respond to Coordinator
thread Peer(*, 3) {

recv(Coordinator);
task(“quorumrpc::ReadReq”) {

send(Coordinator);
}

}
}
// “assert” indicates an aggregate expectation
assert(average(REAL TIME, Read3Others) < 30ms);

Figure 5.3: Expectations for the FAB read protocol.

104

validator fab 109 {
thread t 7(*, 1) {

send(t 9); recv(t 9);
}
thread t 9(*, 1) {

recv(t 7);
task(“fabrpc::Read”) {

send(t 1);
send(t 1);
send(t 1);
recv(t 1);
task(“quorumrpc::ReadReply”);
recv(t 1);
task(“quorumrpc::ReadReply”);

}
send(t 7);
recv(t 1);
task(“quorumrpc::ReadReply”);

}
thread t 1(*, 3) {

recv(t 9);
task(“quorumrpc::ReadReq”) { send(t 9); }

}
}

Figure 5.4: Automatically generated expectation for the FAB read protocol, from
which we derived the expectation in Figure 5.3.

105

5.3.3 Expectation language description

Pip defines two types of expectations: recognizers and aggregates. A recognizer is a

description of structural and performance behavior. Each recognizer classifies a given

path instance as matching, matching with performance violations, or non-matching.

Aggregates are assertions about properties of sets of path instances. For example, an

aggregate might state that a specific number of path instances must match a given

recognizer, or that the average or 95th percentile CPU time consumed by a set of

path instances must be below some threshold.

Figure 5.3 shows a recognizer and an aggregate expectation describing common

read events in FAB [58], a distributed block-storage system. The limit statements

are optional and are often omitted in real recognizers. They are included here for

illustration.

FAB read events have five threads: one client, one I/O coordinator, and three

peers storing replicas of the requested block. Because FAB reads follow a quorum

protocol, the coordinator sends three read requests but only needs two replies before

it can return the block to the client. The final read reply may happen before or

after the coordinator sends the newly read block to the client. Figure 5.4 shows a

recognizer generated automatically from a trace of FAB, from which we derived the

recognizer in Figure 5.3.

The recognizer in Figure 5.3 matches only a 2-of-3 quorum, even though FAB can

handle other degrees of replication. Recognizers for other quorum sizes differ only

by constants. Similarly, recognizers for other systems might depend on deployment-

specific parameters, such as the number of hosts, network latencies, or the desired

depth of a multicast tree. In all cases, recognizers for different sizes or speeds vary only

by one or a few constants. Pip could be extended to allow parameterized recognizers,

which would simplify the maintenance of expectations for systems with multiple,

106

different deployments.

Pip currently provides no easy way to constrain similar behavior. For example,

if two loops must execute the same number of times or if communication must go to

and from the same host, Pip provides no means to say so. Variables would allow an

expectations writer to define one section of behavior in terms of a previously observed

section. Variables are also a natural way to implement parameterized recognizers, as

described above.

The following sections describe the syntax of recognizers and aggregate expecta-

tions.

Recognizers

Each recognizer can be a validator, an invalidator, or a building block for other

expectations. A path instance is considered valid behavior if it matches at least one

validator and no invalidators. Ideally, the validators in an expectations file describe

all expected behavior in a system, so any unmatched path instances imply invalid

behavior. Invalidators may be used to indicate exceptions to validators, or as a simple

way to check for specific bugs that the programmer knows about in advance.

Each recognizer can match either complete path instances or fragments. A com-

plete recognizer must describe all behavior in a path instance, while a fragment rec-

ognizer can match any contiguous part of a path instance. Fragment recognizers are

often, but not always, invalidators, recognizing short sequences of events that inval-

idate an entire path. The validator/invalidator and complete/fragment designations

are orthogonal.

A recognizer matches path instances much the same way a regular expression

matches character strings. A complete recognizer is similar to a regular expression

that is constrained to match entire strings. Pip’s recognizers define regular languages,

107

and the expectation checker approximates a finite state machine.

Each recognizer in Pip consists of expectation statements. Each statement can

be a literal, matching exactly one event in a path instance; a variant, matching

zero or more events in a path instance; a future, matching a block of events now or

later; or a limit, constraining resource consumption. What follows is a description of

the expectation statements used in Pip. Most of these statements are illustrated in

Figure 5.3.

Thread patterns: Path instances in Pip consist of one or more threads or thread

pools, depending on system organization. There must be at least one thread per host

participating in the path. All complete (not fragment) recognizers consist of thread

patterns, each of which matches threads. A whole path instance matches a recognizer

if each thread matches a thread pattern. Pip’s syntax for a thread pattern is:

thread(where, count) {statements}

Where is a hostname, or “*” to match any host. Count is the number of threads

allowed to match, or an allowable range. Statements is a block of expectation state-

ments.

Literal statements: Literal expectation statements correspond exactly to the types

of path events described in Section 5.2. The four types of literal expectation state-

ments are task, notice, send, and recv.

A task statement matches a single task event and any nested events in a path

instance. The syntax is:

task(name) {statements}

108

Name is a string or regular expression to match the task event’s name. The optional

statements block contains zero or more statements to match recursively against the

task event’s subtasks, notices, and messages.

A notice statement matches a single notice event. Notice statements take a

string or regular expression to match against the text of the notice event.

Send and recv statements match the endpoints of a single message event. Both

statements take an identifier indicating which thread pattern or which node the

message is going to or arriving from.

Variant statements: Variant expectation components specify a fragment that can

match zero or more actual events in a path instance. The five types of variant

statements are repeat, maybe, xor, any, and include.

A repeat statement indicates that a given block of code will be repeated n times,

for n in a given range. The maybe statement is a shortcut for repeat between 0

and 1. The syntax of repeat and maybe is:

repeat between low and high { statements }
maybe { statements }

An xor statement indicates that exactly one of the stated branches will occur.

The syntax of xor is:

xor {
branch: statements
branch: statements
... (any number of branch statements)

}

An any statement matches zero or more path events of any type. An any state-

ment is equivalent to “.*” in a regular expression, allowing an expectation writer to

avoid explicitly matching a sequence of uninteresting events.

109

An include statement includes a fragment expectation inline as a macro expan-

sion. The include statement improves readability and reduces the need to copy and

paste code.

Futures: Some systems, particularly event-handling systems, can allow the order

and number of events to vary from one path instance to the next. Pip accommodates

this fact using future statements and optional done statements. The syntax for

future and done statements is:

future [name] {statements}
done(name);

A future statement indicates that the associated block of statements will match

contiguously and in order at or after the current point in the path instance. Loosely, a

future states that something will happen either now or later. Futures may be nested:

when one future encloses another, it means that the outer one must match before

the inner one. Futures may also be nested in (or may include) variant statements.

Futures are useful for imposing partial ordering of events, including asynchronous

events. Specifying several futures in a row indicates a set of events that may finish

in any order. The recognizer in Figure 5.3 uses futures to recognize a 2-of-3 quorum

in FAB: two peers must respond immediately, while the third may reply at any later

time.

A done statement indicates that events described by a given future statement

(identified by its name) must match prior to the point of the done statement. All

futures must match by the end of the path instance, with or without a done statement,

or else the recognizer does not match the path instance.

Limits: Programmers can express upper and lower limits on the resources that

any task, message, or path can consume. Pip defines several metrics, including real

110

time, CPU time, number of context switches, and message size and latency (the only

metrics that apply to messages). A limit on the CPU time of a path is evaluated

against the sum of the CPU times of all the tasks on that path. A limit on the real

time of a path is evaluated based on the time between the first and last events on

the path.

Recognizer sets: One recognizer may be defined in terms of other recognizers. For

example, recognizer C may be defined as matching any path instance that matches

A and does not match B, or the set difference A − B.

Aggregates

Recognizers organize path instances into sets. Aggregate expectations allow program-

mers to reason about the properties of those sets. Pip defines functions that return

properties of sets, including:

• instances returns the number of instances matched by a given recognizer.

• min, max, avg, and stddev return the minimum, maximum, average, and stan-

dard deviation of the path instances’ consumption of any resource.

Aggregate expectations are assertions defined in terms of these functions. Pip sup-

ports common arithmetic and comparative operators, as well as simple functions like

logarithms and exponents. For example:

assert(average(CPU TIME, ReadOperation) < 0.5s);

This statement is true if the average CPU time consumed by a path instance matching

the ReadOperation recognizer is less than 0.5 seconds.

111

5.3.4 Avoiding over- and under-constraint

Expectations in Pip must avoid both over- and under-constraint. An over-constrained

recognizer may be too strict and reject valid paths, while an under-constrained recog-

nizer may accept invalid paths. Pip provides variant statements—repeats, xor, and

futures—to allow the programmer to choose how specific to be in expressing expecta-

tions. Programmers should express how the system should behave rather than how it

does behave, drawing upper and lower bounds and ordering constraints from actual

program design.

Execution order is particularly prone to under- and over-constraint. For com-

ponents that devote a thread to each request, asynchronous behavior is rare, and

programmers will rarely, if ever, need to use futures. For event-based components,

locks and communication order may impose constraints on event order, but there may

be ambiguity. To deal with ambiguity, programmers should describe asynchronous

tasks as futures. In particular, periodic background events (e.g., a timer callback)

may require a future statement inside a repeat block, to allow many occurrences

(perhaps an unknown number) at unknown times.

5.3.5 Implementation

The Pip trace checker operates as a nested loop: for each path instance in the trace,

check it against each recognizer in the supplied expectations file.

Pip stores each recognizer as a list of thread patterns. Each thread pattern is a

tree, with structure corresponding to the nested blocks in the expectations file. Fig-

ure 5.5 shows a sample expectation and one matching path. This example demon-

strates why a greedy matching algorithm is insufficient to check expectations: the

greedy algorithm would match Notice C too early and incorrectly return a match

failure. Any correct matching algorithm must be able to check all possible sets of

112

task(“A”) { <task name=“A”>
maybe { notice(“B”); } <notice name=“B” />
repeat between 1 and 2 { <notice name=“C” />

notice(/.*/); </task>
}
notice(“C”);

}

Figure 5.5: Sample fragment recognizer and a path that matches it.

events that variants such as maybe and repeat can match.

Pip represents each path instance as a list of threads. Each thread is a tree, with

structure corresponding to the hierarchy of tasks and subtasks. When checking a

recognizer against a given path instance, Pip tries each thread in the path instance

against each thread pattern in the recognizer. The recognizer matches the path

instance if each path thread matches at least one thread pattern and each thread

pattern matches an appropriate number of path threads.

Each type of expectation statement has a corresponding check function that

matches path instance events. Each check function returns each possible number of

events it could match. Literal statements (task, notice, send, and recv) match a

single event, while variant statements (repeat, xor, and any) can match different

numbers of events. For example, if two different branches of an xor statement could

match, consuming either two or three events, check returns the set [2, 3]. If a literal

statement matches the current path event, check returns [1], otherwise ∅. When a

check function for a variant statement returns [0], it can be satisfied by matching

zero events. A failure is indicated by the empty set, ∅.

The possible-match sets returned by each expectation statement form a search

tree, with height equal to the number of expectation statements and width dependent

on how many variant statements are present in the expectation. Pip uses a depth-first

search to explore this search tree, looking for a leaf node that reaches the end of the

113

Figure 5.6: Search tree formed when matching the recognizer and the path events
in Figure 5.5.

expectation tree and the path tree at the same time. That is, the match succeeds if,

in any leaf of the search tree, the expectation matches all of the path events. Node

expansion is lazy; thus, the tree is constructed from the left only until a matching

leaf is found.

Figure 5.6 shows the possibilities searched when matching the expectations and

the path events in Figure 5.5. Each node represents a check function call. Each node

shows the return value (true or false) of the recursive search call, the expectation

statement being matched, and the number(s) of events it can match. Leaves with no

possible matches are shown with a possible-match set of NULL and a return value of

false. A leaf with one or more possible matches might still return false, if any path

events were left unmatched.

114

future F1 { notice(“C”); } <task name=“A”>
task(“A”) { <notice name=“B” />

maybe { notice(“B”); } <notice name=“C” />
repeat between 1 and 2 { </task>

notice(/.*/);
}

}

Figure 5.7: The same path as in Figure 5.5, with a slightly modified recognizer to
match it. Note that the notice("C") statement has been moved into a future block.

Futures

Pip checks futures within the same framework. Each check function takes an addi-

tional parameter containing a table of all currently available futures. Possible-match

sets contain <events matched, futures table> tuples rather than just numbers of

events that could be matched. Most check calls do not affect the table of active

futures, simply returning the same value passed as a parameter. Future.check in-

serts a new entry into the futures table but does not attempt to match any events;

it returns a single tuple: <0 events, updated futures table>. Done.check forces the

named future to match immediately and removes it from the futures table.

Each node in the search tree must try all futures in the table as well as the next

expectation statement. If a future matches, then that branch of the tree uses a new

futures table with that one future removed. A leaf of the tree matches only if each

expectation statement returns success, all path events are consumed, and the futures

table is empty.

Figure 5.7 shows the same path instance as in Figure 5.5, with a different expec-

tation to match it: the notice("C") statement is now a future. Figure 5.8 shows the

possibilities searched, in a depth-first traversal, when matching the expectations and

the path events in Figure 5.7. Lazy evaluation again means that nodes are expanded

from the left side of the tree depicted in Figure 5.8 only until a matching leaf is found.

115

Figure 5.8: The search tree formed when matching the expectation and the path
events in Figure 5.7.

Performance

The time to load and check a path instance depends, of course, on the complexity

of the path instance and the complexity of the recognizers Pip checks it against.

On a 1.6 GHz laptop running Linux 2.6.15 and MySQL 4.1, a complex path instance

containing 100 hosts and 1700 events takes about 12 ms to load and another 12 ms to

check against seven recognizers, two of which contain futures. Thus, Pip can load and

check about 40 complex path instances, or as many as 3400 simple path instances,

per second on this hardware.

5.4 Annotations

Pip represents behavior as a list of path instances that contain tasks, notices, and

messages, as described in Section 5.2. These events are generated by source-code

116

annotations. We chose annotations over other event and tracing approaches for two

reasons. First, it was expedient. Our focus is expectations and how to generate,

check, and visualize them automatically. Second, most other sources of events do not

provide a path ID, making them less detailed and less accurate than annotations.

Pip could easily be extended to incorporate any event source that provides path IDs.

Pip provides a library, libannotate, that programmers link into their applications.

Programmers insert a modest number of source code annotations indicating which

path is being handled at any given time, the beginning and end of interesting tasks,

the transmission and receipt of messages, and any logging events relevant to path

structure.

The six main annotation calls are:

• annotate set path id(id): Indicate which path all subsequent events belong

to. An application must set a path identifier before recording any other events.

Path identifiers must be unique across all hosts and all time. Often, identifiers

consist of the host address where the path began, plus a local sequence number.

• annotate start task(name): Begin some processing task, event handler, or

subroutine. Annotation overhead for a task is around 10 µs, and the granularity

for most resource measurements is a scheduler time slice. Thus, annotations

are most useful for tasks that run for the length of a time slice or longer.

• annotate end task(name): End the given processing task.

• annotate send(id, size): Send a message with the given identifier and size.

Identifiers must be unique across all hosts and all time. Often, identifiers consist

of the address of the sender, an indication of the type of message, and a local

sequence number. Send events do not indicate the recipient address, allowing

logical messages, anycast messages, forwarding, etc.

117

• annotate receive(id, size): Receive a message with the given identifier and

size. The identifier must be the same as when the message was sent, usually

meaning that at least the sequence number must be sent in the message.

• annotate notice(string): Record a log message.

Programs developed using a supported middleware layer may require only a few

annotations. For example, we modified Mace [45], a high-level language for building

distributed systems, to insert five of the six types of annotations automatically. Our

modified Mace adds begin- and end-task annotations for each transition (i.e., event

handler), message-send and message-receive annotations for each network message

and each timer, and set-path-id annotations before beginning a task or delivering a

message. Only notices, which are optional and are the simplest of the six annotations,

are left to the programmer. The programmer may choose to add further message,

task, and path annotations beyond what our modified Mace generates.

Other middleware layers that handle event handling and network communica-

tion could automate annotations similarly. For example, we believe that SEDA [66]

and RPC platforms like CORBA could generate message and task events and could

propagate path IDs. Pinpoint [12] shows that J2EE can generate network and task

events.

5.4.1 Reconciliation

The Pip annotation library records events in local trace files as the application runs.

After the application terminates, the Pip reconciler gathers the files to a central

location and loads them into a single database. The reconciler must pair start- and

end-task events to make unified task events, and it must pair message-send and

message-receive events to make unified message events.

118

The reconciler detects two types of errors. First, it detects incomplete (i.e., un-

paired) tasks and messages. Second, it detects reused message IDs. Both types of

errors can stem from annotation mistakes or from application bugs. In our experi-

ence, these errors usually indicate an annotation mistake, and they disappear entirely

if annotations are added automatically.

5.4.2 Performance

Pip’s useful granularity is limited by three factors: the size of traces that can be

efficiently reconciled and checked, the resolution of timers and performance counters,

and the overhead of each annotation. Table 5.3, in the next section, shows the

time required to reconcile and check several traces. Practically speaking, we avoid

producing traces with more than five million events.

Most of Pip’s statistics come from the getrusage system call, while all timestamps

are retrieved using gettimeofday. Under recent Linux kernels, getrusage has a

resolution of 1 ms, and gettimeofday has a resolution of 1 µs. However, getrusage

is insufficient for debugging multithreaded programs, because it returns performance

counters for an entire process (per POSIX semantics) while Pip needs information

on only the current thread. Thus, Pip reads per-thread performance counters from

the /proc file system instead, with a resolution of 10 ms. We developed a Linux

kernel patch that allows the getrusage call to return per-thread information when

Pip passes it the proper parameters, which restores the finer 1 ms granularity.

Finally, Pip incurs an absolute run-time overhead per annotation call. On a

1.6 GHz laptop running Linux 2.6.15, the overhead is 0.9 µs for notices and messages

and 1.5 µs to change the path ID or begin or end a task. For the /proc-based code

(i.e., debugging multithreaded programs without the getrusage kernel patch), the

overheads are much higher: 1.2 µs for notices and 21.1 µs to change path ID or begin

119

or end a task.

Pip’s relative, real-world overhead—i.e., lower throughput or higher end-to-end

latency—depends on where the annotations are placed and on how much CPU time

the unmodified code consumes. In FAB tests, we found throughput reductions of 6%

for read operations on 256 KB blocks, throughput reductions of 9% for a read/write

workload on 4 KB blocks, and reductions of 10% for read-only operations on 4 KB

blocks. Because read operations on small blocks are the fastest to begin with, they

suffer the most relative overhead from a fixed number of annotation calls.

5.5 Behavior explorer GUI

Pip provides a graphical user interface (GUI) that is an integral part of finding

structure and performance bugs. The GUI shows both expected and unexpected

behavior to help the user figure out the causes and effects of the unexpected behavior.

However, the GUI is also useful for exploring systems for which the user has not yet

written expectations.

The GUI provides four visualizations: three for visualizing the structure and

timing of path instances and a fourth for plotting the aggregate performance of many

tasks or path instances. These visualizations are described in detail below.

The first view in the Pip behavior explorer is the causal tree view, shown in Fig-

ure 5.9. Here, the behavior of a path instance is shown as a tree of causal steps. Each

step contains all of the events, always in a single process on a single host, directly

caused by a message sent during the preceding causal step. Thus, an individual

host or thread might appear in several steps if it receives and reacts to several mes-

sages. Clicking on a causal step shows the list of events the step represents. Clicking

on a task or message event in that list shows more detailed information about the

individual event.

120

Figure 5.9: Pip path explorer: tree view.

Figure 5.10: Pip path explorer: timeline view.

121

Figure 5.11: Pip path explorer: communication graph view.

The second view is a timeline, as shown in Figure 5.10. One again, only the events

from a single path instance are shown at one time. Each horizontal bar corresponds

to the events caused by a message, as with the tree nodes described above. The

horizontal axis represents time, with the length of each bar showing how long the

events took to complete. The vertical axis separates the activity of multiple hosts,

each designated by its own color. Adjacent bars of the same color indicate nested

subtasks on a single node. Clicking on any node shows the same event-list and

event-detail pop-up dialogs described above.

Third, the Pip behavior explorer can display a communication graph, as shown in

Figure 5.11. Here, each node corresponds to a host, and each edge indicates that at

least one message was sent between a pair of hosts during execution of the selected

path instance. Directed edges indicate one-way communication, while undirected

edges indicate reciprocal communication.

122

Figure 5.12: Pip path explorer: performance graph view.

The final visualization is a plot of the performance of sets of tasks or path

instances. The user can select one or more tasks by name (e.g., all instances of

quorumrpc::ReadReply) or can plot all path instances. Path instances are aggre-

gated according to which recognizer they match; for example, the user could compare

the performance of read and write paths. The metric to plot can be any metric Pip

records, including real time, CPU time, network messages, or context switches. The

plot can be a cumulative distribution function (CDF), a probability density function

(PDF), or recorded values as a function of time. Clicking on a point in the plot shows

its exact value, along with the task or path that produced the point. This feature

allows the user to explore directly the cause of performance outliers.

The lists in the lower half of the GUI (seen in Figures 5.9–5.12) show task names,

host names, path instances, and recognizers. The user can select tasks or paths

to show in the four visualizations described above. The user can also select hosts

123

and recognizers to filter the list of path instances shown. Changing the list of path

instances shown also changes the performance graphs. For example, users can plot

all path instances that traverse a specific host, or those that match (or do not match)

a given recognizer. The text entry lines below the lists allow the user to restrict the

tasks, hosts, path instances, or recognizers visible using a substring search.

Finally, the two sliders at the bottom of the GUI restrict the list of path instances

in time, relative to the beginning of the trace. The upper slider is the start time for

the time window to examine, and the lower slider is the end time. Only path instances

with at least one event in the selected time window will be displayed and plotted.

By default, the time window is the full duration of the trace.

5.6 Results

We applied Pip to several distributed systems, including FAB [58], SplitStream [10],

Bullet [38, 40], and RanSub [39]. We found 18 bugs and fixed most of them. Some of

the bugs we found affected correctness—for example, some bugs would result in Split-

Stream nodes not receiving data. Other bugs were pure performance improvements—

we found places to improve read latency in FAB by 15% to 50%. Finally, we found

correctness errors in SplitStream and RanSub that were masked at the expense of

performance. That is, mechanisms intended to recover from node failures were in-

stead recovering from avoidable programming errors. Using Pip, we discovered the

underlying errors and eliminated the unnecessary time the protocols were spending

in recovery code.

The bugs we found with Pip share two important characteristics. First, they

occurred in actual executions of the systems under test. Pip can only check paths

that are used in a given execution. Thus, path coverage is an important, though

orthogonal, consideration. Second, the bugs manifested themselves through traced

124

Lines Number of Lines of Lines of
System of code recognizers recognizers annotations
FAB 124,025 17 590 28
SplitStream 2,436 19 983 8
Bullet 2,447 1 38 23
RanSub 1,699 7 283 32

Table 5.1: Statistics for Pip target systems.

System Number of hosts Number of events Trace duration (sec)
FAB 4 88,054 4 sec
SplitStream 100 3,952,592 104 sec
Bullet 100 863,197 71 sec
RanSub 100 312,994 602 sec

Table 5.2: Statistics for Pip traces.

events. Program annotations must be comprehensive enough and expectations must

be specific enough to isolate unexpected behavior. However, the bugs we found were

not limited to bugs we knew about. That is, most of the bugs we found were not

visible when just running the applications or casually examining their log files.

Table 5.1 shows the size of each system we tested and the effort required to apply

Pip to each. Bullet has fewer expectations because we did not write validators for

all types of Bullet paths. SplitStream has many expectations because it is inherently

complex and because in some cases we wrote both a validator and an overly general

recognizer for the same class of behavior (see Section 5.6.2). Table 5.2 shows statistics

for the traces we gathered for the target systems. Table 5.3 shows how long Pip took

to analyze each trace and how many bugs we found. Over 90% of the running time of

reconciliation and checking is spent in MySQL queries; a more lightweight solution for

storing paths could yield dramatic speed improvements. In addition to the manual

annotations indicated in the table, we added 55 annotation calls to the Mace compiler

and library, and we added 19 annotation calls to the FAB IDL compiler.

125

Reconciliation Checking Bugs Bugs
System time (sec) time (sec) found fixed
FAB 6 7 2 1
SplitStream 1184 837 13 12
Bullet 140 81 2 0
RanSub 47 9 2 1

Table 5.3: Pip run times and results.

Reconciliation time is O(E lg p) for E events and p path instances, as each event

is stored in a database, indexed by path ID. The number of high-level recognizer

checking operations is exactly rp for p path instances and r recognizers. Neither

stage’s running time is dependent on the number of hosts or on the concurrency be-

tween paths. The checking time for a path instance against a recognizer is worst-case

exponential in the length of the recognizer, e.g., when a recognizer with pathologi-

cally nested future and variant statements almost matches a given path instance. In

practice, we did not encounter any recognizers that took more than linear time to

check.

In the remainder of this section, we will describe our experiences with each system,

some sample bugs we found, and lessons we learned.

5.6.1 FAB

A Federated Array of Bricks (FAB) [58] is a distributed block storage system built

from commodity Linux PCs. FAB replicates data using simple replication or era-

sure coding and uses majority voting protocols to protect against node failures and

network partitions. FAB contains about 125,000 lines of C++ code and a few thou-

sand lines of Python. All of FAB’s network code is automatically generated from

IDL descriptions written in Python. The C++ portions of FAB combine user-level

threading and event-handling techniques. A typical FAB configuration includes four

126

 0
 0.2
 0.4
 0.6
 0.8

 1

 1 10 100 1000 10000

C
D

F

End-to-end delay (ms)

Coordinator 1st
Coordinator 2nd
Coordinator 3rd

Figure 5.13: CDF of end-to-end latency in milliseconds for FAB read operations.
The left-most line shows the case where the coordinator calls itself last. Note that
the x axis is log-scaled to show detail.

or more hosts, background membership and consensus communication, and a mix of

concurrent read and write requests from one or more clients.

We were not initially familiar with FAB, but we had access to its source code,

and one of its authors offered to help us understand it. With just a few hours of

effort, we annotated FAB’s IDL compiler, and was able to get the tasks and messages

necessary to examine every protocol.

Figure 5.3 in Section 5.3.3 showed an expectation for the FAB read protocol when

the node coordinating the access (the I/O coordinator) does not contain a replica of

the block requested. In this section, we focus on the case where the coordinator

does contain a replica. In addition to the read and write protocols, we annotated and

wrote expectations for FAB’s implementation of Paxos [43] and the Cristian-Schmuck

membership protocol [14] but did not find any bugs in either.

Bugs: When the FAB I/O coordinator contains a replica of the block requested,

the order of RPCs issued affects performance. In FAB, an RPC issued by a node

to itself is handled synchronously. Originally, FAB issued read or write RPCs to all

replicas in an arbitrary order. A recent optimization changed this code so that the

coordinator always issues the RPC to itself (if any) last, allowing greater overlap of

127

 0
 0.2
 0.4
 0.6
 0.8

 1

 1 10 100

C
D

F

End-to-end delay (ms)

Coordinator 1st
Coordinator 2nd
Coordinator 3rd

Figure 5.14: CDF of end-to-end latency in milliseconds for FAB read operations
in a system with a high cache hit rate. The left-most line shows the case where the
coordinator calls itself second. Note that the x axis is log-scaled to show detail.

computation.

FAB’s author sent us the unoptimized code without describing the optimization

to us, with the intention that we use Pip to rediscover the same optimization. Fig-

ure 5.13 shows the performance of read operations when the coordinator calls itself

first, second, or last. When the block is not in cache (all delay values about 10 ms),

having the coordinator issue an RPC to itself last is up to twice as fast as either other

order. Write performance shows a similar, though less pronounced, difference.

We discovered this optimization using expectations and the visualization GUI

together. We wrote recognizers for the cases where the coordinator called itself first,

second, and third and then graphed several properties of the three path sets against

each other. The graph for end-to-end delay showed a significant discrepancy between

the coordinator-last case and the other two cases.

Figure 5.14 shows the same measurements as Figure 5.13, in a system with a higher

cache hit rate. We noticed that letting the coordinator call itself second resulted in a

15% decrease in latency for reads of cached data by performing the usually unneeded

third call after achieving a 2-of-3 quorum and sending a response to the client. The

FAB authors were not aware of this difference.

128

Lessons: Bugs are best noticed by someone who knows the system under test.

We wrote expectations for FAB that classified read and write operations as valid

regardless of the order of computation. We found it easy to write recognizers for the

actual behavior a system exhibits, or even to generate them automatically, but only

someone familiar with the system can say whether such recognizers constitute real

expectations.

5.6.2 SplitStream

SplitStream [10] is a high-bandwidth content-streaming system built upon the Scribe

multicast protocol [56] and the Pastry DHT [55]. SplitStream sends content in parallel

over a “forest” of 16 Scribe trees. At any given time, SplitStream can accommodate

nodes joining or leaving, plus 16 concurrent multicast trees. We chose to study

SplitStream because it is a complex protocol, we have an implementation in Mace,

and our implementation was exhibiting both performance problems and structural

bugs. Our SplitStream tests included 100 hosts running under ModelNet [64] for

between two and five minutes.

Bugs: We found 13 bugs in SplitStream and fixed most of them. We found two of

the bugs using the GUI and 11 of the bugs by either using or writing expectations.

Seven bugs had gone unnoticed or uncorrected for ten months or more, while the

other six had been introduced recently along with new features or as a side effect

of porting SplitStream from MACEDON to Mace. Four of the bugs we found were

due to an incorrect or incomplete understanding of the SplitStream protocol, and

the other nine were implementation errors. At least four of the bugs resulted in

inefficient (rather than incorrect) behavior. In these cases, Pip enabled performance

improvements by uncovering bugs that might have gone undetected in a simple check

of correctness.

129

One bug in SplitStream occurred twice, with similar symptoms but two different

causes. SplitStream allows each node to have up to 18 children, but in some cases was

accepting as many as 25. We first discovered this bug using the GUI: visualizations of

multicast paths’ causal structure sometimes showed nodes with too many children.

The cause the first time was the use of global and local variables with the same

name; SplitStream was passing the wrong variable to a call intended to offload excess

children. After fixing this bug, we wrote a validator to check the number of children,

and it soon caught more violations. The second cause was an unregistered callback.

SplitStream contains a function to accept or reject new children, but the function

was never called.

Lessons: Some bugs that look like structural bugs affect only performance, not

correctness. For example, when a SplitStream node has too many children, the

tree still delivers data, but at lower speeds. The line between structural bugs and

performance bugs is not always clear.

The expectations checker can help find bugs in several ways. First, if we have an

expectation we know to be correct, the checker can flag paths that contain incorrect

behavior. Second, we can generate recognizers automatically to match existing paths.

In this case, the recognizer is an external description of actual behavior rather than

expected behavior. The recognizer is often more concise and readable than any other

summary of system behavior, and bugs can be obvious just from reading it. Finally,

we can write an overly general recognizer that matches all multicast paths and a

stricter, validating recognizer that matches only correct multicast paths. Then we

can study incorrect multicast paths—those matched by the first but not the second—

without attempting to write validators for other types of paths in the system.

130

5.6.3 Bullet

Bullet [38, 40] is a content-distribution mesh. Unlike overlay multicast protocols,

Bullet forms a mesh by letting each downloading node choose several peers, which it

will send data to and receive data from. Peers send each other lists of which blocks

they have already received. One node can decide to send (push) a list of available

blocks to its peers, or the second can request (pull) the list. Lists are transmitted as

deltas containing only changes since the last transmission between the given pair of

nodes.

Bugs: We found two bugs in Bullet, both of which are inefficiencies rather than

correctness problems. First, a given node A sometimes notifies node B of an available

block N several times. These extra notifications are unexpected behavior. We found

these extra notifications using the reconciler rather than the expectations checker. We

set each message ID as <sender, recipient, block number> instead of using sequence

numbers. Thus, whenever a block notification is re-sent, the reconciler generates a

“reused message ID” error.

The second bug is that each node tells each of its peers about every available

block, even blocks that the peers have already retrieved. This bug is actually expected

behavior, but in writing expectations for Pip we realized it was inefficient.

Lessons: We were interested in how notifications about each block propagate through

the mesh. Because some notifications are pulls caused by timers, the propagation

path is not causal. Thus, we had to write additional annotations for virtual paths in

addition to the causal paths that Mace annotated automatically.

Pip can find application errors using the reconciler, not just using the path checker

or the GUI. It would have been easy to write expectations asserting that no node

131

learns about the same block from the same peer twice, but it was not necessary

because the reconciler flagged such repeated notifications as reused message IDs.

5.6.4 RanSub

RanSub [39] is a building block for higher-level protocols. It constructs a tree and

tells each node in the tree about a uniformly random subset of the other nodes in

the tree. RanSub periodically performs two phases of communication: distribute and

collect. In the distribute phase, each node starting with the root sends a random

subset to each of its children. In the collect phase, each node starting with the leaves

sends a summary of its state to its parent. Interior nodes send a summary message

only after receiving a message from all children. Our RanSub tests involved 100 hosts

and ran for 5 minutes.

Because RanSub is written in Mace, we were able to generate all needed annota-

tions automatically.

Bugs: We found two bugs in RanSub and fixed one of them. First, each interior

node should only send a summary message to its parent after hearing from all of

its children. Instead, the first time the collect phase ran, each interior node sent a

summary message after hearing from one child. We found this bug by writing an

expectation for the collect-and-distribute path; the first round of communication did

not match. The root cause was that interior nodes had some state variables that did

not get initialized until after the first communication round. We fixed this bug.

The second bug we found in RanSub is a performance bug. The end-to-end latency

for collect-and-distribute paths starts out at about 40 ms and degrades gradually to

about 50 ms after running for three minutes. We traced the bottleneck to a task

called deliverGossip that initially takes 0 ms to run and degrades gradually to

132

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 100 200 300 400 500 600

T
as

k
du

ra
tio

n
(m

s)

Task start time (s)

Figure 5.15: Duration for the deliverGossip task as a function of time.

about 11 ms. We found this bug using the GUI. First, we examined the end-to-end

latency as a function of time. Seeing an error there, we checked each class of tasks

in turn until we found the gossip task responsible for the degradation. Figure 5.15

shows the time consumed by the gossip task as a function of time. The reason for

deliverGossip degrading over time is unclear but might be that deliverGossip

logs a list of all gossip previously received.

5.7 Summary

Pip helps programmers find bugs in distributed systems by comparing actual system

behavior to the programmer’s expectations about that behavior. Pip provides visual-

ization of expected and actual behavior, allowing programmers to examine behavior

that violates their expressed expectations, and to search interactively for additional

unexpected behavior. The same techniques can help programmers learn about an

unfamiliar system or monitor a deployed system.

Pip can often generate any needed annotations automatically, for applications

constructed using a supported middleware layer. Pip can also generate initial ex-

pectations automatically. These generated expectations are often the most readable

description of system behavior, and bugs can be obvious just from reading them.

133

We applied Pip to a variety of distributed systems, large and small, and found

bugs in each system.

134

Chapter 6

Related Work

We have presented three tools that use causal paths for debugging distributed sys-

tems. These tools draw inspiration from many earlier tools. Below, we describe other

systems that employ causal paths and other systems that infer causal relationships

from black-box communication traces. Project 5 is the first to combine these tech-

niques. We also describe systems for automatically checking expectations. Pip is

the first tool to combine causal paths with expectations. Finally, we describe model-

checking languages, domain-specific languages for building distributed systems, and

a few representative systems that use interposition.

6.1 Path analysis tools

Several recent tools use causal paths as the basis for debugging distributed or single-

node systems. These tools vary greatly in how they obtain events, how they combine

those events into paths, how they aggregate paths, and how they present the paths

to a user. None of these tools supports automatically checking programmer-specified

or path-related expectations.

Magpie: Probably the work most similar to ours mine is Magpie [4], which also aids

performance debugging and anomaly detection based on event traces from single-node

and distributed systems. Magpie relies on Event Tracing for Windows (ETW) as its

source for trace data. Many existing Windows applications generate ETW events,

and the Magpie authors have added ETW hooks to additional components, including

the WinPcap packet-capture library, as needed. ETW events include a timestamp, a

135

name, and zero or more typed attributes, such as thread identifier, CPU identifier, a

socket handle, or an application-level path identifier. Magpie depends upon an event

schema to perform a temporal join of these events to generate causal paths. That is,

Magpie can connect events in different components, on different hosts, or at different

times by finding attributes that they have in common. This grouping is transitive,

meaning that events can be grouped even if some pairs have no attributes in common.

The result of this temporal join is that each event gets assigned to exactly one causal

path, without necessarily requiring modifications to application source code.

Magpie groups all reconstructed causal paths into request clusters. Two causal

paths have a similarity defined in terms of their edit distance. Different events,

different ordering, or different resource measurements will all contribute to a higher

edit distance. Each path detected is grouped with the most similar existing request

cluster, unless no cluster is similar enough, in which case a new cluster is started.

The result of this clustering is that every path is added to exactly one request cluster.

Small request clusters indicate anomalous paths that are similar to few or no other

paths. Those anomalies are assumed to indicate possible bugs.

Pinpoint: Chen et al. [12] describe Pinpoint, a system for detecting faults in dis-

tributed systems and then locating the component most likely to be the cause of each

fault. Pinpoint’s focus on faults is different from our work, in that our tools help

programmers detect and locate performance or correctness problems. Pinpoint [12]

constructs causal paths by annotating applications or platforms such as J2EE to gen-

erate events and maintain a unique path identifier per incoming request. Like Pip,

Pinpoint can construct paths with a high degree of confidence because it does not

rely on inference. Like Magpie, Pinpoint assumes that anomalies indicate bugs.

Pinpoint detects faults in three ways. First, it detects path collisions, which are

cases when one path effectively aborts another. For example, when a user stops and

136

restarts a web request, a path collision occurs. Second, Pinpoint detects structural

anomalies. Unlike Pip, Pinpoint uses a probabilistic, context-free grammar (PCFG)

to detect anomalies on a per-event basis rather than considering whole paths. For

example, Pinpoint learns over time that event A always causes exactly one of B or

C. If Pinpoint ever sees A → D in a path, it will know it is incorrect. Using a PCFG

significantly underconstrains path checking, however. A path may be incorrect even

though each individual hop is present in the PCFG. As Pinpoint’s authors point out,

the PCFG can cause Pinpoint to validate some paths with bugs. Finally, Pinpoint

assumes that latency changes indicate faults. An increase in the number of outliers, a

change in the mean latency, or even latency decreases can all indicate different kinds

of failures.

Statistical approaches like Magpie and Pinpoint have three weaknesses. First,

they require large amounts of data before anomalies can be detected. Pip, in con-

trast, can detect errors in a trace that contains even just one path. Second, statistical

approaches assume that all bugs are anomalies. Some bugs are present in common

paths and would be miscategorized as valid behavior. Finally, these statistical ap-

proaches do not cope well with legitimately changing behavior. An increase or de-

crease in load can change step-by-step latency. A shift in request patterns can make

a previously rare path pattern become common or vice versa. An online statistical

approach might naively classify new behaviors as invalid.

Other causal path analysis tools: A much earlier project, the Distributed Pro-

grams Monitor (DPM) [47], also reports paths of causality through distributed sys-

tems. It uses kernel instrumentation to track the causal information between pairs

of messages, rather than trying to infer causality from message timestamps. DPM

reports an edge between a pair of nodes if any causal path includes that edge. There-

fore, the existence of a path in the resulting graph does not necessarily mean that

137

any real causal path followed all of those edges in that sequence.

Tierney et al. [60] describe NetLogger, a system for real-time diagnosis of per-

formance problems in distributed systems. Their approach requires programmers to

add event logging to carefully-chosen points in the application, and generates life-

lines that correspond to our causal paths. NetLogger provides tools for managing

and visualizing logs, but the tools appear unable to aggregate information from many

executions of the same causal path.

Hellerstein et al. [29] describe ETE, an approach for measuring both end-to-

end response times and the contributing component latencies. Their approach also

requires programmers to instrument applications to reveal significant events and to

describe interesting transactions ahead of time.

Causeway [11] is a toolkit for adding path-based functionality to applications.

Causeway allows programmers to set and retrieve metadata in an application. Cause-

way propagates the metadata any time the application communicates via a pipe,

socket, file, or shared memory. The metadata can contain path identifiers, priority

flags, etc. Thus, Causeway could simplify the development of path-based debugging

and profiling tools by linking together all events in each path instance. Causeway

does not include any higher-level tools for analyzing, aggregating, or checking paths.

6.2 Causality inference tools

Brown et al. [8] also describe a technique aimed at problem (fault) determination

based on characterizing dynamic dependencies between components. However, rather

than using traces (as in Pinpoint), they perturb system components (for example, by

temporarily locking a database table to prevent a component from making progress).

Bagchi et al. [3] describe a similar approach based on fault injection. Note that

the resulting pair-wise dependencies are less specific than end-to-end causal paths

138

would be, and the perturbation approach, which is definitely not passive, requires

considerable knowledge of the system design.

In Chapter 3 we described an algorithm for discovering causality from traces

based on statistical correlation. Zhang and Paxson [67] also use statistical techniques,

correlating traffic to detect intruders who subvert hosts for use as “stepping stones”

(i.e., intruders who telnet into a host and then out of it, intending to cover their

tracks). Huang et al. use analysis of passively-obtained network traces to detect

performance problems in wide-area networks [32]. However, they are interested in

network-scale phenomena (delay or congestion) rather than causality.

6.3 Expectation checkers

Several existing systems support expressing and checking expectations about struc-

ture or performance. Some of the systems operate on traces, others on specifications,

and still others on source code. Some support checking performance, others structure,

and others both. Some, but not all, support distributed systems.

PSpec [51] is the work that most directly influenced the expectations in Pip.

PSpec allows programmers to write assertions about the performance of systems. It

uses information from application event logs to power three tools: a checker, a solver,

and an evaluator. The checker is most analogous to Pip: it uses timing values from

the log file to check performance assertions specified by the programmer. Unlike Pip,

PSpec does not support structural expectations. PSpec allows the programmer to

write assertions with symbolic constants; the solver finds an appropriate value for

each constant, for a given trace. Finally, the evaluator is an interactive read-eval-

print loop that the programmer can use to evaluate expressions defined in PSpec’s

expectation language.

The PSpec expectation language allows the programmer to define intervals and

139

write assertions about properties of those intervals. For example, the programmer

can specify a read operation as occurring between a read-start event and a read-end

event. Alternatively, the read inter-arrival time is the time between one read-start

event and the next read-start event. The programmer can then specify bounds for the

minimum, mean, or maximum duration of these intervals. The language also supports

arithmetic and set logic, to allow more advanced assertions based on properties of

intervals.

Meta-level compilation (MC) [19] checks source code for static bugs using a com-

piler extended with system-specific rules. MC checks all code paths exhaustively but

is limited to single-node bugs that do not depend on dynamic state. MC works well

for finding the root causes of bugs directly, while Pip detects symptoms and high-

lights code components that might be at fault. MC focuses on individual incorrect

statements, while Pip focuses on the correctness of causal paths, often spanning mul-

tiple nodes. MC finds many false positives and bugs with no visible symptoms, while

Pip is limited to actual bugs present in a given execution of the application.

Partiqle [27] checks structural expectations against running Java programs with-

out requiring source-code modifications. Programmers write queries in a Program

Trace Query Language (PTQL) that are injected into a program’s Java bytecode

and executed as the program runs. Partiqle also supports some limited performance-

related queries by exposing the start and end times for functions and the allocation

and collection times for objects. PTQL operates efficiently at a fine granularity, ex-

posing every function in a program. However, it does not support multi-node systems

or path-level expectations, and it is limited to Java.

Paradyn [48] is a performance measurement tool for complex parallel and dis-

tributed software. The Paradyn Configuration Language (PCL) allows programmers

to describe expected characteristics of applications and platforms, and in particular

140

to describe metrics; PCL seems somewhat analogous to Pip’s expectation language.

However, PCL cannot express the causal path structure of threads, tasks and mes-

sages in a program, nor does Paradyn reveal the program’s structure.

6.4 Model checkers

Programmers may find some bugs using model checking [26, 42]. Model checking is

exhaustive, covering all possible behaviors, while Pip and all the other techniques

described here check only the behaviors exhibited in actual runs of the system. How-

ever, model checking is expensive and is practically limited to small systems and

short runs—often just tens of events. Model checking is often applied to specifi-

cations, leaving a system like Pip to check the correctness of the implementation.

Finally, unlike model checking, Pip can check performance characteristics.

MaceMC [36] is an approach to implementation-based model checking that is

specific to the Mace programming language. MaceMC takes advantage of properties

of Mace to provide faster, deeper exploration of a program’s state space. MaceMC

uses model checking to systematically explore the state space of a distributed system,

finding safety or liveness bugs that may not correspond to any actual run. MaceMC

does not use an external description of expectations, but instead uses traditional

assertions to express the presence of potential safety or liveness bugs.

6.5 Domain-specific languages

Developers of distributed systems have a wide variety of specification and imple-

mentation languages to choose from. Languages like Estelle [33], π-calculus [49],

join-calculus [20], and P2 [44, 59] embrace a formal, declarative approach. Mace [45],

Erlang [9], and Mlog [30] use an imperative approach, with libraries and language

141

constructs specialized for concurrency and communication. Finally, many program-

mers still use traditional, general-purpose languages like Java and C++.

Declarative domain-specific languages lend themselves to static analysis of struc-

ture, namely, to proving invariants about correct execution of protocols. Imperative

domain-specific languages lend themselves to language-specific debuggers. All of

these languages aid annotation by having high-level constructs that correspond to

the path model we use in Pip. While programmers using declarative languages can

verify the correctness of their programs through static analysis, Pip remains valu-

able for monitoring and checking dynamic properties of a program, such as latency,

throughput, concurrency, and node failure.

6.6 Interposition

Many existing systems use interposition. Trickle [61] uses library interposition to

provide user-level bandwidth limiting. ModelNet [64] rewrites network traffic us-

ing library interposition to multiplex emulated addresses on a single physical host.

Systems such as Transparent Result Caching [63] and Interposition Agents [34] use

debugging interfaces such as ptrace or /proc to intercept system calls instead of li-

brary interposition. Library interposition is simpler and more efficient, but it requires

either dynamically linked binaries or explicit relinking of traced applications. WAP5

employs an interposition library similar to the ones used by Trickle and ModelNet.

6.7 Summary

Many existing systems support debugging on one or several nodes. Several earlier

systems have employed some of the same techniques we employed in this thesis:

causal paths, black-box causality inference, expectation checking, and interposition.

Project 5 was the first system to support inferring causal paths from black-box net-

142

work traces. WAP5 was the first system to apply black-box causal path inference to

wide-area systems. Pip was the first system to apply automatic expectation checking

to causal paths.

143

Chapter 7

Conclusions and Future Work

We conclude this dissertation by restating the hypothesis, summarizing the contri-

butions herein, and describing possible future work.

7.1 Contributions

Our hypothesis in this dissertation is that expressing distributed system behavior as

a set of causal paths and helping programmers separate those paths into expected

and unexpected behavior is a powerful technique for improving the performance and

correctness of distributed systems. To support this thesis, we introduce three debug-

ging tools and an expectation language, and we describe how we applied them to

understand and debug real systems.

Our research and experiences have led to four main contributions:

1. We introduce three debugging tools: Project 5, Wide-Area Project 5 (WAP5),

and Pip. Project 5 infers causal paths through a distributed system using traces

of network events. The system itself is treated as a black box and does not need

to be modified. WAP5 infers causal paths in wide-area systems, which exhibit

significant network delays, unsynchronized clocks, and network architectures

that do not support sniffers. Finally, Pip obtains causal paths directly via

modifications to system source code and checks those paths against a set of

programmer-specified expectations.

2. We describe three algorithms for inferring causality from communication events.

First, Project 5’s nesting algorithm attempts to find causal relationships be-

144

tween “nested” remote procedure calls (RPCs) made into and out of each node

in a trace. Second, WAP5’s linking algorithm seeks a direct cause for every

message sent in a trace. Finally, Pip forms causal paths out of associated sets

of events based on timing and message ordering.

3. We describe a language for expressing expectations about the behavior of a

distributed system. Pip’s expectation language allows programmers to describe

the behavior of a wide variety of applications. Applications may be parallel or

serial, asynchronous or synchronous, threaded or event-based, or a combination

of the above. Pip’s expectation language aims to balance over- and under-

constraint: specifying path behavior in enough detail to accept all valid paths

and reject most or all invalid ones.

4. We develop an understanding of the trade-off between disruptiveness and accu-

racy in distributed debugging tools. Project 5 is the least disruptive to apply

and produces the least accurate and least detailed results. Pip is more dis-

ruptive, normally requiring changes to application source code, but it enables

fine-grained debugging with enough accuracy to allow automatic expectation

checking.

7.2 Future work

Our experiences with debugging distributed systems have left interesting open ques-

tions and avenues for future research.

7.2.1 Refinements

Pip language improvements: The Pip expectations language could benefit from

a few further improvements: parameterized recognizers, variables, extensible anno-

145

tations, and additional performance metrics.

The recognizers we wrote for FAB (see Figure 5.3) match only a 2-of-3 quorum,

even though FAB can handle other degrees of replication. Recognizers for other

quorum sizes differ only by constants. Similarly, recognizers for other systems might

depend on deployment-specific parameters, such as the number of hosts, network

latencies, or the desired depth of a multicast tree. In all cases, recognizers for different

sizes or speeds vary only by one or a few constants. Pip could be extended to allow

parameterized recognizers, which would simplify the maintenance of expectations for

systems with multiple, different deployments.

Pip currently provides no easy way to constrain similar behavior. For example,

if two loops must execute the same number of times or if communication must go to

and from the same host, Pip provides no means to say so. Variables would allow an

expectations writer to define one section of behavior in terms of a previously observed

section. Variables are also a natural way to implement parameterized recognizers, as

described above.

Pip currently records task names and notices as opaque strings, which do not allow

applications to record or check any other data types. We plan to add an annotation

to record structured tuples of data containing numbers, addresses, timestamps, and

strings, among possibly other types. We will record these events in the paths database

and will provide expectations to check and aggregate the values recorded.

Pip’s current performance metrics cover real time, CPU usage, and network mes-

sage characteristics. They do not measure energy consumption, memory allocation,

or disk (or other I/O) requests. Attributing energy consumption to causal paths

could be useful for debugging power efficiency in portable devices or waste-heat gen-

eration in data centers. Tracking memory allocation could help locate memory leaks

or components at fault for swap thrashing behavior. Tracking disk requests would be

146

particularly useful in disk-bound (rather than CPU-bound) systems, including FAB.

WAP5 service time distributions: WAP5 currently assumes that service times

at all nodes are exponentially distributed. WAP5 can accommodate other service time

distributions; for example, we have tried a gamma distribution. Other distributions

might result in higher inference accuracy if they more closely fit the actual distribution

of the traced delays. However, other distributions might result in lower accuracy if

they do not fit the actual delay distribution or if they have incorrect parameters,

such as the mean service time. The exponential distribution is tolerant of incorrect

parameter values, because it is monotonically decreasing and has no sharp peak.

Ideally, WAP5 could choose the appropriate distribution independently and dy-

namically for each node in a system. This choice should be made based on actual

observed delays. The choice of appropriate distributions and scaling parameters is

likely to be iterative. That is, an initial choice would let WAP5 associate incoming

and outgoing messages, which improves the quality of the information available for

choosing the distribution and scaling parameters.

7.2.2 Online analysis and monitoring

All three of our debugging tools currently operate only in an offline mode. That

is, each tool requires the user to run the targeted system, gather a trace, and then

analyze the trace for bugs or other unexpected behavior. With small modifications,

all three systems could be used online, either to enable quicker test-and-debug cycles

or to enable monitoring for sudden unexpected behavior. Pip in particular could

monitor system execution silently until it detects unexpected behavior and then send

alerts to a programmer or an administrator.

The debugging tools have CPU and bandwidth requirements based on the rate

of event generation in the targeted system. To ensure scalability, any online analysis

147

would have to provide efficient data-gathering techniques and address load balancing.

Data gathering techniques like overlay networks, filtering, and aggregation could

improve scalability. In the case of Pip, paths can be constructed and checked in

parallel at many hosts.

7.2.3 Trace-based simulation

Pip captures an enormous amount of data when an application runs. So far, we have

used it only to generate the behavior model that Pip checks against the program-

mer’s expectations. However, these traces have other potential uses. One such use is

reasoning about the performance effects of small changes to a distributed application.

We could write a tool to automate this reasoning. Using this tool, a programmer

could pose questions about the effect of changing or consolidating the hosts in the

application, changing routing decisions, changing the application’s processing require-

ments or available resources, or increasing the application’s offered load. The tool

would then simulate the modified application based on the behavior of the original.

The programmer would be able to test performance improvements without the trou-

ble of rewriting, testing, and redeploying the application. We would like to explore

the types of questions and modifications such a tool could accommodate and how

accurately it could predict the resulting performance.

7.2.4 Unifying logging and tracing

Pip’s notices allow programmers to specify arbitrary events of interest, much like

logging statements. One logical extension would be to intercept non-Pip logging

statements and have them generate Pip notices. These new notices would benefit

from the timestamps and context (path, host, process, and thread) that Pip records

for every event. For applications written in Mace, we could redirect all logging

148

statements to Pip notices. For other applications, we could intercept calls to syslog

or writes to standard error.

7.3 Summary

Distributed systems are academically interesting and commercially important. They

underlie every major site and service on the internet. However, they are more complex

to develop and maintain than traditional, single-node systems. Complexity leads to

performance and correctness bugs, which leads to slow and unreliable application

performance for end users.

Traditional debugging and profiling tools are not well suited for distributed sys-

tems, which have large amounts of state, high parallelism, and complex administrative

boundaries. In this thesis, we presented a debugging methodology—offline debugging

of causal paths—and three tools to enable it in distributed systems.

The first debugging tool, Project 5, treats the targeted system as a set of black

boxes. Each node is a closed device that communicates with other nodes. Project 5

infers causality and timing information from traces of network messages, normally

obtained using a network sniffer. Project 5 is the least disruptive and, at least in

theory, the easiest to apply of the three debugging tools. However, it is also the

coarsest and the least accurate. Its granularity is limited to what happens between

pairs of messages. Each communicating node is an entire host, and each processing

step encompasses everything between an incoming message and an outgoing message.

Its accuracy is limited to what can be inferred through statistical analysis. Accuracy

suffers in traces with high parallelism or highly variable processing delays.

The second debugging tool we presented, WAP5, assumes the ability to interpose

a new library beneath each application component. Doing so requires that the appli-

cation components run on a supported platform—in the case of WAP5, Linux—and

149

requires restarting each component to start or stop tracing. The expected benefit

is greater granularity and accuracy. WAP5 can distinguish between threads or pro-

cesses on each host and can capture intra-host communication. It also traces network

events at a level closer to application semantics, capturing each network call rather

than each network packet. Finally, WAP5 captures separate timestamps when each

packet is sent and received, allowing WAP5 to tolerate arbitrarily high levels of clock

offset and clock drift.

The final debugging tool we presented, Pip, normally requires programmers to

modify and recompile their applications. The required modifications are small, mark-

ing whatever communication, processing tasks, and event handlers make up the paths

to be debugged. In some cases, these annotations can be inserted automatically by

a compiler or middleware layer. Pip also requires the programmer to write expecta-

tions about program behavior in a declarative language, though initial expectations

can be generated automatically from traces of actual program behavior.

In exchange for this high level of disruptiveness, Pip promises the best granular-

ity and accuracy of the three tools. Pip can trace arbitrarily small communication

or processing tasks, depending on where the programmer added annotations. Pip

detects paths with perfect accuracy by relying on annotations rather than statistical

inference. If the programmer writes expectations about system behavior, Pip can

check actual behavior against expected behavior and indicate any differences.

We applied our three debugging tools to a variety of real and synthetic application

traces. All three proved useful for analyzing and debugging distributed systems.

150

References

[1] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and
Athicha Muthitacharoen. Performance debugging for distributed systems of
black boxes. In Proc. SOSP, Bolton Landing, NY, October 2003.

[2] Akamai Technologies, Inc. http://www.akamai.com/.

[3] Saurabh Bagchi, Gautam Kar, and Joseph L. Hellerstein. Dependency analysis in
distributed systems using fault injection: Application to problem determination
in an e-commerce environment. In Proc. Intl. Workshop on Distributed Systems:
Operations & Management, Nancy, France, October 2001.

[4] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using
Magpie for request extraction and workload modeling. In Proc. OSDI, pages
259–272, San Francisco, CA, December 2004.

[5] Andy Bavier, Mic Bowman, Brent Chun, David Culler, Scott Karlin, Steve
Muir, Larry Peterson, Timothy Roscoe, Tammo Spalink, and Mike Wawrzoniak.
Operating System Support for Planetary-Scale Services. In Proc. NSDI, pages
253–266, March 2004.

[6] Simon P. Booth and Simon B. Jones. Walk backwards to happiness—debugging
by time travel. In Automated and Algorithmic Debugging, Linköping, Sweden,
May 1997.

[7] Dan Bourque. Time travel made possible with Eclipse. In EclipseCon, Santa
Clara, CA, March 2006.

[8] Aaron Brown, Gautam Kar, and Alexander Keller. An active approach to char-
acterizing dynamic dependencies for problem determination in a distributed en-
vironment. In Proc. IFIP/IEEE Intl. Symp. on Integrated Network Management,
Seattle, WA, May 2001.

[9] Richard Carlsson, Björn Gustavsson, Erik Johansson, Thomas Lindgren, Sven-
Olof Nyström, Mikael Pettersson, and Robert Virding. Core Erlang 1.0 language
specification. Technical Report 030, Uppsala University, November 2000.

[10] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony
Rowstron, and Atul Singh. SplitStream: High-bandwidth multicast in coopera-
tive environments. In Proc. SOSP, Bolton Landing, NY, October 2003.

[11] Anupam Chanda, Khaled Elmeleegy, Alan L. Cox, and Willy Zwaenepoel.
Causeway: Operating system support for controlling and analyzing the exe-
cution of distributed programs. In Proc. HotOS, 2005.

151

[12] Mike Chen, Anthony Accardi, Emre Kiciman, Jim Lloyd, Dave Patterson, Ar-
mando Fox, and Eric Brewer. Path-based failure and evolution management. In
Proc. NSDI, pages 309–322, San Francisco, CA, March 2004.

[13] Bram Cohen. Incentives build robustness in BitTorrent. In Proc. Workshop on
Economics of Peer-to-Peer Systems, Berkeley, CA, June 2003.

[14] Flaviu Cristian and Frank Schmuck. Agreeing on processor group membership
in timed asynchronous distributed systems. Report CSE95-428, UC San Diego,
1995.

[15] Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek, and
Robert Morris. Designing a DHT for Low Latency and High Throughput. In
Proc. NSDI, pages 85–98, March 2004.

[16] DDD: The data display debugger.
http://www.gnu.org/software/ddd/, 2006.

[17] eDonkey. http://www.edonkey2000.com/index.html.

[18] Kjeld Borch Egevang and Paul Francis. The IP Network Address Translator
(NAT). RFC 1631, IETF, May 1994.

[19] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking system
rules using system-specific, programmer-written compiler extensions. In Proc.
OSDI, December 2000.

[20] Cédric Fournet and Georges Gonthier. The join calculus: a language for dis-
tributed mobile programming. In Proc. APPSEM, Caminha, Portugal, 2000.

[21] Armando Fox, Steven D. Gribble, Yatin Chawathe, and Eric A. Brewer. Cluster-
based scalable network services. In Proc. SOSP, Saint-Malo, France, October
1997.

[22] Michael J. Freedman, Eric Freudenthal, and David Maziéres. Democratizing
content publication with Coral. In Proc. NSDI, pages 239–252, San Francisco,
CA, March 2004.

[23] Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. Software — Practice and Experi-
ence, 30(11):1203–1233, September 2000.

[24] GDB: The GNU project debugger.
http://www.gnu.org/software/gdb/gdb.html, 2005.

[25] Gnutella. http://www.gnutella.com/.

152

[26] Patrice Godefroid. Software model checking: the VeriSoft approach. Formal
Methods in System Design, 26(2):77–101, March 2005.

[27] Simon Goldsmith, Robert O’Callahan, and Alex Aiken. Relational queries over
program traces. In Proc. OOPSLA, October 2005.

[28] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: A call
graph execution profiler. In Proc. SIGPLAN Symp. on Compiler Construction,
pages 120–126, Boston, MA, June 1982.

[29] Joseph L. Hellerstein, Mark Maccabee, W. Nathaniel Mills, and John J. Turek.
ETE: A customizable approach to measuring end-to-end response times and their
components in distributed systems. In Proc. ICDCS, pages 152–162, Austin, TX,
May 1999.

[30] C. Hrischuk, J. Rolia, and C.M. Woodside. Automatic generation of a software
performance model using an object-oriented prototype. In Proc. MASCOTS,
pages 399–409, Durham, NC, January 1995.

[31] Yang hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. A case for end
system multicast. IEEE Journal on Selected Areas in Communication (JSAC),
Special Issue on Networking Support for Multicast, 20(8), Oct 2002.

[32] Polly Huang, Anja Feldmann, and Walter Willinger. A non-intrusive, wavelet-
based approach to detecting network performance problems. In Proc. Internet
Measurement Workshop, San Francisco, CA, November 2001.

[33] ISO 9074. Estelle: A formal description technique based on an extended state
transition model. 1987.

[34] Michael B. Jones. Interposition agents: Transparently interposing user code at
the system interface. In Proc. SOSP, pages 80–93, Asheville, NC, December
1993.

[35] Kazaa. http://www.kazaa.com/.

[36] Charles Killian. MaceMC: Model checking for Mace, 2005.

[37] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging operating
systems with time-traveling virtual machines. In Proc. USENIX, Anaheim, CA,
April 2005.

[38] Dejan Kostić, Ryan Braud, Charles Killian, Erik Vandekieft, James W. Ander-
son, Alex C. Snoeren, and Amin Vahdat. Maintaining high bandwidth under
dynamic network conditions. In Proc. USENIX, April 2005.

153

[39] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, Abhijeet Bhirud, and Amin
Vahdat. Using random subsets to build scalable network services. In Proc.
USITS, March 2003.

[40] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, and Amin Vahdat. Bullet:
High bandwidth data dissemination using an overlay mesh. In Proc. SOSP,
Bolton Landing, NY, October 2003.

[41] John Kubiatowicz, Davic Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, West-
ley Weimer, Chris Wells, and Ben Zhao. Oceanstore: An architecture for global-
scale persistent storage. In Proc. ASPLOS, Cambridge, MA, November 2000.

[42] Leslie Lamport. The temporal logic of actions. ACM TOPLAS, 16(3):872–923,
May 1994.

[43] Leslie Lamport. The part-time parliament. ACM TOCS, 16(2):133–169, May
1998.

[44] Boon Thau Loo, Tyson Condie, Joseph Hellerstein, Petros Maniatis, Timothy
Roscoe, and Ion Stoica. Implementing declarative overlays. In Proc. SOSP,
Brighton, UK, October 2005.

[45] Mace. http://mace.ucsd.edu/, 2005.

[46] Petros Maniatis, Mema Roussopoulos, TJ Giuli, David S. H. Rosenthal, Mary
Baker, and Yanto Muliadi. LOCKSS: A peer-to-peer digital preservation system.
ACM TOCS, 23(1):2–50, February 2005.

[47] B. P. Miller. DPM: A measurement system for distributed programs. IEEE
Trans. on Computers, 37(2):243–248, Feb 1988.

[48] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam,
and Tia Newhall. The paradyn parallel performance measurement tool. IEEE
Computer, 28(11):37–46, November 1995.

[49] Robin Milner. The polyadic π-calculus: A tutorial. Technical Report ECS-
LFCS-91-180, University of Edinburgh, October 1991.

[50] Vern Paxson. On calibrating measurements of packet transit times. In Proc.
SIGMETRICS, Madison, WI, March 1998.

[51] Sharon E. Perl and William E. Weihl. Performance assertion checking. In Proc.
SOSP, pages 134–145, December 1993.

154

[52] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul, Mehul A.
Shah, and Amin Vahdat. Pip: Detecting the unexpected in distributed systems.
In Proc. NSDI, San Jose, CA, May 2006.

[53] Patrick Reynolds, Janet L. Wiener, Jeffrey C. Mogul, Marcos K. Aguilera, and
Amin Vahdat. WAP5: black-box performance debugging for wide-area systems.
In Proc. WWW, Edinburgh, Scotland, May 2006.

[54] Adolfo Rodriguez, Charles Killian, Sooraj Bhat, Dejan Kostić, and Amin Vah-
dat. MACEDON: Methodology for Automatically Creating, Evaluating, and
Designing Overlay Networks. In Proc. NSDI, pages 267–280, San Francisco, CA,
March 2004.

[55] Antony Rowstron and Peter Druschel. Pastry: Scalable, Distributed Object
Location and Routing for Large-scale Peer-to-Peer Systems. In Middleware’2001,
November 2001.

[56] Antony Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Druschel.
SCRIBE: The Design of a Large-scale Event Notification Infrastructure. In 3rd
Intl. Workshop on Networked Group Communication, Nov 2001.

[57] Yasushi Saito, Brian N. Bershad, and Henry M. Levy. Manageability, availability
and performance in Porcupine: A highly scalable, cluster-based mail service. In
Proc. SOSP, Kiawah, SC, December 1999.

[58] Yasushi Saito, Svend Frolund, Alistair Veitch, Arif Merchant, and Susan Spence.
FAB: Building distributed enterprise disk arrays from commodity components.
In Proc. ASPLOS, pages 48–58, Boston, MA, 2004.

[59] Atul Singh, Petros Maniatis, Timothy Roscoe, and Peter Druschel. Using queries
for distributed monitoring and forensics. In Proc. EuroSys, Leuven, Belgium,
April 2006.

[60] Brian Tierney, William E. Johnston, Brian Crowley, Gary Hoo, Chris Brooks,
and Dan Gunter. The NetLogger methodology for high performance distributed
systems performance analysis. In Proc. HPDC, July 1998.

[61] Trickle lightweight userspace bandwidth shaper.
http://monkey.org/˜marius/trickle/.

[62] Kishor S. Trivedi. Probability and Statistics with Reliability, Queueing, and
Computer Science Applications. John Wiley and Sons, New York, 2001.

[63] Amin Vahdat and Thomas Anderson. Transparent result caching. In Proc.
USENIX, June 1998.

155

[64] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostić, Jeff
Chase, and David Becker. Scalability and Accuracy in a Large-Scale Network
Emulator. In Proc. OSDI, 2002.

[65] Limin Wang, KyoungSoo Park, Ruoming Pang, Vivek Pai, and Larry Peterson.
Reliability and Security in the CoDeeN Content Distribution Network. In Proc.
USENIX, pages 171–184, Boston, MA, June 2004.

[66] Matt Welsh, David Culler, and Eric Brewer. SEDA: an architecture for well-
conditioned, scalable internet services. In Proc. SOSP, pages 230–243, 2001.

[67] Yin Zhang and Vern Paxson. Detecting stepping stones. In Proc. USENIX
Security Symp., Denver, CO, August 2000.

156

Biography

Born

Austin, Texas, January 24th, 1978

Colleges and universities

1999-2006 Duke University Durham, NC
M.S. in Computer Science, December 2003.
Ph.D. in Computer Science, May 2006.

1996-1999 University of Virginia Charlottesville, VA
B.S. in Computer Science, May 1999.

1995-1996 Virginia Tech Blacksburg, VA

Publications

“Pip: detecting the unexpected in distributed systems,” Patrick Reynolds,
Charles Killian, Janet L. Wiener, Jeffrey C. Mogul, Mehul A. Shah, and Amin
Vahdat. In Proceedings of the 3rd Symposium on Networked Systems Design
and Implementation, May 2006.

“WAP5: black-box performance debugging for wide-area systems,” Patrick
Reynolds, Janet L. Wiener, Jeffrey C. Mogul, Marcos K. Aguilera, and Amin
Vahdat. In Proceedings of the 15th International World Wide Web Conference,
May 2006.

“Mace: language support for building distributed systems,” Charles Killian,
James W. Anderson, Ryan Braud, Patrick Reynolds, Ranjit Jhala, and Amin
Vahdat. In submission.

“Performance debugging for distributed systems of black boxes,” Marcos K.
Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and Athicha
Muthitacharoen. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles, October 2003.

“Efficient peer-to-peer keyword searching,” Patrick Reynolds and Amin Vahdat.
In Proceedings of Middleware, June 2003.

“Self-organizing subsets: from each according to his abilities, to each according
to his needs,” Amin Vahdat, Jeffrey Chase, Rebecca Braynard, Dejan Kostić,
Adolfo Rodriguez, and Patrick Reynolds. In Proceedings of the First Interna-
tional Peer to Peer Symposium (IPTPS), March 2002.

157

“Passport: a scalable, self-organizing peer-to-peer system,” Patrick Reynolds
and Amin Vahdat. Duke University Technical Report, May 2001.

Awards

Duke Computer Science Service Award: 2003.

National Science Foundation Graduate Research Fellowship, 2001–2004.

James B. Duke Graduate Fellowship, Duke University, 1999–2003.

158

