Among the major regulators of the G1 restriction point are cyclin D1 and the retinoblastoma gene ... more Among the major regulators of the G1 restriction point are cyclin D1 and the retinoblastoma gene product (RB). In non-small cell lung cancer (NSCLC), the cyclin D1 gene is amplified/over-expressed in almost 50% of cases, and RB is inactivated in 6-32% of cases. It is of interest to evaluate concurrently the alterations of both genes on the same series of NSCLCs, to investigate whether cyclin D1 and RB alterations are alternative pathways leading to inactivation of the G1 restriction point or if they can occur in the same tumor, possibly exerting an additive effect on cancer progression. We investigated a series of 57 NSCLCs, analyzing cyclin D1 and RB at the gene and protein levels by Southern blot, Northern blot and immunohistochemistry. The cyclin D1 gene was amplified in 18 cases, cyclin D1 immunoreactivity was seen in 25 tumors. Amplification and expression were significantly associated. RB immunohistochemical expression was absent in 9 of 42 informative cases. RB mRNA expression was low to absent in 9 of 45 informative cases, cyclin D1 amplification was associated with normal RB mRNA, and cyclin D1 over-expression was associated with normal RB immunoreactivity, supporting the hypothesis that alterations of cyclin D1 and RB are alternative mechanisms by which tumor cells may escape the G1 restriction point. A concurrent alteration of RB and cyclin D1 was seen in a small subset of NSCLCs. Abnormalities of cyclin D1 and/or RB at the gene and/or expression level were present in more than 90% of cases, stressing that cyclin D1 and/or RB alterations represent an important step in lung tumorigenesis.
Among the major regulators of the G1 restriction point are cyclin D1 and the retinoblastoma gene ... more Among the major regulators of the G1 restriction point are cyclin D1 and the retinoblastoma gene product (RB). In non-small cell lung cancer (NSCLC), the cyclin D1 gene is amplified/over-expressed in almost 50% of cases, and RB is inactivated in 6-32% of cases. It is of interest to evaluate concurrently the alterations of both genes on the same series of NSCLCs, to investigate whether cyclin D1 and RB alterations are alternative pathways leading to inactivation of the G1 restriction point or if they can occur in the same tumor, possibly exerting an additive effect on cancer progression. We investigated a series of 57 NSCLCs, analyzing cyclin D1 and RB at the gene and protein levels by Southern blot, Northern blot and immunohistochemistry. The cyclin D1 gene was amplified in 18 cases, cyclin D1 immunoreactivity was seen in 25 tumors. Amplification and expression were significantly associated. RB immunohistochemical expression was absent in 9 of 42 informative cases. RB mRNA expression was low to absent in 9 of 45 informative cases, cyclin D1 amplification was associated with normal RB mRNA, and cyclin D1 over-expression was associated with normal RB immunoreactivity, supporting the hypothesis that alterations of cyclin D1 and RB are alternative mechanisms by which tumor cells may escape the G1 restriction point. A concurrent alteration of RB and cyclin D1 was seen in a small subset of NSCLCs. Abnormalities of cyclin D1 and/or RB at the gene and/or expression level were present in more than 90% of cases, stressing that cyclin D1 and/or RB alterations represent an important step in lung tumorigenesis.
Among the major regulators of the G1 restriction point are cyclin D1 and the retinoblastoma gene ... more Among the major regulators of the G1 restriction point are cyclin D1 and the retinoblastoma gene product (RB). In non-small cell lung cancer (NSCLC), the cyclin D1 gene is amplified/over-expressed in almost 50% of cases, and RB is inactivated in 6-32% of cases. It is of interest to evaluate concurrently the alterations of both genes on the same series of NSCLCs, to investigate whether cyclin D1 and RB alterations are alternative pathways leading to inactivation of the G1 restriction point or if they can occur in the same tumor, possibly exerting an additive effect on cancer progression. We investigated a series of 57 NSCLCs, analyzing cyclin D1 and RB at the gene and protein levels by Southern blot, Northern blot and immunohistochemistry. The cyclin D1 gene was amplified in 18 cases, cyclin D1 immunoreactivity was seen in 25 tumors. Amplification and expression were significantly associated. RB immunohistochemical expression was absent in 9 of 42 informative cases. RB mRNA expression was low to absent in 9 of 45 informative cases, cyclin D1 amplification was associated with normal RB mRNA, and cyclin D1 over-expression was associated with normal RB immunoreactivity, supporting the hypothesis that alterations of cyclin D1 and RB are alternative mechanisms by which tumor cells may escape the G1 restriction point. A concurrent alteration of RB and cyclin D1 was seen in a small subset of NSCLCs. Abnormalities of cyclin D1 and/or RB at the gene and/or expression level were present in more than 90% of cases, stressing that cyclin D1 and/or RB alterations represent an important step in lung tumorigenesis.
Among the major regulators of the G1 restriction point are cyclin D1 and the retinoblastoma gene ... more Among the major regulators of the G1 restriction point are cyclin D1 and the retinoblastoma gene product (RB). In non-small cell lung cancer (NSCLC), the cyclin D1 gene is amplified/over-expressed in almost 50% of cases, and RB is inactivated in 6-32% of cases. It is of interest to evaluate concurrently the alterations of both genes on the same series of NSCLCs, to investigate whether cyclin D1 and RB alterations are alternative pathways leading to inactivation of the G1 restriction point or if they can occur in the same tumor, possibly exerting an additive effect on cancer progression. We investigated a series of 57 NSCLCs, analyzing cyclin D1 and RB at the gene and protein levels by Southern blot, Northern blot and immunohistochemistry. The cyclin D1 gene was amplified in 18 cases, cyclin D1 immunoreactivity was seen in 25 tumors. Amplification and expression were significantly associated. RB immunohistochemical expression was absent in 9 of 42 informative cases. RB mRNA expression was low to absent in 9 of 45 informative cases, cyclin D1 amplification was associated with normal RB mRNA, and cyclin D1 over-expression was associated with normal RB immunoreactivity, supporting the hypothesis that alterations of cyclin D1 and RB are alternative mechanisms by which tumor cells may escape the G1 restriction point. A concurrent alteration of RB and cyclin D1 was seen in a small subset of NSCLCs. Abnormalities of cyclin D1 and/or RB at the gene and/or expression level were present in more than 90% of cases, stressing that cyclin D1 and/or RB alterations represent an important step in lung tumorigenesis.
Uploads
Papers by Silvia Pellegrini