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Abstract In this short Note we discuss the main context in which the constant 1/e arises (that
is, in certain types of probability problems), and offer derivations of it from a pedagogic point of
view.

1 Introduction

The constant 1/e = 0.367879 (6 d.p.) is listed on the celebrated O.E.I.S. (On-Line Encyclope-
dia of Integer Sequences) [14] in terms of its decimal expansion as Seq. No. A068985, namely,
{3, 6, 7, 8, 7, 9, 4, 4, 1, 1, 7, . . .} (its Engel expansion is Seq. No. A0591931). It would appear to
have its main (that is to say, popular) interpretation in the so called Sultan’s Dowry Problem
described thus, and—as we hope to show in this paper—it possesses context and attributes of
interest to the mathematical community.

Sultan’s Dowry Problem. A sultan has granted a commoner the chance to marry one of his
n daughters. The commoner will be presented with the daughters one at a time and, when each
daughter is viewed, will be told the daughter’s dowry (which is fixed in advance) and must imme-
diately decide whether to accept or reject her (he is not allowed to return to a previously rejected
daughter for reconsideration). However, the sultan will allow the marriage to take place only if
the commoner picks the daughter with the overall highest dowry. Assuming he knows nothing
about the distribution of dowries, the commoner’s best strategy is to wait until he has seen 37 of
the daughters, then pick the first daughter with a dowry that is bigger than any preceding one—in
doing so his odds of choosing the daughter with the highest dowry are surprisingly high, at about
37%; as the number of daughters increases, the probability tends towards the value 1/e.

Remark 1. The problem has also been called the Secretary Problem, whereby an administrator
wants to hire for a position the best secretary out of n rankable applicants who are interviewed
one by one, in random order—a decision about each particular applicant is to be made immedi-
ately after the interview and, once rejected, an applicant cannot be recalled. The probability of
selecting the best applicant in the classic problem converges towards 1/e, and the optimal win
probability is always at least this value. The optimal stopping rule prescribes always rejecting the
first n(1/e) applicants that are interviewed, and then stopping at the first applicant who is better
than every applicant interviewed so far (or continuing to the last applicant if this never occurs),
so that the best candidate is selected about 37% of the time. This and the Dowry Problem offer
examples of ‘optimal stopping strategies’. The constant 1/e is also the probability that, upon n
people mixing up their hats in a box, nobody (for large n) randomly selects their own hat, a fact
which falls under the broad umbrella of derangement problems in discrete mathematics.

Remark 2. From the O.E.I.S. we find other descriptions of the constant, including the trivial
observations that it is the (right-half plane) x location of the minimum value (of e−1/e) of the
function xx (x > 0), the outcome of the integral

∫ 1
0 xsinh(x) dx (and also 1−

∫ 1
0 xcosh(x) dx),

and the sum cos(i)+ isin(i), while a more sophisticated interpretation is that it gives the asymp-
totic density of numbers with an odd number of trailing zeros in their factorial base representa-
tion; listed, too, are versions of the constant in summation, functional and limit form, some more

1The Engel expansion—also referred to as the Egyptian product—of a positive real number x is that formed by the unique
increasing sequence of positive integers {a1, a2, a3, . . .} for which x = 1/(a1) + 1/(a1a2) + 1/(a1a2a3) + · · · .
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exotic than others.

We choose at the outset to state a probability problem in which the constant 1/e appears as
part of the solution, and in doing so work through one of its limit forms; other forms, and matters
of interest, then follow. Note that the ‘1/e strategy’alluded to above has been analysed as one
which is not optimal for ‘best choice’ problems of a related, but different, nature to those set out
above (see the recent work of Bruss and Rogers in [2], and references therein).

Problem. Suppose n numbers are selected randomly (with replacement) from a list of the first n
integers, each time with probability 1/n. Then, for large n, any particular integer appears within
the random n-long selection with probability 1− 1/e.

Solution. Let S be the set of the first n integers S = {1, 2, 3, . . . , n} = {s1, s2, s3, . . . , sn},
say, and choose randomly an element sj of S to be put into a set C so that, repeating the exercise
n times, the set C = {c1, c2, c3, . . . , cn} has at most n distinct elements with (for i = 1, . . . , n),
ci = sj for some j ∈ {1, 2, 3, . . . , n}. Then, for any p ∈ {1, 2, 3, . . . , n},

Pr{sp /∈ C} = Pr{sp 6= c1} · Pr{sp 6= c2} · · · · · Pr{sp 6= cn}

=

(
n− 1
n

)
·
(
n− 1
n

)
· · · · ·

(
n− 1
n

)
=

(
n− 1
n

)n

, (S.1)

whence

Pr{sp ∈ C} = 1− Pr{sp /∈ C} = 1−
(
n− 1
n

)n

= 1− 1/e (S.2)

for large n, since limn→∞{[(n− 1)/n]n} = 1/e.
For completeness here, we prove this last result formally.

Result I.
1/e = lim

n→∞
{[(n− 1)/n]n}.

Proof. Consider the limit L1 = limx→∞{[(x− 1)/x]x}, which we write as

L1 = lim
x→∞

{f(x)g(x)}, (I.1)

where f(x) = (x− 1)/x (with limx→∞{f(x)} = 1) and g(x) = x (with limx→∞{g(x)} =∞);
we seek to show that L1 = 1/e. Given an evaluated indeterminate form of 1∞, a standard
transformation allows us to write L1 as L1 = exp(γ), for which

γ = lim
x→∞

{
ln[f(x)]
1/g(x)

}

= lim
x→∞

{
ln(1− 1

x)

1/x

}

= lim
x→∞

{
d
dx{ln(1−

1
x)}

d
dx{1/x}

}
(by L’Hôpital’s Rule)

= lim
x→∞

{
1

1
x − 1

}
= −1, (I.2)

as required.
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2 A Poisson Consideration of the Optimal Stopping Problem

The Secretary/Sultan problem is a famous one that has been long understood using optimal
problem theory [7]. It has captured the interest of many statisticians who have since developed
and generalised the problem to cover a range of optimalisation problems and applications [11,
3, 9, 4]. The optimal stopping problem has, for example, been considered as a Poisson process
[10, 5, 12, 6, 1], with variations of the model including both non-informative [6] and informative
[1] priors. The Poisson distribution, with parameter λ > 0, has a probability density function
(P.D.F.) given by f(y;λ) = λyexp(−λ)/y! = Pr{Y = y}, where y ≥ 1 is the number of
occurrences of a discrete random variable Y and λ is the rate of success. Commonly the Poisson
P.D.F. is denoted Poi(λ), and it is known that λ = E(Y ) = Var(Y ).

As a point of interest, we present a generalised variation of an uninformative Poisson model
within a Bayesian framework, and investigate the approximation of the rate of success λ for an
increasing sample size n. Consider Y to be a random sample, taking the form of counts—the
number of n applicants for a job position, for instance. The optimal stopping rule then prescribes
that the optimal sample size, k, is n/e applicants. For example, a random sample Y with sample
sizes n = 3, 4, 5 would correspond to optimal sample sizes k = 3/e, 4/e, 5/e. In the context
of the Secretary Problem this would amount to rejecting n/e applicants and hiring the relatively
‘better’ candidate, as outlined in Section 1, where it has been shown that the probability of
selecting the best applicant converges towards 1/e as n→∞ [12]. Continuing with the accepted
optimal sample size k as being n/e, we show that the rate of success λ that corresponds to the
Poisson distribution converges to 1/e for large n, describing another context for this constant.

2.1 Bayesian Inference

Prior Distribution

In a Bayesian framework we need to specify prior distributions. In explorations of priors for
this problem it has been shown that a gamma prior is plausible for the rate of success parameter.
Thus, we assign a gamma distribution to λ, so that λ ∼ Γ(a, b) where shape parameter a and
rate parameter b are assigned values a = b = 1 to express prior ignorance. An advantage of a
Bayesian approach is that priors can be adjusted to the problem at hand with external information
using elicitation techniques, or set up sequentially so that the previous posterior distribution is
current prior. These are our future considerations.

Posterior Distribution

We obtain our inference based on the posterior distribution of the parameter vector space ψ =
(yi;λ) (y1, . . . , yn are instances of Y ). The posterior distribution function of ψ can be obtained
as

fpost(ψ|y) ∝ flike(y|ψ)fprior(ψ), (2.1)

with likelihood function

flike(y|ψ) =
n∏

i=1

Poi(yi|λ)

=
n∏

i=1

[exp(−λ)λyi ]/yi!

=
n∏

i=1

exp(−nλ)λ
∑n

i=1 yi∏n
i=1 yi!

∝ exp(−nλ)λt, (2.2)

with t =
∑n

i=1 yi and the prior fprior(ψ) given by fprior(ψ) = f(λ). Inference on the parameter
λ is based on the posterior summaries of the marginal posterior distribution such as the mean,
median, standard deviation and quantiles.
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A program has been built, using the statistical software R (Version 4.1.2) [13], to apply
the Poisson model within a Bayesian framework and explore the inference on λ under vary-
ing values of n. To do this we obtain Y , comprising count data, with increasing sample sizes
n = 5, 10, 100, 1, 000, . . . , 1, 000, 000. The Poisson distribution is fitted to the set of optimal
sample sizes, k, and rounded to the nearest whole number (in this case it represents the number
of rejected applicants). We do not show our Bayesian Poisson posterior distribution to be ana-
lytically tractable, so we perform Markov Chain Monte Carlo methods [8] to generate samples
from the posterior distribution and indirectly obtain elements such as the location and dispersion
to provide central values and variability. The location measure is computed using the mean and
median along with the measure of dispersion using standard deviation and 95% creditable in-
tervals. The posterior mean, for example, is the expected value of λ under ψ. The below table
provides summary statistics of the posterior distribution of λ, indicating that the rate of success
converges to 1/e for large n (values listed are the posterior mean, median, 95% credible intervals,
and standard deviations (all displayed to 3 d.p.)).

Samp. Size Mean Median 2.5% Quart. 97.5% Quart. Stand. Dev.
n λ

5 0.397 0.341 0.064 1.031 0.252
10 0.396 0.367 0.115 0.840 0.186
50 0.374 0.367 0.230 0.557 0.084
100 0.370 0.367 0.261 0.493 0.059

1,000 0.369 0.368 0.330 0.411 0.020
10,000 0.368 0.368 0.357 0.380 0.006
100,000 0.368 0.368 0.364 0.372 0.002

1,000,000 0.368 0.368 0.367 0.369 0.001

3 Further Results

We next look at a more interesting limiting form of 1/e.

Result II.

1/e = lim
n→∞

{ n
√
n!/n}.

Proof IIA. The proof proceeds along similar lines to those of Result I.

Proof. Consider the limit L2 = limx→∞{ x
√
x!/x} = limx→∞{[(x!)1/x]/x}. Stirling’s approxi-

mation states that, for x large, x! ∼
√

2πx(x/e)x, so that

[(x!)1/x]/x ∼ (α
√
x)1/x(1/e), (II.1)

with α =
√

2π > 0; we thus need to establish that

lim
x→∞

{(α
√
x)1/x]} = 1. (II.2)

The limit is written as

M = lim
x→∞

{f(x)g(x)}, (II.3)

where f(x) = α
√
x (with limx→∞{f(x)} = ∞) and g(x) = 1/x (with limx→∞{g(x)} = 0),

having an evaluated indeterminate form of ∞0. To show M = 1, this time we note that M =
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exp(δ), with δ given as

δ = lim
x→∞

{
g(x)

1/ln[f(x)]

}

= lim
x→∞

{
1
x

1/ln(α
√
x)

}

= lim
x→∞

{
d
dx{

1
x}

d
dx{1/ln(α

√
x)}

}
(by L’Hôpital’s Rule)

= 2 lim
x→∞

{
ln2(α

√
x)

x

}
, (II.4)

after a little algebra. Since limx→∞{ln2(α
√
x)/x} = 0 (left as a reader exercise (L’Hôpital’s

Rule may be applied again)), then δ = 0 and so M = 1.

Proof IIB.

Proof. The Cauchy-d’Alembert criterion states that the nth root of any (positive) sequence
{an}n≥1 has its limit as limx→∞{an+1/an}—provided the latter exists—and so, setting an =
n!/nn, a routine proof follows:

lim
n→∞

{an+1/an} = lim
n→∞

{
nn

(n+ 1)n

}

= lim
n→∞

{
1

(1 + 1
n)

n

}
= 1/e (II.5)

(since (assumed known) limn→∞{(1 + 1
n)

n} = e) = limn→∞{ n
√
an} = limn→∞{ n

√
n!/nn} =

L2.2

Proof IIC. This proof is somewhat different.

Proof. Consider ln( n
√
n!/n) = ln[(n!)1/n/n] = 1

n ln(n!) − ln(n) = 1
n [ln(1) + ln(2) + · · · +

ln(n)− nln(n)]. We further write

ln( n
√
n!/n) = (1/n){[ln(1)− ln(n)] + [ln(2)− ln(n)] + · · ·+ [ln(n)− ln(n)]}

= (1/n)[ln(1/n) + ln(2/n) + · · ·+ ln(n/n)]

= (1/n)
n∑

k=1

ln(k/n), (II.6)

which (in the limit n→∞) is a Riemann sum for the definite integral
∫ 1

0 ln(x) dx = −1.3 Thus,
ln( n
√
n!/n) = −1 as n → ∞, whence −1 = limn→∞{ln( n

√
n!/n)} = ln(limn→∞{ n

√
n!/n}) =

ln(L2), or L2 = e−1.

Proof IID. The proof is another constructive one, utilising the following lemma (whose deriva-
tion is straightforward and omitted).

Lemma 1. Suppose {an}n≥1 = {a1, a2, a3, . . .} is a positive (real) sequence, with limn→∞{an}
= A. Then limn→∞{ n

√
a1a2a3 · · · an} = A.

2We are essentially using the inequalities lim infn→∞{an+1/an} ≤ lim infn→∞{ n
√
an} ≤ lim supn→∞{ n

√
an} ≤

lim supn→∞{an+1/an} for a real positive sequence {an}n≥1. For an = n!/nn, then lim infn→∞{an+1/an} =
lim supn→∞{an+1/an} = 1/e, and so limn→∞{ n

√
an} = L2 = 1/e.

3Note that
∫ 1
ε ln(x) dx = ε− εln(ε)− 1 = (as ε→ 0) 0− 0− 1 = −1.
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Proof. We choose an = (1 + 1
n)

n, with limn→∞{an} = e, and write (using Lemma 1)

e = lim
n→∞

{ n
√
a1a2a3 · · · an}

= lim
n→∞

 n

√(
2
1

)1(3
2

)2(4
3

)3

· · ·
(

n

n− 1

)n−1(
n+ 1
n

)n


= lim
n→∞

{
n

√(
1
2

)(
1
3

)(
1
4

)
· · ·
(

1
n− 1

)(
(n+ 1)n

n

)}

= lim
n→∞

{
n

√
(n+ 1)n

n!

}

= lim
n→∞

{
n+ 1
n
√
n!

}
= lim

n→∞

{
n

n
√
n!

}
+ lim

n→∞

{
1

n
√
n!

}
(II.7)

= 1/L2 + 0 = 1/L2, so L2 = 1/e.

As the reader will have gathered, a familiarity with basic properties of the limit is assumed by
the authors, though effort has been made to include explanatory steps in places so as to avoid
confusion and aid clarity.

Proof IIE. This final proof is perhaps the most appealing.

Proof. It is well known that a (real valued) monotonically increasing function f(x) satisfies the
inequality chain ∫ b

a−1
f(x) dx ≤

b∑
k=a

f(k) ≤
∫ b+1

a

f(x) dx, (II.8)

where a, b are natural numbers. For a = 2, b = n, f(x) = ln(x), it gives∫ n

1
ln(x) dx ≤

n∑
k=2

ln(k) =
n∑

k=1

ln(k) ≤
∫ n+1

2
ln(x) dx <

∫ n+1

1
ln(x) dx, (II.9)

and in turn, writing F (n) = 1
n

∑n
k=1 ln(k)− ln(n),

1
n

∫ n

1
ln(x) dx− ln(n) ≤ F (n) < 1

n

∫ n+1

1
ln(x) dx− ln(n), (II.10)

that is,
Bl(n) ≤ F (n) < Bu(n), (II.11)

with the lower and upper bounds evaluated as

Bl(n) =
1
n

∫ n

1
ln(x) dx− ln(n) =

1
n
− 1,

Bu(n) =
1
n

∫ n+1

1
ln(x) dx− ln(n) = ln

(
1 +

1
n

)
+ ln(n+ 1)/n− 1, (II.12)

and forming, to order 1/n, a bounding interval for F (n) of length ln(n)/n (a Puiseux series
gives Bu(n) = −1 + 1

n [ln(n) + 1] + O(n−2) for n large, so that Bu(n) − Bl(n) = ln(n)/n +

O(n−2)). Since each of Bl(n),Bu(n)→ −1+ as n→∞, so does F (n)—which has closed form
F (n) = ln( n

√
n!/n) (see Proof IIC)—by the Sandwich Theorem applied to (II.11), completing

the proof (ln(L2) = ln(limn→∞{ n
√
n!/n}) = limn→∞{ln( n

√
n!/n)} = limn→∞{F (n)} = −1,

so L2 = e−1).4

4The squeeze is relatively gentle, due largely to the slow convergence of Bu(n) compared with Bl(n); the difference
Bu(n)−Bl(n) first becomes O(10−2) at n = 36, and decreases only gradually thereafter (Bu(100)−Bl(100) = 4.6102×
10−2, for example).
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Result III.
1/e = lim

n→∞

{
n+1
√
(n+ 1)!− n

√
n!
}
.

This result is a named one, the sequence { n+1
√
(n+ 1)! − n

√
n!}n≥0 known as the Lalescu se-

quence after the Romanian mathematician Traian Lalescu (1882–1929). It would appear that
he posed the convergent sequence value as Problem No. 579 in Vol. 6 of the Romanian journal
Gazeta Matematică (Bukarest) in 1900 (variant sequences appeared in subsequent issues, be-
ginning in 1913 with {(n + 1) n+1

√
n+ 1 − n n

√
n}n≥0 of R.T. Ianculescu which converges to 1

(Problem No. 2042 of Vol. 19)).

Remark 3. As a point of interest, we note that the convergence rate of the expression in each
of Results I,III is better than that of Result II. After 100 terms (that is, when n = 100) the se-
quence of values generated by Results I-III are within (resp.) 1.847 × 10−3, 1.205 × 10−2 and
1.694× 10−3 of the convergent value 1/e.

Proof IIIA. The result is delivered from a powerful theorem.

Proof. A fairly high level pedagogic article by D.M. Bătineţu-Giurgiu and N. Stanciu (‘New
Methods for Calculations of Some Limits’, The Teach. Math. XVI, 82–88 (2013)) contains Re-
sult III as a special case of a more general result, and also as an instance of the following which
we have restated slightly to suit our needs (see Applications A3 therein, p. 85).

Theorem 1. Given positive real sequences {xn}n≥1 and {yn}n≥1 for which a = limn→∞{xn+1/
(n2xn)}, and b = limn→∞{yn+1/(nyn)}, then

lim
n→∞

{
n+1
√
xn+1/yn+1 − n

√
xn/yn

}
=

a

be
.

A derivation of this may be found in the Appendix. We simply choose xn = n!2, yn = n!, with

a = lim
n→∞

{xn+1/(n
2xn)} = lim

n→∞
{[(n+ 1)/n]2} = 12 = 1,

b = lim
n→∞

{yn+1/(nyn)} = lim
n→∞

{(n+ 1)/n} = 1, (III.1)

and, with xn/yn = n!, Lalescu’s result is immediate by Theorem 1.5

Proof IIIB. This proof is another technical one, but instructive in its own way.

Proof. Write `n = n+1
√
(n+ 1)!− n

√
n!—so that we wish to prove L3 = limn→∞{`n} = 1/e—

and define

αn =
n
√
n!/n,

βn =
exp{ln[(n+ 1)!]/(n+ 1)− ln(n!)/n} − 1

ln[(n+ 1)!]/(n+ 1)− ln(n!)/n
,

γn = {nln[(n+ 1)!]− (n+ 1)ln(n!)}/(n+ 1), (III.2)

from which it is seen (with some algebraic manipulation of βn) that

`n = αnβnγn. (III.3)

We initially re-write γn as

γn = [nln(n+ 1)− ln(n!)]/(n+ 1) = un/vn, (III.4)

say (with un = nln(n+ 1) − ln(n!), vn = n+ 1 each unbounded for n large), so that (un+1 −
un)/(vn+1 − vn) = ln(pn), where pn = [(n + 2)/(n + 1)]n+1 → e as n → ∞ (readily shown

5A 2020 article by Bătineţu-Giurgiu, Stanciu and Díaz-Barrero in the Arhimede Mathematical Journal—titled ‘The Last
Three Decades of Lalescu Limit’ (7, 16–26)—contains essentially this route (though in a less general form), and presents
other Lalescu-type limits drawn from “. . . several magazines around the world.” It is a useful point of reference for those
interested in the topic.
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via L’Hôpital’s Rule). Furthermore, limn→∞{γn} = limn→∞{un/vn} = (by the Stolz-Cesàro
Theorem6) limn→∞{(un+1 − un)/(vn+1 − vn)} = limn→∞{ln(pn)} = ln(e) = 1. Accordingly,
with limn→∞{αn} = 1/e (Result II) and limn→∞{βn} = 1 (tedious reader exercise), (III.3)
gives

L3 = lim
n→∞

{`n} = lim
n→∞

{αnβnγn} = (1/e) · 1 · 1 = 1/e, (III.5)

and we have the result.

Proof IIIC. We use the same type of approach as deployed in Proof IIE in so far as bounds are
identified for the expression `n.

Proof. The result is immediate (from the Sandwich Theorem) upon establishing that L(n) ≤
`n ≤ R(n) for (resp.) left-hand and right-hand bounds L(n) = [n/(n + 1)]n+1 and R(n) =
[n/(n + 1)]n, each of which → 1/e as n → ∞ (L(n) does so from below, R(n) from above),
with to O(1/n) a bounding interval of length 1/(ne).7

The right-hand bound arrives from the two-variable weighted Arithmetic-Geometric Mean
Inequality which states that, for x1, x2 positive reals, and positive weights w1, w2,

(w1x1 + w2x2)/w ≥ w

√
(x1)w1(x2)w2 , (III.6)

where w = w1 + w2 > 0. Setting x1 = n
√
n!/n, x2 = [n/(n + 1)]n, with weights w1 = n,

w2 = 1, it reads

n ·
n
√
n!
n

+ 1 ·
(

n

n+ 1

)n

≥ (n+ 1) n+1

√√√√( n
√
n!
n

)n [(
n

n+ 1

)n]1

= (n+ 1) n+1
√
n!/(n+ 1)n

= n+1
√
(n+ 1)!, (III.7)

whence

`n = n+1
√
(n+ 1)!− n

√
n! ≤

(
n

n+ 1

)n

= Rn. (III.8)

While the lower boundLn is verifiable numerically, we have been unable to formulate its analytic
form and leave this as an open problem for any interested reader to take on.

We finish with a series representation of the constant 1/e—this is the only one of its type that
we have been able to locate.

Result IV.
1/e = 2(1/3! + 2/5! + 3/7! + 4/9! + · · · ).

Proof. Define a series

S(x) =
∞∑
n=0

[(n+ 1)/(2n+ 3)!]x2n+3

= (1/3!)x3 + (2/5!)x5 + (3/7!)x7 + (4/9!)x9 + · · · . (IV.1)

6We apply the case for which the sequence {vn}n≥1 is unbounded for large n, with 0 < v1 < v2 < v3 < · · · ; it
is a discrete version of L’Hôpital’s Rule. Lemma 1 (of Proof IID) has in fact been attributed to Cesàro (as the so called
“Multiplicative” Cesàro Theorem).

7Large n Laurent series for the bounds are found to be L(n) = (1/e)[1 − 1/(2n) + 7/(24n2) − · · · ] and R(n) =
(1/e)[1 + 1/(2n)− 5/(24n2) + · · · ].
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Using the (known) series forms of cosh(x), sinh(x), we consider

xcosh(x)− sinh(x) = x

∞∑
n=0

x2n

(2n)!
−
∞∑
n=0

x2n+1

(2n+ 1)!

=
∞∑
n=0

(
1

(2n)!
− 1

(2n+ 1)!

)
x2n+1

= 2
∞∑
n=0

n

(2n+ 1)!
x2n+1

= 2
∞∑
n=1

n

(2n+ 1)!
x2n+1

= 2
∞∑
n=0

n+ 1
(2n+ 3)!

x2n+3

= 2S(x). (IV.2)

From (IV.1) 2S(1) = 2(1/3!+ 2/5!+ 3/7!+ 4/9!+ · · · ) = (by (IV.2)) cosh(1)− sinh(1) = (by
definition) 1

2(e+ e−1)− 1
2(e− e

−1) = 1/e, which is Result IV.

Remark 4. The aforementioned O.E.I.S. Seq. No. A068985 has the result
∑∞

n=0[(−1)n/n!](1+
n2) = 1/e listed. Since 1/e =

∑∞
n=0(−1)n/n! from the standard Maclaurin series form for ex,

this means that
∑∞

n=0[(−1)n/n!]n2 = 0. In fact this latter sum is but one of a class of infi-
nite series whose convergent values are multiples of 1/e (in this case zero), and we observe the
following: writing

Sp =
∞∑
n=0

(−1)n

n!
np =

αp

e
p ≥ 1, (3.1)

the sequence of constants {α0 = 1, α1, α2 = 0, α3, . . .} = {1,−1, 0, 1, 1,−2,−9,−9, 50, 267,
413,−2180,−17731, . . .} have been generated computationally (for p ≥ 1) and can be found
registered as Seq. No. A000587 (with (3.1) duly noted). It comprises the so called Rao Uppuluri-
Carpenter numbers (or complementary Bell numbers), named after Venkata Ramamohana Rao
Uppuluri and John A. Carpenter (they seem to have also been referred to as Rényi numbers).
Among a variety of properties of the sequence {αp}p≥0, we choose to highlight8 that, for p ≥ 0,
αp = [xp/p!]{E(x)}, with E(x) = exp[1−exp(x)] acting as its exponential generating function.
The nearest to an explicit closed form for the sum is the p−1Fp−1(−1) hypergeometric series
Sp = −p−1Fp−1(2, 2, . . . , 2; 1, 1, . . . , 1| − 1) (p ≥ 1).

4 Summary

This paper has presented a discussion of the constant 1/e, giving various mathematical formula-
tions of it and discussing its statistical context. The authors hope that the work will be of interest
to a wide readership.

Appendix: Proof of Theorem 1 (Bătineţu-Giurgiu and Stanciu)

Here we prove Theorem 1.

Proof. With sequences {xn}n≥1, {yn}n≥1 as defined (that is, as (resp.) {n!2}n≥1, {n!}n≥1), let

an = n
√
xn/yn. (A.1)

8Thanks are due to Professor Dr. Wolfram Koepf for making these observations (using his bespoke routines within Maple)
and communicating them to the author P.J.L. We are also grateful to Dr. James Clapperton for checking some of the compu-
tations related to this paper.
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We establish first that

lim
n→∞

{an/n} = lim
n→∞

{ n
√
xn/yn/n} =

a

be
. (A.2)

This is readily achieved by defining bn = xn/(nnyn). Then if {bn+1/bn}n≥1 converges to a
limit, so does (to the same limit) the sequence { n

√
bn}n≥1 = {an/n}n≥1 (Cauchy-d’Alembert).

Writing the ratio bn+1/bn = [xn+1/((n+1)n+1yn+1)]·[(nnyn)/xn] as bn+1/bn = [xn+1/(n2xn)]·
[(nyn)/yn+1] · [n/(n+ 1)]n+1, it is immediate that (using (III.1))

lim
n→∞

{an/n} = lim
n→∞

{bn+1/bn} = a · (1/b) · (1/e) = a

be
. (A.3)

Next, consider the ratio(
an+1

an

)n

=

(
xn+1

yn+1

)n/(n+1)(
yn
xn

)

=

(
xn+1

yn+1

)n/(n+1)(
yn
xn

)n/(n+1)(
yn
xn

)1/(n+1)

=

(
xn+1

yn+1

)n/(n+1)(
yn
xn

)n/(n+1)
[(

yn
xn

)1/n
]n/(n+1)

, (A.4)

whence

lim
n→∞

{(
an+1

an

)n}
= lim

n→∞


[(

xn+1

yn+1

)(
yn
xn

)(
yn
xn

)1/n
]n/(n+1)


= lim

n→∞

{
xn+1

n2xn

}
· lim
n→∞

{(
yn+1

nyn

)−1
}
· lim
n→∞


[

1
n

(
xn
yn

)1/n
]−1


= a · b−1 ·

( a
be

)−1
(invoking (A.2))

= e. (A.5)

Finally, we write n+1
√
xn+1/yn+1 − n

√
xn/yn = an+1 − an (by (A.1)) = an[(an+1/an) − 1] =

an[exp{ln(an+1/an)} − 1], and in turn

lim
n→∞

{
n+1

√
xn+1

yn+1
− n

√
xn
yn

}
= lim

n→∞

{
an[e

ln(an+1/an) − 1]
}

= lim
n→∞

{
an
n
· e

ln(an+1/an) − 1
ln(an+1/an)

· ln[(an+1/an)
n]

}
, (A.6)

whereupon, appealing to (A.2) and (A.5) (given that it is easy to show that [exp{ln(an+1/an)}−
1]/ln(an+1/an)→ 1 as n→∞ (via L’Hôpital’s Rule, for instance)),

lim
n→∞

{
n+1

√
xn+1

yn+1
− n

√
xn
yn

}
= a/(be) · 1 · ln(e) = a/(be), (A.7)

as required.
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