Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Twierdzenie Riesza-Fischera

twierdzenie analizy harmonicznej

Twierdzenie Riesza-Fischera – twierdzenie analizy harmonicznej mówiące, że każdy ciąg liczb zespolonych sumowalny z kwadratem jest ciągiem współczynników Fouriera pewnej funkcji całkowalnej z kwadratem, określonej na przedziale Teoria została dowiedziona niezależnie przez węgierskiego matematyka Frigyesa Riesza w 1907 oraz Ernsta Sigismunda Fischera w 1908[1].

Teoria Riesza-Fischera początkowo była teorią związaną jedynie z szeregami Fouriera, pokazuje jednak dużą wagę całki Lebesgue’a oraz jednocześnie dała nowy początek analizie funkcjonalnej[2].

Definicja

edytuj

Jeżyli mamy ortogonalny oraz normalny system funkcji   które są całkowalne z kwadratem w sensie Lebesgue’a.

To znaczy spełniające warunek:

 

Wtedy każdy ciąg liczb rzeczywistych   spełniających warunek   implikuje istnienie innej funkcji   która spełnia warunek:

  dla każdego  

Stosując uogólnienie całkowania, można stwierdzić, że dla każdego elementu   istnieje odpowiednia funkcja, której współczynniki Fouriera są wektorami w  [3].

Przypisy

edytuj
  1. Pogorzelski 1953 ↓, s. 90.
  2. „Historia Mathematica”. 2, s. 591–594, 1975. DOI: 10.1016/0315-0860(75)90126-3. ISSN 0315-0860. 
  3. Jahnke 2003 ↓, s. 398–399.

Bibliografia

edytuj