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Abstract 

Background:  Charcoal rot is a fungal disease that thrives in warm dry conditions and affects the yield of soybeans 
and other important agronomic crops worldwide. There is a need for robust, automatic and consistent early detec-
tion and quantification of disease symptoms which are important in breeding programs for the development of 
improved cultivars and in crop production for the implementation of disease control measures for yield protection. 
Current methods of plant disease phenotyping are predominantly visual and hence are slow and prone to human 
error and variation. There has been increasing interest in hyperspectral imaging applications for early detection 
of disease symptoms. However, the high dimensionality of hyperspectral data makes it very important to have an 
efficient analysis pipeline in place for the identification of disease so that effective crop management decisions can 
be made. The focus of this work is to determine the minimal number of most effective hyperspectral wavebands that 
can distinguish between healthy and diseased soybean stem specimens early on in the growing season for proper 
management of the disease. 111 hyperspectral data cubes representing healthy and infected stems were captured 
at 3, 6, 9, 12, and 15 days after inoculation. We utilized inoculated and control specimens from 4 different genotypes. 
Each hyperspectral image was captured at 240 different wavelengths in the range of 383–1032 nm. We formulated 
the identification of best waveband combination from 240 wavebands as an optimization problem. We used a 
combination of genetic algorithm as an optimizer and support vector machines as a classifier for the identification of 
maximally-effective waveband combination.

Results:  A binary classification between healthy and infected soybean stem samples using the selected six wave-
band combination (475.56, 548.91, 652.14, 516.31, 720.05, 915.64 nm) obtained a classification accuracy of 97% for the 
infected class. Furthermore, we achieved a classification accuracy of 90.91% for test samples from 3 days after inocula-
tion using the selected six waveband combination.

Conclusions:  The results demonstrated that these carefully-chosen wavebands are more informative than RGB 
images alone and enable early identification of charcoal rot infection in soybean. The selected wavebands could be 
used in a multispectral camera for remote identification of charcoal rot infection in soybean.
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Background
Soybean [Glycine max (L.) Merr.] is the major oilseed 
crop grown in the United States [1]. Soybean is also eco-
nomically important as it is the second major crop over-
all produced by the United States [1]. Soybean is used to 
produce biofuel, cooking oil, soy foods, and animal feed, 
among many other uses, but the crop is threatened by 
over 100 diseases with 35 believed to be important path-
ogens affecting soybean yield [2, 3].

Charcoal rot is an economically critical disease that 
affects soybean, as well as 500 other plant species world-
wide, and is caused by the fungal pathogen Macropho-
mina phaseolina (Tassi) Goid [4–6]. Infection is favored 
by warm (30–35 °C), dry, drought-like conditions but can 
cause up to 50% yield loss even in irrigated environments 
[7–10]. Charcoal rot earned its common name from the 
gray-silver discoloration caused by microsclerotia forma-
tion in the vascular tissue and pith of lower stems and 
roots of infected plants [7, 11]. These microsclerotia are 
small dark survival structures that persist in the soil and 
plant debris after harvest and can act as an inoculum 
source for charcoal rot infection during the next grow-
ing season [3, 7, 12]. Symptoms generally become visible 
at the R5–R7 reproductive stages, or from early seed to 
early maturity, but can occasionally be seen earlier as 
reddish-brown lesions on the hypocotyl of seedlings [3, 
7]. In more mature infected plants, a reddish-brown dis-
coloration of the vascular tissue in the roots and lower 
stem generally precedes foliar symptom development 
[7]. Following internal discoloration, diseased plants may 
yellow, then wilt, and prematurely senesce leaving dead 
leaves and petioles still attached to the stem [3, 7, 13]. 
Black microsclerotia on the above ground plant are first 
visible at the stem nodes and can be seen in the epider-
mal and sub epidermal tissue of plant stems as well as 
scattered on dry pods and seed of more mature plants 
[3, 7]. Management of charcoal rot has proven to be dif-
ficult as no fungicides are available for control and more 
work needs to be done to research the potential of seed 
treatments [3, 12]. In addition, crop rotation may not be 
a viable strategy to manage infection, because charcoal 
rot infects the United States’ major crops including corn, 
cotton, and sorghum [14, 15]. Furthermore, no commer-
cial soybean varieties are considered resistant, though a 
few varieties demonstrate moderate resistance [8, 13, 16–
19]. However, a genome wide association (GWA) study 
across both field and greenhouse environments recently 
reported a total of 19 single nucleotide polymorphisms 

(SNPs) associated with charcoal rot resistance in soybean 
[20]. While over 800 soybean lines have been evaluated 
for charcoal rot resistance, identification of resistant 
genotypes has been limited due to a need for an accurate, 
rapid, and consistent method for disease assessment and 
classification [12, 13].

Current state of disease assessment and outlook
Multiple methods, which are predominantly visual, 
have been proposed for assessing charcoal rot severity 
of soybean plant canopies, roots, and stems in the field 
and indoor environments. These methods include evalu-
ation of the intensity or length of stem and root discol-
oration caused by microsclerotia formation, evaluation 
of the percent chlorosis and necrosis of the plant canopy 
throughout the growing season, chlorosis and necrosis of 
foliage that remains attached to the plant at R7, calcula-
tion of colony forming unit index to quantify the micro-
sclerotia content in the stem and root, and lesion length 
measurements of cut-stem inoculations on young plants 
[13, 19, 21, 22]. However, visual rating methods can be 
subjective and are susceptible to human error caused by 
rater ability, and inter/intra-rater reliability [23–28].

Furthermore, visual ratings only take advantage of vis-
ible wavelengths of the electromagnetic spectrum [23]. 
Hyperspectral imaging can capture both spectral and 
spatial information from a wider range of the electromag-
netic spectrum including the visible and near-infrared 
regions [29]. Automating disease severity rating through 
hyperspectral imaging offers a potential solution to the 
standardization and reliability issues in current visual 
rating systems. While some hyperspectral systems do 
not incorporate imaging, but rather average all spectra 
obtained from a given area, the imaging aspect inher-
ent in hyperspectral imaging techniques comparing to 
non-imaging hyperspectral systems offers many ben-
efits for studying plant disease symptoms [30]. Extrac-
tion of reflectance spectra from each pixel, enables one 
to relate changes in reflectance values to disease symp-
toms [31, 32]. Recent plant pathology and phenotyping 
studies have utilized hyperspectral imaging data to study 
the effect of different plant pathogens. Examples include 
approaches to identify differences in the reflectance 
patterns of resistant and susceptible barley genotypes 
inoculated with powdery mildew [30, 33] the content of 
charcoal rot (M. phaseolina) microsclerotia in ground 
root and stem tissue as a method for rating infection 
severity [34], and hyperspectral imaging to distinguish 
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between the symptoms of Cercospora leaf spot, powdery 
mildew, and leaf rust at different developmental stages in 
sugar beet [32].

A key issue with utilizing hyperspectral imaging is that 
the resulting hyperspectral data cubes, or the 3-dimen-
sional output of hyperspectral imaging comprised of 
2 spatial dimensions and 1 wavelength dimension, are 
high dimensional and contain redundant information 
which reduces the ability to distinguish between differ-
ent object classes in classification problem. [35]. Using a 
hyperspectral camera on a drone for crop disease identi-
fication and phenotyping can also generate large quanti-
ties of data during the flight making it necessary to have 
a large on-board storage capacity and also substantially 
increases computational cost for any subsequent analysis. 
Therefore, there is a need to develop an analysis pipeline 
to reduce dimensionality of the data and to select opti-
mal wavelengths that are most useful for phenotyping 
and disease identification. This serves as the motivation 
of this study.

Feature extraction and feature selection are two dif-
ferent methods for dimensionality reduction of hyper-
spectral data. Feature extraction methods such as 
Principal Component Analysis (PCA), Linear Dis-
criminant Analysis (LDA), Independent Component 
Analysis (ICA) and Maximum Noise Fraction (MNF) 
project the original hyperspectral data into a new low-
dimensional data by reducing the spectral dimension 
[36–39]. Feature extraction methods alter the physical 
meaning of the hyperspectral data during transforma-
tion to a new (and lower) dimensional space whereas 
feature selection methods preserve the original features 
[40]. Feature selection essentially boils down to care-
fully selecting a subset of the available wavebands (i.e. 
waveband selection) that preserves certain traits of the 
full dataset [41]. Feature selection methods are broadly 
classified into supervised or unsupervised methods 
[42]. Supervised methods use input and desired out-
put variables for training an algorithm whereas unsu-
pervised methods use only the input data for training 
[43]. Some supervised waveband selection methods use 
class separability metrics like Euclidean distance, trans-
formed divergence, Bhattacharyya distance, Jeffreys–
Matusita (JM) distance [44, 45]. A waveband selection 
method based on estimation of mutual information for 
classification of hyperspectral images was proposed 
by Guo et  al. [46]. Sequential search strategies like 
Sequential Forward Selection (SFS), Sequential Floating 
Forward Selection (SFSS), Sequential Backward Selec-
tion (SBS) and Sequential Backward Floating selection 
(SBSS) have also been used for waveband selection [47, 
48]. These sequential search algorithms are simple and 
suboptimal. Evolutionary methods such as Particle 

Swarm Optimization (PSO) and genetic algorithms 
(GA) which can search for global optimal solutions 
have been found to be successful in effective waveband 
selection [49, 50]. In this study, we use an evolutionary 
method, specifically GA, as an optimizer along with 
Support Vector Machine (SVM) [51] as a classifier for 
effective waveband selection. GA-SVM based model 
have been successful in waveband selection for classi-
fication of remotely sensed hyperspectral images [49, 
52–55]. Although computationally costly, evolution-
ary algorithms can give better optimal solution than 
sequential algorithms since the best feature combina-
tion is selected simultaneously [56].

The objectives of this study were (1) hyperspectral 
imaging enabled early identification of charcoal rot dis-
ease and (2) to determine the most effective minimum 
number of wavebands for discrimination of healthy and 
charcoal rot infected stems. This study shows that a 
genetic algorithm-support vector machine based model 
can be used in selecting the most effective waveband 
combination for early detection of charcoal rot disease 
in soybeans. Additionally, using F1-Score as an optimi-
zation metric instead of classification accuracy can over-
come the skewness of classification accuracy metric for 
the dominant class of an imbalanced dataset (number of 
healthy samples more than the number of infected sam-
ples) [57].

Methods
Plant material
Four soybean genotypes, Pharaoh (susceptible), PI479719 
(susceptible), DT97-4290 (moderately resistant), and 
PI189958 (moderately resistant) were included in this 
study. Two seed of each genotype were planted in a com-
mercial soil substrate (Sungro horticulture professional 
growing mix) in 8 oz styrofoam cups in a growth chamber 
at 30  °C day/21  °C night with a 16-h photoperiod. Each 
styrofoam cup was supplemented with 1/8tsp (0.65 g) of 
osmocote 15-9-12 at planting. Ten days after planting, 
plants were thinned down to one plant per pot choosing 
the most vigorous plant. Plants were arranged in a rand-
omized complete block design with four replications. The 
two treatments were inoculation and mock-inoculation. 
Data collection was completed within 15 days after inoc-
ulation (DAI). Replication 1 was planted in the growth 
chamber in September 2016. Lesion lengths and hyper-
spectral images were collected at 3, 6, 12, and 15 DAI to 
study the earlier and then later time points post inocula-
tion. Replications 2–4 were planted together in Novem-
ber 2016. Lesion length ratings and data cubes were 
collected at 3, 6 and 9DAI in replications 2–4 focusing on 
the earlier disease development time points.
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Culture and inoculation of M. phaseolina
The pathogen M. phaseolina 2013X, originally collected 
from the field in Iowa in 2013, was re-isolated from 
inoculated stems of soybean plants grown in the growth 
chamber. Inoculation was performed 3  weeks (21  days) 
after planting of seeds. In order to prepare for inocula-
tion, cultures of M. phaseolina were started in the lab, 
17 days after planting (i.e. 4 days before inoculation). This 
culture preparation consisted of transferring 0.5 cm plugs 
of M. phaseolina to Potato Dextrose Agar (PDA) plates 
which were then stored in the dark at 30  °C for 4  days. 
Twenty-one days after planting, the four soybean geno-
types were inoculated according to the cut-stem inocu-
lation technique [22]. Sterile 200  µl pipette tips were 
placed open end down into the media around the leading 
edge of the fungal colony cutting a small disk of media 
and fungal hyphae from the plate. Each soybean stem 
was severed exactly 40  mm above the unifoliate node. 
A pipette tip was removed from the culture plate ensur-
ing that it carried a disk of PDA media + M. phaseolina 
mycelia for the inoculation treatment. The pipette tip was 
pushed onto the cut stem, like a hat, and the open wound 
imbedded in the media. The same protocol was carried 
out for the mock-inoculation treatment using uncontam-
inated plates of PDA media. Three days after inoculation, 
pipette tips were removed from all plants.

Hyperspectral image acquisition
Pika XC hyperspectral line scanning imager (Resonon, 
Bozeman, MT) was used to construct hyperspectral 
data cubes of soybean stems. The Pika XC imager has a 
spectral resolution of 2.5 nm, with 240 spectral channels 
covering a spectral range from 382 to 1032  nm. Hyper-
spectral images of healthy and charcoal rot infected stems 
were collected at different time points, as explained pre-
viously, for classification.

The imaging system also includes a mounting tower, 
linear translation stage, and a computer pre-loaded with 
SpectrononPro software (Resonon, Bozeman, MT). Illu-
mination was provided by two 70-watt quartz-tungsten-
halogen Illuminator lamps (ASD Inc., Boulder, CO) 
which provide stable illumination over a 350–2500  nm 
range. The distance between the lamps and the plant stem 
being imaged was 54 cm with lights pointed towards the 
sample at a 45-degree angle. Prior to imaging, the ASD 
pro-lamps were turned on and warmed up for at least 
20 min to produce a stable light source.

Using the SpectrononPro software interface, the cam-
era exposure was set automatically, and focus adjusted 
manually using a lens of f-number (ratio of focal length 
and diameter of a lens) of ƒ/1.4. The system was then 
calibrated to a white reference tile and a dark reference 
with the lens cap covering the objective lens. Aspect ratio 

was adjusted using a concentric circles sheet provided 
by Resonon. Data was captured with reflectance values 
between 0 and 1. Figure 1 shows the hyperspectral imag-
ing setup used in the study. The specimen was placed 
horizontally in the linear translator stage with the lesion 
on the right side.

Plant stems were destructively imaged at different 
time points after inoculation (3, 6, 9, 12 and 15 DAI). All 
leaves were removed from the plant stem and the stem 
severed at the soil surface immediately prior to hyper-
spectral data cube collection. Stems were placed on the 
linear translation stage for imaging. Growth patterns of 
stem lesions often resulted in irregular lesion boundaries. 
So, stems were positioned on the linear translation stage 
so that the longest edge of the lesion was facing the cam-
era lens. Following calibration, a data cube was collected 
from each stem. The hyperspectral data cubes and cor-
responding RGB images were saved on an external hard 
drive.

Charcoal rot rating protocol
In addition to stem images, disease progression was 
manually rated by measuring length (mm) of the exte-
rior lesion, interior lesion, and dead tissue lesion. The 
exterior lesion was clearly visible as a reddish-brown to 
black discoloration proceeding from the inoculated end 
of the stem. The interior lesion, a reddish-brown discol-
oration of the vascular tissue, progressed farther than 
the exterior reddish-brown lesion and was measured to 
the lowest point of the dark reddish continuous discol-
oration from the inoculated end of the stem. Tissue death 
was the last symptom to develop and as such, the dead 
tissue lesion was shorter than the interior and exterior 
lesions and was measured to the extent of the dry, dead 
plant tissue. Measurement protocol was designed based 
on Twizeyimana et  al., where charcoal rot lesion length 
was measured from the unifoliate node to the lowest 
edge of the lesion being measured [22]. Figure  2 shows 
the interior and exterior and dead tissue lesion lengths of 
an infected soybean stem.

Genetic algorithm‑support vector machine based feature 
selection
Problem definition
The identification of best waveband combination for 
maximally discriminating healthy and charcoal rot 
infected stems from a set of 240 wavebands was formu-
lated as an optimization problem. A genetic algorithm 
(GA) based optimization protocol using support vector 
machine (SVM) as a classifier was used to find the most 
optimal wavebands for designing a multispectral cam-
era system for phenotyping and disease identification. 
Spectral and spatial information from the hyperspectral 
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images were used for early identification and classifica-
tion of disease. The objective of the optimization was to 
find the best waveband combination that maximizes the 
classification performance (i.e. find the best k waveband 
combination that produces the best classification per-
formance when distinguishing between healthy and dis-
eased specimens). Figure  3 shows the flowchart of the 
GA-SVM architecture for waveband selection. MATLAB 
R2017a was used to implement the GA-SVM model.

Support vector machine
Support Vector Machine (SVM) is a kernel-based dis-
criminative supervised learning algorithm for classifi-
cation [51, 58]. SVM is one approach for constructing a 
classifier that maps an input data (of N waveband infor-
mation) to a class (healthy vs infected). SVM has been 
used with significant success in identification of variety of 
plant stresses [43, 59]. Formally, SVM projects data which 
are not separable linearly into a higher dimensional space 

Fig. 1  Illustration of the hyperspectral imaging setup for charcoal rot disease detection

Fig. 2  Charcoal rot disease ratings were obtained by measuring three different lesion elements of symptom development including the exterior 
lesion, dead tissue, and interior lesion length (mm)
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Fig. 3  GA-SVM architecture for selection of optimal bands
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using a kernel and separates the classes with an opti-
mal hyperplane that maximizes the margin between the 
classes [60]. In this study, we used Radial Basis Func-
tion (RBF) [61] kernel to learn the non-linear classifier. 
SVM has been used as a classifier in wrapper based fea-
ture selection methods for classification of hyperspectral 
images [49, 52, 54, 55, 62–65]. After trial and error, the 
two Radial Basis Function (RBF) kernel parameters C and 
γ were set to 1000 and 1, respectively.

Genetic algorithm
Genetic algorithms are population based stochastic 
search optimization techniques inspired by natural selec-
tion and natural genetics principles [66]. The population 
of candidate solutions (i.e. wavebands) is represented as 
a long string of bits and is called ‘chromosome’. Each of 
these chromosomes is assigned a score using a fitness 
function for evaluation [67]. In this case, the fitness func-
tion evaluates how well the chromosome (i.e. that par-
ticular selection of wavebands) performs to distinguish 
between diseased and healthy specimens. These chro-
mosomes are evolved in successive generations using 
selection, mutation and crossover genetic operators 
for exploring the solution space until a best solution is 
obtained, or termination criteria is encountered. Selec-
tion of chromosomes for reproduction can be done in 
diverse ways [68]. One of the ways is to choose the pair 
of chromosomes in the population that provides rela-
tively good fitness scores to perform crossover. Crossover 
operator randomly combines genetic information of two 
chromosomes. Mutation operator modifies some compo-
nent of a chromosome to form random new populations 
in the search space which prevents GA from choosing 
local optimal solutions. The “elite” is a GA hyperparam-
eter decides the number of most-fit individuals passed 
from one generation to the next generation without 
changing. This process of selection, mutation and cross-
over is repeated for multiple generations to improve the 
population fitness [66] (Fig. 3).

It is important to carefully choose a well-defined and 
appropriate fitness function. After exhaustive numeri-
cal tests and exploration, we chose the F1 score of the 
infected class as a useful tool to evaluate performance of 
the classifier. F1-score (Eq.  3) of the infected class have 
been used previously for evaluating plant disease classi-
fiers [69, 70]. Maximizing only precision (Eq. 1) or recall 
(Eq.  2) does not imply good classification performance 
[71]. F1 score is defined as harmonic mean of precision 
and recall values providing equal weightages to both 
precision and recall scores [72]. A good F1 score is also 
indicative of good classification performance. Equa-
tions 1, 2, and 3 provide the formulas for precision, recall, 
and F1 score metrics where TP is True Positive, FP is 

False Positive, and FN is False Negative. The value of F1 
score can vary from 0 to 1. A value of 1 and 0 is obtained 
for best and worst classification performance respec-
tively. We conduct a 10-fold cross-validation on the 
complete training data for evaluation of the SVM classi-
fier. The mean value of the 10 F1-scores from the 10-fold 
cross-validation was used as a fitness value for the GA. 
F1 score is a better metric over classification accuracy for 
measuring the classification performance of an imbal-
anced data, as classification accuracy is a biased metric 
which favors the class with more samples (healthy sam-
ples in our case) [57]. The objective of the GA was to find 
the best waveband combination that maximizes the F1 
score. Table 1 shows the variables of the confusion matrix 
to analyze the performance of the classification.

The termination criteria depend on the average change 
in fitness value for 50 continuous generations or the max-
imum number of generations allowed which were 100 in 
our study. The last generation of GA iteration will contain 
the most optimal solution.

We choose to augment the hyperspectral wavebands 
with some visible spectrum (RGB information). We do 
this since RGB cameras are inexpensive, light weight, 
and can be attached to drones easily for capturing 
images. Therefore, the input feature to the SVM classi-
fier consists of a fixed part and variable part. The mean 
values of reflectance from three wavelengths 475.56 nm, 
548.91  nm and 652.14  nm representing red, green and 
blue colors respectively were used as fixed part of the 
input feature. The variable part of the input feature was 
chosen by the GA. The input chromosome comprises of 
bits each representing one of the total 240 wavebands of 
the input hyperspectral image. The number of bits in a 

(1)Precision =
TP

TP + FP

(2)Recall =
TP

TP + FN

(3)F1 Score =
2 ∗ Precision ∗ Recall

(Precision+ Recall)

Table 1  Confusion matrix definition

Infected (Predicted) Healthy (Predicted)

Infected (Actual) True Positive (TP) False Negative (FN)

Healthy (Actual) False Positive (FP) True Negative (TN)
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chromosome is equal to the total number of wavebands 
to be selected by the GA. The number of bits chosen 
were 3 in our study. In total, the input features consisted 
of six wavelengths, including RGB and the wavelengths 
selected by the GA. Binary tournament [68], Laplace 
[73], and power methods [74] were used for selection, 
crossover and mutation respectively. Table 2 provides the 
implementation details of the GA.

Data pre‑processing
The dataset contains 111 hyperspectral images of size 
500 × 1600 × 240 pixels. Replications 1–4 provided 39, 
24, 24, and 24 data cubes respectively. Data cubes from 
each replication were distributed among the training and 
testing datasets. Seventy-two hyperspectral images were 
used for training and 39 hyperspectral images were used 
for testing. The training set had 35 data cubes of healthy 
stems and 37 data cubes of diseased stems. The testing 
set had 21 data cubes of healthy stems and 18 data cubes 
of diseased stems. Since the number of test data was 
small, to increase the amount of data for developing the 
model and for prediction of disease progression to get 
a better understanding of severity of the disease spread, 
each of the hyperspectral stem images was divided into 
patches of size 500 × 64 × 240 pixels for training and test-
ing purpose [75] (Fig. 5). The healthy (mock-inoculated) 
and diseased (inoculated) samples allowed for testing and 
training for classification of diseased compared to healthy 
tissue. Training data was labeled using ground truth data 
of the measured interior lesion length (mm). A sum-
mary of the ground truth data for interior lesion length 
as well as the exterior and dead tissue lesion lengths can 
be seen in Table 3. The interior lesion length, measured 
in mm on the interior of the stem, was used for ground 
truth labelling of the image patches. Time points 3 and 
6 each contain 4 replications while time point 9 contains 

3 replications. The decrease in sample numbers in 3 DAI 
interior and dead lesions lengths as well as 9 DAI exterior 
lesion length are a result of missing data points caused 
during data transfer. A stem is determined as infected if 
at least one of the image patches of the stem is predicted 
as infected.

Results and discussion
Spectral reflectance
Figure  4 shows an example of mean reflectance curves 
of healthy and infected samples at various stages. The 
mean reflectance value of a wavelength is obtained by 
spatially (500 × 1600) averaging the reflectance values in 
that wavelength. It is seen that the maximum reflectance 
value of infected samples is less than the healthy sample 
and the trends of all infected samples looks similar. The 
reflectance value decreases as the severity of the charcoal 
rot disease increases.

Feature selection
The number of wavebands used for classification were 
reduced from 240 to 6 using our GA-SVM model. 
475.56(B), 548.91(G), 652.14(R), 516.31, 720.05, 915.64 
(wavelengths in nm) are the maximally effective 6 wave-
band combinations selected by the GA-SVM model 
including RGB wavebands. The confusion matrices for 
the RGB wavelengths and selected wavelength combina-
tion are shown in Table 4. Table 5 shows the comparison 
of binary classification for the RGB and selected wave-
lengths. The F1 score of the infected class and overall 
classification accuracy were 0.769 and 76.92% respec-
tively using only RGB wavelengths whereas classification 
accuracy of 97% and F1-score of 0.97 for 39 test stems 
were obtained using the selected 6 waveband combina-
tions of GA.

The RGB wavelengths alone did not perform well, 
which might be because of their inability to differenti-
ate between the reflectance values of a healthy stem and 
charcoal rot infected stem. The classification accuracy 
and F1 score of the selected 6 waveband combinations 
indicate that they were good at distinguishing between 
healthy and charcoal rot infected samples.

Early disease detection for 3‑DAI samples
The ability to detect disease early is very important for 
mitigation. Among 39 test stems, 11 were collected at 
3-DAI. Out of 11, 6 represent healthy stems and 5 were 
infected. The binary classification results for 3-DAI sam-
ples are shown in Table  6. The classification accuracy 
and F1-score were 81.82% and 0.83 respectively using 
RGB wavelengths whereas the classification accuracy 
and F1 score were 90.91 and 0.90 respectively using the 

Table 2  Implementation details of genetic algorithm

Parameters

Number of genetic algorithm 
iterations

5

Population 100

Maximum number of generations 100

Crossover probability 0.8

Elite count 2

Mutation probability 0.2

Selection Binary selection tournament

Crossover Laplace crossover

Mutation Power mutation

Stopping criteria Average change in best fitness value 
is less than 10−6 for 50 generations 
or number of generations = 100
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6 waveband combinations. These results indicate that the 
specific wavelengths chosen in the six waveband combi-
nations are responsive to disease symptoms even at the 
early stage of infections.

Disease length prediction
Identification of charcoal disease length progression is 
important for understanding the severity of the disease 
and helpful in understanding the resistance of various 

soybean genotypes to the disease. Figure 5 shows the pre-
dictions for each patch in an inoculated stem.

The total disease length is the distance from the inocu-
lation point to the end of the farthest patch which was 
predicted as infected from the inoculation point. The 
total predicted disease length could be calculated by 
summing the length of the number of patches in one stem 
data cube classified as diseased. The predicted disease 
lengths for 39 test stems are shown in Fig. 6. The disease 

Table 3  Mean and standard error of the mean for lesion length

The lesion length measurements are from the three earliest time points of lesion rating [3, 6 and 9 days after inoculation (DAI)]. Due to the destructive nature of data 
collection individual lesion progression could not be tracked past the date of imaging. Because of the destructive nature as well as variability in samples, and the 
expected trend of lesion length increasing over time is not always observed

Trait Time point Genotype Number of samples Mean (mm) Standard 
error mean

Exterior lesion length 3 DAI DT97-4290 4 31.5 8.5

Pharoah 4 28.0 4.7

PI189958 4 25.5 4.5

PI479719 4 18.0 3.7

6 DAI DT97-4290 4 31.0 7.1

Pharoah 4 28.5 4.4

PI189958 4 28.5 2.5

PI479719 4 22.8 2.3

9 DAI DT97-4290 3 34.3 6.2

Pharoah 3 39.7 5.8

PI189958 2 20.0 1.0

PI479719 3 36.0 4.0

Interior lesion length 3 DAI DT97-4290 4 29.0 7.0

Pharoah 4 35.0 2.1

PI189958 4 30.0 3.0

PI479719 3 46.0 9.6

6 DAI DT97-4290 4 37.5 6.3

Pharoah 4 49.8 9.5

PI189958 4 34.3 3.6

PI479719 4 26.5 6.8

9 DAI DT97-4290 3 68.3 12.3

Pharoah 3 61.0 10.7

PI189958 3 41.0 2.5

PI479719 3 66.3 12.4

Dead lesion length 3 DAI DT97-4290 4 17.3 6.6

Pharoah 4 20.3 5.5

PI189958 4 18.3 2.5

PI479719 3 23.3 0.9

6 DAI DT97-4290 4 25.0 6.4

Pharoah 4 22.8 5.0

PI189958 4 16.0 1.8

PI479719 4 16.8 3.0

9 DAI DT97-4290 3 32.3 5.7

Pharoah 3 32.3 4.9

PI189958 3 12.0 4.6

PI479719 3 28.7 5.2
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length prediction for stem number 30 was incorrect due 
to misclassification of a patch at the end of the stem. For 
other stem samples, the predicted disease lengths were 
equal or proportional to the interior lesion length.

Conclusions
Hyperspectral images of four different soybean geno-
types (two susceptible and two moderately resistant), half 
healthy and half infected with charcoal rot disease were 
collected at 5 different time points post infection. The 
main objectives of this study were to identify the most 
effective minimal number of wavebands from a set of 
240 hyperspectral wavebands that are required for iden-
tification of charcoal rot disease and to analyze the per-
formance of these wavebands in early detection of the 
disease.

The study used both spectral and spatial information 
(mean value of reflectance from different wavelengths) 
for disease identification. Due to imbalanced dataset of 
healthy and infected stems used in our study, the SVM 
classification performance which was optimized using 
GA for optimal waveband selection was evaluated for 
maximizing the F1 score value of the infected class 
instead of overall classification accuracy.

An effective six waveband combination for discrimina-
tion of healthy and charcoal rot infected stems was found. 
Early identification of charcoal rot disease at 3 days after 
inoculation was possible using the selected waveband 
combinations. The GA-SVM model obtained F1-score of 
0.97 and classification accuracy of 97% using selected 6 
hyperspectral waveband combinations for complete test 
data (samples from 3, 6, 9, 12 and 15 DAI). These results 
were 26.1% better than those obtained using only the 
visible RGB wavelengths highlighting the importance of 
including the additional non-visible wavelengths for dis-
ease detection. The F1-score and classification accuracy 
for early detection (3-DAI samples) samples were 0.90 
and 90.91% respectively using the selected 6 wavebands. 

Fig. 4  Mean spectral reflectance curves of healthy and infected 
stems

Table 4  Confusion matrix of  test samples from  3, 6, 9, 12 
and 15 DAI

Waveband combination Confusion matrix

3 (RGB) TP = 17 FP = 8

FN = 1 TN = 13

6 TP = 18 FP = 1

FN = 0 TN = 20

Table 5  Classification results of test samples from 3, 6, 9, 12 and 15 DAI

**Per class accuracy (%)

Waveband 
combination

Precision Recall F1-score Healthy** Infected** Overall 
accuracy 
(%)

3 (RGB) 0.68 0.94 0.79 92.85 68 76.92

6 0.94 1 0.97 100 94 97

Table 6  Classification results for 3-DAI samples

**Per class accuracy (%)

Waveband 
combination

Confusion matrix Precision Recall F1 Healthy** Infected** Overall 
accuracy 
(%)

3(RGB) TP = 5 FP = 2 0.71 1 0.83 100 71.43 81.82

FN = 0 TN = 4

6 TP = 5 FP = 1 0.83 1 0.90 100 83.33 90.91

FN = 0 TN = 5
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Two out of the three wavelengths selected (720.05  nm, 
915.64  nm) along with the RGB wavebands in the six 
waveband combinations were selected in the near-infra-
red region and one was selected in the visible region 
(516.31  nm) indicating that both near infrared region 
and visible region were useful in early identification of 
charcoal rot disease. This relationship between the stem 
reflectances and charcoal rot disease is along the lines of 

the results of a previous study [34]. Genotypes with sus-
ceptible and moderately resistant responses to charcoal 
rot were used in this study. The length of disease progres-
sion (mm) in each stem was measured to understand the 
severity of the disease spread among different genotypes. 
Using hyperspectral imaging combined with GA-SVM 
enabled waveband selection resulting in a higher classi-
fication accuracy compared to visible wavelengths alone. 

Fig. 5  Prediction of stem patches by selected optimal wavelengths

Fig. 6  Actual disease progression length (mm) compared to predicted disease progression length based on patch wise classification results
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However, this study focused on indoor imaging so future 
work should utilize field inoculations and evaluations to 
expand this technology into the field. Furthermore, field 
inoculations of diverse soybean genotypes will be imaged 
using a multispectral camera with the selected wave-
bands from the GA-SVM model for early identification 
of charcoal rot disease to understand the disease resist-
ance of specific genotypes. Also, the length of disease 
progression in different genotypes will be studied with 
larger sample size to characterize their disease resistance. 
In conclusion, this study provides an efficient method-
ology for selecting the most effective wavebands from 
hyperspectral data to be used for early disease detection 
of charcoal rot in soybean stems.
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