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Abstract

Printed phantoms hold great potential as a tool for examining task-based image quality of x-ray 

imaging systems. Their ability to produce complex shapes rendered in materials with adjustable 

attenuation coefficients allows a new level of flexibility in the design of tasks for the evaluation 

of physical imaging systems. We investigate performance in a fine “boundary discrimination” task 

in which fine features at the margin of a clearly visible “lesion” are used to classify the lesion 

as malignant or benign. These tasks are appealing because of their relevance to clinical tasks, 

and because they typically emphasize higher spatial frequencies relative to more common lesion 

detection tasks.

A 3D printed phantom containing cylindrical shells of varying thickness was used to generate 

lesions profiles that differed in their edge profiles. This was intended to approximate lesions with 

indistinct margins that are clinically associated with malignancy. Wall thickness in the phantom 

ranged from 0.4mm to 0.8mm, which allows for task difficulty to be varied by choosing different 

thicknesses to represent malignant and benign lesions. The phantom was immersed in a tub filled 

with water and potassium phosphate to approximate the attenuating background, and imaged 

repeatedly on a benchtop cone-beam CT scanner.

After preparing the image data (reconstruction, ROI Selection, sub-pixel registration), we find 

that the mean frequency of the lesion profile is 0.11 cyc/mm. The mean frequency of the lesion-

difference profile, representative of the discrimination task, is approximately 6 times larger. Model 

observers show appropriate dose performance in these tasks as well.
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1. INTRODUCTION

Many tasks in medical imaging involve classifying a visible lesion as malignant or 

benign1–3. It is often the case the features of the lesion boundary are critical to such tasks. 

In particular, the appearance of an indistinct region at the edge of a lesion can be indicative 

of invasive growth that is associated with many forms or malignant disease4,5. From the 

perspective of task-based assessment of image quality, such boundary discrimination tasks 

should serve as endpoints for imaging system optimization6–8.
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In this work we investigate boundary discrimination tasks using a novel 3D printed phantom 

that utilizes the thickness of cylindrical printed walls to represent the presence or absence 

of locally invasive growth. Discriminating lesions with a thick wall (malignant) from those 

with a thin wall (benign) focuses on the ability of the imaging system to accurately render 

the boundary of a lesion without excessive amplification of noise. We show that these tasks 

emphasize higher spatial frequencies than a more conventional lesion detection task and 

we evaluate the performance of model observers in discriminating phantom “lesions” with 

different wall thicknesses.

2. METHODS

The evaluation of cancerous lesions often involves an assessment of a lesion’s boundary 

(or margin). In some cases, invasive cells will produce an indistinct or irregular edge that 

serve as an important diagnostic feature9. The phantom used here attempts to approximate 

the appearance of a lesion by a circular region of high intensity as a model of a lesion, 

and a lower contrast ring around lesion with a wall thickness that models the appearance 

of potentially malignant cells. In this somewhat stylized scenario, a thicker wall indicates 

greater malignant potential. We describe the construction of a printed physical phantom for 

this purpose, how it was imaged in a laboratory setting, and how the images were analyzed 

to show signal and noise profiles as well as model-observer performance assessments.

2.1 Description of the Phantom

A 3D phantom was designed and printed from resin that cures to a measured attenuation 

coefficient of 0.0247 cm−1. We used an Elegoo Mars LCD printer (Shenzhen, China) and a 

water-washable photopolymer resin. The shape of the phantom was a series of 8 cylinders 

with varying wall thicknesses of 0.4mm, 0.6mm, 0.7mm, and 0.8mm (2 cylinders at each 

wall thickness) all connected by a base of approximately 1cm thickness. Tube wall thickness 

was confirmed using a digital caliper, with +/− 0.02 mm tolerance. The diameter of each 

cylinder was adjusted so that the midpoint of the cylinder wall was at a diameter of 5.8mm. 

This gave all the lesions approximately the same total integrated intensity.

Each cylinder was filled with water containing dissolved potassium phosphate such that the 

attenuation coefficient insider the cylinder was 0.0270 cm−1. The cylinder phantom was 

then immersed in a background of water containing dissolved potassium phosphate so that 

the attenuation coefficient was 0.0224 cm−1. Figure 1A shows a photograph of the printed 

phantom just before imaging.

2.2 Imaging of the phantom

The phantom was imaged using a benchtop cone-beam CT system at 3 exposure levels 

(50, 100, and 300 mAs), with 10 repeated scans at each dose. The x-ray source was a 

Varex Rad-94 (Salt Lake City, UT) operated at 80kVp, and the flat-panel detector was a 

Varex 4343CB (Salt Lake City, UT) with a detector pixel size of 0.278 mm. The SDD 

and SAD were 1000.5mm and 499.7 respectively, resulting in a magnification factor of 

approximately 2. The phantom was rotated and scanned over 360° (1° increments) using 

a Physik Instrumente (Auburn, MA) rotary table. The images were reconstructed using 
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filtered back-projection with Hamming-window apodization on an isotropic voxel grid 

with 0.139mm spacing between samples. A vertical range of 201 slices was found to be 

acceptable in terms of imaging uniformity, as shown in Figure 1B. The lateral position of 

the 8 cylindrical lesions within the phantom with labeled wall thicknesses is shown in Figure 

1C.

To simplify the subsequent analysis and facilitate the use of these images for analysis and 

performance assessments, we extracted 2D ROIs centered on each lesion. Imperfections in 

the printing and positioning of the phantom gave the cylinders a slight tilt angle relative to 

the voxel sampling. To account for this, a subpixel registration algorithm was used to center 

each lesion in a small ROI (1092 pixels and 15.15 mm2) on the pixel that was closest to 

the lesion center. Additionally, preliminary analyses showed that the background intensity 

differed across the lesions. In discrimination tasks using different lesions, this intensity 

difference can be used by model observers (or potentially human observers as well) to 

identify the lesion, effectively making the background difference equivalent to “signal”. To 

normalize for different background intensities, we subtracted a small constant term from 

each lesion ROI so that the average intensity of all the ROIs for a given lesion was constant 

across lesions.

This resulted in a total of 4020 ROIs for each wall thickness at each dose level imaged. 

Figure 2A shows sample ROI images at each dose level and for the thinnest- and thickest-

walled lesions. Figure 2B shows the average ROI image for each lesion, which allows the 

halo around the central portion of the lesion to be more clearly visualized. The tasks used 

here involve discriminating an ROI from the 0.4mm wall thickness from one of the others, 

and so we expect increasing performance going from 0.6mm to 0.8mm.

2.3 Mean Frequency of the Task

We are also interested in the spectral content of these tasks, which we quantify in terms of 

the mean frequency. Let st n, m  for t = 0, ⋯, 3 represent the average ROI shown in Figure 

2B, with t = 0 for a wall thickness of 0.4mm to t = 3 for a wall thickness of 0.8mm, and 

let Δst n, m = st n, m − s0 n, m  for t = 1, ⋯, 3 be the difference signal for the three tasks 

considered in this work. We define Δs t k, l  as the 2D FFT of the difference signal, and fk, l

frequency radius of the point [k,l], given by fk, l = uk
2 + vl

2, where

uk =

k
NΔPix

0 ≤ k ≤ N /2

k − N
NΔPix

N /2 < k < N − 1
,

and with a similar definition for vl. The mean frequency is then defined as the ratio

f t =
∑k = 0

N − 1 ∑l = 0
N − 1 fk, l Δs t k, l 2

∑k = 0
N − 1 ∑l = 0

N − 1 Δs t k, l 2
(1.1)
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For comparison, we would like to know the mean frequency of the lesion itself, which 

we define as the 0.4 mm wall thickness profile with the mean background subtracted, 

L n, m = s0 n, m − b. The mean frequency of the lesion is computed in a similar fashion to 

Eq. (1.1), but with L k, l , the 2D FFT of L[n,m], instead of Δs t k, l .

2.4. Noise Power Spectrum (NPS)

The average images shown in Figure 2B contain effects of the system transfer function 

manifest as a slight blurring of edges in the image. In addition to transfer effects, noise 

properties of the ROIs are also an important characterization of the images. We compute the 

noise-power spectrum of the ROIs for this purpose.

An NPS is computed for each mAs setting, lesion, and depth by a sample average over 

the 10 replicated images. These are averaged over depth and lesion into one 2D NPS for 

each mAs setting. To control for spectral leakage, a tapered window is used that is constant 

out to a radius of 27 pixels, and then rolls off to zero at 54 pixels with a cosine profile. 

The resulting noise-power spectra are shown in Figure 3 as plots in radial frequency. These 

plots show that the images are somewhat oversampled given that the apodization filters 

implemented in the reconstruction process drive the spectra to zero by 2 cyc/mm even though 

the Nyquist frequency for the pixel size is 3.6 cyc/mm.

2.5. Model Observers

We will investigate the performance of two model observers in this work, a non-

prewhitening matched filter (NPWMF) and a prewhitening matched filter (PWMF). 

Additionally, we will evaluate the performance of these models using two different 

computational approaches that are described here. Differences in performance between 

these two methods indicate potential violations of assumptions in the modeling of observer 

performance.

2.5.A. Model-Observer Performance Measures.—The NPWMF and PWMF have a 

long history of use in image quality evaluation10–13. The models are defined by a template, 

w n, m , that is used to generate a decision variable from a sample image, g n, m , via an inner 

product

r = ∑
n, m

w n, m g n, m . (1.2)

The templates for the NPWMF and PWMF models is described in more detail in the next 

section. If we imagine responses from a sample of malignant lesion k = 1, ⋯, 3  images, 

rk, i for i = 1, ⋯, NSamp, and samples from benign images r0, i, then we can estimate the forced-

choice proportion correct as
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PCw, k = 1
NSamp

2 ∑
i = 1

NSamp

∑
j = 1

NSamp

Step rk, i − r0, j , (1.3)

where the Step function is 0 for negative argument, 1 for positive arguments, and 1/2 for an 

argument of 0. It is well known that PC is equivalent to the area under the empirical ROC 

curve (AUC) as well14,15.

The proportion correct/AUC in Eq. (1.3) represents achievable performance, since it is 

derived from actually performing the task of interest. However, we can use equivalent 

measures under assumptions involving the statistical properties of the images. For example, 

if we are discriminating lesion k k = 1, ⋯, 3  from lesion 0 , we can estimate the mean image 

in each class from the average lesions shown in Figure 2B. If we can further assume that 

the noise in the ROIs is approximately Gaussian and characterized by the power spectra in 

Figure 3, then we can define the template detectability index for this task, dw, k
′ , as

dw, k
′ =

∑n = 1
N ∑m = 1

M w n, m Δsk n, m
σw, A

(1.4)

where σw, A is the standard deviation of the template responses for noise defined by the x-ray 

tube current (A). This can be computed by taking the 2D FFT of w, multipling by the 

2D NPS, inverse transforming, taking the inner product of the resulting image with w, and 

finally taking the square root of this quantity. The detectability index is converted to PC by 

the relation

PCw, k
Pred = Φ dw, k

′ / 2 . (1.5)

When PCw, k
Pred = PCw, k across multiple conditions, then it may be assumed that the responses 

are approximately Gaussian and determined by the conditional means and power spectra.

2.5.B. Model-Observer Templates.—The non-prewhitening matched filter (NPWMF) 

model is defined by the use of the difference signal as a linear template for discrimination 

of malignant from benign ROIs. The pre-whitened matched filter model (PWMF) also uses 

the difference signal, but it filters this signal by the inverse of the NPS. As seen in Figure 

3, the NPS is dropping to zero near 2 cyc/mm, which makes a simple division by the 

NPS unstable. Two modifications to the basic formula for the WMF are implemented to 

counteract this instability: A small positive constant is added to the NPS before inversion, 

and the resulting spectrum is rolled off to zero with a cosine profile from 1.5 cyc/mm to 

2 cyc/mm.

Images of a NPWMF and PWMF template are shown in Figure 4A for the discrimination 

of the 0.8mm wall-thickness lesion from the base 0.4mm wall-thickness lesion. The bright 

region of the outsize results from the “halo” of low intensity wall in the 0.8mm lesion. The 

dark region inside this is due to the difference between the wall in the 0.8mm lesion and the 
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interior of the 0.4mm lesion. The PWMF template shows somewhat more variability that is 

likely due to estimation error in the NPS used to define it. The spectral plots shown in Figure 

4B show the oscillation expected from a signal that is predominantly in a spatial ring around 

the origin. The plots show that the effect of discriminating a thicker wall is predominantly 

an amplification of the spectral amplitude, except near the origin. These is some evidence 

of relatively suppressed amplitudes in the PWMF at frequencies near 0.5 cyc/mm, where the 

NPS in Figure 3 peaks, as well as extension further into the frequency domain than for the 

NPWMF.

3. RESULTS AND DISCUSSION

3.1. Task Mean Frequency

One of the focuses of this work is a demonstration that discrimination tasks can be useful 

for demonstrating the benefits of higher resolution imaging systems, since they rely on high 

frequencies for task performance. Figure 5A shows the base lesion profile, a 5mm diameter 

disk in the 2D ROI, as well as the difference signal between lesions with 0.6mm wall 

thickness and a 0.4mm wall thickness. The lesion profile would be a typical signal used in 

a lesion detection task, whereas the difference signal is the relevant profile for the boundary 

discrimination task investigated here.

The normalized spectral power (normalized by the maximum spectral power) plotted in 

Figure 5B shows that the difference signal has spectral content at much higher frequencies 

than the lesion. This is reflected in the mean frequency computed as in Eq (1.1). The mean 

frequency of the lesion is 0.11cyc/mm while the mean frequency of the difference signal is 

0.59 cyc/mm, nearly 6 times larger.

3.2 Model Observer Performance

Performance for discriminating the 3 thicker walled lesions from the 0.4mm lesion was 

evaluated for the non-prewhitened matched filter (NPWMF) and the prewhitened matched 

filter (PWMF) for all three levels of mAs. The PWMF also required the estimated the NPS 

profiles shown in Figure 3 to achieve the prewhitening step described in Section 2.5.B.

We computed PC/AUC performance for the two methods described in Eq.s (1.3) and (1.5). 

The results are shown in Figure 6. For the computation from samples (Eq. (1.3)) in Figure 

6A, performance results are consistent with what we would expect. Performance increases 

as the wall thickness of the malignant lesion increases, as the dose increases, and also 

going from the NPWMF to the PWMF model observer. These effects are aslo seen for the 

statistical performance computation shown in 6B. However, there is a substantial boost in 

performance going from the sample estimates of performance to the statistical estimates, and 

this suggests that there are still some anomalous imaging effects that are unaccounted for.

We would argue that this performance mismatch illustrates the usefulness of physical 

phantom images for evaluating performance. The imaging process is a complex cascade 

of events that involve many physical processes and components. Summary statistics like a 

transfer function or a noise power spectrum are necessary for characterizing performance of 
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these systems, but not necessarily sufficient. A physical phantom allows all the components 

of the imaging process to affect the final images.

4. SUMMARY AND CONCLUSIONS

The purpose of this work has been to report initial imaging results using a novel printed 

phantom that creates “lesions” with fine features for discrimination tasks. These tasks 

make substantially greater use of high spatial frequencies relative to more common lesion 

detection tasks, and hence they may be of value for assessment of high resolution imaging 

systems. We find that initial performance results for non-prewhitening and prewhitening 

matched-filter models exhibit performance effects that are consistent with what we would 

expect, with improvements for an easier task (greater wall-thickness), less noise (mAs), or 

a better “observer” (PWMF vs NPWMF). However, it is also clear that the method used for 

performance evaluation can have a large effect on overall performance. We take this as a 

fundamental demonstration of the importance of imaging with a physical phantom.
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Figure 1. Printed Cylinder phantom and Images.
The phantom itself (A) consists of printed cylinders immersed in water mixed with 

calcium phosphate to achieve specific levels of attenuation (see text). The trans-axial 

reconstructed image (B) shows the position of simulated lesions with differing wall 

thicknesses representing more or less distinct boundaries. The axial slice (C) shows the 

z-range of the 3D images used to generate 2D ROIs (201 slices).
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Figure 2. ROI images.
Example ROI images (A) of the 0.4mm wall-thickness (top row) and the 0.8mm lesion 

(bottom row) at the 3 dose levels used show the appearance and texture of noise in the ROI 

images and some sense of the faint halo around the “invasive” (0.8mm) lesion. The mean 

ROI stimulus (B) for each wall thickness is shown indicating the increasing low-attenuation 

rim surrounding the bright central region.
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Figure 3. ROI Noise Power Spectra.
Noise power spectra for each mAs setting (averaged over lesion and depth) are shown. The 

spectra rise at low frequencies with a characteristic ramp, and then fall back to zero because 

of noise apodization implemented in the reconstruction process.
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Figure 4. NPWMF and PWMF Templates.
The 2D images of the observer templates (A), for the 0.8mm vs 0.4mm wall-thickness 

discrimination task, show the emphasis on signals at the boundary of the lesion. The PWMF 

shows somewhat more radial oscillation. The radial frequency plots (B) show the oscillation 

of the frequency components. The plots show the spectra for all three tasks (0.8mm, 0.7mm, 

and 0.6mm wall thickness vs 0.4mm wall thickness), which are manifest predominantly as 

increased amplitude.
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Figure 5. Lesion and Difference Signal.
The images (A) show the base lesion used in these studies as well as the difference between 

lesions with 0.4mm and 0.6mm wall thicknesses. Plots of the normalized radial spectral 

power of these signals show that the lesion is concentrated at very low frequencies (< 

0.2cyc/mm), while the difference signal extends past 1cyc/mm.
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Figure 6. Discrimination Performance.
Performance (PC/AUC) estimates based on model observer responses to sample images 

(A) show performance effects from malignant-lesion wall thickness, dose, and the model 

observer used to evaluate performance. Performance from statistical properties (B) shows 

similar effects, but an overall elevated level of performance.
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