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A fast methodology for generating 
skeletal FEM with detailed human 
geometric features based on CPD 
and RBF algorithms
Qiuqi Yuan 1, Binhui Jiang 1*, Xiaoming Zhu 2, Jingzhou Hu 3, Yulong Wang 4, 
Clifford C. Chou 5 & Shiwei Xu 1*

Due to the significant effects of the human anatomical characteristics on the injury mechanism of 
passenger in traffic accidents, it is necessary to develop human body FEM (Finite Element Model) 
with detailed anatomical characteristics. However, traditional development of a human body FEM 
is an extremely complicated process. In particular, the meshing of human body is a huge and time-
consuming project. In this paper, a new fast methodology based on CPD (Coherent Point Drift) and 
RBF (Radial Basis Function) was proposed to achieve the rapid developing the FEM of human bone 
with detailed anatomical characteristics. In this methodology, the mesh morphing technology based 
the RBF was used to generate FEM mesh in the geometry extracted from the target CT (Computed 
Tomography) data. In order to further improve the accuracy and speed of mesh morphing, the target 
geometric feature points required in the mesh morphing process were realized via the rapid and 
automatic generation based on the point-cloud registration technology of the CPD algorithm. Finally, 
this new methodology was used to generate a 3-year-old ribcage FEM consisting of a total of 27,728 
elements with mesh size 3–5 mm based on the THUMS (Total Human Model for Safety) adult model. 
In the entire process of generating this new ribcage model, it only took about 2.7 s. The average error 
between the new FEM and target geometries was only about 2.7 mm. This indicated that the new FEM 
well described the detailed anatomical characteristics of target geometry, thus importantly revealing 
that the mesh quality of the new FEM was basically similar to that of source FEM.

Passenger injury caused by traffic accidents is a serious public health issue worldwide1,2. Injury mechanism of 
passenger resulting from different traffic accidents plays an important role in the theoretical basis for solving 
such public health issue. It has been demonstrated that the human anatomical characteristics have significantly 
effects on the injury mechanism of passenger3. For example, Ridella et al.4 reported that obese elderly and child 
passengers were more likely to be injured than those with normal body characteristics. Therefore, it is greatly 
significant to study the influences of human anatomical characteristics on injury mechanisms towards the pro-
tection of special passengers.

As of today, computational simulation has become one of the main methods to study injury mechanism and 
establish injury tolerances5. In particular, the detailed biomechanical responses of human tissue pertaining to 
injury severity and location, such as strain and stress, can be predicted by the human body FEM (finite element 
model). In addition, the human body FEM can accurately characterize the anatomical features of human body. 
The human body FEM has become one of the most widely used human injury assessment tool in the field of 
vehicle safety6. Therefore, numerous human body FEMs, including the H (Human) model, FHBM (Ford Human 
Body Model), THUMS (Total Human Model for Safety), GHBMC (Global Human Body Model Consortium) 
et al., have been developed7–10. The process of development for a human body FEM is very complicated and 
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usually includes: 1. creation of human body geometric model from CT (Computed tomography) and MRI (Mag-
netic resonance imaging) data, 2. FE meshing of human body geometric model, and 3. boundaries, loading, and 
verification of model. One of the most time-consuming is the meshing process of the geometric model. Existing 
meshing methods mainly include Delaunay, Advancing Front Technique, Mapping, Sweeping11,12. In practical 
use, the geometric model is decomposed and the meshes are generated mainly through manual interaction. 
However, for the human body structure with very complex geometric details, the mesh generated by the above 
methods is of poor quality and can hardly meet the analysis requirements. It requires experienced researchers 
to improve mesh quality by Laplacian smoothing, elements topology optimization and other operations13,14.

Due to the complexity of human body FEM development, the method to obtain new FEM based on the 
existing basic model through mesh deformation technology has been widely developed. The scaling method was 
firstly proposed. For example, Vavalle et al.15 and Schoell et al.16 scaled the 50th male FEM in the GHBMC to 
obtain a 95th adult male and a 65-year-old male FEM, respectively. In the scaling method, the new FEM is usually 
obtained by scaling the body parts of the existing basic FEM with different ratios without need of the detailed 
geometric data of the target geometry. This advantage makes the scaling method widely used in literatures17–19. 
However, the disadvantage of the scaling method is also obvious in aspect that the detailed geometric differ-
ences between the body parts of the target FEM and the existing basic FEM are not reflected. Considering this 
disadvantage of the scaling method, the UMTRI (University of Michigan Transportation Research Institute) and 
Hunan University recently proposed a mesh morphing method based on feature points and RBF (Radial Basis 
Functions)20–23. Mesh morphing is the smooth transition of a FEM into another similar FEM, where the first 
model is called the source FEM and the second is called the target FEM. Mesh morphing usually consists of three 
steps: Firstly, a large number of corresponding feature points are selected at appropriate locations of source FEM 
and target geometry. Then, the corresponding relationship between them is established through feature points, 
such as the corresponding relationship between vertices, edges and surfaces. Finally, the meshes of source FEM 
are mapped to the target geometry by RBF, so the target FEM is obtained. The target FEM generated by mesh 
morphing can retain the detailed geometric features of target geometry well. However, the limitation of mesh 
morphing is that a large number of feature points need to be selected manually, which is very time-consuming 
and laborious. For example, using mesh morphing to generate a ribcage FEM with 27,728 elements usually needs 
to manually select more than 1,000 feature points24. Moreover, once the sequence and number of feature points on 
the source FEM and the target geometry are inconsistent, the process of mesh morphing cannot be carried out. 
Considering all of these is necessary to improve such a time-consuming, labor-intensive, and error-prone step.

In this paper, in order to avoid the disadvantage of the mesh morphing method, an automatic generating 
feature points method using the CPD (Coherent Point Drift) algorithm was proposed. This new methodology 
was then applied to automatically generate feature points for different human bones, such as ribcage, pelvis, 
humerus, radius, tibia, and ulna. Furthermore, using the generated feature points, the FE meshing of these 
human bones was generated by the mesh morphing with RBF. In these applications, generating about 200 and 
2000 feature points only takes about 2 s and 24 s, respectively. The quality of FE mesh obtained by using the 
automatically generating feature points is basically the same as that of FE mesh prior to the morphing. Results 
reveal that this method capable of generating the feature points automatically is faster and more accurate than 
the manual extraction.

Method
The Ethical Committee of Shanghai Ninth People’s Hospital approved this retrospective study. And written 
informed consent was obtained from all the participants. All methods were performed in accordance with rel-
evant named guidelines and regulations.

A whole process from CT data to the FEM using the fast mesh morphing method is shown in Fig. 1. First 
of all, the geometry of target new model described by point-cloud was extracted from CT data (ribcage, pelvis, 
humerus, radius, tibia and ulna). In this process, the ribcage was taken as an example of the target new model. 
Second, the corresponding source FEM of ribcage was split from THUMS, and outermost mesh nodes were 
extracted as the source point-cloud. Third, a rough registration between the target and source point-clouds was 
conducted through PCA (Principal Component Analysis) with CPD algorithm to obtain feature points. Finally, 
the feature points were used to morph the source FEM for target FEM.

The geometry of target new model.  In this study, a CT data of the whole-body for a 3-year-old male 
child was used to develop the target shape. By adjusting the CT value, the data related to the bone was extracted. 
Then, the data of bone was thresholding, and smoothed. Sometimes, the CT image quality is not good enough to 
capture all the geometrical details. For this, threshold adjustment was used to improve the completeness of the 
geometry. The target shape was then repaired by editing mask. Generally speaking, the complete usable shape 
mask can be extracted through the preprocessing process described above. The pre-processing process is shown 
in Fig. 2. The data processed above were exported in the form of a point-cloud.

The source FEM.  The skeletal FEMs were split from THUMS and marked as FEMS for source FEMs. Then 
the outermost nodes of each FEMS were extracted as the source point-cloud for each bone and marked as PS.

Automatically generating feature points.  Figure 3 shows the method overview for automatically gen-
erating feature points. Firstly, the target point-cloud extracted from CT data was filtered. Then the coordinate 
system of target point-cloud and source point-cloud was unified through rough registration. Finally, non-rigid 
registration was carried out from source point-cloud to target point-cloud to obtain target feature points based 
on CPD algorithm.
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Radius filtering of point‑clouds.  When the point-cloud of target shape was generated from CT data, it usually 
had a large number of points with outliers (i.e., noise points) in Fig. 3a. These noise points may cause the mis-
matches during the registration of the target and source point-clouds. Therefore, the radius filter was adopted 
to remove these noise points. In the area with a point as the center and d as the radius, if the number of points 
is less than K, the center point will be removed by the radius filter. In this study, the radius d and the number 
of points K was defined as 2 mm and 5, respectively. As shown in Fig. 3b, the noise points in the point-cloud of 
target shape were significantly reduced by the radius filter. The point-cloud of target shape without noise points 
was marked as PC_I.

Figure 1.   Overview of the fast mesh morphing method.

Figure 2.   Flow chart of preprocessing part of CT data.

Figure 3.   Method overview for generating feature points. (a) Point-cloud set; (b) Point-cloud filter; (c) 
Coordinate system unification; (d) Non-rigid registration.
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Coordinate system unification.  Usually, there is a huge difference of spatial position between PC_I and PS , 
because these two point-clouds were obtained in different coordinate systems. Therefore, it is necessary to unify 
the coordinate systems of these two point-clouds through matrix operations in Eq. (1).

where PC is the transformed point-cloud of PC_I in the coordinate system of PS ; R0 is rotation matrix; T0 is 
translation matrix.

Using Eq. (1), the difficult step is to find out the rotation and translation matrices. Considering this, the 
PCA-based coarse registration method was adopted in this study, as shown in Fig. 3c 25. In the PCA-based coarse 
registration, principal component analysis was used to reveal the main distribution direction of point-cloud 
and reduce dimension of the data. Therefore, the PCA-based coarse registration method is mainly based on the 
global principal axis direction of point-cloud data for registration. Firstly, the covariance matrix of PC_I and PS 
was calculated. And then, the main feature component, namely the global principal axis direction of the point-
cloud data, was calculated according to the covariance matrix to make up the principal axis direction matrices. 
So, R0 can be obtained by the principal axis direction matrices by Eq. (2). Finally, the coordinate values of center 
point calculated from two point-clouds and rotation matrix R0 were used to obtain the translation matrix T0 
using Eq. (3).

where UX and UP are the 3*3 principal axis direction matrices of point-clouds PS and PC_I , respectively; PS  and 
PC_I  are the coordinate values of center point of point-clouds PS and PC_I , respectively.

Non‑rigid registration.  The PC and PS were aligned on the principal axis directions after the Coordinate System 
Unification. However, the mesh morphing technology is based on the same number of source and target feature 
points to achieve element mapping transformation. Hence it is necessary to create an equal number of source 
and target feature points in PC and PS . Considering the PS as extracted from the outermost nodes of the FEM 
with high quality mesh, therefore, the PS can be directly used as the source feature points. For the target feature 
points, a non-rigid registration was adapted to mapping the source feature points to the PC . The target feature 
points generated by this method not only can be consistent with the source feature points in number, but also 
have a similar distribution position in human body geometry to the source feature points. This can effectively 
reduce the distortion of the generating element in the mesh morphing. This non-rigid registration named as 
alignment depicted in Fig. 3d was realized by the CPD algorithm26.

The essence of obtaining target feature points by the non-rigid registration based on the CPD algorithm is 
to find out an accurate transformation matrix marked as T . Using this accurate T to transform PS can obtain 
a new point set Pc_c which deems to be as similar as possible to point-cloud PC . Pc_c can be used as the target 
feature points in the mesh morphing technology. In order to obtain an accurate T , the Gaussian Mixture Model 
(GMM) was adapted to address this problem in CPD algorithm. In the GMM, PS was considered as the GMM 
centroids and PC was considered as the GMM generated point-cloud. In other words, PS was regarded as a correct 
standard point-cloud, and PC was the point-cloud composed of many scattered points around PS . The relation-
ship set between PS and PC in the GMM can be expressed by Eqs. (4) and (5). From Eq. (4), it can be found that 
the probability of the existence of a point in PC was described as the sum of the distance between this point and 
each GMM centroid (each point in PS ). Since Pc_c obtained by transformation of PS through the accurate T was 
as completely coincident with PC as possible. It should also be pointed out that there is always a point in Pc_c 
that can coincide with the corresponding point in PC (the distance between these two points is zero). Therefore, 
different T can be tried repeatedly to transform PS to obtain different Pc_c . The possibility of all point in each Pc_c 
was summed up by Eq. (6). This cumulative sum obtained by Eq. (6) can be used as the rating of the different 
T : the greater of the cumulative sum implies the higher score and more accurate of T . Accordingly, finding the 
accurate T needs to calculate the maximum value of the function described by Eq. (6). By maximizing the likeli-
hood function described in Eq. (6), the parameters ( θ and σ 2 ) in T can be obtained. Finally, Pc_c were calculated 
from transformation of PS by T.

where p(PC) is represented as the generation probability of each point in PC ; N is the number of points in PC ; M 
is the number of points in PS , and w is the weight factor; p(PC |m) is the probability of the points in PC generated 
by each point in PS and can be calculated by Eq. (5).
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−1
X
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where θ is the parameter set consisting of the rotation matrix R , translation matrix T , and deformation matrix 
X ; Ym is the center of GMM model; X is the points generated by the GMM model; D is the dimensions of points 
in PC and PS.

Mesh morphing technology.  After the alignment of PC and PS in Section "Non-rigid registration", the 
outermost nodes (point-cloud PS ) in the source FEM were already mapped to the target shape described by PC . 
If the internal nodes in the source FEM can be mapped regularly into the target shape as expressed in Eq. (7), 
implying that target FEM with detailed target geometric characteristics will be obtained. This method for obtain-
ing a new FEM is called as the mesh morphing technology. In 2016, Wang et al.24 firstly proposed a mesh mor-
phing technology based on RBF with kernel function TPS (Thin Plate Spline)27 expressed as given in Eq. (8). In 
the RBF with kernel function TPS as given in Eq. (9), the source and target feature points obtained in Section 
"Automatically generating feature points" was used as the control points to calculate the weight coefficients in 
Eq. (8) by Eq. (10), then the internal element nodes associated with control points are smoothly transformed 
from the source FEM to the target FEM by Eq. (7).

where f
(

x, y, z
)

 is the transformation function for mapping the internal nodes in the source FEM into the geom-
etry of target new model; x(S)n , y

(S)
n , z

(S)
n  is the coordinate values of n node in the source FEM; x(T)n , y

(T)
n , z

(T)
n  is the 

coordinate values of the corresponding n node in the new targe FEM.

where  p
(

x, y, z
)

 is a low order polynomial; ∅ is the kernel function representing the TPS in this paper; wi is the 
weight coefficient, x(S

∗)
i , y

(S∗)
i , z

(S∗)
i  is the coordinate values of i node in source feature points; h is representing 

the number of source feature points.

where W = [w1,w2,w3, . . . ,wh] ; Q is represented the coordinate values of the source feature points; V  is repre-
sented as the coordinate values of the target feature points; A =

[

a0, ax , ay , az
]

 ; K is the distance between each 
source and its corresponding target feature point.

Results
In order to verify the method proposed in Section "Method", six skeletal FEMs separated from the adult 50th 
THUMS including ribcage, pelvis, humerus, radius, tibia, and ulna were successfully morphed into the cor-
responding target shape extracted from a 3-year-old male child CT data as shown in Table 1. Ribcage, pelvis, 
humerus, radius, tibia, and ulna FEMs generation required 2.7 s, 1.51 s, 0.932 s, 0.85 s, 0.793 s, and 0.73 s, 
respectively.

Geometric error between target shape and FEM.  The distance between the outermost mesh nodes 
of target FEM and corresponding points of target point-cloud was used to evaluate the geometric error between 
target shape and FEM as shown in Fig. 4. It can be found that the average geometric error of each model is less 
than 3 mm, and particularly the average geometric errors of the humerus, radius, tibia and ulna model are less 
than 1.5 mm. Even the maximum geometric errors of the humerus, radius, tibia and ulna model are less than 
5 mm. However, the maximum geometric errors of ribcage and pelvis FEMs are 15.332 and 14.645 mm, respec-
tively. This is mainly due to the filtering of ribcage and pelvis original target point-clouds. The geometric features 
of ribcage and pelvis are complex, especially their original target point-clouds extracted from CT exhibits a large 
number of detailed geometric features, thus easily leading to incorrect point-cloud registration. Therefore, their 
original point-clouds are filtered to reduce useless detailed geometric features. However, the geometric error is 
the comparison between the target FEM and the original target point-cloud, showing some parts with detailed 
geometric features are relatively large.

Mesh quality.  The mesh quality of solid elements in target FEMs including Jacobian, Warpage, Skew, Aspect 
ratio et al. were checked and listed in Table 2, showing that the overall mesh quality of the target FEMs was good 
and basically meets the requirements of finite element analysis. It was generally considered acceptable if the min-
imum Jacobian of the mesh is ≥ 0.2. However, it should be noted that the mesh quality of solid elements in target 
FEMs was a slightly inferior than that of solid elements in source FEMs. For example, compared to the source 
FEMs, the minimum Jacobians of the target humerus and ulna models were decreased from 0.39 and 0.31 to 
0.25 and 0.22, respectively. Because the target feature points generated in Section "Mesh morphing technology" 
described the detailed geometric features of the target shape as much as possible, this led to a less uniformity of 
the elements distribution with these target feature points as the outermost nodes and the poor element quality. 
The mesh quality degraded by this factor can be improved with mesh smoothing.

(7)x(T)n , y(T)n , z(T)n = f
(

x(S)n , y(S)n , z(S)n

)

(8)f
(

x, y, z
)

= p
(

x, y, z
)

+
∑h

i=1
wi∅

(

�
(

x, y, z
)

−

(

x
(S∗)
i , y

(S∗)
i , z

(S∗)
i

)

�

)

(9)∅ =
(

x, y, z
)

−

(

x
(S∗)
i , y

(S∗)
i , z

(S∗)
i

)2

log
(

(

x, y, z
)

−

(

x
(S∗)
i , y

(S∗)
i , z

(S∗)
i

))

(10)
[

W
A

]

=

[

K Q
QT O

]−1[

V
O

]



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8864  | https://doi.org/10.1038/s41598-023-35374-3

www.nature.com/scientificreports/

Table 1.   Summary of source and target FEMs.

Item Source FEM Target geometry data Source and target feature points Target FEM

ribcage

pelvis

humerus

radius

tibia

ulna

Figure 4.   The geometric errors contour of target FEMs.
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Discussion
In the process of mesh morphing, it was found that the target feature points have significant influences on tar-
get FEMs. In this section, the influences of the generation methods and number of target feature points on the 
geometric error and mesh quality of target FEMs will be discussed.

The influences of generation method of feature points.  In this study, the non-rigid registration 
based on the CPD algorithm was adapted in Section "Automatically generating feature points" to obtain the 
target feature points. In the non-rigid registration, using coordinate translation, rotation, scaling and local defor-
mation to generate target feature points from source feature points can better describe the geometric characteris-
tics of the target point-cloud. In fact, the target feature points can also be obtained by rigid registration. For CPD 
algorithm, rigid registration is a transformation that does not change the relative position between two points 
in the point-cloud, including translation, rotation and scaling. Non-rigid registration can change the relative 
position between two points in the point-cloud. It can cause local deformation by nonlinear matrix. We did both 
registrations by changing the θ in Eq. (6). The θ in rigid registration include rotation matrix R , translation matrix 
T and scaling matrix S . Instead of rigid registration, the θ contains an additional nonlinear matrix N.

As shown in Fig. 5, when using non-rigid registration, ribcage, pelvis, humerus, radius, tibia, and ulna FEMs 
generation required 44.61 s, 21.9 s, 8.192 s, 5.581 s, 5.988 s, and 4.933 s respectively. However, due to the rigid 

Table 2.   Mesh quality of solid elements in target FEMs.

Item Jacobian Warpage Skew Aspect ratio
Quad faces minimum 
angel

Quad faces maximum 
angel

 ≥ 0.5 Minimum  ≤ 30 Maximum  ≤ 60 Maximum  ≤ 8 Maximum  ≥ 30 Minimum  ≤ 150 Maximum

Target FEMs

ribcage 99% 0.41 99% 49 99% 57 99% 4 99% 32 99% 153

pelvis 99% 0.9 99% 48 99% 69 99% 4 97% 14 98% 144

humerus 92% 0.25 90% 65 95% 80 94% 15 90% 16 93% 169

radius 96% 0.34 94% 66 96% 70 93% 11 90% 10 90% 159

tibia 90% 0.24 95% 69 95% 86 97% 6 92% 13 92% 170

ulna 82% 0.22 92% 53 97% 71 96% 5 90% 19 88% 185

Source FEMs

ribcage 99% 0.41 99% 48 99% 57 99% 4 99% 33 99% 154

pelvis 99% 1 99% 48 99% 67 99% 3 98% 15 99% 138

humerus 97% 0.39 95% 49 99% 46 99% 5 99% 33 98% 157

radius 99% 0.39 95% 47 99% 51 99% 5 98% 22 96% 164

tibia 97% 0.32 96% 49 99% 59 99% 5 99% 22 96% 167

ulna 89% 0.31 99% 58 99% 58 99% 5 97% 22 92% 170

Figure 5.   Comparison of the generation time of different bone FEMs under different generation methods and 
number of feature points.
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registration ignores the nonlinear transformation, the FEMs generation time reduced to 23.285 s, 13.724 s, 
3.972 s, 2.846 s, 2.714 s, 2.911 s respectively.

In Fig. 6, the geometric errors including maximum and average errors of target FEMs generated by the non-
rigid registration method are lower than that generated by the rigid registration. This is mainly because the non-
linear transformation is not adapted to make the target feature points closer to the geometric features of the target 
shape in the rigid registration method. Especially for humerus, radius, tibia, and ulna, their detailed geometric 
characteristics of source and target point-clouds differ greatly. Therefore, compared with target FEMs generated 
by the rigid registration, the average geometric error of target FEMs generated by the non-rigid registration are 
decreased by 73.3%, 72.2%, 77.7% and 66.5%, respectively.

Figure 7 shows that the mesh quality of target FEMs generated by rigid registration are similar to that of 
source FEMs shown in Table 2. This is mainly because the translation, rotation and scaling in the rigid registra-
tion method did not cause local deformation of the mesh elements to affect the mesh quality of target FEMs. 
Therefore, the mesh quality of target FEMs generated by rigid registration were also higher than those of the 
corresponding target FEMs generated by non-rigid registration.

The influences of number of target feature points.  Different number of target feature points have 
different functional capability to describe the geometric features of target point-cloud, affecting the generation 
of nodes for the target FEMs in the mesh morphing process. Therefore, the influences of number of target feature 
points were described in this section. Selecting 100%, 50%, and 10% of source features points by the uniform 
sampling method were respectively used to generate the corresponding number of target feature points by non-
rigid registration for further generating target FEMs. It can be seen from Fig. 5, as the number of feature points 
decreases, the generation time of target FEMs decreases gradually. When 10% of source features points are 
selected, the ribcage FEM with 27,728 elements needs only 2.7 s.

Figure 8 shows the geometric errors including the maximum and average errors of target FEMs increased 
with decreasing of the number of target feature points. The influences of number of target feature points on the 
geometric errors are slightly in the target FEMs of ribcage and pelvis, but significantly in the target FEMs of 
humerus, radius, tibia, and ulna. This is primarily due to the detailed geometric characteristics of their source 
and target point-clouds differ significantly. Therefore, more target feature points are necessary to describe the 
detailed geometric characteristics of target point-clouds.

Data shown in Table 3, reveal the mesh quality of the target FEMs generated by the small number of target 
feature points is better. This is mainly due to fewer target feature points that ignore some detailed geometric fea-
tures of the garget point-cloud to reduce the local deformation of mesh elements. Similarly, in the general mesh 
generation, it is also important and necessary to balance the mesh quality and the details of geometric features.

Limitations.  Through presentation and discussion of the method proposed in this study, the source FEMs 
can be quickly morphed to the target FEMs more consistent with the geometric features of the target point-
cloud. However, in order to describe more detailed geometric feature of target point-cloud, a non-rigid registra-
tion method is used to locally deform the source feature points to generate target feature points. This local defor-
mation caused a decrease in the mesh quality of the target FEM compared to that of the corresponding source 
FEM. Especially when the detailed geometric features of the source and target point-clouds differ significantly, 
the mesh quality of the generated target FEMs decreases more significantly. For the meshes with acceptable qual-
ity, we usually improve them by smoothing, elements optimization, nodes optimization and so on. Therefore, 
it is necessary to conduct more in-depth study on how to balance the mesh quality and the details of geometric 

Figure 6.   The comparison of geometric errors of target FEMs generated by rigid and non-rigid registration.
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features of the target point-cloud. In addition, only the human skeletal FEMs were considered in this study, the 
whole human body FEM also needs to be investigated in future research studies.

Conclusion
In this study, a fast-morphing methodology for generating human skeletal FEM with detailed geometric fea-
tures based on CPD and RBF algorithms was proposed. This is indeed to be the first time that the CPD algo-
rithm is applied to the traditional mesh morphing technology. Using this algorithm enables realization of the 

Figure 7.   Comparisons of mesh quality of the corresponding target FEMs generated by rigid and non-rigid 
registration method. (a) Jacobian; (b) Warpage; (c) Skew; (d) Aspect Ratio; (e) Quad faces Min Angle; (f) Quad 
faces Max Angle.
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improvement from manually placing feature points to automatically generating feature points. In addition, this 
method can directly use the point-cloud of the target geometric data for finite element modeling to save a lot of 
work on the reverse modeling. This fast-morphing methodology was successfully used to morph several human 
skeletal FEMs extracted from THUMS adult model to 3-year-old child skeletal FEMs. The morphing results 
proved that the human skeletal FEMs generated by this fast-morphing methodology has resulted in small geo-
metric errors and high mesh quality. Limitations on this approach will be continued to be investigated further 
in research pertaining to this area in the future.

Figure 8.   Geometric errors of target finite element model generated with different number of feature points.
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