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Abstract
Modern computer vision algorithms are based on convolutional neural networks (CNNs), and both end-to-end learning 
and transfer learning modes have been used with CNN for image classification. Thus, automated brain tumor classification 
models have been proposed by deploying CNNs to help medical professionals. Our primary objective is to increase the clas-
sification performance using CNN. Therefore, a patch-based deep feature engineering model has been proposed in this work. 
Nowadays, patch division techniques have been used to attain high classification performance, and variable-sized patches 
have achieved good results. In this work, we have used three types of patches of different sizes (32 × 32, 56 × 56, 112 × 112). 
Six feature vectors have been obtained using these patches and two layers of the pretrained ResNet50 (global average pool-
ing and fully connected layers). In the feature selection phase, three selectors—neighborhood component analysis (NCA), 
Chi2, and ReliefF—have been used, and 18 final feature vectors have been obtained. By deploying k nearest neighbors 
(kNN), 18 results have been calculated. Iterative hard majority voting (IHMV) has been applied to compute the general 
classification accuracy of this framework. This model uses different patches, feature extractors (two layers of the ResNet50 
have been utilized as feature extractors), and selectors, making this a framework that we have named PatchResNet. A public 
brain image dataset containing four classes (glioblastoma multiforme (GBM), meningioma, pituitary tumor, healthy) has 
been used to develop the proposed PatchResNet model. Our proposed PatchResNet attained 98.10% classification accuracy 
using the public brain tumor image dataset. The developed PatchResNet model obtained high classification accuracy and 
has the advantage of being a self-organized framework. Therefore, the proposed method can choose the best result validation 
prediction vectors and achieve high image classification performance.

Keywords PatchResNet · Transfer learning · Brain image classification · Tumor classification · Biomedical engineering

Introduction

The central nervous system (CNS) consists of the brain and 
spinal cord [1, 2]. Primary CNS tumors stem from cells 
within the brain and spinal cord. They constitute malignant 
tumors (cancer), where cells grow uncontrolled and can 
invade nearby tissues and spread to other parts of the brain, 
as well as benign (non-malignant) tumors, which may grow 
larger but not spread to other parts of the body [3, 4]. The 
brain can also be affected by secondary tumors, which spread 
(metastasize) from other body sites such as the lungs [5]. It 

is estimated that secondary brain tumors will develop in 30% 
of adults with a primary tumor elsewhere in the body [6].

The health burden of brain tumors is significant [7]. Sur-
vival for many malignant primary brain tumors remains very 
poor [6]. Moreover, brain tumors are the leading cause of 
cancer-related deaths in children [8, 9].

Early diagnosis of both primary and secondary brain 
tumors is critical to optimizing health outcomes [10]. 
Various medical imaging methods, such as computerized 
tomography (CT), positron emission tomography (PET), 
and magnetic resonance imaging (MRI) are currently used 
in the diagnosis of brain tumors [11]. These techniques are 
non-invasive methods and provide important information to 
medical professionals for the diagnosis of the disease [12]. 
However, due to the brain’s complex structure, making a  * Sengul Dogan 

 sdogan@firat.edu.tr
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robust diagnosis is difficult. Making a fast, reliable, and 
accurate brain tumor diagnosis is time-consuming.

Computer-aided diagnosis systems (CAD) have become 
actively used in medicine [13–15]. The application of these 
systems can improve the rapidity and accuracy of diagnoses 
and reduce the workload of clinicians, especially in regions 
where access to highly trained radiologists is limited [16]. 
Therefore, CAD is highly suitable for automated and rapid 
preliminary diagnosis.

Literature Review

Nowadays, many studies have been conducted on the accu-
rate classification of brain tumors using artificial intelli-
gence (AI) techniques [10, 17, 18]. A summary of studies 
conducted on brain tumor classification using AI techniques 
is provided in Table 1.

It can be noted from the table that the majority of pro-
posed methods have used deep learning methods. These 
methods need big data to train deep networks, and data aug-
mentation techniques are to be applied to such datasets [36]. 
Nevertheless, such methods generally achieve high classi-
fication accuracy.

Motivation and Our Framework

The main motivation of this research is to increase the clas-
sification ability of ResNet [39] in transfer learning mode. 
Today, patch-based models have attained high classifica-
tion ability for computer vision. Notable models include 
vision transformers (ViT) [40], multilayer perceptron mixers 
(MLP-mixer) [41], and convolutional mixers (ConvMixer) 
[42], all of which have attained high classification ability. 
In ConvMixer, the authors show that the high classification 
capability has been attained using the mixer layer with CNN. 
In ViT, they used fixed-sized patches and transformers to 
classify an image. In the experiments with ViT, they used 
14 × 14, 16 × 16, and 32 × 32 sized patches to show experi-
ments. We have used three types of patches together in this 
framework to attain different results.

We proposed a new framework called PatchResNet, 
which uses two feature extractors and three feature selectors 
for patches. This architecture produces 18 results. In addi-
tion, IHMV was used in this study. A total of 34 (= 18 + 16) 
results were generated, and best among them were chosen 
using IHMV. Hence, our developed architecture is self-
organizing image classification.

Novelties and Contributions

The novelties of the proposed work are given below:

– In this work, three different types of fixed-size patch 
divisions have been applied.

– In our framework, features have been generated using 
pretrained ResNet50. By deploying the last pooling and 
fully connected layer, two feature extractors have been 
created, and these feature extractors have been applied 
to these patches to get different features.

– Three feature selectors have been used in our framework 
together.

– By applying IHMV, voted results have been created.

The Proposed PatchResNet

As stated in the literature, ResNets are useful deep learning 
networks that can be used for computer vision. Newly devel-
oped computer vision models compared to ResNets to evalu-
ate their classification performances [43]. This indicates the 
ResNet architecture’s high classification potential [44]. A 
new framework is proposed using this hypothesis and has 
four main phases. These phases are patch-based deep fea-
ture extraction, selection of top features by deploying three 
feature selectors, classification, and iterative hard majority 
voting (IHMV) [45].

A graphical outline of PatchResNet is given in Fig. 1.
In this framework, each brain MRI images are resized to 

224 × 224. In the multiple patch division, 32 × 32, 56 × 56, 
and 112 × 112 sized patches have been used, and three types 
of patches have been used to extract features. Six feature 
vectors have been created using two feature extractors (the 
last pooling layer and the fully connected layer of the pre-
trained ResNet50) and the computed patches. Using NCA 
[46], Chi2 [47], and ReliefF [48] selectors, 18 feature vec-
tors are generated from the extracted six feature vectors. 
Herein, we used a statistical feature selector and two weight-
based feature selectors. By using Chi2 statistical moment, 
the most informative features have been selected using the 
Chi2 selector. NCA and ReliefF are weight-based feature 
selectors, and they used L1-norm distance. NCA generates 
non-negative feature weights and ReliefF generates both 
negative and positive weights to choose features. By using 
the generated weights by NCA and ReliefF, the most mean-
ingful features have been selected from the generated feature 
vector. kNN (it is a well-known distance-based classifier) 
has been applied to these selected feature vectors, and 18 
results (validation prediction vectors) have been developed. 
IHMV generated 16 voted validation prediction vectors. In 
the last step, the best resulting validation prediction vector 
among the generated 34 results is obtained.

More details of the PatchResNet are given below, phase 
by phase.
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Multiple Patch‑Based Deep Feature Extraction

The primary novelty of this layer is multiple patch divisions. 
32 × 32, 56 × 56, and 112 × 112 sized fixed-size patches have 
extracted features from local areas. Using these sizes of the 
patches (32 × 32, 56 × 56, and 112 × 112), 49, 16, and 4 
patches have been created. Six feature vectors have been 
generated by extracting features from each group by deploy-
ing the last pooling and fully connected layers of the pre-
trained ResNet50. A graphical explanation has been given 
to explain the proposed feature extraction layer.

In this figure (see Fig. 2), the abbreviations used are 
given as follows: FC: fully connected layer, Ff: features 
of the fully connected layer, Pf: features of the pooling 
layer, F: final feature vector. Herein, 32 × 32, 56 × 56, and 
112 × 112 sized patches have been applied to the image to 
create patches. Using 32 × 32, 56 × 56, and 112 × 112 sized 
non-overlapping blocks, 49, 16, and 4 patches have been 
created from 224 × 224 sized image, and these are named  p1, 
 p2, and  p3 in this image. Using each patch group, FC (fully 

connected), and pooling layer of the pretrained ResNet50, 
138 feature vectors are generated. Sixty-nine (49, 16, and 4 
of them belong to first, second, and third patch groups) of 
them are generated using the FC layer, and 69 out of them 

Fig. 1  Overview of the pro-
posed PatchResNet

Fig. 2  Feature extraction of the proposed PatchResNet
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are generated by deploying the pooling layer. In this layer, 
the generated 138 features are divided into six groups. These 
groups are named  Ff1 (this group contains 49 feature vec-
tors, and they are generated using 32 × 32 sized patches and 
FC layer),  Pf1 (this group contains 49 feature vectors, and 
they are generated using 32 × 32 sized patches and pooling 
layer),  Ff2 (this group contains 16 feature vectors and they 
generated using 56 × 56 sized patches and FC layer),  Pf2 (this 
group contains 16 feature vectors and they generated using 
56 × 56 sized patches and pooling layer),  Ff3 (this group con-
tains 4 feature vectors and they generated using 112 × 112 
sized patches and FC layer), and  Pf3 (this group contains 4 
feature vectors, and they generated using 112 × 112 sized 
patches and pooling layer).

By merging these groups, six feature vectors have been 
generated.

The steps of the proposed multiple patch-based feature 
generation layers are:

Step 0: Load the image and resize the image to 224 × 224 
sized images.

Step 1: Divide the image into patches with sizes of 
32 × 32, 56 × 56, and 112 × 112.

Step 2: Generate features deploying the last pooling layer 
(global average pooling layer – avg_pool) and fully con-
nected layer (fc1000). The used ResNet50 was trained on 
the ImageNet1K dataset.

Herein, Ff  and Pf  are fully connected and pooling fea-
tures. These features are generated from pretrained ResNet50 
( R50(.)).

Step 3: Concatenate the feature vectors generated.

Herein, Fh is hth created the final feature vector, and we 
generated six feature vectors.

In this layer, six feature vectors have been calculated, and 
presented in Table 2.

(1)
Ff h

t
= R50

(

pt, fc
)

, t ∈ {1, 2,… ,N}, h ∈ {1, 2, 3},N ∈ {49, 16, 4}

(2)Pf h
t
= R50

(

pt, avg_pool
)

(3)Fh = concat
(

Pf h
1
,Pf h

2
,…Pf h

t

)

(4)F2h = concat
(

Ff h
1
,Ff h

2
,… ,Ff h

t

)

Feature Selection Layer

This layer is needed to decrease the number of features and 
increase the number of feature vectors. Three commonly 
known feature selectors are used in this layer. These feature 
selectors are NCA [46], Chi2 [47], and ReliefF [48]. NCA 
and ReliefF are distance base feature selectors that calculate 
weights for each feature. NCA only generates positive weights, 
but ReliefF can generate positive and negative weights to qual-
ify features. Chi2 is one of the fastest feature selection func-
tions since it uses a simple statistical moment.

This paper proposes multiple selectors based on the most 
informative features selection layer. The model developed in 
this paper uses the pooling and fully connected layers of the 
ResNet50 architecture to extract six different feature vectors 
(two feature vectors for each patch size). Then, these six fea-
ture vectors are fed to the NCA, Chi2, and ReliefF methods 
for feature selection. This way, three qualified index values 
are calculated for each feature vector. This phase generates 18 
feature vectors containing qualified index information. The 
graphical outline of this layer is demonstrated in Fig. 3.

The steps of the proposed feature selection model are:
Step 4: Calculate qualified indexes of each feature vector 

by deploying NCA, Chi2, and ReliefF.

(5)idx1
j
= �

(

Fj, y
)

, j ∈ {1, 2,… , 6}

(6)idx2
j
= �

(

Fj, y
)

(7)idx3
j
= �

(

Fj, y
)

Table 2  Details of lengths of 
feature vectors

Layer Patch size Total patches Feature size Length of the feature vector

Pooling 32 × 32 49 (= 224 × 224/32 × 32) 2048 100,352 (= 49 × 2048)
Fully connected 32 × 32 49 (= 224 × 224/32 × 32) 1000 49,000 (= 49 × 1000)
Pooling 56 × 56 16 (= 224 × 224/56 × 56) 2048 32,768 (= 16 × 2048)
Fully connected 56 × 56 16 (= 224 × 224/56 × 56) 1000 16,000 (= 16 × 1000)
Pooling 112 × 112 4 (= 224 × 224/112 × 112) 2048 8192 (= 4 × 2048)
Fully connected 112 × 112 4 (= 224 × 224/112 × 112) 1000 4000 (= 4 × 1000)

Fig. 3  Feature selection layer of the proposed framework
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Herein, �(., .) is NCA, �(., .) represents Chi2, and �(., .) 
defines ReliefF functions. The input parameters of these feature 
selectors are feature vectors and actual output ( y ). Three qualified 
indexes ( idx ) have been generated using these three functions,.

Step 5: Select the top 512 features by deploying the indexes 
generated.

where sc is the selected cth feature vector with a length of 
512, and dim represents the number of images/observations.

Classification

A simple/shallow classifier (kNN) has been used in the clas-
sification layer [49]. We used kNN to demonstrate the clas-
sification capabilities of the 18 feature vectors. A MATLAB 
classification learner was used to select the most appropriate 
classifier, and Fine kNN (1NN) was selected. We only changed 
the distance parameter of the Fine kNN. We changed the dis-
tance parameter to L1-norm (City block) instead of L2-norm 
(Euclidean) since NCA and ReliefF use L1-norm to calculate 
distances. Tenfold cross-validation (tenfold CV) has been used 
to get robust results.

Step 8: Classify the generated each feature by deploying kNN.

Herein, rc is cth validation prediction vector with a length 
of dim.

Majority Voting Layer

The primary goal of this layer is to increase the calculated 
classification performance in the classification layer. There-
fore, the IHMV algorithm was used. IHMV is a loop-based 
majority voting model and uses a mode function. The steps 
of this layer are:

Step 9: Sort the calculated results (r) in accordance with 
their accuracy.

where ind defines sorted/qualified indexes by descending, 
�(.) is the sorting function, and accr is an accuracy vector 
with a.

Step 10: Create an array using a loop.

Herein, arr is an array.

sc(q, i) = Fj

(

q, idx
p

j
(i)

)

, q ∈ {1, 2,… , dim}, p ∈ {1, 2, 3},

(8)c ∈ {1, 2,… , 18}, i ∈ {1, 2,… , 512}

(9)rc = kNN(sc, y)

(11)ind = �(accr)

(12)

arr
i

k−2
=
[

r
ind(1)(i), rind(2)(i),… r

ind(k)(i)
]

, k ∈ {3,4,… , 18},

i ∈ {1,2,… , dim}

Step 11: Calculate the voted results by deploying the 
mode function.

Herein, vk is kth voted result (validation prediction vector) 
and �(.) is the mode function. In this step, 16 voted results 
are generated from 18 validation prediction vectors.

In the last step, the best accurate validation prediction 
vector was chosen as a result.

Step 12: Select the best accurate vector among the 34 (18 
kNN results + 16 voted results) results.

Experimental Results

Experimental Setup

We used the MATLAB (2022a) programming tool to 
implement PatchResNet. The pretrained ResNet50 was also 
imported to MATLAB. We used a simple configured laptop 
for implementation. This laptop has Intel Core i7 10870H 
processor, 16 GB main memory, and 512 GB hard disk. We 
did not use any graphical processing units since we used 
ResNet50 in transfer learning mode. The transition of the 
proposed PatchResNet is tabulated in Table 3.

The parameters of the proposed PatchResNet are tabu-
lated in Table 3. The calculated results have been generated 
using these parameters. Using different sizes of patches, 
feature extractors, feature selectors, classifiers, and voted 
algorithms, variable classification models can be proposed.

Dataset

We used an open-access MRI dataset that is popular for 
computer vision applications and is publicly available on 
the Kaggle website (https:// www. kaggle. com/). This dataset 
has four categories with 3264 MR images. The distribution 
of this dataset is given as follows. There are 926 scans of 
brains with glioblastoma multiforme (GBM), 937 meningi-
oma images, 901 pituitary tumor images, and 500 control 
scans of healthy individuals [50, 51]. The sample images of 
this dataset have been demonstrated in Fig. 4.

Performance Evaluation Metrics

Standard performance evaluation metrics—accuracy, 
F1-score, precision, and recall—were used to evaluate clas-
sification results. Accuracy is the oldest classification evalu-
ation performance metric and is calculated using the number 
of true predicted observations. Recall defines the ratio of 

(12)vk−2(i) = �
(

arri
k−2

)

https://www.kaggle.com/
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the number of true positives to the sum of true positives and 
false negatives which is a useful performance measure to 
evaluate the unbalanced datasets. Finally, precision is used 
to calculate the ratio of the true positives with all positives 
and is very important to show the diagnosis rate. To express 
precision and recall using a parameter, the F1-score (it is the 
harmonic mean of the precision and recall) has been used.

Results

Precision, recall, accuracy, and F1-score have been calcu-
lated to compute results. The obtained confusion matrix is 
presented in Fig. 5.

The results obtained from deploying the confusion matrix 
(see Fig. 5) are presented in Table 4.

Table 3  Details of the presented PatchResNet

Layer Operator Size/explanation

Feature extraction Image resizing 224 × 224
Patch division 49 patches of size 32 × 32 are deployed (first patch type).

16 patches of size 56 × 56 are deployed (second patch type).
4 patches of size 112 × 112 are deployed (third patch type).

Feature extractors FC and global average pooling of the pretrained ResNet50
Feature vectors creation F1: 100,352 (first patch type + pooling layer)

F2: 49,000 (first patch type + FC layer)
F3: 32,768 (second patch type + pooling layer)
F4: 16,000 (second patch type + FC layer)
F5: 8192 (third patch type + pooling layer)
F6: 4000 (third patch type + FC layer)

Feature selection Multiple feature selectors applying 
and generating

18 selected feature vectors are created with a length of 512
s1: First patch type + pooling layer + NCA
s2: First patch type + pooling layer + Chi2
s3: First patch type + pooling layer + ReliefF
s4: First patch type + FC layer + NCA
s5: First patch type + FC layer + Chi2
s6: First patch type + FC layer + ReliefF
s7: Second patch type + pooling layer + NCA
s8: Second patch type + pooling layer + Chi2
s9: Second patch type + pooling layer + ReliefF
s10: Second patch type + FC layer + NCA
s11: Second patch type + FC layer + Chi2
s12: Second patch type + FC layer + ReliefF
s13: Third patch type + pooling layer + NCA
s14: Third patch type + pooling layer + Chi2
s15: Third patch type + pooling layer + ReliefF
s16: Third patch type + FC layer + NCA
s17: Third patch type + FC layer + Chi2
s18: Third patch type + FC layer + ReliefF

Classification Applying kNN Generating 18 prediction vectors using the selected 18 chosen feature vectors.
Attributes:
k: 1, Distance: L1-Norm, Voting: None,
Validation: tenfold CV

Majority voting IHMV Creating 16 voted feature vectors from 18 prediction vectors
Selection of the best results from 34 (= 18 + 16) predicted vectors.

Fig. 4  Sample brain MR images 
in four classes of the used data-
set: a glioblastoma multiforme 
(GBM), b meningioma, c pitui-
tary tumor, and d healthy control
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Table 4 demonstrates that the proposed PatchResNet attained 
98.10% classification accuracy, 98.15% unweighted average 
recall, 97.91% average precision, and 98.01% overall F1-score. 
Moreover, the best results class is Pituitary since the recall of 
this class is equal to 100%. GBM also attained 100% precision.

We proposed a new framework named PatchResNet 
because three types of patch divisions were used in this 
work. We selected pretrained ResNet50 to extract features 
as the fully connected layer of ResNet50 has generally been 
used to extract deep features in the literature. This research 
used both global average pooling and fully connected lay-
ers of the pretrained ResNet50 to obtain two deep feature 

extractors. Variable-sized feature vectors have been obtained 
by using different patch divisions and two feature extractors. 
In the feature selection phase, the most informative 512 fea-
tures were selected, three feature selectors were used, and 
18 (= 3 × 2 × 3) feature vectors were calculated. kNN was 
applied to these 18 selected feature vectors to calculate clas-
sification results, and the calculated accuracies of these 18 
selected feature vectors are depicted in Fig. 6.

Figure 6 demonstrates that the best accurate feature vector 
is the 7th feature vector and the 7th feature vector yielded 
96.54% classification accuracy. This vector is created using 
fixed-size patches of 56 × 56, feature extraction using the 

Fig. 5  Results of the confu-
sion matrix using the proposed 
PatchResNet. 1 is GBM, 2 is 
meningioma, 3 is healthy con-
trols, and 4 is pituitary

Table 4  Summary of overall 
and category-wise classification 
results (%)

Class Accuracy (%) Recall (%) Precision (%) F1-score (%)

Glioblastoma  
multiforme (GBM)

95.68 95.68 100 97.79

Meningioma 98.51 98.51 96.75 97.62
Healthy control 98.40 98.40 96.09 97.23
Pituitary tumor 100 100 98.79 99.39
Overall 98.10 98.15 97.91 98.01
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global average pooling layer of the ResNet50 and NCA fea-
ture selector. Using the outputs of the proposed PatchResNet, 
comparative results have been calculated in accordance with 
the size of the patch, feature extractor, and feature selectors. 
These comparative results are demonstrated in Fig. 7. 

Figure 7 demonstrates the average classification accura-
cies of the methods used. We have used three types of patch 
divisions, and these are 32 × 32, 56 × 56, and 112 × 112. Our 
calculated average classification accuracies are 92.82%, 
95.04%, and 94.85% for 32 × 32, 56 × 56, and 112 × 112 
sized patch divisions, respectively. Two feature selectors 
were used. The average classification accuracy of the pool-
ing layer–based feature extractor is 94.58%, and the average 

classification accuracy of the FC-based feature extractor 
is 93.89%. According to the feature selectors performance 
evaluation, the best selector is NCA since the average clas-
sification of NCA is 96%. Average classification accura-
cies ReliefF and Chi2 are 93.39% and 93.32%, respectively. 
According to Fig.  7, the best size for patch division is 
56 × 56, the best feature extraction model pooling layer of 
the ResNet50, and the most suitable selector is NCA. Moreo-
ver, the 7th selected feature vector used these components 
and achieved the best classification accuracy among the 18 
generated classification results by deploying a kNN classi-
fier with a tenfold CV (see Fig. 6). Moreover, the statistical 
analysis of these components is given in Table 5. 

Fig. 6  Plot of classification 
accuracy versus selected feature 
vectors using kNN classifier 
with tenfold cross-validation
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Fig. 7  Performance comparison of the used components: a feature extractors, b feature selectors, and c patch division model
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We applied the statistical t-test to the generated 18 feature 
vectors to obtain clinically significant features. Herein, our 
reference point is p-value since features with a p-value less 
than 0.005 are considered distinct features. In each feature 
vector, there are 512 features, and this dataset has four 

classes. Therefore, p-values of 6 =

(

4

2

)

 couples have been 

calculated. Using p-values, the number of distinct features 
has been calculated and is shown in Fig. 8.

Figure 8 demonstrates that our generated features are 
distinctive based on p-value analysis and yielded high clas-
sification performance.

IHMV was used to calculate voted classification accuracies, 
and 16 voted results have been calculated. These classification 
accuracies of the voted vectors are demonstrated in Fig. 9.

Figure 9 demonstrates classification accuracies via the 
number of predicted vectors used to calculate voted vectors. 
According to Fig. 9, the best classification accuracy was 
98.10%, attained by voting the best 11 results. Moreover, all 
voted results are higher than 97%. 

We used 18 pretrained CNNs to get comparative results. 
The used CNNs are (1) ResNet18, (2) ResNet50, (3) 

ResNet101, (4) DarkNet19, (5) MobileNetV2, (6) Dark-
Net53, (7) Xception, (8) ShuffleNet, (9) NasNetMobile, 
(10) NasNetLarge, (11) DenseNet201, (12) InceptionV3, 
(13) InceptionResNetV2, (14) GoogLeNet, (15) AlexNet, 
(16) VGG16, (17) VGG19, and (18) SqueezeNet. Pooling/
fully connected layers of these networks have been used to 
extract features. By deploying NCA, the top 512 features 
were selected, and classification was performed by deploy-
ing kNN. The calculated classification accuracies of these 
pretrained CNNs are shown in Table 6.

Table 6 demonstrates that the best feature extractor 
among the used 18 CNNs is pretrained DenseNet201, 
and it attained 95.83% classification accuracy. Moreover, 
ResNet50 attained 93.90% classification accuracy with-
out using patch division. By deploying patch division, the 
accuracy rate of the ResNet50 was increased from 93.90 
to 96.45% (see Fig. 6). Moreover, PatchResNet increased 

Table 5  General classification (mean ± standard deviation) of the used 
components

Component Parameters General accuracy (%)

Feature extractors FC 93.90 ± 1.95
Pooling 94.63 ± 1.92

Feature selectors ReliefF 93.38 ± 1.72
Chi2 93.33 ± 1.76
NCA 96.08 ± 0.66

Patch size 112 × 112 94.83 ± 0.79
56 × 56 95.06 ± 1.15
32 × 32 92.92 ± 2.68

Fig. 8  Boxplot of clinically significant feature vectors

Fig. 9  Plot of classification accuracies versus the number of the used 
predicted vectors

Table 6  Comparison results (%) of the proposed PatchResNet with 
other pretrained models

Method Accuracy (%) Method Accuracy (%)

ResNet18 92.62 DenseNet201 95.83
ResNet50 93.90 InceptionV3 91.85
ResNet101 93.66 InceptionResNetV2 91.36
DarkNet19 91.33 GoogLeNet 92
MobileNetV2 92.62 AlexNet 93.78
DarkNet53 93.35 VGG16 91.15
Xception 92.65 VGG19 91.61
ShuffleNet 93.38 SqueezeNet 93.72
NasNetMobile 90.41 PatchResNet 98.10
NasNetLarge 90.72
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classification performance to 98.10%. Table 6 tabulates 
that our proposed PatchResNet increased the classifica-
tion performance of the pretrained ResNet50. To show the 
superiority of the developed framework, the class-wise 
comparison results with ViT are given in Table 7. 

Tummala et  al. [52] used the ViT method with the 
same dataset in their study. As can be seen in Table 7, our 
method has achieved better classification performance for 
2 classes (Meningioma and Pituitary). For GBM, the ViT 
method achieved higher classification accuracy. However, 
they applied a 70:30 hold-out validation strategy in their 
study. But, we have used a tenfold CV to obtain more gen-
eralized robust results. 

In this study, we used the second dataset to evaluate the 
proposed method’s performance. The dataset presented by 
Cheng et al. [27] contains 3064 images belonging to three 
classes: GBM (1426), Meningioma (708), and Pituitary 
(930) [53]. The test results obtained on this dataset are 
given in Table 8.

As seen in Table  8, the proposed framework has 
achieved more than 95% classification accuracy using the 
second dataset. Hence, our proposed method illustrates 
high classification performance using both datasets.

Discussion

To better imply the success of the proposed PatchResNet on 
the used brain image dataset, comparative results are tabu-
lated in Table 9. 

The research given in Table 9 uses the same dataset 
as this study. According to Table 9, Musallam et al. [54] 
achieved an accuracy of 98.22%. However, end-to-end 
training was carried out in this study. Rasool et al. [55] 
achieved an accuracy of 98.1%. This value is the same 
as our result, but 80:20 hold-out validation was used as 

a validation technique. Aurna et  al. [56] applied data 
augmentation to the dataset. In this way, it increased the 
amount of data and provided 98.16% classification accu-
racy. Ullah et al. [57] used the data augmentation method. 
In addition, a control class was not used in the study, and 
only the types of brain tumors were classified. Although 
the method proposed by Kang et al. [58] was complex, it 
could reach 93.72% accuracy. Senan et al. [59] proposed 
an approach similar to our method. However, data aug-
mentation was also used, and an accuracy value of 95.1% 
was achieved in this study. Gupta et al. [60] proposed a 
two-level method. In this method, firstly, detects whether 
there is a tumor; secondly, if there is a tumor, its type is 
classified. In addition, data augmentation was performed 
using the GAN method, and 98% accuracy was achieved 
in this paper. A similar situation exists in the method pro-
posed by Alanazi et al. [61]. In this study, three classes 
were used, and 95.75% accuracy was achieved with the 
custom-designed CNN. The proposed method by Kibriya 
et al. [62] classifies the types of brain tumors and uses 
only three classes for this. In this study, a CNN was 
designed, and 97.2% classification accuracy was obtained. 
Considering the studies given in Table 9, the proposed 
method in this paper has low computational complexity 
and still shows high classification success. 

The important points of this research are discussed below.
The advantages of the proposed method are given below:

• A new multiple patch-based transfer learning framework 
was proposed in this work to efficiently utilize patch-
based image classification models.

• We have proposed a parametric image classification 
architecture (see Table 3). New-generation patch-based 
image classification models can be proposed.

• kNN (shallow machine learning algorithm) was used to 
demonstrate the high classification ability of the selected 
feature vectors.

• IHMV was used to increase classification capability.
• The proposed PatchResNet attained 98.10% classification 

accuracy.
• Our proposed architecture increased the classification 

ability of the proposed ResNet50.
• Performances of the methods used were compared. The 

most appropriate size of the patch is 56 × 56, the best 

Table 7  Comparison of accuracy (%) with ViT method

The best results are highlighted in bold

Classes Our method ViT method used in [52]

GBM 95.68 98.01
Meningioma 98.51 94.8
Pituitary 100 99.4

Table 8  Overall and category-
wise results (%) obtained using 
the second dataset

Class Accuracy (%) Recall (%) Precision (%) F1-score (%)

Glioblastoma  
multiforme (GBM)

–- 97.62 95.28 96.43

Meningioma –- 89.83 94.64 92.17
Pituitary tumor –- 99.25 99.14 99.19
Overall 96.31 95.56 96.35 95.93
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layer for feature extraction is pooling, and the most suit-
able feature selector is NCA for this dataset.

The drawbacks of our method are given below: 

• More extensive datasets need to be used.
• We used a shallow classifier and did not use any opti-

mization methods to get higher classification accuracy. 
Moreover, this framework uses feature extraction and 
feature selection phases. We did not use any fine-tuning 
operator in these phases.

Conclusions

A new image classification framework called PatchResNet 
was proposed. The primary aim of the PatchResNet is to 
increase the classification ability of the transfer learning–based 
ResNet50 model. The presented PatchResNet was developed 
using a brain tumor dataset with four categories. Our frame-
work attained best accuracy of 96.54% using kNN classifier 
with a tenfold CV. This performance was increased to 98.10% 
using IHMV methodology.

Our developed model is a self-organized framework 
involving patches, feature extractors, and feature selec-
tors. The limitation of this work is that we have used fewer 
patients in each. In the future, we plan to validate our work 
with a huge database. Also, we plan to employ explainable 
artificial intelligence (XAI) techniques in the developed 
model to visualize the region of brain tumors and build 
trust in the clinicians on our diagnosis [63].
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https:// www. kaggle. com/ datas ets/ navon eel/ brain- mri- images- for- brain- 
tumor- detec tion.
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