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Abstract

Magnetic resonance spectroscopic imaging (MRSI) offers a unique molecular window into the 

physiological and pathological processes in the human body. However, the applications of MRSI 

have been limited by a number of long-standing technical challenges due to high dimensionality 

and low signal-to-noise ratio (SNR). Recent technological developments integrating physics-based 

modeling and data-driven machine learning that exploit unique physical and mathematical 

properties of MRSI signals have demonstrated impressive performance in addressing these 

challenges for rapid, high-resolution, quantitative MRSI. This paper provides a systematic review 

of these progresses in the context of MRSI physics and offers perspectives on promising future 

directions.

I. Introduction

Magnetic resonance (MR) spatiospectral imaging techniques allow for noninvasive 

visualization and quantification of molecule-specific physiological processes in living 

animals and humans that are inaccessible by conventional anatomical and functional 

imaging methods. MR spectroscopic imaging (MRSI), in particular, integrates the concepts 

of spatial encoding used in MRI and spectral encoding used in MR spectroscopy (MRS) 

to produce spatially-resolved one or multi-dimensional spectra. These spectra allow 

simultaneous detection, quantification, and mapping of numerous endogenous molecules 

in the human body, providing important insights into the biochemical processes in vivo. 

This molecular imaging capability, since its inception in 1975 [1], [2], promised to 

significantly impact many basic science studies (including understanding fundamental 
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physiological processes) and clinical applications (including diagnosis, prognosis and 

treatment monitoring for cancer, stroke, epilepsy, and many other neurological and 

psychiatric diseases) [3]–[5]. However, several long-standing technical challenges have 

hindered the progress and applications of in vivo MRSI, including low sensitivity, poor 

resolution, low imaging speed, contamination from nuisance signals and sensitivity to 

system imperfections. The fundamental reasons underlying these challenges are: (1) the 

inherently low abundance of the molecules of interest in MRSI, e.g., metabolites and 

neurotransmitters having three to four orders of magnitude lower concentrations than the 

water molecules imaged by MRI, and (2) the high dimensionality of the imaging problem 

due to the need to encode and decode both spatial and spectral dimensions with high 

resolutions. While significant efforts have been devoted to tackle these challenges, the 

performance of in vivo MRSI still falls short of the signal-to-noise ratio (SNR), resolution, 

speed, and robustness desired or required by many practical applications.

Recent advances in ultrahigh-field systems, high-sensitivity radiofrequency (RF) receiver 

arrays, and computational imaging methods have presented new opportunities to address 

the technological challenges associated with in vivo MRSI, reinvigorating this “old” but 

relatively unexploited field. Recent years have observed a substantial growth in the efforts 

pushing towards rapid and high-resolution MRSI (millimeter resolution on humans instead 

of the conventional centimeter resolution) [6]. Particularly, computational methods that 

exploit the rich prior information for spectroscopy signals derived from MR physics have 

been developed to address several key issues on recovering high-dimensional spatiospectral 

functions from limited and/or noisy data [7]–[11], and quantifying molecular parameters 

(e.g., concentrations, T2s) from the spatiospectral function to derive quantitative biomarkers 

for physiological functions and diseases [12]–[14]. We present, in this paper, a systematic 

review of these recent progresses in the context of MRSI physics and related imaging 

problems, and provide our perspectives on directions and opportunities for future pursuit. 

We expect that further technology developments that effectively integrate spin physics 

and machine learning have the potential to transform MRSI from a slow, low-SNR and 

poor-resolution modality into a practical, high-resolution, in vivo molecular and metabolic 

imaging tool for many scientific and clinical applications. These advancements may also 

benefit and inspire innovations in other high-dimensional spatiospectral imaging modalities.

This review is organized as follows. Section II introduces basic physical principles 

underlying MRSI and defines the key challenges associated with in vivo high-dimensional 

MRSI. Section III reviews physics-based modeling of spectroscopy signals and data-driven 

low-dimensional model learning approaches inspired by the physics models. Section IV 

discusses spatiospectral image reconstruction methods integrating physics-based and learned 

models. Section V extends the discussion to dynamic MRSI followed by Section VI where 

integrated physics-based and machine learning strategies for metabolite quantification are 

reviewed. Finally, Section VII presents our perspectives on future research directions.

II. MRSI Physics

Atomic nuclei with an odd number of protons and/or an odd number of neutrons possess a 

physical property, known as nuclear spin, which gives rise to a nonzero magnetic moment 
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and thus detectable MR signals after an RF excitation. The nucleus of the hydrogen 

atom is the simplest in nature, consisting of just one proton and no neutron. Because 

hydrogen is the most common element found in the human body, proton MRI has been 

widely used for anatomical and functional imaging using mainly the MR signals from 

water protons (1H). MRSI, on the other hand, is designed to measure MR signals from 1H 

and/or other nuclei (e.g., 31P) in a range of molecules (e.g., N-Acetyle Aspartate, Choline, 

Creatine, etc). These signals are properly encoded in data acquisition and decoded in data 

processing to achieve multiplexed molecular imaging. In this section, we will first review 

the physical mechanisms underlying the generation of different resonance frequencies and 

the spatiospectral encoding strategies used in MRSI. Then we will introduce the resulting 

high-dimensional spatiospectral imaging problem and the unique challenges associated with 

MRSI.

A. Chemical Shift and MRSI

In a typical MRI experiment, the object of interest is commonly represented as a spatial 

function ρ r , whose values at a spatial location r depend on the abundance of water 

molecules (or often referred to as spin density) and a few other biophysical parameters of 

tissue water, e.g., T1, T2, and χ (susceptibility). A detailed discussion on this can be found in 

[15]. However, there can be many different molecules other than water present in the object. 

Furthermore, one molecule can have the same nucleus (e.g., 1H’s) in different functional 

groups, which are surrounded by varying numbers of orbiting electrons. These orbiting 

electrons “locally” perturb the magnetic field experienced by the nuclei. This effect, called 

electron shielding, illustrated in Fig. 1(a), makes different nuclei in the same or different 

molecules resonate at a range of frequencies specified by

f = γB0 1 − σ , (1)

where B0 is the strength of the main magnetic field that the object experiences, γ is 

the gyromagnetic ratio (only nucleus dependent) and σ is the electron shielding constant 

(dependent on nuclei, molecules as well as the position of a nucleus in a molecule). This 

frequency dispersion gives rise to the chemical shift phenomenon fundamental to MR 

spectroscopy. As an example, different protons in N-acetylaspartate (NAA, one of the most 

abundant metabolites in the brain) exhibit several frequencies, producing a unique resonance 

structure (Fig. 1(b)). Different molecules have their unique resonance structures.

Considering the chemical shift distribution in each imaging voxel, the image function of 

interest becomes a spatiospectral function ρ r, f . Mapping this function allows one to obtain 

spatially-resolved spectra, from which we can measure various molecules and quantify their 

relative abundance, providing useful insight into the physiological conditions of the tissues/

organs of interest.

In practical MRSI acquisition with pulse excitations, we use a radiofrequency (RF) coil to 

pick up time-domain signals called free induction decays (FIDs). Therefore, we often use the 

Fourier counterpart of ρ r, f , i.e., ρ r, t , to represent the spatiotemporal function of interest 
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(where t denotes the FID dimension, sometimes referred to as the spin clock). Thus, the 

imaging data collected is in k, t -space, and related to ρ r, t  by

s kp, tq = ∫
V

ρ r, t e−i2πγΔf r tqe−i2πkprdr + ϵ kp, tq , (2)

where V  denotes the imaging volume of interest, Δf r  denotes the macroscopic B0 field 

inhomogeneity distribution (due to system imperfection and object induced magnetic field 

perturbation), kp = pxΔkx, pyΔky, pzΔkz  and tq = qΔt denote the sampling location in the high-

dimensional k, t -space respectively (Δkx, Δky, Δkz and Δt are the corresponding sampling 

intervals), and ϵ ⋅  represent the measurement noise (modeled as complex white Gaussian). 

Based on Eq. (2), the MR spectroscopic imaging problem is to recover ρ r, t  from a set 

of k, t -space measurement s kp, tq p = 1, q = 1
P , Q , also known as the spatiospectral encodings. 

Coil sensitivity can be included in Eq. (2) such that s ⋅  becomes sc ⋅ . Without loss 

of generality, we ignore the coil index in the following discussion. An illustration of the 

spatiospectral imaging problem is shown in Fig. 2.

B. Challenges for MRSI

As shown in Eq. (2) and Fig. 2, MRSI is a high-dimensional imaging problem due to the 

need to encode and decode both spatial and spectral information. Because Δt needs to be 

small enough to satisfy the Nyquist sampling requirement along the spectral dimension (i.e., 

1 to 2 kHz bandwidth for 3T and even higher for ultrahigh-field systems), it is not realistic to 

cover extended k-space during each readout. Therefore, a standard approach is to acquire all 

the time points needed for a single or a few k-space locations after each excitation and repeat 

the process many times. Furthermore, many FID t  points (on the order of hundreds) need 

to be acquired to achieve sufficient spectral resolutions for accurately differentiating signals 

from different molecules. As a result, the imaging time for an MRSI experiment is long and 

grows exponentially as the desired spatiospectral resolution increases in the conventional 

Fourier imaging paradigm.

Another fundamental challenge with MRSI is low SNR. The MR signal from each molecule 

is proportional to the bulk magnetization Mz, m
0  given by [15]

Mz, m
0 = γ2ℏ2Nm

4KT s
(3)

where Nm is the number of polarized spins that can be used to generate detectable signals 

for the mth molecules, ℏ is the Planck constant, K the Boltzmann constant and T s the 

absolute temperature. As Nm for the molecules of interest in MRSI, e.g., metabolites 

such as NAA, creatine (Cr) and choline (Cho) and neurotransmitters such as glutamate 

(Glu) and GABA, are typically three orders of magnitude smaller than that for water, 

much weaker signals from these molecules are expected. As a result, a common practice 

is to prescribe large voxel sizes (poor spatial resolution) in order to maintain sufficient 

SNRs within a clinically feasible scan time. A related important issue (which is often less 

discussed) is the large dynamic range for signals from different molecular components due 
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to their concentration differences. An outstanding example is the strong nuisance water 

and subcutaneous lipid signals in 1H-MRSI, which can significantly affect our ability 

to reliably reconstruct and quantify metabolite signals of interest. Therefore, strong prior 

information is needed to address the dimensionality, SNR and dynamic range challenges to 

enable fast, high-resolution, high-SNR MRSI for practical applications. The well-established 

chemical and physical knowledge for the spectroscopic signals and advanced data-driven 

machine learning tools to leverage this knowledge present new opportunities to tackle these 

challenges.

III. Physics-Based Spatial-Spectral Priors

Strong physics-based priors can be imposed on ρ r, t  for in vivo MRSI based on extensive 

studies on the signal characteristics of the molecules of interest. Specifically, each time/

frequency point needs not be treated as an independent unknown during the imaging 

process. Given that there are only a finite number of frequencies originating from NMR-

sensitive molecules in vivo [4], one straightforward choice is to model the signals as a linear 

combination of complex exponentials, each capturing a particular frequency

ρ t = ∑
k = 1

K
cke−βkt (4)

where βk = ak + ibk is a complex coefficient modeling both the decaying behaviors of FIDs 

and the frequency values. While this model has often been used in the analysis of solution 

MR data in chemistry studies [11], [16], its utility in in vivo MRSI has been limited, because 

(1) each molecule can have a number of frequency peaks and there are many different 

molecules that can be simultaneously detected, thus K can be large making this constraint 

less effective, especially for 1H−MRSI; (2) the frequency components from the same 

molecule have strong dependence according to quantum mechanics (QM) [4]. Therefore, 

a better model for in vivo MRSI data at each spatial voxel can be introduced, i.e.,

ρ r, t = ∑
m = 1

M
cm r ϕm t e−t/T2, m

* r + i2πδfm r t (5)

where cm are the molecular concentrations and ϕm denote a basis whose Fourier transform 

is the spectral structure of a specific molecule; ϕm can be predicted by QM simulations 

provided the chemical shifts and J-coupling constants for a particular molecule (from 

chemical database) and is experiment independent. T2, m
*  and δfm are experiment-dependent 

and molecule-specific apparent relaxation parameters and additional frequency shifts. As 

can be seen, the model order reduces from K (the number of frequencies) to M the 

number of molecules, a significantly smaller degrees of freedom. While one can attempt 

to directly estimate cm r , T2, m
* r  and δfm r  from the noisy and often limited s k, t , the strong 

nonlinearity of the estimation problem requires a high SNR that is usually not available for 

in vivo MRSI, thus limiting the achievable spatial resolution. However, the physics-based 

model in Eq. (5) underlies the inherent variations of spectroscopic signals that motivate 

the development of low-dimensional modeling and machine learning approaches to enable 
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better tradeoffs in speed, resolution, and SNR for MRSI. We review these developments in 

the following sections.

A. Subspace Model

Under physiological conditions, the parameters cm, T2, m
* r  and δfm r  have values in a narrow 

range (e.g., T2, m
* 30 to 100ms), and M is usually small, i.e., 10–15 for in vivo 1H-MRSI. 

Therefore, the physiologically meaningful high-dimensional FIDs/spectra we acquired 

should reside in or close to a low-dimensional space. One approach to exploiting this low-

dimensionality is to approximate the high-dimensional ρ r, t  using the partial separability 

(PS) model [7], [8], [17]:

ρ r, t = ∑
l = 1

L
ul r vl t (6)

which represent the FIDs/spectra at individual voxels as linear combinations of a small set of 

basis functions vl t , thus in a low-dimensional subspace. The PS model leads to low-rank 

structures for the discretized representation of ρ r, t , which has been used for denoising 

[18] or super-resolution reconstruction [19]. Such a low-rank filtering approach requires 

joint estimation of both the spatial coefficients ul r  and subspace basis vl t  (subspace 

pursuit). Subspace pursuit often requires relatively high SNR data which is well beyond that 

of in vivo MRSI data acquired using accelerated acquisition schemes. Alternatively, we can 

leverage physics-based priors to pre-learn vl  from high-SNR training data and transform 

the MRSI problem into the recovery of ul  which is significantly lower-dimensional than 

ρ r, t , thus enabling more flexible designs of data acquisition and physics-motivated low-

rank reconstruction to address the speed, resolution and SNR (SRS) challenges. We will 

focus on this type of reconstruction methods in this review and more detailed discussions on 

data acquisition can be found in [20]–[22].

While subspace learning has been well studied in machine learning [23], the unique physical 

properties of each FID allows for unique training data generation and learning strategies 

[8]. More specifically, we can draw samples from pre-specified distributions of cm, T2, m
*

and δfm and synthesize a large number of FIDs from which the subspace structure can 

be determined, e.g., through PCA, ICA or other dimensionality reduction techniques. The 

parameter distributions can be specified using literature data with empirical distribution 

assumptions (e.g.,Gaussian distributions with lower and upper bounds) [24], [25]. In 

addition, spectral fitting using Eq. (5) or its variants can be applied to experimentally 

acquired high-SNR training data to extract empirical distributions of the molecular 

parameters [8], [12] or to supplement the synthetic data. The subspace learned this 

way incorporates strong physics prior, captures the inherent molecular spectral features 

of interest, and is less susceptible to experimental artifacts than a direct application of 

dimensionality reduction to noisy experimental data.
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B. Nonlinear Manifold Model

While linear subspace models have been demonstrated highly effective and enables flexible 

sampling of k, t -space for the determination of spatial coefficients. Their effectiveness 

degrades when the range of spectral parameters increases, which motivates more general 

models. This is illustrated in Fig. 3. We generated spectra of glutamate (Glu) with varying 

ranges of c, T2
* and δf, and compared the representation accuracy between linear subspace 

and a nonlinear manifold model [26]. As can be seen, as the ranges of T2
* and δf increase, the 

approximation errors of subspace increases, as shown by the error spectra in black, while the 

nonlinear model maintains high accuracy for the same order. Therefore, learning a nonlinear 

low-dimensional model can offer a more efficient representation of general in vivo MR 

spectra. As large quantities of training samples can be generated using the physics-based 

method described above, data-driven learning of nonlinear low-dimensional representations 

is possible, leveraging recent progresses in deep learning.

Nonlinear dimensionality reduction has been used for classifying single-voxel spectroscopy 

(SVS) data and demonstrated superior performance than linear dimensionality reduction 

[27], [28]. But these works did not focus on representation accuracy and did not consider 

the use of low-dimensional representations for image reconstruction. A deep autoencoder 

(DAE) based approach was proposed recently to learn an accurate low-dimensional 

representation for ensembles of spectroscopic signals (FIDs) [26]. Denoting each voxel 

FID as a vector ρ, an encoder E ⋅ ; θe  and a decoder D ⋅ ; θd  network can be learned such 

that a low-dimensional embedding encoded from E ⋅  can accurately reconstruct ρ, i.e., 

ρ ≈D E ρ; θe ; θd . The idea has been extended to multi-echo-time (multi-TE) spectroscopy 

data [29], and the improved representation efficiency of learned nonlinear low-dimensional 

models over linear subspace model has been shown, for not only 1H but also other 

nuclei data [25], [26], [29]. Figure 4 provides a conceptual illustration of physics-model-

based training data generation incorporating QM priors and empirical distributions of 

spectral parameters, and data-driven learning of low-dimensional representations for high-

dimensional spectroscopic signals.

These learned low-dimensional models enabled new ways to formulate the recovery of the 

high-dimensional image function (a.k.a. spatiospectral reconstruction) from noisy or often 

sparsely sampled spatiospectral encodings, which are reviewed in the next sections.

IV. Spatiospectral Reconstruction Using Learned Models

A. Subspace-Based Reconstruction

Using the discretized representation, i.e., representing ρ r, t  at a set of sampled locations 

rn, tq′ n, q′ = 1
N, Q′ , the subspace model in Eq. (6) can be rewritten in a matrix form ρ = UV [17], 

where U ∈ CN × L and V ∈ CL × Q′ are matrix notations for the spatial coefficients and 

learned subspace. Accordingly, the reconstruction problem can be formulated as estimating 

the unknown spatial coefficients (with a significantly less number of degrees-of-freedom 

than) [17]
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U = arg min
U

∥ d − Ω FB ⊙ UV ∥2
2 + λR U, V , (7)

where B captures the B0 field inhomogeneity induced linear phases (i.e., Bnq′ = ei2πΔf rn tq
'
), 

F is a spatial Fourier transform operator and Ω denotes a k, t -space sampling operator. 

Note that q′ can be different from q as truncated FID sampling can be easily implemented. 

The vector d contains all the noisy spatiospectral encodings. R ⋅  is a regularization that 

can be used to impose spatial constraint on U or the images at individual FID time point, 

e.g., an edge preserving penalty [20] or sparsity constraint [30], and λ is the regularization 

parameter. The final reconstruction ρ can be formed as ρ = UV. This joint subspace and 

spatial constrained reconstruction has achieved impressive improvement in resolution, SNR 

and speed for both 1H and X-nuclei MRSI in brain and muscle applications over traditional 

methods [9], [20], [31].

It is possible to extend Eq. (7) to jointly update both U and V [30], which is a special form 

of low-rank matrix recovery. This type of generic low-rank-model-based methods have been 

successful in several MRI applications, e.g., dynamic imaging [32], [33], MR relaxometry 

[34] and hyperpolarized 13C-MRSI [35], where SNR is not a major bottleneck. However, 

they do not work well when using MRSI data with very low SNRs for subspace pursuit, and 

are not flexible for incorporatingfuture development physics-motivated subspace learning. 

Substantial bias may be present in the reconstructed spectra due to errors of subspace 

estimation from very noisy data, especially for less dominant but important spatiospectral 

features [20]. A comparison of reconstructions from simulated MRSI data produced by 

direct low-rank filtering and using a learned subspace is shown in Fig. 5 to demonstrate 

this effect. Locally low-rank models offer better representation accuracy and capability than 

global low-rank models [33], [34], [36], [37], but are still limited by the SNR challenge and 

subspace estimation errors in MRSI applications.

B. Nonlinear Manifold Constrained Reconstruction

As discussed above, generalizing the linear subspace model to nonlinear low-dimensional 

manifold models can enable more accurate approximation of general spectroscopic 

signal variations, thus reducing potential modeling errors for diverse physiological and 

pathological conditions. A key issue is how to integrate such a learned nonlinear model into 

the reconstruction formulation. One approach is to incorporate a “network representation 

error” penalty term into a regularized reconstruction formalism:

ρ = arg min
ρ

∥ d − Ω FB ⊙ ρ ∥2
2 + λ1 ∑

n = 1

N
C ρn − ρn 2

2 + λ2R ρ , (8)

with C ⋅  representing the learned DAE D E ⋅ ; θe ; θd . While the first term imposes data 

consistency same as previous formulations, the second term enforces the prior that the 

desired FIDs of interest at each voxel, ρn, should yield small representation errors for 

the learned low-dimensional model captured by C. If C reduces to a linear network, this 

regularization can be viewed as penalizing the error for projection onto a learned subspace, 
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a softened version of the explicit subspace model in Eqs. (7) – (12). R ⋅  is an additional 

regularization term that can be flexibly incorporated and used to impose spatial constraints, 

either hand-crafted or learned (see the next section for more discussion). Similar to the 

reconstruction strategies discussed above for the learned subspace, because we kept the 

forward encoding model and the learned C is imposing a prior on the underlying true 

FIDs, once pre-trained, C can be used synergically with different acquisition designs. This 

is an important difference with another popular unrolling approach, in which an unrolled 

network is motivated from but does not exactly solve a regularized least-squares problem 

(the regularization term can not be explicitly defined) and the network typically needs to be 

retrained for different acquisition schemes. However, the disadvantage of actually solving 

the optimization problem in Eq. (8) is the need to invert the deep network (involving 

backpropagation) for each reconstruction, thus higher computational cost compared to 

the trained end-toend mapping network that only requires forward pass at the inference 

stage. Figure 6 provides an example to demonstrate the superior denoising reconstruction 

performance by using the learned nonlinear model (over linear subspace) for an in vivo 
1H-MRSI data.

To effectively take advantage of the learned nonlinear model without significantly 

compromising computational efficiency, projected gradient descent (PGD) based algorithms 

can be considered. For example, the recently proposed RAIISE method (LeaRning 

nonlineAr representatIon and projectIon for faSt constrained MRSI rEconstruction) [38] 

seeks to learn a projection network to extract low-dimensional embedding from high-

dimensional, noisy FIDs and use it in an accelerated PGD algorithm. More specifically, 

the network-constrained reconstruction can be formulated as

ρ = arg min
ρ ∈ D Z

∥ d − Ω FB ⊙ ρ ∥2
2 + λR ρ , (9)

where ρ ∈ D Z; θd  enforces the prior that the underlying signals should yield a low-

dimensional representation Z (residing on a low-dimensional manifold) and D ⋅ ; θd  is the 

decoder from the representation network C. The PGD update step can be realized via a 

projection operator Proj ⋅ : = D P ⋅ ; θp ; θd , where P ⋅  is a learned projector that recovers 

the latent representations from noisy FIDs and trained as follows:

θp = arg min
θp

1
J ∑

j = 1

J
ϵ1 E xj; θe , P xj; θp + λϵ2 xj, D P xj; θp ; θd (10)

where xj and xj are individual training FIDs and their noisy counterparts, respectively. A 

range of SNRs were considered to generate xj for training P ⋅ ; θp  parameterized by θp, ϵ1

and ϵ2 assess the “projection” errors for the low-dimensional features as well as the full 

signals, respectively, and λ balances the two losses. The encoder E ⋅  and decoder D(.)are 

from the representation network discussed above.The projector can be trained with different 

structures adapted to the data characteristics (single or multi-TE FIDs), and ϵ1 and ϵ2 can 

be chosen separately. It has been demonstrated that leveraging GPU acceleration RAIISE 

achieved similar or slightly better denoising performance for both single-TE and multi-TE 
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MRSI with dramatically improved computation time compared to directly minimizing 

C ρn − ρn 2
2 in the regularization formulation of Eq. (8) [38].

C. Integrating Learned Spatial and Spectral Priors

While the effectiveness of learned spectral priors incorporating both physics modeling and 

machine learning have been well documented, the investigations into learned spatial priors 

have been scarce. One of the major challenges is the difficulty in acquiring high-resolution, 

high-SNR MRS images as the “gold standard”, for either supervised training as commonly 

done in deep-learning-based MRI reconstruction or self-supervised representation learning. 

One solution is to simulate spatial distributions of spectra by combining anatomical images 

and metabolite concentrations and lineshapes from tissue/brain-regionspecific literature 

values and/or experimental data. For example, a dense U-Net trained completely by 

synthetic data was used to produce high-resolution metabolite maps from the low-resolution 

counterpart plus a T1w MRI [10]. The main issue, however, is that the synthetic spatial 

distributions of metabolites may not capture sufficient variations in real data, especially 

those related to different pathological conditions.

An alternative approach is to construct generic network-based image representations that 

do not require high-SNR, high-resolution data for supervised training of image mapping. 

Recently, efforts have been made to combine subspace constraint and generative network 

based image representation. The work in [39] used deep image prior (DIP) to model the 

spatial function U as U = f Z; θ , where f ⋅ ; θ  is a network with trainable parameters θ, the 

reconstruction in Eq. (7) is then changed to

θ = arg min
θ

∥ d − Ω FB ⊙ f Z; θ V ∥2
2 . (11)

With a chosen network architecture (e.g., U-net in [39]), the parameters θ are estimated 

from noisy data with Z being an anatomical image. This method assumes that the network 

can account for the contrast difference between the desired spatial coefficient maps and 

an MR image to leverage high-resolution anatomical prior information. However, DIP can 

overfit noise by allowing all the network parameters to be updated and anatomical image 

being the input, the network may introduce undesirable bias into the spatial reconstruction. 

Thus, choosing a proper early stopping criterion to balance the two factors may be 

challenging [40]. Another strategy is to leverage a generative network model pretrained 

using anatomical, multicontrast MRIs with sufficient representation power for images with 

different contrasts, and solve for the latent variable Z instead of network parameters θ during 

reconstruction. As Z is usually lower dimensional than the voxel-wise image representation, 

noise reduction is possible. For example, a GAN-regularized subspace reconstruction can be 

formulated as [41]

U, Z = arg min
U, Z

∥ d − Ω FB ⊙ UV ∥2
2 + λ ∥ U − f Z; θ ∥F

2 . (12)

where f Z; θ  is a pretrained GAN (e.g., using T1 and T2w images). This problem can 

be solved using alternating minimization and the step for updating Z is a GAN inversion 
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problem, which is an active research topic at the intersection of inverse problem and 

deep learning. While different GAN designs can be considered for f ⋅ ; θ , StyleGAN 

combined with intermediate layer optimization (ILO) has been shown to achieve the best 

inversion performance [42]. A more comprehensive review on this topic can be found 

in [43]. One important feature of these reconstruction methods is the integration of the 

physical spatiospectral encoding model and deep learning priors, in contrast to training an 

end-to-end network for direct mapping from data/noisy images to reconstructions. As a 

result, the pretrained model can work for any sampling pattern, sequence parameters, and 

different resolution and SNRs, without the need of retraining for each case. Meanwhile, 

the computation time required for the network parameter update or GAN inversion is one 

limitation/consideration.

V. Dynamic MRSI using learned models

Typical MRSI experiments produce spatially-resolved spectra that reflect a “steady-state” 

molecular profile, which may not be sufficient to capture the complex in vivo metabolic 

activities that are time varying in nature. To this end, dynamic MRSI, by introducing 

an additional time axis (world clock) and producing time-resolved spectra, offers the 

opportunity to noninvasively visualize metabolism in real time and thus significantly richer 

biological insights. For example, dynamic 31P-MRSI has been used to study depletion 

and resynthesis of phosphocreatine (PCr) during exercise-recovery or ischemiareperfusion 

to assess mitochondrial function in the muscle [44], [45]. Dynamic 13C - and 2H-MRSI, 

using isotope-enriched endogenous molecules, have become popular to map the imbalance 

between oxidative phosphorylation and glycolysis pathways in cancer applications [46], 

[47]. Figure 7 provides an illustration for such a high-dimensional imaging problem. As one 

would expect, introducing an additional temporal dimension to the already SNR-, speed- and 

resolution-limited modality further exacerbated these challenges. Therefore, existing studies 

have been limited by insufficient spatial and/or temporal resolutions, as a result, inaccurate 

characterization of heterogeneous metabolism. Low-dimensional models with learned priors 

offer a promising path to addressing these challenges, which we review in this section.

A. Low-Rank Tensor Models with Learned Subspaces

To tackle the increased dimensionality problem, the PS model in Eq. (6) can be generalized 

to represent new image functions of interest ρ r, t, T , with T  denoting the additional time 

dimension T = 1, 2, …, NT : [9],[49]

ρ r, t, T = ∑
m = 1

M
∑
l = 1

L
∑

s = 1

S
cm, l, sum r vl t gs T , (13)

where NT is the total number of time frame, gs T s = 1
S  denote the basis functions that 

span the space of temporal variations and cm, l, s m, l, s = 1
M, L, S  are the model coefficients. Eq. (13) 

implies a low-rank tensor structure (generalized from the low-rank matrices) that exploits 

the spatial-spectral-temporal correlations in dynamic MRSI data with cm, l, s  referred to 

as the core tensor [49], [50]. M, L and S are the respective model orders (typically 

much smaller than N and Q). Similarly as the spectral basis vl t  can be learned by 
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incorporating physics-based model, the temporal basis gs T  can be predetermined from 

temporal training data [9], leaving only um r  and cm, l, s  as the unknown in the imaging 

problem. Eq. (13) can be further adapted into a molecule-dependent tensor model [51]

ρ r, t, T = ∑
m = 1

M
sm r ∑

l = 1

Lm

∑
s = 1

Sm

cm, l, s r vm, l t gm, s T (14)

where M is the number of molecules of interest, Lm and Sm are the spectral and 

temporal model orders of the mth molecule, cm, l, s r  combines the core tensor coefficients 

and molecule-dependent spatial basis. This model offers up to two orders-of-magnitude 

reduction in the degrees of freedom (DOF) [51] compared to the canonical truncated 

Fourier series representation, thus significantly improved resolution and SNR tradeoffs. 

Furthermore, the model in Eq. (14) provides the flexibility to incorporate molecule-specific 

physics- and biochemistry-based priors [44]. The spectral basis can be obtained as 

described in section III.A and the temporal basis can be derived by exploiting existing 

physiological and metabolic knowledge. More specifically, the temporal variations of the 

spatially-resolved spectra are often results of metabolic process in living organs, which 

can be approximated by a set of parametric curves specified by some time constants [51], 

e.g., the exponential recovery of PCr after ischemia or exercise. The variable sm r  can be 

used to impose molecule-specific spatial support and distribution priors from high-resolution 

reference images available, further improving the performance (see [51] for more details). 

Accordingly, the dynamic MRSI reconstruction can be formulated as follows:

Cm = arg min
C

d − A sm ⊙ Cm ⊗ Vm ⊗ Gm 2
2 + λR Cm (15)

where A describes the forward model as discussed above (capturing field inhomogeneity 

effects and spatiospectral encoding process), Cm, Vm, Gm and sm are tensor forms of 

cm, l, s r , vm, l t , gm, s T  and sm r  respectively, where Cm ∈ CN × Lm × Sm, Vm ∈ CLm × Q′, 

Gm ∈ CSm × NT and sm ∈ CN × 1. ⊙ and ⊗ denote column-wise and tensor products. The 

algorithm in [51] first performed a series of reconstruction of time-dependent spatial 

coefficients (using per-estimated Vm), i.e., cm, l T , and then fit the temporal variations to 

biochemical models for each molecule to determine Gm. Finally, Eq. (15) was solved using 

estimated spectral and temporal basis. R Cm  imposes regularization to encourage spatial 

smoothness or sparsity.

Considering the unique properties of the dynamic spectroscopic signals, Eq. (14) can 

be reformulated by imposing strict separability between the spatial-spectral and spatial-

temporal variations [48], i.e.,

ρ r, t, T = ∑
m = 1

M
∑
l = 1

Lm

am, l r vm, l t ∑
s = 1

Sm

bm, s r gm, s T (16)

where am, l and bm, s are the new spatial coefficients for the spectral and temporal bases, 

respectively. With this model, the number of unknowns at each voxel is reduced from 
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∑m = 1
M Lm × Sm to ∑m = 1

M Lm + Sm . This does not necessarily increase modeling error for 

dynamic MRSI specifically, because it is accurate to assume all FID/frequency points 

corresponding to the same molecule should share the same dynamics at each voxel. Using 

matrix notations for am, l and bm, s, a similar regularized least-squares problem to Eq. (15) can 

be formulated.

B. Combining Low-Rank Tensor and Manifold Modeling

As in the “static” MRSI case, it is straightforward to incorporate nonlinear manifold 

constraints on spectral variations into the reconstruction problems in Eqs. (15) or (16). For 

example, the learned network can be used to regularize individual FID’s at every time point, 

i.e.,

Cm, ρ = arg min
C, ρ

∥ d − A ρ ∥2
2 + λ1 ∑

T = 1

NT

∑
n = 1

N
C ρn, T − ρn, T 2

2 + λ2R Cm ,

s . t . ρ = sm ⊙ Cm ⊗ Vm ⊗ Gm .
(17)

This formulation assumes that the desired FIDs at each voxel and each time point (i.e., ρn, T) 

reside on the same learned manifolds and can be solved using alternating minimization. 

Note that the ensemble temporal variations are still captured by the linear subspace model. 

To further exploit the prior information available along individual dimensions, the subspace 

model for temporal variations can be generalized to nonlinear manifolds as well. To this 

end, the separability representation in Eq. (16) offers additional flexibility to learn and 

incorporate low-dimensional manifold constraints on molecule-specific temporal dynamics. 

Specifically, a set of molecule-dependent DAEs, denoted as Gm ⋅ , were trained (using both 

synthetic and experimental dynamic data) and integrated into the following low-rank-tensor-

based reconstruction problem [48]:

Am, Bm = = arg min
A, B

d − A ρ 2
2 + λ1 ∑

T = 1

NT

∑
n = 1

N
C ρn, T − ρn, T 2

2

+ λ2 ∑
m = 1

M
Gm BmGm − BmGm F

2 , s . t . ρ = ∑
m = 1

M
AmVm ∘ BmGm .

(18)

where Am and Bm are matrix forms of am, l r  and bm, s r  with Am ∈ CN × Lm and 

Bm ∈ CN × Sm. ∘ denotes the operation defined in Eq. (16), and λ1 and λ2 are regularization 

parameters controlling the trade-off between data consistency and manifold (spectral and 

temporal) representation errors. Additional regularization terms on the spatial distribution of 

am, l and bm, s may also be included. The problem in Eq. (18) can be solved via alternating 

minimization of Am and Bm, which also involves backpropagation of the learned networks. 

Details of the exact algorithm can be found in [48]. While parallelizable, the reconstruction 

can be computationally demanding due to the need to invert multiple networks for signals 

at many time points. The formulation used in RAIISE described in Section IV.B may be 

helpful in addressing this issue. A set of denoising dynamic 2H-MRSI results is shown 

in Fig. 8 to illustrate the capability of the low-rank-tensor-model-based reconstruction 

using learned spectral and temporal subspaces. Comparisons of estimated metabolite maps, 
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spatially-resolved spectra and temporal dynamics from standard Fourier reconstruction, 

direct low-rank tensor truncation and learned-subspace-based methods were made.

C. The Motion Issue

The formulations discussed above do not fully consider motions (involuntary or voluntary) 

during the time window when the dynamic metabolic activities are monitored. This may be 

an issue when the imaging time is long (e.g., more than just a few minutes) and/or the organ 

of interest is more susceptible to motion. Prospective and retrospective motion tracking and 

correction may be used to mitigate its effects [22], [52]. Another possibility is to incorporate 

motion models into the T  dimension, which might lead to an increased model order and 

degradation in the accuracy of capturing metabolite dynamics. A new dimension can be 

introduced to represent different motion phases for motion-resolved dynamic MRSI using a 

higher-order tensor model [50].

VI. Spectral QuAntification using LeARNED Models

With the ability to reconstruct high-SNR, high-resolution spatiotemporal function from 

noisy data, a key remaining challenge is to extract and quantify individual molecular 

components from the spatially-resolved FIDs or MR spectra, referred to as the spectral 

quantification problem. An apparent choice is to use a parametric model similar to Eq. (5) 

and perform parameter estimation voxel by voxel, e.g., through a nonlinear least-squares 

(NLLS) fitting [53]:

cm, T 2, m
* , fm, β = ∑

q′ = 1

Q′
ρn, q′ − ∑

m = 1

M
cmϕm tq′ e−tq′/T2, m

* + i2πδfmtq′ℎ tq′; β
2

(19)

where ρn is the reconstructed FID at the nth voxel and ℎ tq′; β  is a molecule-independent 

modulation function to account for additional spectral distortion, e.g., due to residual 

intravoxel B0 inhomogeneity and eddy current effects etc. A Gaussian lineshape function 

is often used for ℎ t . Commonly used NLLS solvers such as quasi-Newton methods or 

variable projection (VARPRO) [53] can be used to solve Eq. (19), but the problem is highly 

nonlinear, sensitive to noise and model mismatch. It can be time-consuming to solve these 

voxel-wise nonlinear least-squares for high-resolution acquisitions and computationally 

expensive to incorporate spatial constraints. Learning-based methods have been recently 

proposed to address these challenges.

Following a similar motivation from Eq. (5) for constructing the subspace model, a union-

of-subspaces (UoSS) approach was described for spectral quantification [12]. Specifically, 

the FID signals corresponding to individual molecular components can be assumed to reside 

on their own subspaces spanned by vlm t , i.e.,

ρ r, t = ∑
m = 1

M
∑

lm = 1

Lm

ulm r vlm t . (20)
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The basis vlm t  (Vm in matrix form) can be learned using the strategy described in Section 

III with ensemble molecule-specific FIDs, either synthesized or obtained from an initial 

NLLS estimation of the spectral parameters from the reconstruction ρ r, t . Quantification 

can then be done by solving a UoSS fitting

Um = arg min
Um

ρ − ∑
m = 1

M
UmVm

2

2

+ ∑
m = 1

M
λmRm Um , (21)

where Um are molecule-specific spatial coefficients that can be converted into concentration 

values (see [12] for more details). This formulation offers stronger robustness against model 

mismatch owing to the representation power of the subspace model at individual voxels, 

less sensitivity to noise by transforming the nonlinear fitting into low-dimensional linear 

problems. It also allows for easier incorporation of spatial priors on individual components 

through Rm ⋅ . Extension of this UoSS approach to “local” subspaces has also been recently 

explored [54]. This method was motivated by the linear tangent space concept in smooth 

manifold recovery which allows a further reduction in the degrees-of-freedom in Um.

Going beyond subspace models, deep convolutional networks (CNNs) have been used to 

learn a nonlinear mapping from noisy FIDs/spectra to spectral parameters [13], [55] or 

clean, lineshape corrected metabolite only spectra [14], [24] for simplified quantification. 

A self-supervised training strategy was proposed in [13] where a CNN-based regressor 

C ⋅ ; θ  (θ the network parameters) was concatenated with a physics-based parametric model 

f t; α  to resynthesize spectra from the parameters produced by the CNN. Errors between 

this resynthesized and original spectra were minimized, which can be formulated as the 

following optimization problem

θ = arg min
θ

ρ − f t; C ρ; θ 2
2, (22)

where the spectral parameters α were replaced by the CNN output. This strategy does not 

require ground truth values for training which are difficult to obtain from practical, in 

vivo MRS/MRSI data. Processing time reduction was emphasized rather than estimation 

accuracy compared to standard voxel-wise fitting method. Generalizability may be an issue 

if there are spectral distortion and contamination not captured by the training data. Since a 

parametric model is still used to resynthesize the final fits, parameter estimation accuracy 

still needs to be carefully investigated in the presence of model mismatch. Instead of training 

a network that directly maps noisy data to spectral parameters, [24] proposed to learn a 

CNN that is able to extract metabolite-only, lineshape corrected spectra from noisy data with 

macromolecule (MM) and baseline “contaminations” and lineshape distortion. Estimating of 

metabolite concentrations from the corrected metabolite-only spectra can then be easily done 

using a linear least-squares fit to metabolite basis. All these methods are voxel wise thus 

difficult to incorporate spatial constraints. The learned mapping can be sensitive to changes 

in acquisition parameters, such as spectral bandwidth, resolution and SNR etc.
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VII. Future Directions

Recent advances in computational MRSI using physics-based machine learning have 

demonstrated good potential for addressing high-dimensional MRSI reconstruction and 

quantification problems, achieving impressive performance in the combination of speed, 

resolution, SNR and robustness to system imperfection and practical experimental 

conditions. These “software” advances are highly synergistic with the on-going “hardware”/

instrumentation developments, e.g., higher field systems, better field inhomogeneity 

monitoring and shimming devices, and more sensitive coils. We expect to see that 

synergistic developments in advanced data acquisition and processing will significantly 

enhance the capability and clinical utility of next generation MRSI technologies.

One area that will see more innovations is MRSI data processing using deep learning 

networks trained using high-resolution images. Currently, the lack of high-quality 

MRSI training data makes supervised training, commonly used in learning-based image 

reconstruction, not directly applicable. One potential direction is to construct an MRSI 

atlas from highly dedicated experimental data (with many averages followed by artifact 

correction and registration), to which statistical variations in concentrations, linewidths 

and other spectral parameters as well as geometry may be introduced for synthetic MRSI 

data generation as was done in [10], [48] but with more realistic variations. Another 

potential direction of pursuit is developing learning strategies that do not require companion 

high-SNR/”clean” data. Unsupervised and self-supervised learning strategies have gained 

attraction for image denoising and reconstruction applications [56]–[59]. These formulations 

may offer some inspiration for learning and using models with only noisy MRSI data. As 

water spectroscopic images are often acquired in an MRSI scan, e.g., through a separate or 

simultaneous nonwater-suppressed acquisition [21], [22], approaches to leverage these high-

dimensional, multicontrast water images beyond just extracting B0 and B1 maps to introduce 

effective spatial constraints should be of great interest. The generative-model-based methods 

discussed in Section IV.C represent some initial attempts while more work can be done.

While the topics related to spatial-spectral-temporal reconstruction have been the main 

emphasis in this review, we note that spectral quantification as a critical step towards 

quantitative MRSI for clinical and basic science applications remains under-investigated. A 

number of sophisticated parametric models have been presented, mostly for single-voxel 

spectroscopy, but they often yield significant voxel-to-voxel estimation variations and are 

computationally demanding for high-resolution data. The notion of voxelby-voxel fitting 

should continue to be challenged, by new ways to integrate spatial constraints with deep-

learning-based solutions. In dynamic or multidimensional MRSI scenarios, quantification 

is usually done for individual points along time or other additional dimensions (e.g., 

different TEs). Novel methods for joint quantification, e.g., models and algorithms that 

simultaneously fit the time-resolved spectra in dynamic MRSI (with reduced number of 

parameters), should be developed with potential significant practical impact.

We have focused this review on MRSI, but the methodologies discussed here are also 

adaptable to other high-dimensional spatiospectral imaging problems, where physics-based 

models and/or simulations can be used to describe the signal changes from which 
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low-dimensional representations of the intrinsic variations may be learned. Authors in 

[60] proposed to use a fully-connected feedforward network trained using simulated 

data to perform voxel-wise quantification of PCr concentration, exchange rate and other 

system-related parameters from Z-spectra data generated by chemical exchange saturation 

transfer (CEST) imaging. The learning-based method demonstrated advantages in both 

performance and computational cost. Applications of physics-based machine learning to 

other quantitative MRI problems have also been explored (see other reviews in this 

issue). Similar strategies may also be extended to other spatiospectral imaging modalities 

besides MR, e.g., mass spectrometry imaging [61]. Beyond addressing the reconstruction 

and quantitative analysis problems within a single modality, we also expect to see more 

progresses in connecting and fusing imaging information from different modalities across 

spatiotemporal scales by integrating physics-based modeling and data-driven learning.

Acknowledgments

This work was supported in part by NSF, grant number: NSF-CBET 1944249 and NIH, grant number 
1R35GM142969-01. The authors thank Yahang Li and Yudu Li for their help on the figures.

References

[1]. Lauterbur PC, Kramer DM, House WV, and Chen C-N, “Zeugmatographic high resolution nuclear 
magnetic resonance spectroscopy: Images of chemical inhomogeneity within macroscopic 
objects,” J. Amer. Chem. Soc, vol. 97, pp. 6866–6868, 1975.

[2]. Brown TR, Kincaid BM, and Ugurbil K, “NMR chemical shift imaging in three dimensions,” 
Proc. Natl. Acad. Sci, vol. 79, pp. 3523–3526, 1982. [PubMed: 6954498] 

[3]. Ross B and Michaelis T, “Clinical applications of magnetic resonance spectroscopy.” Magn. 
Reson. Q, vol. 10, no. 4, pp. 191–247, 1994. [PubMed: 7873353] 

[4]. de Graaf RA, In Vivo NMR Spectroscopy: Principles and Techniques. Hoboken, NJ: John Wiley & 
Sons, 2018.

[5]. Li Y, Wang T, Zhang T, Lin Z, Li Y, Guo R, Zhao Y, Meng Z, Liu J, Yu X, Liang Z-P, and 
Nachev P, “Fast high-resolution metabolic imaging of acute stroke with 3D magnetic resonance 
spectroscopy,” Brain, vol. 143, pp. 3225–3233, 2020. [PubMed: 33141145] 

[6]. Bogner W, Otazo R, and Henning A, “Accelerated MR spectroscopic imaging—a review of 
current and emerging techniques,” NMR Biomed, vol. 34, no. 5, p. e4314, 2021. [PubMed: 
32399974] 

[7]. Liang Z-P, “Spatiotemporal imaging with partially separable functions,” in Proc IEEE Int. Symp. 
Biomed. Imag, Arlington, VA, USA, 2007, pp. 988–991.

[8]. Lam F, Li Y, Guo R, Clifford B, and Liang Z-P, “Ultrafast magnetic resonance spectroscopic 
imaging using SPICE with learned subspaces,” Magn Reson Med, vol. 83, pp. 377–390, 2020. 
[PubMed: 31483526] 

[9]. Ma C, Clifford B, Liu Y, Gu Y, Lam F, Yu X, and Liang Z-P, “High-resolution dynamic 31P-MRSI 
using a low-rank tensor model,” Mag. Reson. Med, vol. 78, pp. 419–428, 2017.

[10]. Iqbal Z, Nguyen D, Hangel G, Motyka S, Bogner W, and Jiang S, “Super-resolution 1H magnetic 
resonance spectroscopic imaging utilizing deep learning,” Frontiers in Oncology, vol. 9, 2019.

[11]. Qu X, Huang Y, Lu H, Qiu T, Guo D, Agback T, Orekhov V, and Chen Z, “Accelerated nuclear 
magnetic resonance spectroscopy with deep learning,” Angew. Chem. Int. Ed, vol. 59, no. 26, pp. 
10297–10300, 2020.

[12]. Li Y, Lam F, Clifford B, and Liang Z, “A subspace approach to spectral auantification for 
MR spectroscopic imaging,” IEEE Trans Biomed Eng, vol. 64, pp. 2486–2489, 2017. [PubMed: 
28829303] 

Lam et al. Page 17

IEEE Signal Process Mag. Author manuscript; available in PMC 2023 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[13]. Gurbani SS, Sheriff S, Maudsley AA, Shim H, and Cooper LA, “Incorporation of a spectral 
model in a convolutional neural network for accelerated spectral fitting,” Magn Reson Med, vol. 
81, no. 5, pp. 3346–3357, 2019. [PubMed: 30666698] 

[14]. Lee H and Kim H, “Bayesian deep learning-based 1h-mrs of the brain: Metabolite quantification 
with uncertainty estimation using monte carlo dropout,” in Proc Intl Soc Mag Reson Med, 2021, 
p. 2014.

[15]. Liang Z-P and Lauterbur PC, Principles of Magnetic Resonance Imaging: A Signal Processing 
Perspective. New York: IEEE Press, 2000.

[16]. Barkhuysen H, de Beer R, and van Ormondt D, “Improved algorithm for noniterative time-
domain model fitting to exponentially damped magnetic resonance signals,” J. Magn. Reson, vol. 
73, pp. 553–557, 1987.

[17]. Lam F and Liang Z-P, “A subspace approach to high-resolution spectroscopic imaging,” Magn 
Reson Med, vol. 71, pp. 1349–1357,2014. [PubMed: 24496655] 

[18]. Nguyen HM, Peng X, Do MN, and Liang Z-P, “Denoising MR spectroscopic imaging data 
with low-rank approximations,” IEEE Trans. Biomed. Eng, vol. 60, pp. 78–89, 2013. [PubMed: 
23070291] 

[19]. Kasten J, Klauser A, Lazeyras F, and Van De Ville D, “Magnetic resonance spectroscopic 
imaging at superresolution: Overview and perspectives,” J. Magn. Reson, vol. 263, pp. 193–208, 
2016. [PubMed: 26766215] 

[20]. Lam F, Ma C, Clifford B, Johnson CL, and Liang Z-P, “High-resolution 1H-MRSI of the brain 
using SPICE: Data acquisition and image reconstruction,” Magn Reson Med, vol. 76, pp. 1059–
1070, 2016. [PubMed: 26509928] 

[21]. Peng X, Lam F, Li Y, Clifford B, and Liang Z-P, “Simultaneous QSM and metabolic imaging of 
the brain using SPICE,” Magn Reson Med, vol. 79, pp. 13–21, 2018. [PubMed: 29067730] 

[22]. Guo R, Zhao Y, Li Y, Wang T, Li Y, Sutton B, and Liang Z-P, “Simultaneous QSM and metabolic 
imaging of the brain using SPICE: Further improvements in data acquisition and processing,” 
Magn. Reson. Med, vol. 85, no. 2, pp. 970–977, 2021. [PubMed: 32810319] 

[23]. Parsons L, Haque E, and Liu H, “Subspace clustering for high dimensional data: A review,” 
SIGKDD Explor. Newsl, vol. 6, no. 1, p. 90–105, 2004.

[24]. Lee HH and Kim H, “Intact metabolite spectrum mining by deep learning in proton magnetic 
resonance spectroscopy of the brain,” Magn Reson Med, vol. 82, no. 1, pp. 33–48, 2019. 
[PubMed: 30860291] 

[25]. Li Y, Wang Z, Sun R, and Lam F, “Separation of metabolites and macromolecules for short-te 
1H-MRSI using learned component-specific representations,” IEEE Trans Med Imaging, vol. 40, 
pp. 1157–1167, 2021. [PubMed: 33395390] 

[26]. Lam F, Li Y, and Peng X, “Constrained magnetic resonance spectroscopic imaging by learning 
nonlinear low-dimensional models,” IEEE Trans Med Imaging, vol. 39, pp. 545–555, 2020. 
[PubMed: 31352337] 

[27]. Tiwari P, Rosen M, and Madabhushi A, “Consensus-locally linear embedding (C-LLE): 
Application to prostate cancer detection on magnetic resonance spectroscopy,” in MICCAI 2008. 
Springer Berlin Heidelberg, 2008, pp. 330–338.

[28]. Yang G, Raschke F, Barrick TR, and Howe FA, “Manifold learning in MR spectroscopy using 
nonlinear dimensionality reduction and unsupervised clustering,” Magn. Reson. Med, vol. 74, no. 
3, pp. 868–878, 2015. [PubMed: 25199640] 

[29]. Li Y, Wang Z, and Lam F, “SNR enhancement for multi-TE MRSI using joint low-dimensional 
model and spatial constraints,” IEEE Trans. Biomed. Eng, 2022, in Press.

[30]. Klauser A, Courvoisier S, Kasten J, Kocher M, Guerquin-Kern M, Van De Ville D, and Lazeyras 
F, “Fast high-resolution brain metabolite mapping on a clinical 3T MRI by accelerated 1H-FID-
MRSI and low-rank constrained reconstruction,” Magn. Reson. Med, 2018, 10.1002/mrm.27623.

[31]. Chen Y, Li Y, and Xu Z, “Improved low-rank filtering of mr spectroscopic imaging data with 
pre-learnt subspace and spatial constraints,” IEEE Transactions on Biomedical Engineering, vol. 
67, pp. 2381–2388, 2020. [PubMed: 31870975] 

Lam et al. Page 18

IEEE Signal Process Mag. Author manuscript; available in PMC 2023 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[32]. Lingala SG, Hu Y, DiBella E, and Jacob M, “Accelerated dynamic MRI exploiting sparsity and 
low-rank structure: k-t SLR,” IEEE Trans. Med. Imaging, vol. 30, no. 5, pp. 1042–1054, 2011. 
[PubMed: 21292593] 

[33]. Trzasko JD, “Exploiting local low-rank structure in higher-dimensional MRI applications,” 
in Wavelets and Sparsity XV, Ville DVD, Goyal VK, and Papadakis M, Eds., vol. 8858, 
International Society for Optics and Photonics. SPIE, 2013, pp. 551–558.

[34]. Zhang T, Pauly JM, and Levesque IR, “Accelerating parameter mapping with a locally low rank 
constraint,” Magn. Reson. Med, vol. 73, no. 2, pp. 655–661, 2015. [PubMed: 24500817] 

[35]. “Using a local low rank plus sparse reconstruction to accelerate dynamic hyperpolarized 13C 
imaging using the bSSFP sequence,” J. Magn. Reson, vol. 290, pp. 46–59, 2018. [PubMed: 
29567434] 

[36]. Haldar JP, “Low-rank modeling of local k-space neighborhoods (LORAKS) for constrained 
MRI,” IEEE Trans. Med. Imaging, vol. 33, no. 3, pp. 668–681, 2014. [PubMed: 24595341] 

[37]. Vizioli L, Moeller S, Dowdle L, Akccakaya M, De Martino F, Yacoub E, and Uugurbil K, 
“Lowering the thermal noise barrier in functional brain mapping with magnetic resonance 
imaging,” Nat. Commun, vol. 12, no. 1, p. 5181, 2021. [PubMed: 34462435] 

[38]. Li Y, Ruhm L, Henning A, and Lam F, “LeaRning nonlineAr representatIon and projectIon for 
faSt constrained MRSI rEconstruction (RAIISE),” in Proc Intl Soc Mag Reson Med, 2022, p. 
TBD.

[39]. Gong K, Han PK, Marin T, Fakhri GE, Li Q, and Ma C, “High resolution MR spectroscopic 
imaging using deep image prior constrained subspace modeling,” in Proc Intl Soc Mag Reson 
Med, 2020, p. 388.

[40]. Ulyanov D, Vedaldi A, and Lempitsky VS, “Deep image prior,” 2018 IEEE/CVF CVPR, pp. 
9446–9454, 2018.

[41]. Zhao R, Wang Z, and Lam F, “Generative image prior constrained subspace reconstruction for 
high-resolution mrsi,” in Proc Intl Soc Mag Reson Med, 2022, p. TBD.

[42]. Daras G, Dean J, Jalal A, and Dimakis A, “Intermediate layer optimization for inverse problems 
using deep generative models,” in Proceedings of the 38th International Conference on Machine 
Learning, vol. 139, 2021, pp. 2421–2432.

[43]. Xia W, Zhang Y, Yang Y, Xue J-H, Zhou B, and Yang M-H, “GAN inversion: A survey,” arXiv, 
2021,2101.05278..

[44]. Liu Y, Gu Y, and Yu X, “Assessing tissue metabolism by phosphorous-31 magnetic resonance 
spectroscopy and imaging: a methodology review,” Quant Imaging Med Surg, vol. 7, pp. 707–
726, 2017. [PubMed: 29312876] 

[45]. Santos-Diaz A and Noseworthy MD, “Phosphorus magnetic resonance spectroscopy and 
imaging(31p-mrs/mrsi) as a window to brain and muscle metabolism: A review of the methods,” 
Biomedical Signal Processing and Control, vol. 60, 2020.

[46]. Brender JR, Kishimoto S1, Merkle H, Reed G, Hurd RE, Chen AP, Ardenkjaer-Larsen 
JH, Munasinghe J, Saito K, Seki T, Oshima N, Yamamoto K, Choyke PL, Mitchell J, 
and Krishna MC, “Dynamic imaging of glucose and lactate metabolism by 13c-mrs without 
hyperpolarization,” Scientific Reports, vol. 9, 2019.

[47]. Feyter HMD, Behar KL, Corbin ZA, Fulbright RK, Brown PB, McIntyre S, Nixon TW, Rothman 
DL, and de Graaf RA, “Deuterium metabolic imaging (dmi) for mri-based 3d mapping of 
metabolism in vivo,” Scientific Reports, vol. 4, 2018.

[48]. Li Y, Zhao Y, Guo R, Wang T, Zhang Y, Chrostek M, Low WC, Zhu X-H, Liang Z-P, and Chen 
W, “Machine learning-enabled high-resolution dynamic deuterium MR spectroscopic imaging,” 
IEEE Trans. Med. Imaging, vol. 40, pp. 3879–3890, 2021. [PubMed: 34319872] 

[49]. He J, Liu Q, Christodoulou AG, Ma C, Lam F, and Liang Z, “Accelerated high-dimensional MR 
imaging with sparse sampling using low-rank tensors,” IEEE Trans Med Imaging, vol. 35, pp. 
2119–2129, 2016. [PubMed: 27093543] 

[50]. Christodoulou AG, Shaw JL, Nguyen C, Yang Q, Xie Y, Wang N, and Li D, “Magnetic resonance 
multitasking for motion-resolved quantitative cardiovascular imaging,” Nat. Biomed. Eng, vol. 2, 
pp. 215–226, 2018. [PubMed: 30237910] 

Lam et al. Page 19

IEEE Signal Process Mag. Author manuscript; available in PMC 2023 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[51]. Clifford B, Gu Y, Liu Y, Kim K, Huang S, Li Y, Lam F, Liang Z-P, and Yu X, “High-
resolution dynamic 31P-MR spectroscopic imaging for mapping mitochondrial function,” IEEE 
Transactions on Biomedical Engineering, vol. 67, pp. 2745–2753, 2020. [PubMed: 32011244] 

[52]. Bogner W, Hess AT, Gagoski B, Tisdall MD, van der Kouwe AJ, Trattnig S, Rosen B, and 
Andronesi OC, “Real-time motion- and B0-correction for LASER-localized spiral-accelerated 
3D-MRSI of the brain at 3T,” NeuroImage, vol. 88, pp. 22–31, 2014. [PubMed: 24201013] 

[53]. Vanhamme L, van den Boogaart A, and Van Huffel S, “Improved method for accurate and 
efficient quantification of MRS data with use of prior knowledge,” J. Magn. Reson, vol. 129, no. 
1, pp. 35–43, 1997. [PubMed: 9405214] 

[54]. Ma C and Fakhri GE, “MRSI spectral quantification using linear tangent space alignment 
(LTSA)-based manifold learning,” in Proc Intl Soc Mag Reson Med, 2022, p. 243.

[55]. Turco F, Zubak I, and Slotboom J, “Deep learning based mrs metabolite quantification: Cnn and 
resnet versus non linear least square fitting,” in Proc Intl Soc Mag Reson Med, 2021, p. 2018.

[56]. “Noise2noise: Learning image restoration without clean data,” in 35th International Conference 
on Machine Learning, ICML 2018, ser. Proceedings of Machine Learning Research, vol. 7, 2018, 
pp. 4620–4631.

[57]. Yaman B, Hosseini SAH, Moeller S, Ellermann J, Uugurbil K, and Akccakaya M, “Self-
supervised learning of physics-guided reconstruction neural networks without fully sampled 
reference data,” Magnetic Resonance in Medicine, vol. 84, no. 6, pp. 3172–3191,2020. [PubMed: 
32614100] 

[58]. Liu J, Sun Y, Eldeniz C, Gan W, An H, and Kamilov US, “RARE: Image reconstruction using 
deep priors learned without groundtruth,” IEEE J. Sel. Top. Signal Process, vol. 14, no. 6, pp. 
1088–1099, 2020.

[59]. Akcakaya M, Yaman B, Chung H, and Ye JC, “Unsupervised deep learning methods for 
biological image reconstruction and enhancement: An overview from a signal processing 
perspective,” IEEE Signal Process. Mag, vol. 39, no. 2, pp. 28–44, 2022. [PubMed: 36186087] 

[60]. Chen L, Schar M, Chan KWY, Huang J, Wei Z, Lu H, Qin Q, Weiss RG, van Zijl PCM, and Xu 
J, “In vivo imaging of phosphocreatine with artificial neural networks,” Nat. Comm, vol. 11, p. 
1072, 2020.

[61]. Spengler B, “Mass spectrometry imaging of biomolecular information,” Anal. Chem, vol. 87, pp. 
64–82, 2015. [PubMed: 25490190] 

Lam et al. Page 20

IEEE Signal Process Mag. Author manuscript; available in PMC 2023 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Illustration of chemical shift and the resulting frequency distribution: (a) the electron 

orbiting around the nucleus (denoted by the arrow on the circle) can be viewed as a small 

current, which generates a magnetic moment μe that opposes the main magnetic field B0, thus 

perturbing the magnetic field felt “locally” by the nucleus and generating a small frequency 

shift; (b) resonance structure of the molecule NAA (from quantum mechanical simulation) 

as a result of the chemical shift phenomenon.
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Fig. 2. 
Illustration of the imaging problem with MRSI: The desired high-dimensional spatiospectral 

function is in x, f  domain where we aim to recover high-resolution spectra at each voxel 

(left). Data are acquired in k, t -space where FIDs are sampled for individual k-space 

locations (right). This imaging problem is inherently higher dimensional than conventional 

MRI where only k-space is sampled. Furthermore, the signals from molecules of interest 

(e.g., NAA, Cr, and Cho etc) are three orders of magnitude weaker than water (plots on top 

of the middle column), making the problem more challenging.
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Fig. 3. 
Linear v.s. nonlinear low-dimensional models of spectroscopic signals: (Left) 

Approximation of glutamate spectra using subspaces learned from an ensemble of simulated 

data. The accuracy reduces as the ranges for the spectral parameters used to generate the 

training and testing data increase (from top to bottom rows); (Right) Approximation by the 

nonlinear model learned from the same data, with the same model order of 3. The color 

coding is specified in the figure legend.
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Fig. 4. 
Physical-model-driven data generation and low-dimensional representation learning for 

MRSI data. Both QM-simulated resonance structures of individual molecules (metabolite 

basis, top of left column) and spectral parameters sampled from empirical distributions 

(from literature values or experimental data, bottom of left column) are fed into a spectral 

fitting model to generate a large quantity of training data (X). These data can be either 

formed into a Casorati matrix from which a set of basis can be estimated (upper branch, 

linear subspace model) or used to train a DAE to capture a nonlinear low-dimensional 

manifold where high-dimensional spectroscopic signals reside.
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Fig. 5. 
Reconstructions (simulated data) with and without using a pre-learned subspace. The first 

column shows metabolite maps (Cr) from different cases (rows 1–4: gold standard, Fourier 

reconstruction, low-rank filtering and reconstruction using a learned subspace), and the 

subsequent columns show localized spectra from two voxels. Direct low-rank filtering 

(jointly estimating the spatial coefficients and subspace) produced significantly larger errors 

(black curves) than learned subspace, especially in small features with a distinct spectral 

pattern (green dot). Relative ℓ2 errors were included (err) for quantitative comparison.
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Fig. 6. 
A set of in vivo results from reconstructions using learned subspace (Linear subspace) 

and nonlinear models (Nonlinear manifold). The latter produced metabolite maps with less 

noise contamination and better recovered tissue-dependent features (as indicated by the red 

arrows), as well as spectra with sharper lineshapes (third column, blue arrows). A more 

thorough quantitative analysis without a gold standard can be found in [29].
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Fig. 7. 
The dynamic MRSI problem (dynamic 2H-MRSI of a rat brain in this case): The center cube 

illustrates the high-dimensional image function of interest. Orange lines taken from different 

frequencies f  and a single time point T  yield various metabolite maps (top left, spatial 

dimension); the blue plane represents time-resolved spectra (top right, spectral-temporal 

dimensions) at a single voxel (r); lines from different f ‘s and a single r capture metabolic 

dynamics (bottom right). The low-rank-tensor-based reconstruction with learned manifold 

constraints produced an impressive combination of speed, resolution and SNR [48], i.e., 

1.8min frame rate at a resolution of 17 × 17 × 5 matrix size over 28 × 28 × 24mm3 FOV.
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Fig. 8. 
A set of dynamic 2H-MRSI results from a rat brain by the standard Fourier reconstruction 

(Fourier), a direct low-rank tensor filtering of the noisy data (Tensor), a tensor reconstruction 

with learned subspaces (Subspace), and joint subspace model and manifold regularization 

(Subspace+Manifold) [48]. For each method, maps of three metabolites (columns 1–3), 

localized spectra at a particular time point (4th column) and temporal dynamics for the same 

voxel (5th column) are shown. The learned subspace methods produced improved metabolite 

maps, and lower errors for the spectra and temporal dynamics. Manifold regularization 

further improved the temporal fidelity. Both the Tensor and Subspace methods used the same 

model order (Lm = 6 and Sm = 30). Colors for different curves are noted in the plot.
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