
Application Experiences on a GPU-Accelerated Arm-based HPC
Testbed

WAEL ELWASIF,
Oak Ridge National Laboratory, USA

WILLIAM GODOY,
Oak Ridge National Laboratory, USA

NICK HAGERTY,
Oak Ridge National Laboratory, USA

J. AUSTIN HARRIS,
Oak Ridge National Laboratory, USA

OSCAR HERNANDEZ,
Oak Ridge National Laboratory, USA

BALINT JOO,
Oak Ridge National Laboratory, USA

PAUL KENT,
Oak Ridge National Laboratory, USA

DAMIEN LEBRUN-GRANDIÉ,
Oak Ridge National Laboratory, USA

ELIJAH MACCARTHY,
Oak Ridge National Laboratory, USA

VERÓNICA G. MELESSE VER-GARA,
Oak Ridge National Laboratory, USA

BRONSON MESSER,

ACM Reference Format:
Wael Elwasif, William Godoy, Nick Hagerty, J. Austin Harris, Oscar Hernandez, Balint Joo, Paul Kent, Damien Lebrun-Grandié,
Elijah MacCarthy, Verónica G. Melesse Vergara, Bronson Messer, Ross Miller, Sarp Oral, Sergei Bastrakov, Michael Bussmann,
Alexander Debus, Klaus Steiniger, Jan Stephan, René Widera, Spencer H. Bryngelson, Henry Le Berre, Anand Radhakrishnan, Jeffrey
Young, Sunita Chandrasekaran, Florina Ciorba, Osman Simsek, Kate

Notice: This manuscript has been authored in part by UT-Battelle, LLC under Contract No. DE-AC05–00OR22725 with the U.S.
Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy
will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://
energy.gov/downloads/doe-publicaccess-plan).

Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the United States government. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

HHS Public Access
Author manuscript
Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023).
Author manuscript; available in PMC 2024 February 27.

Published in final edited form as:
Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). 2023 February ;
2023: 35–49. doi:10.1145/3581576.3581621.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://energy.gov/downloads/doe-publicaccess-plan
http://energy.gov/downloads/doe-publicaccess-plan

Oak Ridge National Laboratory, USA

ROSS MILLER,
Oak Ridge National Laboratory, USA

SARP ORAL,
Oak Ridge National Laboratory, USA

SERGEI BASTRAKOV,
Helmholtz-Zentrum Dresden-Rossendorf, Germany

MICHAEL BUSSMANN,
Helmholtz-Zentrum Dresden-Rossendorf, Germany

ALEXANDER DEBUS,
Helmholtz-Zentrum Dresden-Rossendorf, Germany

KLAUS STEINIGER,
Helmholtz-Zentrum Dresden-Rossendorf, Germany

JAN STEPHAN,
Helmholtz-Zentrum Dresden-Rossendorf, Germany

RENÉ WIDERA,
Helmholtz-Zentrum Dresden-Rossendorf, Germany

SPENCER H. BRYNGELSON,
Georgia Institute of Technology, US

HENRY LE BERRE,
Georgia Institute of Technology, US

ANAND RADHAKRISHNAN,
Georgia Institute of Technology, US

JEFFREY YOUNG,
Georgia Institute of Technology, US

SUNITA CHANDRASEKARAN,
University of Delaware, US

FLORINA CIORBA,
University of Basel, Switzerland

OSMAN SIMSEK,
University of Basel, Switzerland

KATE CLARK,
NVIDIA Corporation, USA

FILIPPO SPIGA,
NVIDIA Corporation, USA

JEFF HAMMOND,

ELWASIF et al. Page 2

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

NVIDIA Corporation, USA

JOHN E. STONE,
NVIDIA Corporation, USA

DAVID HARDY,
University of Illinois at Urbana-Champaign, USA

SEBASTIAN KELLER,
Swiss National Supercomputing Center, Switzerland

JEAN-GUILLAUME PICCINALI,
Swiss National Supercomputing Center, Switzerland

CHRISTIAN TROTT
Sandia National Laboratories, USA

Abstract

This paper assesses and reports the experience of ten teams working to port, validate, and

benchmark several High Performance Computing applications on a novel GPU-accelerated Arm

testbed system. The testbed consists of eight NVIDIA Arm HPC Developer Kit systems, each one

equipped with a server-class Arm CPU from Ampere Computing and two data center GPUs from

NVIDIA Corp. The systems are connected together using InfiniBand interconnect. The selected

applications and mini-apps are written using several programming languages and use multiple

accelerator-based programming models for GPUs such as CUDA, OpenACC, and OpenMP

offloading. Working on application porting requires a robust and easy-to-access programming

environment, including a variety of compilers and optimized scientific libraries. The goal of

this work is to evaluate platform readiness and assess the effort required from developers to

deploy well-established scientific workloads on current and future generation Arm-based GPU-

accelerated HPC systems. The reported case studies demonstrate that the current level of maturity

and diversity of software and tools is already adequate for large-scale production deployments.

1 INTRODUCTION

Deploying new supercomputers requires continuous evaluation of novel platforms and

understanding of the trade-offs in porting existing applications to different architectures.

With many of the HPC technology players building general-purpose or specialized

accelerators, it is increasingly important to have a concrete understanding of the level of

human-time investment required to make applications production-ready on any of these

accelerated platforms, as well as the expected performance benefits to be gained with such

effort.

Since the introduction of Arm Neoverse IP by Arm Ltd, we have witnessed a steady

adoption and an increasing number of CPU products based on the Arm Instruction Set

Architecture (ISA). Noticeable deployments include Sandia Astra (first petascale-class

system deployed in 2018) and the RIKEN R-CCS Fugaku (first exascale-class system

ELWASIF et al. Page 3

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

deployed in 2020). Fugaku, based on Fujitsu’s A64FX Armbased CPU1 was also the first

systems with a SIMD-capable CPU via the Arm Scalable Vector Extension (SVE) [30].

Looking at cloud deployments, the Graviton processor2 provides a significant portion of

computational resources provisioned by Amazon Web Services. Now in its 3rd generation,

the Graviton CPU is based on Arm Neoverse V1 core IP and supports Arm SVE SIMD

instructions. AWS is not the only hyperscaler interested in deploying Arm CPUs; others, like

Microsoft and Oracle, have started to offer Arm-based instances primarily based on Ampere

Computing Altra and Altra Max CPUs.

In the very early days of the Arm journey into HPC, Arm systems were often custom-built

and of limited scale (tens of nodes). The Mont–Blanc [27] project and the UK Catalyst

initiative have paved the way to more robust and accessible systems, no longer experimental

testbeds. In recent years hybrid CPU–GPU systems are becoming the dominant choice for

large-scale leadership-class facilities (above ~100 PFlops) due to their performance and

power efficiency. As we advance, platforms combining a modern Arm-based CPU with

an energy-efficient high-performance GPU appear to be a natural choice to tackle future

computing and computational challenges.

In collaboration with NVIDIA, Oak Ridge National Laboratory pioneered the combined use

of Arm CPU and NVIDIA GPU in 2019. The NVIDIA Arm HPC Developer Kit3 represents

a modern Arm-based GPU-accelerated platform. The upcoming NVIDIA Grace Hopper

Superchip4 marks a step further in the platform design where CPU and GPU are tightly

integrated into a “superchip” with enhanced I/O capabilities.

In this fast-paced evolving landscape of accelerators and heterogeneous systems, assessing

as early as possible the viability of any technology and its impact on software maturity, code

portability, and developer productivity remains a must. This paper presents an application-

focused assessment of a multi-node NVIDIA Arm HPC Developer Kit test bed used

primarily to validate software and ecosystem readiness. These systems are part of an

experimental HPC cluster facility called Wombat, which is discussed in Section 2.

This study makes the following contributions: 1) The first thorough collaborative

investigation of a modern GPU-accelerated Arm-based system using production

applications; 2) Readiness analysis of those software tools required to compile the selected

applications with and without GPU support; 3) preliminary performance results compared

to ORNL’s Summit system; and 4) overall general assessment of the software ecosystem

readiness for GPU-accelerated Arm-based platforms.

A handful of production-ready HPC applications has been selected for this evaluation. Table

1 reports a simplified classification of the selected applications. Since the primary goal is

to assess porting feasibility and obtain an initial performance baseline, we decided to used

1 https://www.fujitsu.com/global/products/computing/servers/supercomputer/a64fx/
2 https://aws.amazon.com/ec2/graviton/
3 https://developer.nvidia.com/arm-hpc-devkit
4 https://www.nvidia.com/en-us/data-center/grace-hopper-superchip/

ELWASIF et al. Page 4

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.fujitsu.com/global/products/computing/servers/supercomputer/a64fx/
https://aws.amazon.com/ec2/graviton/
https://developer.nvidia.com/arm-hpc-devkit
https://www.nvidia.com/en-us/data-center/grace-hopper-superchip/

the selected applications as-is without investing any extra tuning efforts apart from adapting

compiler flags or linking vendor-provided optimized libraries. Due to the breadth of the

study and space constraints, some details are not included in this work but are available in

[11], and references to pertinent sections are used where appropriate.

2 WOMBAT TESTBED

2.1 Background

Wombat is a small HPC cluster which has been equipped since 2018 with various Arm-

based platforms from different vendors. The cluster is deployed and managed by The

Oak Ridge Leadership Computing Facility (OLCF) and is freely accessible to users and

researchers. The purpose of the cluster is to serve as a testbed for Arm-based AArch64

processors and related technologies within a close-to-production environment. Users who

request access can use the system to port and validate their applications. Platform engineers

at OLCF have been using Wombat to experiment and compare end-to-end integration and

configuration aspects of Armbased HPC systems.

2.2 Hardware

Currenty the Wombat cluster consists of three set of compute nodes:

1. HPE Apollo 70 (4 nodes), each equipped with dual-socket Marvell ThunderX2

CN9980 processors and two NVIDIA V100 GPUs, connected via PCIe Gen 3.

2. HPE Apollo 80 (16 nodes), each equipped with a single-socket Fujitsu A64FX

processor.

3. NVIDIA Arm HPC Developer Kit (8 nodes), each equipped with a single-socket

Ampere Computing Altra Q80–30 CPU (based on Arm Neoverse N1 IP) and two

NVIDIA A100 GPUs - connected via PCIe Gen 4.

All nodes share a CPU-only login node based on dual-socket Marvell ThunderX2. All nodes

are connected via either InfiniBand EDR or HDR to the same Infiniband network.

2.3 Programming Environment

The programming environment and system software has been maintained as-is for the entire

duration of the evaluation (April and May 2022). We consciously decide not to constantly

vary the environment and create a fixed baseline. Wombat nodes boot their OS from the

network, and all nodes are provisioned with the same pre-built compute image based on

CentOS 8.1 with kernel 4.18. Job submission and execution are orchestrated using SLURM.

The compilers and interpreters available include NVIDIA HPC SDK (NVHPC) 22.1, Arm

Compiler for HPC 22, CUDA 11.5.1, GNU 11.1, LLVM 15.0.0 with OpenMP offload

enabled, Python 3.9.0, and Julia 1.7.0. Networking support is provided by OFED 5.4 and

UCX 1.11.1 and although most experiments are single node, OpenMPI 4.1.2a1 is installed

for multi-node jobs. NSight Compute SDK, Allinea Forge, and Score-P are available for

profiling purposes .

ELWASIF et al. Page 5

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We use Spack [15] for additional third party scientific libraries and tools, including for

example HDF5, OpenBLAS, and Score-P. We did not manually modify any compiler

optimization flags used by Spack, aiming for an unfiltered “out-of-the-box” experience.

Packages that did not have working Spack recipes were installed individually.

Each application team was responsible for building their respective application, installing

extra dependencies, and linking the appropriate libraries.

3 EVALUATION METHODOLOGY

By definition, any testbed may lack some features found in final production systems. This

fact should be taken into consideration when analyzing the performance results obtained.

For the purpose of this evaluation the most common performance score used in HPC,

the Time-to-Solution, is not the primary Figure of Merit. Rather then perform a deep

dive into the performance characteristics of each application, we perform a breadth-first

study to assess platform’s software ecosystem readiness. This approach sets the stage for

further improvements on system setup and tuning, aiming to increase robustness. Moreover

enhancements in system architecture can be identified.

Following a call of contributions, 13 application teams agreed to participate in the evaluation

process and 10 teams carried out the evaluation work until completion. Table 1 summarizes

the final list of applications and their key characteristics. The list covers eight different

scientific domains and includes codes written in Fortran, C, and C++. The parallel

programming models used were MPI, OpenMP/OpenACC, Kokkos, Alpaka, and CUDA.

We did not include changes to the application codes in the porting activities.

The evaluation process primarily focuses on application porting and testing, with less

emphasis on absolute performance in light of the experimental nature of the testbed.

Application teams were responsible for the basic configuration and build management for

their respective application with support for installing needed system-wide packages using

Spack as needed. The evaluation took place over two months spanning April and May 2022.

Application teams were free to choose the particular use cases to be evaluated for usability

and performance on the testbed and to compare such performance with other platforms

where the respective codes are regularly deployed.

3.1 Porting for functionality and correctness

The porting process for the applications used in this study was fairly straightforward.

While applications use different programming languages, offloading approaches, and third

party libraries, such factors did not pose a challenge for initial application porting and

functionality. The improved maturity of the Arm software ecosystem, the general availability

of the NVHPC toolkit for Arm, and improved support in the Spack package management

system for Arm were all factors that contributed to a seamless porting process. Minor

modifications to respective applications build system were however required as is typical

when moving to a new HPC platform, though no major obstacles were encountered in this

ELWASIF et al. Page 6

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

phase. In the following section, we do not report porting experience for each application,

unless noteworthy issues were encountered regarding the usability of existing toolchains on

the Wombat testbed.

4 APPLICATIONS

4.1 ExaStar

4.1.1 Background.—The toolkit for high-order neutrino-radiation hydrodynamics

(thornado) [21] is a Fortran code (F2008) written as a stand-alone module that can be

incorporated into ExaStar simulations [16] using the Flash-X multi-physics code. Thornado

is used to compute the neutrino radiation field with a two-moment model for spectral

neutrino transport that evolves moments of the neutrino phase-space distribution function

representing spectral energy and momentum densities. In this study, we use two stand-alone

thornado benchmarks as a tool for evaluating node-level performance: Streaming Sine Wave

and Relaxation.

4.1.2 Performance and comparisons.—As a baseline, we ran both benchmarks on

a single node of the Summit computer at the Oak Ridge Leadership Computing Facility

(OLCF). Each Summit node has 2 IBM POWER9 CPUs and 6 NVIDIA Volta GPUs, but

for comparisons to the NVIDIA Arm HPC Dev Kit, we limit comparisons to a single CPU

or single GPU. For the CPU runs with POWER9, we also test different configurations of

Simultaneous Multithreading (SMT). The total number of OpenMP threads is set by the

product of the number of cores and hardware threads available. To demonstrate the parallel

efficiency of our OpenMP implementation, we also report serial execution times for each

CPU. On both systems, we use standard -O2 optimizations and -tp for the target CPU. For

benchmarks that report using the GPU, all computation is done on the GPU; the CPU thread

is only used to launch kernels and manage data transfer. In both cases, the salient Figure of

merit is wall-time (lower is better).

Streaming Sine Wave.: We report the total wall-time to evolve ten timesteps of the

Streaming Sine Wave benchmark for each hardware configuration in Table 2.

The serial CPU comparison shows a speedup factor of 1.3x (2.5x) for the Ampere Altra

relative to the POWER9 (ThunderX2). This single-core performance gain is also realized

for the multi-core comparison, where we find speedup by a factor of 2.2x (2.8x) for Altra

relative to POWER9 (ThunderX2). However, we find poor strong scaling of Altra (18%

parallel efficiency with 80 threads) relative to POWER9 (42% efficiency with 21 threads).

We speculate that this is rooted in the introduction of OpenMP overhead stemming from

many small loop nests used in the streaming advection operation. This is further supported

by the drop in performance on POWER9 for increasing SMT levels. The Altra+A100

results also exhibit a speedup factor of 1.3x (1.9x) relative to the POWER9+V100

(ThunderX2+V100) and a factor of 2.3x relative to the Altra CPU-core multi-core result.

Further analysis of the contributions of different components to the overall performance on

different platforms can be found in [11], Section 4.1.

ELWASIF et al. Page 7

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Relaxation.: We report the total wall-time to evolve 10 timesteps of the Relaxation

benchmark for each hardware configuration in Table 3.

We measure the improved serial performance of 1.2x (2.2x) for Altra relative to POWER9

(ThunderX2), though it is a smaller improvement than the previous benchmark. The

Relaxation benchmark exhibits similar strong scaling efficiency for multi-core performance

of Altra, and we find a speedup factor of 1.6x (3.2x) relative to POWER9 (ThunderX2).

The GPU results are also favorable for the Altra+A100 configuration; we find a 1.7x (1.9x)

speedup relative to POWER9+V100 (ThunderX2+V100) and a 21.5x speedup relative to the

Altra CPU-only multi-core case. Further analysis of the performance across the different

platforms can be found in [11].

4.2 GPU-I-TASSER

4.2.1 Background.—GPU-I-TASSER is a GPU-capable bioinformatics method for

protein structure and function prediction. It is developed from the Iterative Threading

ASSembly Refinement (I-TASSER) method [39]. The I-TASSER suite predicts protein

structures through four main steps. These include threading template identification, iterative

structure assembly simulation, model selection, and refinement, and the final step being

structure-based function annotation. The structure folding and reassembling stage is

conducted by replica-exchange Monte Carlo simulations.

I-TASSER has predicted protein structures over the last decade with high accuracy. Thus,

it has been ranked as the first automated server for protein structure prediction, according

to the critical assessment of structure prediction (CASP) experiments, CASP7 through

CASP13 [22].

Despite the robustness of I-TASSER in predicting protein structures with high accuracy,

it takes considerably longer to predict some proteins’ structures. GPU-I-TASSER has

therefore been developed to utilize the efficient GPU in predicting the structure of proteins.

GPU-I-TASSER is developed by targeting bottleneck replica-exchange Monte Carlo regions

of the protein structure prediction method and porting those to the device. The ported

replica-exchange Monte Carlo regions utilize the GPU to optimize the application. The GPU

optimization is based on OpenACC parallelization of bottleneck regions with extensive data

management.

4.2.2 Performance and comparisons.—Performance gains across the testbed are

compared to the performance from running the same benchmark dataset of proteins on

Summit. For details regarding the hardware and software specs of Summit, please refer to

[38] To ensure that both systems are on the same level regarding performance comparison,

we used the same GPUs. For the initial comparison, we assess the average runtime in

seconds for both serial and GPU runs on Wombat using one ThunderX2 processor and

one NVIDIA V100 GPU. We observe an average speedup of 7.68x using V100 GPUs on

Wombat.

ELWASIF et al. Page 8

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We further compare the performance across V100 GPUs to A100 GPUs on Wombat. We

used one A100 and one V100 GPU in this case. We record an average of 7.35x speedup on

A100 GPUs compared to the 7.68x on V100 GPUs on Wombat. We should note that the

A100 runs were in-comparison to Ampere Computing Altra processors, whereas the V100

performance was relative to ThunderX2 processors. Also, we took the average runtimes

against the number of cycles of simulations within a Monte Carlo run.

Finally, we compare the performance of GPU I-TASSER on Wombat to Summit using

NVIDIA V100 GPUs. An average speedup of 6.92x is recorded using 1 V100 GPU on

Summit. Comparing individual runs on Summit to Wombat, we can observe that Summit

performed slightly better than Wombat across GPU and serial runs. Specifically, average

serial and GPU runtimes per cycle of simulations measured in seconds are 1669.57 and

217.52, respectively, on Wombat, whereas on Summit, those are 1498.70 and 216.64,

respectively.

Figure 1 shows the performance of Wombat’s ThunderX2 and Ampere Altra processors

and NVIDIA A100 and V100 GPUs relative to the POWER9 processor on Summit. We

record a slowdown of an average of 0.9x comparing ITASSER run on Wombat’s ThunderX2

processor to Summit’s POWER9 processor. For Ampere Altra (CPU-only), NVIDIA V100,

and A100, we record positive speedups of 1.8x, 6.9x, and 13.3x, respectively.

4.3 LAMMPS and Kokkos

4.3.1 Background.—The Kokkos C++ Programming Model is one of the leading

ways of writing performance portable single source code for current and future HPC

platforms [37]. It is widely used in the HPC community, particularly within the US

National Laboratories and their partners. The programming model is implemented as a

C++ abstraction layer on top of vendor-specific programming models such as CUDA, HIP,

OpenMP, and SYCL. It is funded by the DOE Exascale Computing Project and developed

by a multi-institutional team spanning several DOE laboratories.

LAMMPS is a widely used molecular dynamics application that one can use to simulate a

wide range of materials, including condensed matter, gases, and granular materials [36]. It

can leverage a wide array of architectures via Kokkos.

4.3.2 Performance and comparisons.—We decided on four benchmarks that stress

host-device interactions to investigate the impact of using Arm CPU as host. Generally, we

do not expect code mainly bound by GPU execution time to show different behavior based

on the host CPU.

As comparison systems, we used one with an NVIDIA A100 GPU, an AMD EPYC (Milan)

X86 CPU, and a system with NVIDIA V100 GPUs and an IBM POWER9 CPU. The latter

system connects the GPU and CPU via NVLink. The measured performance numbers are

given in Table 4.

ELWASIF et al. Page 9

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kokkos Kernel Latency.: The Kokkos Programming model provides many different

parallel operations, such as parallel_for and parallel_reduce, which come with different

latencies.

Overall, the Wombat system has latencies that fall between the X86 and the IBM POWER-

based systems. While the pure launch latencies are comparable to x86, subsequent fences

take longer. That, in turn, is reflected in higher latencies for reductions.

System Atomic Throughput.: To measure the throughput of system atomics, we ran a

benchmark distributed as part of the Kokkos repository, which emulates three common

atomic access patterns. However, we modified the benchmark to perform the updates into

host pinned memory, emulating scenarios where the host and the GPU work on some data

collaboratively. The Wombat system performs similarly to the X86 system. The IBM system

with NVLink interconnect is significantly faster.

Host-Device Data Transfer.: We investigate three common host-device data transfer

scenarios: transferring data to the device from regular and pinned host allocations and

relying on page faults with managed memory.

For regular allocations, all systems perform similarly. With host pinned allocations, Wombat

performs 3.5x worse than the IBM system with NVLink, and 25% worse than the X86

system. For managed allocations, the transfer rates depend significantly on the copy

direction. Wombat beats the other systems for host-to-device transfers while being the

slowest for device-to-host transfers.

LAMMPS.: LAMMPS demonstrates the impact the observed behavior in the previous

micro-benchmarks has on real applications. Often users run small problem sizes per GPU

to achieve high simulation rates, making the code kernel latency sensitive. Furthermore,

LAMMPS will be impacted by host device data transfer rates due to necessary MPI halo

exchanges.

We chose a simple Lennard Jones type simulation with two different problem sizes (32k

atoms and 256k atoms per GPU) to demonstrate this sensitivity. We only ran with one and

two MPI ranks to avoid conflating the scaling behavior of LAMMPS into the data.

As the micro-benchmark would suggest, the most latency-sensitive scenario (single rank,

32k atoms) performs worse on Wombat than on the X86 system. The larger—less latency

sensitive—system performs similarly on Wombat and the X86 system while being slower on

the IBM machine due to its older GPU.

When running with two ranks, the total number of kernels increases, resulting in more

latency overhead and significant host-device transfers. The data shows that Wombat

performs fairly similarly to the X86 system. The IBM system does not seem to benefit

from its NVLink connection, indicating that LAMMPS likely uses regular allocations in its

non-GPU-aware MPI code path.

ELWASIF et al. Page 10

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.4 MFC

4.4.1 Background.—MFC (Multi-component Flow Code) is an opensource fluid

flow solver available at https://mflowcode.github.io [4]. It provides high-order accurate

solutions to a wide variety of physical problems, including multi-phase compressible flows

[29] and sub-grid dispersions [3]. MFC employs a finite volume shock and interface

capturing scheme via weighted essentially non-oscillatory (WENO) reconstruction, HLL-

type approximate Riemann solvers, and total variation diminishing time steppers.Quadrature

moment methods handle the sub-grid closures [7].

The MFC codebase is written in Fortran with MPI (and CUDA-aware MPI) capabilities

for distributed parallelism. OpenACC provides GPU offloading capability for all compute

kernels A Python front-end handles input data, execution, and metaprogramming for

compiler optimizations. The FFTW package provides access to fast Fourier transforms

for computing derivatives in cylindrical coordinates. HDF5 and Silo handle I/O and post-

processing.

4.4.2 Performance and comparisons.—We next investigate the performance of MFC

on NVIDIA Arm HPC Development Kits, stressing both the Ampere CPUs and the NVIDIA

A100 GPUs. A three-dimensional, two-phase, 16 million grid point fluid dynamics problem

served this purpose, representing a typical multiphase flow workload. The performance

metric of interest is the average execution wall-clock time over 10 time steps (excluding the

first five steps). We tested performance on several available CPUs: Ampere Altra Q80–30,

Fujitsu A64FX, Cavium ThunderX2, Intel Xeon Gold Cascade Lake (SKU 62485), and

IBM POWER9. Both NVHPC and GCC v11.1 compilers were tested with -fast and -Ofast

compiler optimization flags, respectively. GPU performance was analyzed for the NVIDIA

V100 (accessible on Summit) and A100 (accessible on Wombat) using the NVHPC v22.1

compiler with the -Ofast flag. All computations are double precision.

Table 5 shows average wall-clock times and relative performance metrics for the different

hardware. The “Time” column has little absolute meaning, with the relative performance

being the most meaningful (also shown last column). In Table 5 the CPU wall-clock times

are normalized by the number of CPU cores per chip. The results show that the A100 GPU

is 1.72x faster than the V100 on OLCF Summit, faster than even the peak double-precision

performance would anticipate between the two cards (a factor of 1.24).

A single A100 also gives a 7.3x speed-up over the fastest tested Intel Xeon Cascade Lake.

The GCC11 compiler gives shorter wall-clock times than the NVHPC compiler on all CPU

architectures. The Ampere Altra CPUs are 1.4x faster when compared to the POWER9s and

1.2x slower than the Intel Xeons. In addition, the ThunderX2 CPUs are about 2x slower than

the POWER9 CPUs. The wall-clock measured using the Fujitsu A64FX CPUs are a factor of

10 slower. However, MFC is not explicitly vectorized for Arm instructions. We expect that

this and an appropriate Fujitsu Arm compiler are required to extract peak performance from

this chip.

5Access provided by Pittsburgh Supercomputing Center

ELWASIF et al. Page 11

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://mflowcode.github.io/

Figure 2 shows a time-step normalized breakdown of the duration of the most expensive

MFC routines. The left three columns indicate kernel times on GPUs and the rest are

CPU-only. When using GPU offloading, all compute kernels are executed by the GPU,

with CPU executing I/O and managing halo exchanges. It shows that MPI communications

consume a meaningful proportion of the total time on the GPUs but are negligible on CPUs.

This result is an artifact of faster routines on the GPUs but approximately constant MPI

communication times on CPUs and GPUs. Otherwise, we see that the routine proportions

associated with the different CPU and GPU architectures are similar.

4.5 MILC

4.5.1 Background.—MILC6 is an application package concerned with the simulation

of Lattice Quantum Chromodynamics (LQCD) to further the study of the (sub-)nuclear

physics. MILC handles the generation of gauge field configurations (sampling of the

partition function) using Markov Chain Monte Carlo methods, most commonly RHMC [8],

and analyzes those configurations to generate physics observables. For both, the dominant

algorithm is the iterative linear solver, stemming from the discretized Dirac equation on

a 4-d spacetime, giving rise to a sparse matrix, or stencil, one must repeatedly solve.

Conjugate Gradient is the solver of choice for the commonly used HISQ discretization [13]

employed by MILC practitioners.

While popular in the LQCD community, MILC is also often used as a benchmark for HPC

systems. Node-level performance is usually dictated by memory bandwidth or, in the case of

multi-node scaling, the network bandwidth. Specifically, the inter-process bandwidth must

be fast enough to overlay the stencil halo communication with the local stencil application.

MILC runs on GPUs via QUDA library7. Given the propensity for high memory bandwidth

on GPUs relative to CPUs, offloading the iterative solver to the GPU dramatically increases

the inter-process (GPU) memory bandwidth required to successfully strong scale.

4.5.2 Performance and comparisons.—To probe performance, we utilize the

NERSC Medium benchmark8 and look at performance on one and two GPUs on the

same node, comparing performance to a platform with AMD EPYC 7742 Rome CPUs and

identical A100 GPUs. This platform is similar because it lacks the NVLink interconnect

and has the same PCIe gen4 capability. However, critically it supports the peer-to-peer PCIe

protocol allowing for inter-GPU communication without staging in CPU memory.9 We also

include measurements taken on the ThunderX2 system compared to Summit, with the latter

notably supporting peer-to-peer communication using NVLink. Due to memory footprint

size, we include only 2 GPU results.

Table 6 breakdowns the benchmark run times. We note the following key results:

6 https://github.com/milc-qcd/milc_qcd
7 https://github.com/lattice/quda
8 https://github.com/lattice/quda/wiki/Running-the-NERSC-MILC-Benchmarks
9While NVSHMEM is supported on Rome, we chose to make a more direct comparison by deploying MPI exclusively as the
communication protocol.

ELWASIF et al. Page 12

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/milc-qcd/milc_qcd
https://github.com/lattice/quda
https://github.com/lattice/quda/wiki/Running-the-NERSC-MILC-Benchmarks

• Single GPU performance is roughly equivalent between Wombat and Rome

(2650 s vs. 2705 s), with a slight advantage over Wombat.

• For Dual GPU performance, we see Rome does significantly better (1684s vs.

1548s), with the primary deficit arising due to the “compute”.

• The non-GPU accelerated computation “host” shows that Wombat is more than

competitive with Rome.

• The raw copy bandwidth between host and device seems to favor the Altra,

regardless of the direction of the copy.

• Summit performs significantly better overall than ThunderX2 (2645 s versus

3186 s), with the primary deficit being due to compute.

To better understand the poor scaling of Wombat on two GPUs, in Figure 3 we plot

the performance of the HISQ stencil for the three precisions, the application of which

is responsible for the bulk of the time spent in the mixed-precision solver. Without

communication, we see performance parity between the two platforms. However, when we

include communication overhead, we see that Wombat’s performance is severely impacted.

In particular, we note that half-precision on 2 GPUs is 45% slower on Wombat versus

Rome. We do not include the ThunderX2 and Summit results here for brevity, but we note

that a similar picture is painted: with ThunderX2 having a 54% performance deficit for the

half-precision stencil.

4.6 NAMD and VMD

4.6.1 Background.—NAMD [26] and VMD [17] are biomolecular modeling

applications for molecular dynamics simulation (NAMD10) and for preparation, analysis,

and visualization (VMD11). Researchers use NAMD and VMD to study biomolecular

systems ranging from individual proteins, large multi-protein complexes, photosynthetic

organelles, and entire viruses. Both programs support hardware platforms ranging from

personal laptops, workstations, and clouds, up to the largest parallel supercomputers [1].

NAMD and VMD are written in C++, C, CUDA, and some platform-specific SIMD vector

intrinsics and assembly language for specific performance-critical routines. NAMD is based

on the Charm++ parallel runtime system [18], which provides an adaptive, asynchronous,

distributed, message-driven, task-based parallel programming model using C++. NAMD and

VMD incorporate built-in interpreters for Tcl and Python to provide easy-to-use scripting.

4.6.2 Notes on porting for functionality and correctness experience.—The

first adaptations of NAMD and VMD to Arm hardware were performed with SoC on-chip

GPU embedded system platforms (NVIDIA CArmA, KAYLA, Jetson TK1, and Jetson

TX1), or PCIe-attached GPU (Applied Micro X-Gene/ThunderX + Tesla K20c) system [31].

Wombat presented no compilation barriers for NAMD or VMD, but some minor issues are

noted. The Charm++ parallel runtime system used by NAMD did not compile cleanly with

10 https://www.ks.uiuc.edu/Research/namd/
11 https://www.ks.uiuc.edu/Research/vmd/

ELWASIF et al. Page 13

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ks.uiuc.edu/Research/namd/
https://www.ks.uiuc.edu/Research/vmd/

GCC 11.1.0, so GCC 10.2 was used to compile NAMD and its associated components.

Besides the CUDA toolkit, NAMD also requires FFTW and Tcl libraries, which were easily

built on Wombat. Performance results for GPU-resident NAMD are reported in Table 7 and

Table 8.

VMD used a new startup query of CPU SIMD vector instruction set extensions for runtime

dispatch of performance-critical loops to hand-vectorized CPU kernels. VMD was extended

to query Arm64 CPU vector instruction availability using the Linux kernel getauxval()

API, enabling runtime detection and kernel dispatch for Arm64 NEON and SVE vector

instructions. New hand-vectorized data-parallel NEON and SVE kernels were developed

for key atom selection operations and for molecular orbital analysis and visualization, with

performance reported in [11] The new NEON and SVE molecular orbital kernels are direct

mathematical and algorithmic descendants from previous CPU and GPU kernels [25, 31–

35].

Testing of SVE vector instructions on Fujitsu A64fx nodes demonstrated that two recent

versions of the Arm compiler toolchain (21.1 and 22.0) and LLVM (Clang) 10.0.1 generated

incorrect code for particular SVE vector intrinsics used in the VMD molecular orbital

kernel. As such, the older Arm HPC toolkit version 20.3 was used for the reported results.

Similarly, LLVM/Clang versions older than 11.0.1 did not generate correct results for SVE,

so the newer version was used for reported results.

4.6.3 NAMD performance and comparisons.—Benchmarks are shown for the new

GPU-resident code path in NAMD [26], which is able to fully utilize an A100 GPU.

Although GPU-resident NAMD scales across multiple GPUs on a single node, it depends

on high-performance peer-to-peer GPU communication through NVLink using relatively

fine-grained load-store operations within CUDA kernels. The lack of this capability on

ORNL Wombat limited this study to single GPU performance and the best use of the

Ampere Altra.

Two systems are benchmarked representing the extremes of system sizes that are well suited

to single-GPU simulation, ApoA1 (92K atoms) and STMV (1M atoms), and performance

is compared with two x86-based configurations, A100–PCIe with Intel Xeon 6134 and

A100–SXM4 with AMD EPYC Milan 7763 (a single A100 on DGX–A100). The results are

shown in Table 7 and Table 8, where performance is reported as the number of simulated

nanoseconds attainable per day. Each hardware configuration shows the fixed CPU cores

and SMT setting together with the number of threads used by NAMD, in which the best

performance is achieved when running one thread per core. As the simulated atoms move,

the updating of the domain decomposition and rebuilding of device-side data structures are

still done on the CPU. The optimal number of threads depends on the size of the system,

since adding threads can improve performance up until the thread management overhead

exceeds the available computational gain.

The A100–SXM4 configuration proves to be the fastest due to a faster-clocked GPU and

PCIe 4.0 bus. The Ampere Altra A100 configuration is the next fastest due to also having

ELWASIF et al. Page 14

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a PCIe 4.0 bus. Even though the Ampere Altra cores are SMT 1 and have independent L1

cache memory, performance was improved, especially for the larger system in Table 8, by

staggering the thread mapping to use just the even-numbered cores. Simulations on A100

are as much as 50% faster than on V100. Similar performance is demonstrated for Cavium

ThunderX2 and IBM POWER9, with the latter benefiting from its low latency NVLink

connection between CPU and GPU.

In addition the NAMD study, we also performed an assessment of VMD’s performance on

the Wombat testbed. Details of this assessment can be found in [11]

4.7 PIConGPU

4.7.1 Background.—PIConGPU [5] is a C++ application that is a scalable,

heterogeneous, and fully relativistic particle-in-cell (PIC) code and provides a modern

simulation framework for laser-plasma physics and laser-matter interactions suitable for

production-quality runs. The code is used to develop advanced particle accelerators for

cancer radiation therapy, high-energy physics, and photon science. PIConGPU utilizes the

alpaka [19, 23] abstraction layer and the particle-in-cell algorithm for its science case

simulations.

For this work, we use a configuration of PIConGPU that simulates a Weibel instability in

a plasma of electrons and positrons, i.e., where all particle species have equal mass. Three

variations with different computational intensity are considered: one with a cubic-spline

particle shape using single-precision floating point and two with quadratic-splines using

single- and double-precision, respectively.

Structurally, PIConGPU is a stencil code with spatial domain decomposition. To facilitate

scaling benchmarks, automatic estimation of suitable buffer sizes for particle exchange

was introduced into PIConGPU. Each MPI rank exchanges boundary/guard values and

particles passing the boundaries with its spatial neighbors using asynchronous point-to-point

communication. The particle-grid operations are spatially local and so fit in this scheme.

For the following performance evaluation, we used the aforementioned configuration and

verified the correctness of the results by comparing them to previous benchmark results we

have collected on other systems.

4.7.2 Performance and comparisons.—Our main analysis focus was execution on

Wombat’s Ampere nodes Since PIConGPU is not yet a fully heterogeneous code, we did

separate runs for the CPUs and the A100 GPUs. Additionally, we evaluated both single

precision and double precision data. For all benchmarks, we used the Triangular Shape

Cloud (TSC) particle form factor. Variation across multiple grid dimensions would result in

more MPI overhead, so we restricted the benchmark variants to the z dimension.

Experimental setup.: For the CPU runs, we used one MPI rank per node. Each MPI utilized

80 OpenMP threads. From PIConGPU’s perspective, this constitutes a single CPU device

ELWASIF et al. Page 15

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

per node. For the GPU runs, we used two MPI ranks per node with one rank per A100 GPU.

Both configurations maximise the use of the available resources.

Weak scaling.: For the weak scaling analysis, we used a base problem size of 100 time

steps and 256×256×256 cells per computation device. Then we added another 256 cells to

the z dimension for any additional device. Table 14 in [11] shows the setup per node in

more detail. The results of the weak scaling benchmarks are shown in Table 9. With the

efficiency staying above 90% for all cases, it can be demonstrated that PIConGPU scales

well across multiple Ampere compute nodes – on a previously unknown HPC system and

equally unfamiliar hardware – with minimal porting effort.

However, there are also significant differences between CPU and GPU efficiency. This can

be explained by the absolute runtime required for the computation as shown in Table 11. The

GPUs perform the computations much faster than the CPUs. In turn, the GPU weak scaling

efficiency is affected by MPI communication overhead much more than the CPU efficiency,

likely due to GPU to host data transfer.

Strong scaling.: For the strong scaling analysis, we used a base problem size of 100 time

steps and 256×256×z cells per computation device. z varies between CPUs and GPUs: For

CPUs, it is 6912; for GPUs (with less available memory), it is 1024.

Table 10 shows the strong scaling speedup achieved by running PIConGPU across multiple

nodes. The results corroborate the weak scaling findings: the CPU runs achieve near-perfect

speedups when spread across multiple nodes, while the GPU speedups are noticeably below

the ideal. In absolute numbers, the GPUs are again much faster than the CPUs (as shown in

Table 12), so one needs to account for the strong impact of MPI communications.

4.8 QMCPACK

4.8.1 Background.—QMCPACK[20] is an open-source, high-performance Quantum

Monte Carlo (QMC) package that solves the many-body Schrödinger equation using

a variety of statistical approaches. The few approximations made in QMC can be

systematically tested and reduced, potentially allowing the uncertainties in the predictions

to be quantified at a trade-off of the significant computational expense compared to

more widely used methods such as density functional theory. Applications include weakly

bound molecules, two-dimensional nanomaterials, and solid-state materials such as metals,

semiconductors, and insulators.

The present study’s goal is to evaluate the performance of the Diffusion Monte Carlo (DMC)

algorithm on NVIDIA A100 GPUs and Arm Ampere CPUs using QMCPACK’s standard

performance tests. They consist of short DMC calculations of variously sized supercells

of bulk nickel oxide, NiO. The computational cost of these calculations formally scales

cubically with the total electron count, which in turn is determined by the atoms in the

supercell and their elemental composition.

ELWASIF et al. Page 16

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.8.2 Performance and comparisons.—We set up a set of problem sizes in the NiO
supercell benchmark characterized by the number of electrons in the system. Memory usage

is formally quadratic in the electron count. As memory requirements increase, the number of

potential “walkers” that can fit in the GPU or on-node memory reduces. Because the GPU

implementation batches work over the number of walkers, the achievable efficiency can be

limited if the batch size can not be large enough before the GPU memory is exhausted.

Performance is measured using a throughput metric. As defined in (1), throughput is

measured as the computational cost associated with a single DMC simulation yielding to

the frequency of advancing walkers in the DMC simulation, with higher values indicating

better performance. The cost is cubic in the electron count and linear in the walker count.

Thus the throughput drops dramatically at large electron counts.

Throughput = walkers × blocks × steps
DMC time (1)

GPU-only Results.: The initial focus on targeting Wombat’s NVIDIA’s A100 GPUs on

Ampere nodes is to understand the number of possible “walker count per GPU device”

for the NiO supercell benchmark for different system sizes. Walker counts in QMCPACK

are equivalent to the “batch size” for GPU computation, finding the maximum number of

walkers also allows for efficient use of each available GPU. We apply a bisectional search

to find the maximum walker count limits due to memory limitations within a single walker

count range for accuracy (±1 walkers). The resulting walker count limits per A100 GPU

(40 GB) are given in Table 13 which also provides this information for reference on the

V100 GPU, offering 16 GB of memory, from our experiments on Summit. As the system

size increases, the benefits of the A100 memory become larger, with the largest measured

system size of 6144 electrons surpassing the simple memory ratio between A100 and V100

of 2.5x by a factor of 32 due to the significant additional memory overheads in storing

wavefunctions used in the calculation.

We use the walker count on Table 13 on each system to compare the DMC performance

throughput on (1) ranging from 1 GPU to the maximum limit using Summit’s 6 V100 GPUs

and Wombat’s 2 A100 GPUs per node. Results are illustrated in Figure 4 showing the results

obtained on Wombat using the NVHPC compiler and on Summit. As expected, single A100

GPU runs on Wombat outperform those on V100s, with significantly larger throughput for

nearly all problem sizes. When using all the available GPUs per node on each system, we

observe that for smaller cases, Summit 6 V100 GPUs out-perform in terms of throughput per

node. However, Wombat’s A100 2 GPUs are significantly more performant for the largest

and most computationally challenging case. For these system sizes, greater GPU memory is

the biggest factor in increased performance.

In addition to the study using GPU offloading, we performed an assesment using CPU only

configuration for QMCPACK. Those results can be found in Section 4.8 in [11].

ELWASIF et al. Page 17

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.9 SPEC HPC 2021

4.9.1 Background.—SPEChpc 2021 is a benchmark suite comprised of real-world

application codes designed for portable performance across heterogeneous CPU and GPU

architectures [2]12. SPEChpc provides C/C++ and Fortran codes, accelerated by OpenMP,

OpenMP Offloading, OpenACC, and CUDA programming models. On Wombat, we utilized

SPEChpc 2021 to evaluate single-node performance using one to two NVIDIA A100 GPUs

while varying the number of cores bound to each GPU.

4.9.2 Performance and comparisons.—We ran the SPEChpc 2021 suite on Wombat

comparing the results to ORNL’s Summit. The compilers used on Wombat were NVHPC

22.1 using OpenMP target offloading (NVHPC-TGT) and OpenACC offloading (ACC),

and LLVM v15.0.0 using OpenMP target offloading (LLVM-TGT). POT3D, SOMA, and

Weather benchmarks data is not provided since LLVM is not built with Fortran support.

Three iterations of the tiny benchmark were performed on Wombat. On Wombat, we tested

with combinations of one and two NVIDIA A100 GPUs. We ran the benchmark suite using

one and two ranks per GPU for a total of four data points for each acceleration model.

On Summit, we tested the use of six V100 GPUs with one iteration using one rank per

GPU. Summit displays several runtime errors while running on one V100 GPU because the

SPEChpc tiny benchmark targets about 40 GB of memory usage, which exceeds the V100

limit of 16 GB.

Figure 5 and Figure 6 show the performance (measured as wall-time) of the OpenMP target

offloading implementations of NVHPC and LLVM on Wombat and Summit, respectively,

relative to NVHPC OpenACC. A 19x speed-up difference in runtime is observed in

Minisweep from NVHPC-ACC to NVHPC-TGT on Wombat using a single GPU, one rank

per GPU, and a 14x difference is observed when using both A100 GPUs. This behavior

is not limited to Wombat, as Summit also observed an 8x slowdown from NVHPC-ACC

to NVHPC-TGT when using all 6 GPUs, one rank per GPU. This behavior is also not

limited to NVHPC’s OpenMP offloading, as LLVM-TGT demonstrates a 4–6x slowdown on

Minisweep on both Summit and Wombat.

Using one GPU on Wombat, five of the six codes that complete with NVHPC–TGT are

slower than when using NVHPC–ACC, and all three of the codes that complete for LLVM-

TGT are slower than when using NVHPC-ACC. On all GPUs, 7 of the 9 codes run faster

using ACC than TGT on Wombat, and 5 of the 7 codes that complete without a runtime

error on Summit run faster using ACC than TGT.

4.10 SPH-EXA2

4.10.1 Background.—The SPH-EXA2 project is a multidisciplinary effort that extends

the SPH-EXA[6] project and aims to scale the Smoothed Particle Hydrodynamics (SPH)

method to enable exascale hydrodynamics simulations for Cosmology and Astrophysics. On

Wombat, we used the Sedov-Taylor blast wave explosion test [14] to simulate a spherical

12 https://www.spec.org/hpc2021/

ELWASIF et al. Page 18

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.spec.org/hpc2021/

shock generated by the instantaneous injection of thermal energy at a single point in

a static uniform background. This test requires the code to simulate shock-fronts while

correctly maintaining spherical symmetry and conservation laws. SPH-EXA213 is open

source, written in C++17, parallelized with MPI and OpenMP, and accelerated with CUDA

and HIP.

4.10.2 Performance and comparisons.—To investigate the impact of using the Arm

CPU on SPH-EXA2, we conduct tests on three different systems within the Wombat

platform (described in Section 2.2) and two x86_64 non-Arm systems (described in [11,

Table 20]). We report and compare the performance results of a CPU-only run and a

CPU+GPU run using a single node executing the Sedov–Taylor blast test case with 2003

particles for 800 time-steps.

CPU-onlyResults.: Figure 7 shows the results for the MPI+OpenMP code version of SPH-

EXA2 on CPU only setup. The average time in seconds per time-step of the simulation is

shown on the top chart (lower is better), and the achieved iteration throughput per minute

of the simulation is shown on the bottom chart (higher is better). On Wombat, the best

performance is obtained with the GNU compiler on the Ampere N1 CPU, while the overall

best performance is achieved on x86_64 CPUs. Systems with fewer cores per socket lead to

lower overall performance than those with higher core counts. Additionally, the results on

Marvel ThunderX2 and Fujitsu A64FX systems show that the SPH-EXA2 code compiled

with the GNU compiler outperforms the Arm compiler.

Further code profiling using the Arm Performance Reports tool allowed us to identify

the cause of the performance difference between Ampere N1 and Fujitsu A64FX CPUs

since the former has fewer cores but performs better in our tests. Profiling showed that a

higher number of L2 cache misses and stalled cycles on the Fujitsu A64FX CPUs cause

performance degradation. We believe this is due to the Ampere N1 having only 1 NUMA

node compared to the 4 NUMA nodes of Fujitsu A64FX. Further analysis is needed to use

the vectorization support (SVE) better and increase compute performance.

CPU+GPU Results.: Figure 8 shows the execution times of the MPI+OpenMP+CUDA

version of the SPH-EXA2 code. The Ampere N1 system on Wombat slightly outperforms

the x86_64 reference system. The difference in performance is caused by the Ampere N1

having PCIe 4.0 compared to the x86_64 reference system’s PCIe 3.0 port, which creates the

difference between data transfer rates between the CPU and the GPU. The size and speed

of CUDA memcpy operations reported in Table 14 show that the same amount of data was

transferred between host (H) and device (D) on both systems, with higher transfer rates on

Wombat’s Ampere N1.

Using Nsight, SPH-EXA2’s top kernels were identified as compute-bound, and the

measured performance shows that using Arm as the host CPU has no negative impact on the

execution time of the kernels.

13 https://github.com/unibas-dmi-hpc/SPH-EXA

ELWASIF et al. Page 19

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/unibas-dmi-hpc/SPH-EXA

5 RELATED WORK

Prior work has primarily focused on the evaluation of HPC applications on the Arm Cavium

ThunderX2 with the Aries interconnect as part of the Isambard supercomputer [24] and the

A64FX processor with TOFU interconnect in the Fugaku system [28] and with InfiniBand

interconnect [12] on the Okami system. Other related work has looked at Arm-based

performance portability with ThunderX2 and previous generation Ampere nodes [9] and

concludes that Kokkos and OpenMP provide performance portability across Arm and x86

platforms. A more recent update adds SYCL evaluation but comes to similar conclusions

[10].

In terms of more cloud-HPC-focused efforts, a recent hackathon run by the non-profit Arm

HPC User Group, AWS, and Arm supported the testing and development of HPC codes on

AWS’s custom Graviton2 instances. This event, the AHUG Hackathon: Cloud Hackathon

for Arm-based HPC 14, supported 30 teams to investigate the top HPC applications used

on AWS and helped test Spack packages with flags for the Graviton2 setup as well as

Reframe testing scripts for Arm and x86 platforms. The effort focused on porting several

HPC applications running on Arm, including a full set of mini-apps and applications15, but

it did not include any accelerated nodes. This work complements other HPC application

efforts on AWS, including Nalu16, a CFD modeling code, and NWChem17, a widely used

quantum chemistry code.

6 CONCLUSIONS

In this work, we used the Wombat testbed at the Oak Ridge Leadership Computing Facility

(OLCF) to study the readiness and usability of a modern GPU-accelerated Arm-based

HPC platform, the NVIDIA Arm HPC Developer Kit. Ten representative applications from

different scientific domains, and using a variety of programming models and languages were

selected, built on the platform and tested for correctness. Wherever possible, performance

was compared with other leading HPC platforms used for production science, as well as

other Arm-based platforms that are part of the Wombat system.

As seen from the various application experiences, the porting process was straightforward

and mostly required minor modifications to the build systems to compile and run on the

target platform. The availability of a fairly mature set of compilers that cover the gamut

of used programming models was crucial in achieving this seamless porting process.

Of particular note, the availability of the NVIDIA HPC SDK facilitated the porting

process or those applications that currently use this tool-chain on other GPU-accelerated

supercomputers, such as Summit. Furthermore, the maturity of Arm support in the spack

package management system greatly facilitated the deployment of third-party tools and

libraries needed by the various application teams.

14 https://community.arm.com/arm-community-blogs/b/high-performance-computing-blog/posts/aws-arm-ahug-hpc-cloud-hackathon
15 https://github.com/arm-hpc-user-group/Cloud-HPC-Hackathon-2021/tree/main/Applications
16 https://community.arm.com/arm-community-blogs/b/high-performancecomputing-blog/posts/low-mach-number-cfd-modeling-
with-nalu-on-graviton2-aws-m6g
17 https://www.youtube.com/watch?v=xq_sj4nAk3k

ELWASIF et al. Page 20

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://community.arm.com/arm-community-blogs/b/high-performance-computing-blog/posts/aws-arm-ahug-hpc-cloud-hackathon
https://github.com/arm-hpc-user-group/Cloud-HPC-Hackathon-2021/tree/main/Applications
https://community.arm.com/arm-community-blogs/b/high-performancecomputing-blog/posts/low-mach-number-cfd-modeling-with-nalu-on-graviton2-aws-m6g
https://community.arm.com/arm-community-blogs/b/high-performancecomputing-blog/posts/low-mach-number-cfd-modeling-with-nalu-on-graviton2-aws-m6g
https://www.youtube.com/watch?v=xq_sj4nAk3k

While exhaustive performance optimization was not a primary goal of this work, we carried

out preliminary performance measurements to assess the overall platform readiness. For

application considered GPU-dominant, performance improvements were commensurate with

the hardware capabilities of the NVIDIA Ampere GPU (A100) relative to the previous

generation NVIDIA Volta GPU (V100), and using an Arm-based CPU did not adversely

impact the outcome. We carried out several CPU-only experiments for a subset of the

applications where the code can be configured to run only on the CPU. We observed that the

Ampere CPU’s performance was generally competitive with leading X86–64 and Power9

CPUs. It should be noted that the lack of an appropriate fast and fully RDMA-capable

CPU-GPU bus in the Wombat testbed (similar to NVIDIA NVLink on POWER9 CPU in

Summit or AMD’s xGMI in the newly installed Frontier supercomputer at OLCF) and the

lack of NVLink across the CPU and GPUs adversely impacted performance for applications

that require fast data movement across the different processing elements in the platform.

Exploiting these features requires a holistic design that combines needed system software

with a hardware design that adopts a GPU-centric platform design. Such a design can be

found in systems such as NVIDIA DGX18 or Frontier19, where the GPUs are connected

directly to the NICs on the node. In the near future, more tightly integrated cache-coherent

CPU-GPU platforms (e.g. NVIDIA Grace Hopper Superchip) will further enhance developer

productivity and platform programmability.

Evaluating testbeds is a continuous process. As our next step, we plan to investigate the

Arm platform’s usability for large data and machine learning workloads and the exploitation

of NVIDIA Blue-Field Data Processing units (DPU). As more Arm-based platforms from

various vendors become available in the market, we anticipate continuing this evaluation

effort to better understand the platform’s strengths and potential incompatibilities with

different classes of applications.

ACKNOWLEDGMENTS

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy (Contract No. DE-
AC05-00OR22725). Assessment of QMCPACK and ExaStar was supported by the Exascale Computing Project
(17-SC20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear
Security Administration. VMD and NAMD work is supported by NIH grant P41-GM104601. S. H. Bryngelson
acknowledges the use of the Extreme Science and Engineering Discovery Environment (XSEDE) under allocation
TG-PHY210084, OLCF Summit allocation CFD154, hardware awards from the NVIDIA Academic Hardware
Grants program, and support from the US Office of Naval Research under Grant No. N000142212519 (PM Dr.
Julie Young). E. MacCarthy acknowledges Yang Zhang of University of Michigan, Ann Arbor, for providing the
I-TASSER code. Work on PIConGPU was partially funded by the Center of Advanced Systems Understanding
which is financed by Germany’s Federal Ministry of Education and Research and by the Saxon Ministry for
Science, Culture and Tourism with tax funds on the basis of the budget approved by the Saxon State Parliament.
The work in SPH-EXA2 is supported by the Swiss Platform for Advanced Scientific Computing (PASC) project
SPH-EXA2 (2021-2024) and as part of SKACH consortium through funding from the Swiss State Secretariat for
Education, Research and Innovation (SERI).

18 https://www.nvidia.com/en-au/data-center/dgx-systems/
19 https://olcf.ornl.gov/wp-content/uploads/Frontiers-Architecture-Frontier-Training-Series-final.pdf

ELWASIF et al. Page 21

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nvidia.com/en-au/data-center/dgx-systems/
https://olcf.ornl.gov/wp-content/uploads/Frontiers-Architecture-Frontier-Training-Series-final.pdf

REFERENCES

[1]. Acun Bilge, Hardy David J., Kale Laxmikant, Li Ke, Phillips James C., and Stone John E.. 2018.
Scalable Molecular Dynamics with NAMD on the Summit System. IBM Journal of Research and
Development 62, 6 (2018), 4:1–4:9. 10.1147/JRD.2018.2888986 [PubMed: 29875505]

[2]. Brunst Holger, Chandrasekaran Sunita, Ciorba Florina, Hagerty Nick, Henschel Robert, Juckeland
Guido, Li Junjie, Melesse Vergara Veronica G., Wienke Sandra, and Zavala Miguel. 2022.
First Experiences in Performance Benchmarking with the New SPEChpc 2021 Suites. 10.48550/
ARXIV.2203.06751

[3]. Bryngelson SH, Schmidmayer K, and Colonius T. 2019. A quantitative comparison of phase-
averaged models for bubbly, cavitating flows. International Journal of Multiphase Flow 115
(2019), 137–143. 10.1016/j.ijmultiphaseflow.2019.03.028

[4]. Spencer H Bryngelson Kevin Schmidmayer, Coralic Vedran, Jomela C Meng Kazuki Maeda,
and Colonius Tim. 2021. MFC: An open-source high-order multicomponent, multi-phase, and
multi-scale compressible flow solver. Computer Physics Communications 266 (2021), 107396.

[5]. Bussmann M, Burau H, Cowan TE, Debus A, Huebl A, Juckeland G, Kluge T, Nagel WE,
Pausch R, Schmitt F, Schramm U, Schuchart J, and Widera R. 2013. Radiative Signatures of
the Relativistic Kelvin–Helmholtz Instability. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis (Denver, Colorado) (SC ‘13).
ACM, New York, NY, USA, Article 5, 12 pages. 10.1145/2503210.2504564

[6]. Cavelan Aurélien, Cabezón Rubén M., Grabarczyk Michal, and Ciorba Florina M.. 2020. A
Smoothed Particle Hydrodynamics Mini-App for Exascale. In Proceedings of the Platform for
Advanced Scientific Computing Conference (Geneva, Switzerland) (PASC ‘20). Association for
Computing Machinery, New York, NY, USA, Article 11, 11 pages. 10.1145/3394277.3401855

[7]. Charalampopoulos A, Bryngelson SH, Colonius T, and Sapsis TP. 2022. Hybrid quadrature
moment method for accurate and stable representation of non-Gaussian processes applied to
bubble dynamics. Philosophical Transactions of the Royal Society A (2022).

[8]. Clark MA and Kennedy AD. 2007. Accelerating staggered-Fermion dynamics with the rational
hybrid Monte Carlo algorithm. Physical Review D 75, 1 (2007). 10.1103/physrevd.75.011502

[9]. Deakin Tom, Simon McIntosh-Smith James Price, Poenaru Andrei, Atkinson Patrick,
Popa Codrin, and Salmon Justin. 2019. Performance Portability across Diverse Computer
Architectures. In 2019 IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC). 1–13. 10.1109/P3HPC49587.2019.00006

[10]. Deakin Tom, Poenaru Andrei, Lin Tom, and McIntosh-Smith Simon. 2020. Tracking
Performance Portability on the Yellow Brick Road to Exascale. In 2020 IEEE/ACM International
Workshop on Performance, Portability and Productivity in HPC (P3HPC). 1–13. 10.1109/
P3HPC51967.2020.00006

[11]. Elwasif Wael, Godoy William, Hagerty Nick, Harris J. Austin, Hernandez Oscar, Joo Balint, Kent
Paul, Lebrun-Grandie Damien, Maccarthy Elijah, Melesse Vergara Veronica G., Messer Bronson,
Miller Ross, Opal Sarp, Bastrakov Sergei, Bussmann Michael, Debus, Steinger Klaus, Stephan
Jan, Widera Rene, Bryngelson Spencer H., Le Berre Henry, Radhakrishnan Anand, Young
Jefferey, Chandrasekaran Sunita, Ciorba Florina, Simsek Osman, Filippo Spiga Kate Clark,
Hammond Jeff, Stone John E.. Hardy David, Keller Sebastian, and Piccinali Jean-Guillaume.
Trott Christian. 2022. Application Experiences on a GPU-Accelerated Arm-based HPC Testbed.
10.48550/ARXIV.2209.09731

[12]. Feldman Catherine, Michalowicz Benjamin, Siegmann Eva, Curtis Tony, Calder Alan, and
Harrison Robert. 2022. Experiences with Porting the FLASH Code to Ookami, an HPE Apollo
80 A64FX Platform. HPCAsia 2022 (to appear) (2022).

[13]. Follana E, Mason Q, Davies C, Hornbostel K, Lepage GP, Shigemitsu J, Trottier H, and Wong
K. 2007. Highly improved staggered quarks on the lattice with applications to charm physics.
Physical Review D 75, 5 (mar 2007). 10.1103/physrevd.75.054502

[14]. Nicholas Frontiere, Emberson JD, Buehlmann Michael, Adamo Joseph, Habib Salman, Heitmann
Katrin, and Faucher-Giguère Claude-André. 2022. Simulating Hydrodynamics in Cosmology
with CRK-HACC. 10.48550/ARXIV.2202.02840

ELWASIF et al. Page 22

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[15]. Gamblin Todd, Matthew P LeGendre, Collette Michael R., Lee Gregory L., Moody Adam, de
Supinski Bronis R., and Futral W. Scott. 2015. The Spack Package Manager: Bringing order to
HPC software chaos. In Supercomputing 2015 (SC’15). Austin, Texas.

[16]. Austin Harris J, Chu Ran, Sean M Couch Anshu Dubey, Endeve Eirik, Georgiadou Antigoni, Jain
Rajeev, Kasen Daniel, Laiu MP, Messer OEB, O’Neal Jared, Sandoval Michael A, and Weide
Klaus. 2022. Exascale models of stellar explosions: Quintessential multi-physics simulation. The
International Journal of High Performance Computing Applications 36, 1 (2022), 59–77. https://
doi.org/10.1177/10943420211027937 arXiv:10.1177/10943420211027937

[17]. Humphrey William, Dalke Andrew, and Schulten Klaus. 1996. VMD – Visual Molecular
Dynamics. Journal of Molecular Graphics 14, 1 (1996), 33–38. 10.1016/0263-7855(96)00018-5
[PubMed: 8744570]

[18]. Kalé Laxmikant V. and Zheng Gengbin. 2013. Chapter 1: The Charm++ Programming Model.
In Parallel Science and Engineering Applications: The Charm++ Approach (1st ed.), Kale
Laxmikant V. and Bhatele Abhinav(Eds.). CRC Press, Inc., Boca Raton, FL, USA, Chapter 1,
1–16. 10.1201/b16251

[19]. Kelling Jeffrey, Bastrakov Sergei, Debus Alexander, Kluge Thomas, Leinhauser Matt, Pausch
Richard, Steiniger Klaus, Stephan Jan, Widera René, Young Jeff, et al. 2021. Challenges Porting
a C++ Template-Metaprogramming Abstraction Layer to Directive-based Offloading. arXiv
preprint arXiv:2110.08650 (2021).

[20]. Kent PRC, Annaberdiyev Abdulgani, Benali Anouar, Bennett M. Chandler, Josué Landinez
Borda Edgar, Doak Peter, Hao Hongxia, Jordan Kenneth D., Krogel Jaron T., Kylänpää Ilkka,
Lee Joonho, Luo Ye, Malone Fionn D., Melton Cody A., Mitas Lubos, Morales Miguel A.,
Neuscamman Eric, Reboredo Fernando A., Rubenstein Brenda, Saritas Kayahan, Upadhyay
Shiv, Wang Guangming, Zhang Shuai, and Zhao Luning. 2020. QMCPACK: Advances in
the development, efficiency, and application of auxiliary field and real-space variational and
diffusion quantum Monte Carlo. The Journal of Chemical Physics 152 (2020), 174105.
10.1063/5.0004860

[21]. Paul Laiu M, Eirik Endeve, Ran Chu, J. Austin Harris, and O. E. Bronson Messer. 2021.
A DG-IMEX Method for Two-moment Neutrino Transport: Nonlinear Solvers for Neutrino-
Matter Coupling. Astrophys. J, Suppl. Ser. 253, 2, Article 52 (April 2021), 52 pages.
10.3847/1538-4365/abe2a8 arXiv:2102.02186 [astro-ph.HE] [PubMed: 35237008]

[22]. Elijah A MacCarthy Chengxin Zhang, Zhang Yang, and Dukka KC. 2022. GPU-I-TASSER: a
GPU accelerated I-TASSER protein structure prediction tool. Bioinformatics (2022).

[23]. Matthes Alexander, Widera René, Zenker Erik, Worpitz Benjamin, Huebl Axel, and Bussmann
Michael. 2017. Tuning and Optimization for a Variety of Many-Core Architectures Without
Changing a Single Line of Implementation Code Using the Alpaka Library. In High Performance
Computing, Kunkel Julian M., Yokota Rio, Taufer Michela, and Shalf John(Eds.). Springer
International Publishing, Cham, 496–514. 10.1007/978-3-319-67630-2_36

[24]. Simon McIntosh-Smith James Price, Poenaru Andrei, and Deakin Tom. 2020. Benchmarking
the first generation of production quality Arm-based supercomputers. Concurrency and
Computation: Practice and Experience 32, 20 (2020), e5569.

[25]. Melo Marcelo C. R., Bernardi Rafael C., Rudack Till, Scheurer Maximilian, Riplinger Christoph,
Phillips James C., Maia Julio D. C., Rocha Gerd B., Ribeiro João V., Stone John E., Nesse Frank,
Schulten Klaus, and Zaida Luthey-Schulten. 2018. NAMD goes quantum: An integrative suite for
hybrid simulations. Nature Methods 15 (2018), 351–354. [PubMed: 29578535]

[26]. Phillips James C., Hardy David J., Maia Julio D. C., Stone John E., Ribeiro João V.,
Bernardi Rafael C., Buch Ronak, Fiorin Giacomo, Jérôme Hénin Wei Jiang, Ryan McGreevy
Marcelo C. R. Melo, Radak Brian, Skeel Robert D., Singharoy Abhishek, Wang Yi, Roux
Benoît, Aksimentiev Aleksei, Zaida Luthey-Schulten Laxmikant V. Kalé, Schulten Klaus, Chipot
Christophe, and Tajkhorshid Emad. 2020. Scalable molecular dynamics on CPU and GPU
architectures with NAMD. Journal of Chemical Physics 153 (2020), 044130. 10.1063/5.0014475
[PubMed: 32752662]

ELWASIF et al. Page 23

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[27]. Rajovic Nikola, Rico Alejandro, Puzovic Nikola, Chris Adeniyi-Jones, and Alex Ramirez.
2014. Tibidabo: Making the case for an ARM-based HPC system. Future Generation Computer
Systems 36 (2014), 322–334.

[28]. Sato Mitsuhisa, Ishikawa Yutaka, Tomita Hirofumi, Kodama Yuetsu, Odajima Tetsuya, Tsuji
Miwako, Yashiro Hisashi, Aoki Masaki, Shida Naoyuki, Miyoshi Ikuo, Hirai Kouichi, Furuya
Atsushi, Asato Akira, Morita Kuniki, and Shimizu Toshiyuki. 2020. Co-Design for A64FX
Manycore Processor and “Fugaku”. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–15. 10.1109/SC41405.2020.00051

[29]. Schmidmayer K, Bryngelson SH, and Colonius T. 2020. An assessment of multicomponent flow
models and interface capturing schemes for spherical bubble dynamics. J. Comput. Phys. 402
(2020), 109080. 10.1016/j.jcp.2019.109080

[30]. Stephens N, Biles S, Boettcher M, Eapen J, Eyole M, Gabrielli G, Horsnell M, Magklis G,
Martinez A, Premillieu N, Reid A, Rico A, and Walker P. 2017. The ARM Scalable Vector
Extension. IEEE Micro 37, 02 (mar 2017), 26–39. 10.1109/MM.2017.35

[31]. Stone John E., Hallock Michael J., Phillips James C., Peterson Joseph R., Luthey-Schulten Zaida,
and Schulten Klaus. 2016. Evaluation of Emerging Energy-Efficient Heterogeneous Computing
Platforms for Biomolecular and Cellular Simulation Workloads. 2016 IEEE International
Parallel and Distributed Processing Symposium Workshop (IPDPSW) (2016), 89–100. 10.1109/
IPDPSW.2016.130

[32]. Stone John E., Hardy David J., Saam Jan, Vandivort Kirby L., and Schulten Klaus. 2011. GPU-
Accelerated Computation and Interactive Display of Molecular Orbitals. In GPU Computing
Gems, Wen-mei Hwu(Ed.). Morgan Kaufmann Publishers, Chapter 1, 5–18.

[33]. Stone John E., Hardy David J., Ufimtsev Ivan S., and Schulten Klaus. 2010. GPU-Accelerated
Molecular Modeling Coming of Age. J. Molecular Graphics and Modelling 29 (2010), 116–125.
[PubMed: 20675161]

[34]. Stone John E., Hynninen Antti-Pekka, Phillips James C., and Schulten Klaus. 2016. Early
Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to
GPU-Accelerated OpenPOWER Platforms. International Workshop on OpenPOWER for HPC
(IWOPH’16) (2016), 188–206.

[35]. Stone John E., Saam Jan, Hardy David J., Vandivort Kirby L., Hwu Wen-mei W., and Schulten
Klaus. 2009. High Performance Computation and Interactive Display of Molecular Orbitals on
GPUs and Multi-core CPUs. In Proceedings of the 2nd Workshop on General-Purpose Processing
on Graphics Processing Units, ACM International Conference Proceeding Series, Vol. 383.
ACM, New York, NY, USA, 9–18.

[36]. Thompson, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier PS, in ‘t Veld
PJ, Kohlmeyer A, Moore SG, Nguyen TD, Shan R, Stevens MJ, Tranchida J, Trott C, and
Plimpton SJ. 2022. LAMMPS - a flexible simulation tool for particle-based materials modeling
at the atomic, meso, and continuum scales. Comp. Phys. Comm. 271 (2022), 108171. 10.1016/
j.cpc.2021.108171

[37]. Trott Christian R., Damien Lebrun-Grandié Daniel Arndt, Ciesko Jan, Dang Vinh, Ellingwood
Nathan, Gayatri Rahulkumar, Harvey Evan, Hollman Daisy S., Ibanez Dan, Liber Nevin, Madsen
Jonathan, Miles Jeff, Poliakoff David, Powell Amy, Rajamanickam Sivasankaran, Simberg
Mikael, Sunderland Dan, Turcksin Bruno, and Wilke Jeremiah. 2022. Kokkos 3: Programming
Model Extensions for the Exascale Era. IEEE Transactions on Parallel and Distributed Systems
33, 4 (2022), 805–817. 10.1109/TPDS.2021.3097283

[38]. Vergara Larrea Verónica G, Joubert Wayne, Brim Michael J, Budiardja Reuben D, Maxwell Don,
Ezell Matt, Zimmer Christopher, Boehm Swen, Elwasif Wael, Oral Sarp, et al. 2019. Scaling
the summit: deploying the world’s fastest supercomputer. In International Conference on High
Performance Computing. Springer, 330–351.

[39]. Zheng Wei, Zhang Chengxin, Eric W Bell, and Yang Zhang. 2019. I-TASSER gateway: a protein
structure and function prediction server powered by XSEDE. Future Generation Computer
Systems 99 (2019), 73–85. [PubMed: 31427836]

ELWASIF et al. Page 24

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Performance of GPU I-TASSER on Wombat and Summit.

ELWASIF et al. Page 25

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Cost breakdown of different MFC subroutines on various architectures. Cases V100 and

A100 have all compute kernels on the respective GPUs, so the associated CPU architecture

is not meaningful. Numbers above the bars indicate the absolute wall-clock time (in

seconds) as shown in table 5.

ELWASIF et al. Page 26

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Performance of the QUDA–HISQ stencil with and without overlapping communication.

Wombat-1 and Rome-2 denotes Wombat and Rome systems with one A100 GPU. Wombat-2

and Rome-2 denotes Wombat and Rome systems with two A100 GPUs with half (H), single

(S), and double (D) precision.

ELWASIF et al. Page 27

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
QMCPACK DMC throughput for Wombat and Summit nodes as a function of the number of

electrons in the NiO benchmark from Table 13.

ELWASIF et al. Page 28

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
Performance of SPEChpc 2021 on Wombat using OpenMP Target (TGT) offloading, relative

to OpenACC.

ELWASIF et al. Page 29

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Performance of SPEChpc 2021 on Summit using OpenMP Target Offloading (TGT)

offloading, relative to OpenACC.

ELWASIF et al. Page 30

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
SPH-EXA2 execution using MPI+OpenMP on the CPU-only setup with 2003 particles and

800 time-steps for the Sedov-Taylor test.

ELWASIF et al. Page 31

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
Execution times of SPH-EXA2 executing the Sedov-Taylor blast test

(MPI+OpenMP+CUDA, CPU+GPU) for 800 time-steps with 2003 particles, using 1

NVIDIA A100-PCIe-40GB per compute node.

ELWASIF et al. Page 32

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ELWASIF et al. Page 33

Table 1.

Applications evaluated on the Wombat testbed.

App. Name Science Domain(s) Language Parallel Programming Model(s)

ExaStar Stellar Astrophysics Fortran OpenACC, OpenMP offload

GPU-I-TASSER Bioinformatics C OpenACC

LAMMPS Molecular Dynamics C++ MPI, OpenMP, KOKKOS

MFC Fluid Dynamics Fortran MPI, OpenACC

MILC QCD C/C++ CUDA

NAMD/VMD Molecular Dynamics C++ Charm++, CUDA

PIConGPU Plasma Physics C++ Alpaka, CUDA

QMCPACK Chemistry C++ OpenMP offload, CUDA

SPECHPC 2021 Variety of applications C/C++, Fortran OpenMP offload, OpenMP

SPH-EXA2 Hydrodynamics C++ MPI, OpenMP, CUDA, HIP

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ELWASIF et al. Page 34

Table 2.

Comparison of thornado wall-clock times on each platform for the Streaming Sine Wave test problem. All runs

used the nvfortran compiler. Green rows indicate NVIDIA ARM HPC Development Kit hardware.

CPU GPU Cores:SMT:Thrds. Prog. Model Time (sec)

Power9 None 1:1:1 OpenMP 129

ThunderX2 None 1:1:1 OpenMP 244

Ampere Altra None 1:1:1 OpenMP 99.0

Power9 None 21:1:21 OpenMP 14.8

Power9 None 21:2:42 OpenMP 17.0

Power9 None 21:4:84 OpenMP 21.3

ThunderX2 None 28:1:28 OpenMP 18.6

ThunderX2 None 28:2:56 OpenMP 17.8

ThunderX2 None 28:4:112 OpenMP 18.5

Ampere Altra None 80:1:80 OpenMP 6.72

Power9 V100 1:1:1 OpenACC 3.75

ThunderX2 V100 1:1:1 OpenACC 5.54

Ampere Altra A100 1:1:1 OpenACC 2.96

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ELWASIF et al. Page 35

Table 3.

Comparison of thornado wall-clock times on each platform for the Relaxation test problem. All runs used the

nvfortran compiler. Green rows indicate NVIDIA ARM HPC Development Kit hardware.

CPU GPU Cores:SMT:Thrds. Prog. Model Time(sec)

Power9 None 1:1:1 OpenMP 199

ThunderX2 None 1:1:1 OpenMP 374

Ampere Altra None 1:1:1 OpenMP 167

Power9 None 21:1:21 OpenMP 24.6

Power9 None 21:2:42 OpenMP 25.0

Power9 None 21:4:84 OpenMP 26.3

ThunderX2 None 28:1:28 OpenMP 48.9

ThunderX2 None 28:2:56 OpenMP 46.4

ThunderX2 None 28:4:112 OpenMP 44.3

Ampere Altra None 80:1:80 OpenMP 15.3

Power9 V100 1:1:1 OpenACC 1.21

ThunderX2 V100 1:1:1 OpenACC 1.32

Ampere Altra A100 1:1:1 OpenACC 0.71

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ELWASIF et al. Page 36

Table 4.

Performance of Kokkos-based benchmarks on different platforms. Latencies are measured in microseconds

(us), atomic throughput in billion updates per second (GUp/s), transfer rates in GB/s, and LAMMPS

performance in million atomsteps per second (MAS/s). Except for latencies, higher is better.

Benchmark Arm+A100 x86+A100 P9+V100

latency par_for (μs) 2.1 2.3 6.3

latency par_for+fence (μs) 10.0 8.7 15.0

latency par_red (μs) 2.3 2.7 6.2

latency par_red+fence (μs) 16.0 13.0 19.0

atomic histogram (GUp/s) 0.030 0.038 0.048

atomic force update (GUp/s) 0.150 0.170 0.470

atomic mat.-assembly (GUp/s) 0.150 0.170 0.470

transfer h-d regular (GB/s) 12 11 12

transfer d-h regular (GB/s) 11 11 11

transfer h-d pinned (GB/s) 18 25 62

transfer d-h pinned (GB/s) 15 21 60

transfer h-d managed (GB/s) 17 11 8

transfer d-h managed (GB/s) 12 17 26

LAMMPS 1-MPI 32k (MAS/s) 122 148 125

LAMMPS 2-MPI 32k (MAS/s) 95 89 98

LAMMPS 1-MPI 256k (MAS/s) 420 404 320

LAMMPS 2-MPI 256k (MAS/s) 201 201 139

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ELWASIF et al. Page 37

Table 5.

Comparison of wall-clock times per time step on various architectures. All comparison use either the NVHPC

v22.1 or GCC v11.1 compilers as indicated. Highlighted rows indicate NVIDIA Arm HPC Development Kit

hardware.

Cores Compiler Time [s] Slowdown

NVIDIA A100 — NVHPC 0.28 Ref.

NVIDIA V100 — NVHPC 0.50 1.7

2xXeon 6248 40 NVHPC 2.7 9.6

2xXeon 6248 40 GCC 2.1 7.5

Ampere Altra 40 NVHPC 3.9 14

Ampere Altra 40 GCC 2.7 9.6

2xPOWER9 42 NVHPC 4.4 16

2xPOWER9 42 GCC 3.5 12

2xThunderX2 64 NVHPC 21 75

2xThunderX2 64 GCC 5.4 19

A64FX 48 NVHPC 4.3 15

A64FX 48 GCC 13 46

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ELWASIF et al. Page 38

Table 6.

NERSC MILC Medium Benchmark Time Breakdown (seconds)

A100 V100

Wombat Rome Summit ThunderX2

GPUs 1 2 1 2 2 2

host 281 170 301 231 462 271

compute 1834 1207 1878 996 2133 1729

h-d 75.4 39.8 68.8 46.3 76 231

d-h 93.8 44.4 98.1 72.7 89 63

comms 163 110 164 99.3 213 155

other 203 113 195 103 206 229

total 2650 1684 2705 1548 3186 2645

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ELWASIF et al. Page 39

Table 7.

NAMD single-GPU performance for 92K-atom ApoA1 simulation, NVE ensemble with 12Å cutoff, rigid

bond constraints, multiple time stepping with 2fs fast time step, and 4fs for PME. Green rows indicate

development kit hardware.

CPU :Cores:SMT:Threads GPU Comp. (ns/day)

ThunderX2 : 32:4:2 V100-PCIe GCC 124.9

2xPower9 : 42:4:7 V100-NVLINK XLC 125.7

2xXeon 6134 : 16:2:4 A100-PCIe ICC 181.4

Ampere Altra : 80:1:4 A100-PCIe GCC 182.2

DGX-A100 : 128:2:2 A100-SXM4 GCC 187.5

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ELWASIF et al. Page 40

Table 8.

NAMD single-GPU performance for 1M-atom STMV simulation, NVE ensemble with 12Å cutoff, rigid bond

constraints, multiple time stepping with 2fs fast time step, and 4fs for PME. Green rows indicate development

kit hardware.

CPU : Cores:SMT:Threads GPU Comp. (ns/day)

ThunderX2 : 32:4:8 V100-PCIe GCC 9.43

2xPower9 : 42:4:7 V100-NVLINK XLC 10.26

2xXeon 6134 : 16:2:8 A100-PCIe ICC 14.52

Ampere Altra : 80:1:40 A100-PCIe GCC 15.09

DGX-A100 : 128:2:8 A100-SXM4 GCC 15.87

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ELWASIF et al. Page 41

Table 9.

Weak Scaling Efficiency for PIConGPU (where ideal = 1.000). Problem size per device: 256 × 256 × 256 and

100 timesteps using TSC Particle form factor (SP: single precision, DP: double precision)

Nodes Scaling Altra SP Altra DP A100 SP A100 DP

1 Weak 1.000 1.000 1.000 1.000

2 Weak 0.998 0.997 0.992 0.986

4 Weak 0.995 0.994 0.982 0.970

8 Weak 0.992 0.989 0.930 0.911

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ELWASIF et al. Page 42

Table 10.

Strong Scaling Factors for PIConGPU (where ideal = N). Problem size per device: 256 × 256 × 256 and 100

timesteps using TSC Particle form factor (SP: single precision, DP: double precision)

Nodes Scaling Altra SP Altra DP A100 SP A100 DP

1 Strong 1 1 1 1

2 Strong 2.00 2.04 1.89 1.92

4 Strong 3.99 4.08 3.28 3.48

8 Strong 7.94 8.09 4.73 5.20

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ELWASIF et al. Page 43

Table 11.

Total computation times for PIConGPU’s weak scaling benchmark. Problem size per device: 256 × 256 × 256

and 100 timesteps. Particle form factor: TSC. SP: single precision, DP: double precision.

Nodes Altra SP Altra DP A100 SP A100 DP

1 173.91 s 209.18 s 8.56 s 14.82 s

2 174.24 s 209.79 s 8.62 s 15.03 s

4 174.78 s 210.36 s 8.72 s 15.27 s

8 175.33 s 211.50 s 9.20 s 16.27 s

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ELWASIF et al. Page 44

Table 12.

Total computation times for PIConGPU’s strong scaling benchmark (100 timesteps). Particle form factor:

TSC. SP: single precision, DP: double precision.

Nodes Altra SP Altra DP A100 SP A100 DP

1 4624.76 s 5661.73 s 16.40 s 29.01 s

2 2311.38 s 2772.75 s 8.67 s 15.14 s

4 1158.34 s 1389.25 s 5.00 s 8.34 s

8 582.00 s 699.63 s 3.46 s 5.58 s

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ELWASIF et al. Page 45

Table 13.

The maximum number of walkers (batch size) on a single Wombat A100 and Summit V100 GPU.

NiO supercell max walkers max walkers

electrons Summit V100 Wombat A100

48 65535 65535

96 35419 65534

192 12554 32797

384 818 2047

768 785 2047

1152 423 1244

1536 240 719

2304 96 322

3072 43 174

6144 1 32

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ELWASIF et al. Page 46

Table 14.

GPU: CUDA memcpy operations between host and device

sph-exa sedov-cuda HtoD HtoD DtoH DtoH

-n200 -s800 N1 Clake N1 Clake

Size (GB) 1744 1744 1488 1488

Time (s) 134 302 125 214

Bandwidth (GB/s) 13.0 5.8 11.9 7.0

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

	Abstract
	INTRODUCTION
	WOMBAT TESTBED
	Background
	Hardware
	Currenty the Wombat cluster consists of three set of compute nodes:

	Programming Environment

	EVALUATION METHODOLOGY
	Porting for functionality and correctness

	APPLICATIONS
	ExaStar
	Background.
	Performance and comparisons.
	Streaming Sine Wave.
	Relaxation.

	GPU-I-TASSER
	Background.
	Performance and comparisons.

	LAMMPS and Kokkos
	Background.
	Performance and comparisons.
	Kokkos Kernel Latency.
	System Atomic Throughput.
	Host-Device Data Transfer.
	LAMMPS.

	MFC
	Background.
	Performance and comparisons.

	MILC
	Background.
	Performance and comparisons.

	NAMD and VMD
	Background.
	Notes on porting for functionality and correctness experience.
	NAMD performance and comparisons.

	PIConGPU
	Background.
	Performance and comparisons.
	Experimental setup.
	Weak scaling.
	Strong scaling.

	QMCPACK
	Background.
	Performance and comparisons.
	GPU-only Results.

	SPEC HPC 2021
	Background.
	Performance and comparisons.

	SPH-EXA2
	Background.
	Performance and comparisons.
	CPU-onlyResults.
	CPU+GPU Results.

	RELATED WORK
	CONCLUSIONS
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.
	Table 7.
	Table 8.
	Table 9.
	Table 10.
	Table 11.
	Table 12.
	Table 13.
	Table 14.

