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Abstract

This paper assesses and reports the experience of ten teams working to port, validate, and 

benchmark several High Performance Computing applications on a novel GPU-accelerated Arm 

testbed system. The testbed consists of eight NVIDIA Arm HPC Developer Kit systems, each one 

equipped with a server-class Arm CPU from Ampere Computing and two data center GPUs from 

NVIDIA Corp. The systems are connected together using InfiniBand interconnect. The selected 

applications and mini-apps are written using several programming languages and use multiple 

accelerator-based programming models for GPUs such as CUDA, OpenACC, and OpenMP 

offloading. Working on application porting requires a robust and easy-to-access programming 

environment, including a variety of compilers and optimized scientific libraries. The goal of 

this work is to evaluate platform readiness and assess the effort required from developers to 

deploy well-established scientific workloads on current and future generation Arm-based GPU-

accelerated HPC systems. The reported case studies demonstrate that the current level of maturity 

and diversity of software and tools is already adequate for large-scale production deployments.

1 INTRODUCTION

Deploying new supercomputers requires continuous evaluation of novel platforms and 

understanding of the trade-offs in porting existing applications to different architectures. 

With many of the HPC technology players building general-purpose or specialized 

accelerators, it is increasingly important to have a concrete understanding of the level of 

human-time investment required to make applications production-ready on any of these 

accelerated platforms, as well as the expected performance benefits to be gained with such 

effort.

Since the introduction of Arm Neoverse IP by Arm Ltd, we have witnessed a steady 

adoption and an increasing number of CPU products based on the Arm Instruction Set 

Architecture (ISA). Noticeable deployments include Sandia Astra (first petascale-class 

system deployed in 2018) and the RIKEN R-CCS Fugaku (first exascale-class system 
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deployed in 2020). Fugaku, based on Fujitsu’s A64FX Armbased CPU1 was also the first 

systems with a SIMD-capable CPU via the Arm Scalable Vector Extension (SVE) [30].

Looking at cloud deployments, the Graviton processor2 provides a significant portion of 

computational resources provisioned by Amazon Web Services. Now in its 3rd generation, 

the Graviton CPU is based on Arm Neoverse V1 core IP and supports Arm SVE SIMD 

instructions. AWS is not the only hyperscaler interested in deploying Arm CPUs; others, like 

Microsoft and Oracle, have started to offer Arm-based instances primarily based on Ampere 

Computing Altra and Altra Max CPUs.

In the very early days of the Arm journey into HPC, Arm systems were often custom-built 

and of limited scale (tens of nodes). The Mont–Blanc [27] project and the UK Catalyst 

initiative have paved the way to more robust and accessible systems, no longer experimental 

testbeds. In recent years hybrid CPU–GPU systems are becoming the dominant choice for 

large-scale leadership-class facilities (above ~100 PFlops) due to their performance and 

power efficiency. As we advance, platforms combining a modern Arm-based CPU with 

an energy-efficient high-performance GPU appear to be a natural choice to tackle future 

computing and computational challenges.

In collaboration with NVIDIA, Oak Ridge National Laboratory pioneered the combined use 

of Arm CPU and NVIDIA GPU in 2019. The NVIDIA Arm HPC Developer Kit3 represents 

a modern Arm-based GPU-accelerated platform. The upcoming NVIDIA Grace Hopper 

Superchip4 marks a step further in the platform design where CPU and GPU are tightly 

integrated into a “superchip” with enhanced I/O capabilities.

In this fast-paced evolving landscape of accelerators and heterogeneous systems, assessing 

as early as possible the viability of any technology and its impact on software maturity, code 

portability, and developer productivity remains a must. This paper presents an application-

focused assessment of a multi-node NVIDIA Arm HPC Developer Kit test bed used 

primarily to validate software and ecosystem readiness. These systems are part of an 

experimental HPC cluster facility called Wombat, which is discussed in Section 2.

This study makes the following contributions: 1) The first thorough collaborative 

investigation of a modern GPU-accelerated Arm-based system using production 

applications; 2) Readiness analysis of those software tools required to compile the selected 

applications with and without GPU support; 3) preliminary performance results compared 

to ORNL’s Summit system; and 4) overall general assessment of the software ecosystem 

readiness for GPU-accelerated Arm-based platforms.

A handful of production-ready HPC applications has been selected for this evaluation. Table 

1 reports a simplified classification of the selected applications. Since the primary goal is 

to assess porting feasibility and obtain an initial performance baseline, we decided to used 

1 https://www.fujitsu.com/global/products/computing/servers/supercomputer/a64fx/ 
2 https://aws.amazon.com/ec2/graviton/ 
3 https://developer.nvidia.com/arm-hpc-devkit 
4 https://www.nvidia.com/en-us/data-center/grace-hopper-superchip/ 
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the selected applications as-is without investing any extra tuning efforts apart from adapting 

compiler flags or linking vendor-provided optimized libraries. Due to the breadth of the 

study and space constraints, some details are not included in this work but are available in 

[11], and references to pertinent sections are used where appropriate.

2 WOMBAT TESTBED

2.1 Background

Wombat is a small HPC cluster which has been equipped since 2018 with various Arm-

based platforms from different vendors. The cluster is deployed and managed by The 

Oak Ridge Leadership Computing Facility (OLCF) and is freely accessible to users and 

researchers. The purpose of the cluster is to serve as a testbed for Arm-based AArch64 

processors and related technologies within a close-to-production environment. Users who 

request access can use the system to port and validate their applications. Platform engineers 

at OLCF have been using Wombat to experiment and compare end-to-end integration and 

configuration aspects of Armbased HPC systems.

2.2 Hardware

Currenty the Wombat cluster consists of three set of compute nodes:

1. HPE Apollo 70 (4 nodes), each equipped with dual-socket Marvell ThunderX2 

CN9980 processors and two NVIDIA V100 GPUs, connected via PCIe Gen 3.

2. HPE Apollo 80 (16 nodes), each equipped with a single-socket Fujitsu A64FX 

processor.

3. NVIDIA Arm HPC Developer Kit (8 nodes), each equipped with a single-socket 

Ampere Computing Altra Q80–30 CPU (based on Arm Neoverse N1 IP) and two 

NVIDIA A100 GPUs - connected via PCIe Gen 4.

All nodes share a CPU-only login node based on dual-socket Marvell ThunderX2. All nodes 

are connected via either InfiniBand EDR or HDR to the same Infiniband network.

2.3 Programming Environment

The programming environment and system software has been maintained as-is for the entire 

duration of the evaluation (April and May 2022). We consciously decide not to constantly 

vary the environment and create a fixed baseline. Wombat nodes boot their OS from the 

network, and all nodes are provisioned with the same pre-built compute image based on 

CentOS 8.1 with kernel 4.18. Job submission and execution are orchestrated using SLURM. 

The compilers and interpreters available include NVIDIA HPC SDK (NVHPC) 22.1, Arm 

Compiler for HPC 22, CUDA 11.5.1, GNU 11.1, LLVM 15.0.0 with OpenMP offload 

enabled, Python 3.9.0, and Julia 1.7.0. Networking support is provided by OFED 5.4 and 

UCX 1.11.1 and although most experiments are single node, OpenMPI 4.1.2a1 is installed 

for multi-node jobs. NSight Compute SDK, Allinea Forge, and Score-P are available for 

profiling purposes .
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We use Spack [15] for additional third party scientific libraries and tools, including for 

example HDF5, OpenBLAS, and Score-P. We did not manually modify any compiler 

optimization flags used by Spack, aiming for an unfiltered “out-of-the-box” experience. 

Packages that did not have working Spack recipes were installed individually.

Each application team was responsible for building their respective application, installing 

extra dependencies, and linking the appropriate libraries.

3 EVALUATION METHODOLOGY

By definition, any testbed may lack some features found in final production systems. This 

fact should be taken into consideration when analyzing the performance results obtained.

For the purpose of this evaluation the most common performance score used in HPC, 

the Time-to-Solution, is not the primary Figure of Merit. Rather then perform a deep 

dive into the performance characteristics of each application, we perform a breadth-first 

study to assess platform’s software ecosystem readiness. This approach sets the stage for 

further improvements on system setup and tuning, aiming to increase robustness. Moreover 

enhancements in system architecture can be identified.

Following a call of contributions, 13 application teams agreed to participate in the evaluation 

process and 10 teams carried out the evaluation work until completion. Table 1 summarizes 

the final list of applications and their key characteristics. The list covers eight different 

scientific domains and includes codes written in Fortran, C, and C++. The parallel 

programming models used were MPI, OpenMP/OpenACC, Kokkos, Alpaka, and CUDA. 

We did not include changes to the application codes in the porting activities.

The evaluation process primarily focuses on application porting and testing, with less 

emphasis on absolute performance in light of the experimental nature of the testbed. 

Application teams were responsible for the basic configuration and build management for 

their respective application with support for installing needed system-wide packages using 

Spack as needed. The evaluation took place over two months spanning April and May 2022. 

Application teams were free to choose the particular use cases to be evaluated for usability 

and performance on the testbed and to compare such performance with other platforms 

where the respective codes are regularly deployed.

3.1 Porting for functionality and correctness

The porting process for the applications used in this study was fairly straightforward. 

While applications use different programming languages, offloading approaches, and third 

party libraries, such factors did not pose a challenge for initial application porting and 

functionality. The improved maturity of the Arm software ecosystem, the general availability 

of the NVHPC toolkit for Arm, and improved support in the Spack package management 

system for Arm were all factors that contributed to a seamless porting process. Minor 

modifications to respective applications build system were however required as is typical 

when moving to a new HPC platform, though no major obstacles were encountered in this 
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phase. In the following section, we do not report porting experience for each application, 

unless noteworthy issues were encountered regarding the usability of existing toolchains on 

the Wombat testbed.

4 APPLICATIONS

4.1 ExaStar

4.1.1 Background.—The toolkit for high-order neutrino-radiation hydrodynamics 

(thornado) [21] is a Fortran code (F2008) written as a stand-alone module that can be 

incorporated into ExaStar simulations [16] using the Flash-X multi-physics code. Thornado 

is used to compute the neutrino radiation field with a two-moment model for spectral 

neutrino transport that evolves moments of the neutrino phase-space distribution function 

representing spectral energy and momentum densities. In this study, we use two stand-alone 

thornado benchmarks as a tool for evaluating node-level performance: Streaming Sine Wave 

and Relaxation.

4.1.2 Performance and comparisons.—As a baseline, we ran both benchmarks on 

a single node of the Summit computer at the Oak Ridge Leadership Computing Facility 

(OLCF). Each Summit node has 2 IBM POWER9 CPUs and 6 NVIDIA Volta GPUs, but 

for comparisons to the NVIDIA Arm HPC Dev Kit, we limit comparisons to a single CPU 

or single GPU. For the CPU runs with POWER9, we also test different configurations of 

Simultaneous Multithreading (SMT). The total number of OpenMP threads is set by the 

product of the number of cores and hardware threads available. To demonstrate the parallel 

efficiency of our OpenMP implementation, we also report serial execution times for each 

CPU. On both systems, we use standard -O2 optimizations and -tp for the target CPU. For 

benchmarks that report using the GPU, all computation is done on the GPU; the CPU thread 

is only used to launch kernels and manage data transfer. In both cases, the salient Figure of 

merit is wall-time (lower is better).

Streaming Sine Wave.: We report the total wall-time to evolve ten timesteps of the 

Streaming Sine Wave benchmark for each hardware configuration in Table 2.

The serial CPU comparison shows a speedup factor of 1.3x (2.5x) for the Ampere Altra 

relative to the POWER9 (ThunderX2). This single-core performance gain is also realized 

for the multi-core comparison, where we find speedup by a factor of 2.2x (2.8x) for Altra 

relative to POWER9 (ThunderX2). However, we find poor strong scaling of Altra (18% 

parallel efficiency with 80 threads) relative to POWER9 (42% efficiency with 21 threads). 

We speculate that this is rooted in the introduction of OpenMP overhead stemming from 

many small loop nests used in the streaming advection operation. This is further supported 

by the drop in performance on POWER9 for increasing SMT levels. The Altra+A100 

results also exhibit a speedup factor of 1.3x (1.9x) relative to the POWER9+V100 

(ThunderX2+V100) and a factor of 2.3x relative to the Altra CPU-core multi-core result. 

Further analysis of the contributions of different components to the overall performance on 

different platforms can be found in [11], Section 4.1.
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Relaxation.: We report the total wall-time to evolve 10 timesteps of the Relaxation 

benchmark for each hardware configuration in Table 3.

We measure the improved serial performance of 1.2x (2.2x) for Altra relative to POWER9 

(ThunderX2), though it is a smaller improvement than the previous benchmark. The 

Relaxation benchmark exhibits similar strong scaling efficiency for multi-core performance 

of Altra, and we find a speedup factor of 1.6x (3.2x) relative to POWER9 (ThunderX2). 

The GPU results are also favorable for the Altra+A100 configuration; we find a 1.7x (1.9x) 

speedup relative to POWER9+V100 (ThunderX2+V100) and a 21.5x speedup relative to the 

Altra CPU-only multi-core case. Further analysis of the performance across the different 

platforms can be found in [11].

4.2 GPU-I-TASSER

4.2.1 Background.—GPU-I-TASSER is a GPU-capable bioinformatics method for 

protein structure and function prediction. It is developed from the Iterative Threading 

ASSembly Refinement (I-TASSER) method [39]. The I-TASSER suite predicts protein 

structures through four main steps. These include threading template identification, iterative 

structure assembly simulation, model selection, and refinement, and the final step being 

structure-based function annotation. The structure folding and reassembling stage is 

conducted by replica-exchange Monte Carlo simulations.

I-TASSER has predicted protein structures over the last decade with high accuracy. Thus, 

it has been ranked as the first automated server for protein structure prediction, according 

to the critical assessment of structure prediction (CASP) experiments, CASP7 through 

CASP13 [22].

Despite the robustness of I-TASSER in predicting protein structures with high accuracy, 

it takes considerably longer to predict some proteins’ structures. GPU-I-TASSER has 

therefore been developed to utilize the efficient GPU in predicting the structure of proteins. 

GPU-I-TASSER is developed by targeting bottleneck replica-exchange Monte Carlo regions 

of the protein structure prediction method and porting those to the device. The ported 

replica-exchange Monte Carlo regions utilize the GPU to optimize the application. The GPU 

optimization is based on OpenACC parallelization of bottleneck regions with extensive data 

management.

4.2.2 Performance and comparisons.—Performance gains across the testbed are 

compared to the performance from running the same benchmark dataset of proteins on 

Summit. For details regarding the hardware and software specs of Summit, please refer to 

[38] To ensure that both systems are on the same level regarding performance comparison, 

we used the same GPUs. For the initial comparison, we assess the average runtime in 

seconds for both serial and GPU runs on Wombat using one ThunderX2 processor and 

one NVIDIA V100 GPU. We observe an average speedup of 7.68x using V100 GPUs on 

Wombat.
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We further compare the performance across V100 GPUs to A100 GPUs on Wombat. We 

used one A100 and one V100 GPU in this case. We record an average of 7.35x speedup on 

A100 GPUs compared to the 7.68x on V100 GPUs on Wombat. We should note that the 

A100 runs were in-comparison to Ampere Computing Altra processors, whereas the V100 

performance was relative to ThunderX2 processors. Also, we took the average runtimes 

against the number of cycles of simulations within a Monte Carlo run.

Finally, we compare the performance of GPU I-TASSER on Wombat to Summit using 

NVIDIA V100 GPUs. An average speedup of 6.92x is recorded using 1 V100 GPU on 

Summit. Comparing individual runs on Summit to Wombat, we can observe that Summit 

performed slightly better than Wombat across GPU and serial runs. Specifically, average 

serial and GPU runtimes per cycle of simulations measured in seconds are 1669.57 and 

217.52, respectively, on Wombat, whereas on Summit, those are 1498.70 and 216.64, 

respectively.

Figure 1 shows the performance of Wombat’s ThunderX2 and Ampere Altra processors 

and NVIDIA A100 and V100 GPUs relative to the POWER9 processor on Summit. We 

record a slowdown of an average of 0.9x comparing ITASSER run on Wombat’s ThunderX2 

processor to Summit’s POWER9 processor. For Ampere Altra (CPU-only), NVIDIA V100, 

and A100, we record positive speedups of 1.8x, 6.9x, and 13.3x, respectively.

4.3 LAMMPS and Kokkos

4.3.1 Background.—The Kokkos C++ Programming Model is one of the leading 

ways of writing performance portable single source code for current and future HPC 

platforms [37]. It is widely used in the HPC community, particularly within the US 

National Laboratories and their partners. The programming model is implemented as a 

C++ abstraction layer on top of vendor-specific programming models such as CUDA, HIP, 

OpenMP, and SYCL. It is funded by the DOE Exascale Computing Project and developed 

by a multi-institutional team spanning several DOE laboratories.

LAMMPS is a widely used molecular dynamics application that one can use to simulate a 

wide range of materials, including condensed matter, gases, and granular materials [36]. It 

can leverage a wide array of architectures via Kokkos.

4.3.2 Performance and comparisons.—We decided on four benchmarks that stress 

host-device interactions to investigate the impact of using Arm CPU as host. Generally, we 

do not expect code mainly bound by GPU execution time to show different behavior based 

on the host CPU.

As comparison systems, we used one with an NVIDIA A100 GPU, an AMD EPYC (Milan) 

X86 CPU, and a system with NVIDIA V100 GPUs and an IBM POWER9 CPU. The latter 

system connects the GPU and CPU via NVLink. The measured performance numbers are 

given in Table 4.
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Kokkos Kernel Latency.: The Kokkos Programming model provides many different 

parallel operations, such as parallel_for and parallel_reduce, which come with different 

latencies.

Overall, the Wombat system has latencies that fall between the X86 and the IBM POWER-

based systems. While the pure launch latencies are comparable to x86, subsequent fences 

take longer. That, in turn, is reflected in higher latencies for reductions.

System Atomic Throughput.: To measure the throughput of system atomics, we ran a 

benchmark distributed as part of the Kokkos repository, which emulates three common 

atomic access patterns. However, we modified the benchmark to perform the updates into 

host pinned memory, emulating scenarios where the host and the GPU work on some data 

collaboratively. The Wombat system performs similarly to the X86 system. The IBM system 

with NVLink interconnect is significantly faster.

Host-Device Data Transfer.: We investigate three common host-device data transfer 

scenarios: transferring data to the device from regular and pinned host allocations and 

relying on page faults with managed memory.

For regular allocations, all systems perform similarly. With host pinned allocations, Wombat 

performs 3.5x worse than the IBM system with NVLink, and 25% worse than the X86 

system. For managed allocations, the transfer rates depend significantly on the copy 

direction. Wombat beats the other systems for host-to-device transfers while being the 

slowest for device-to-host transfers.

LAMMPS.: LAMMPS demonstrates the impact the observed behavior in the previous 

micro-benchmarks has on real applications. Often users run small problem sizes per GPU 

to achieve high simulation rates, making the code kernel latency sensitive. Furthermore, 

LAMMPS will be impacted by host device data transfer rates due to necessary MPI halo 

exchanges.

We chose a simple Lennard Jones type simulation with two different problem sizes (32k 

atoms and 256k atoms per GPU) to demonstrate this sensitivity. We only ran with one and 

two MPI ranks to avoid conflating the scaling behavior of LAMMPS into the data.

As the micro-benchmark would suggest, the most latency-sensitive scenario (single rank, 

32k atoms) performs worse on Wombat than on the X86 system. The larger—less latency 

sensitive—system performs similarly on Wombat and the X86 system while being slower on 

the IBM machine due to its older GPU.

When running with two ranks, the total number of kernels increases, resulting in more 

latency overhead and significant host-device transfers. The data shows that Wombat 

performs fairly similarly to the X86 system. The IBM system does not seem to benefit 

from its NVLink connection, indicating that LAMMPS likely uses regular allocations in its 

non-GPU-aware MPI code path.
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4.4 MFC

4.4.1 Background.—MFC (Multi-component Flow Code) is an opensource fluid 

flow solver available at https://mflowcode.github.io [4]. It provides high-order accurate 

solutions to a wide variety of physical problems, including multi-phase compressible flows 

[29] and sub-grid dispersions [3]. MFC employs a finite volume shock and interface 

capturing scheme via weighted essentially non-oscillatory (WENO) reconstruction, HLL-

type approximate Riemann solvers, and total variation diminishing time steppers.Quadrature 

moment methods handle the sub-grid closures [7].

The MFC codebase is written in Fortran with MPI (and CUDA-aware MPI) capabilities 

for distributed parallelism. OpenACC provides GPU offloading capability for all compute 

kernels A Python front-end handles input data, execution, and metaprogramming for 

compiler optimizations. The FFTW package provides access to fast Fourier transforms 

for computing derivatives in cylindrical coordinates. HDF5 and Silo handle I/O and post-

processing.

4.4.2 Performance and comparisons.—We next investigate the performance of MFC 

on NVIDIA Arm HPC Development Kits, stressing both the Ampere CPUs and the NVIDIA 

A100 GPUs. A three-dimensional, two-phase, 16 million grid point fluid dynamics problem 

served this purpose, representing a typical multiphase flow workload. The performance 

metric of interest is the average execution wall-clock time over 10 time steps (excluding the 

first five steps). We tested performance on several available CPUs: Ampere Altra Q80–30, 

Fujitsu A64FX, Cavium ThunderX2, Intel Xeon Gold Cascade Lake (SKU 62485), and 

IBM POWER9. Both NVHPC and GCC v11.1 compilers were tested with -fast and -Ofast 

compiler optimization flags, respectively. GPU performance was analyzed for the NVIDIA 

V100 (accessible on Summit) and A100 (accessible on Wombat) using the NVHPC v22.1 

compiler with the -Ofast flag. All computations are double precision.

Table 5 shows average wall-clock times and relative performance metrics for the different 

hardware. The “Time” column has little absolute meaning, with the relative performance 

being the most meaningful (also shown last column). In Table 5 the CPU wall-clock times 

are normalized by the number of CPU cores per chip. The results show that the A100 GPU 

is 1.72x faster than the V100 on OLCF Summit, faster than even the peak double-precision 

performance would anticipate between the two cards (a factor of 1.24).

A single A100 also gives a 7.3x speed-up over the fastest tested Intel Xeon Cascade Lake. 

The GCC11 compiler gives shorter wall-clock times than the NVHPC compiler on all CPU 

architectures. The Ampere Altra CPUs are 1.4x faster when compared to the POWER9s and 

1.2x slower than the Intel Xeons. In addition, the ThunderX2 CPUs are about 2x slower than 

the POWER9 CPUs. The wall-clock measured using the Fujitsu A64FX CPUs are a factor of 

10 slower. However, MFC is not explicitly vectorized for Arm instructions. We expect that 

this and an appropriate Fujitsu Arm compiler are required to extract peak performance from 

this chip.

5Access provided by Pittsburgh Supercomputing Center
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Figure 2 shows a time-step normalized breakdown of the duration of the most expensive 

MFC routines. The left three columns indicate kernel times on GPUs and the rest are 

CPU-only. When using GPU offloading, all compute kernels are executed by the GPU, 

with CPU executing I/O and managing halo exchanges. It shows that MPI communications 

consume a meaningful proportion of the total time on the GPUs but are negligible on CPUs. 

This result is an artifact of faster routines on the GPUs but approximately constant MPI 

communication times on CPUs and GPUs. Otherwise, we see that the routine proportions 

associated with the different CPU and GPU architectures are similar.

4.5 MILC

4.5.1 Background.—MILC6 is an application package concerned with the simulation 

of Lattice Quantum Chromodynamics (LQCD) to further the study of the (sub-)nuclear 

physics. MILC handles the generation of gauge field configurations (sampling of the 

partition function) using Markov Chain Monte Carlo methods, most commonly RHMC [8], 

and analyzes those configurations to generate physics observables. For both, the dominant 

algorithm is the iterative linear solver, stemming from the discretized Dirac equation on 

a 4-d spacetime, giving rise to a sparse matrix, or stencil, one must repeatedly solve. 

Conjugate Gradient is the solver of choice for the commonly used HISQ discretization [13] 

employed by MILC practitioners.

While popular in the LQCD community, MILC is also often used as a benchmark for HPC 

systems. Node-level performance is usually dictated by memory bandwidth or, in the case of 

multi-node scaling, the network bandwidth. Specifically, the inter-process bandwidth must 

be fast enough to overlay the stencil halo communication with the local stencil application.

MILC runs on GPUs via QUDA library7. Given the propensity for high memory bandwidth 

on GPUs relative to CPUs, offloading the iterative solver to the GPU dramatically increases 

the inter-process (GPU) memory bandwidth required to successfully strong scale.

4.5.2 Performance and comparisons.—To probe performance, we utilize the 

NERSC Medium benchmark8 and look at performance on one and two GPUs on the 

same node, comparing performance to a platform with AMD EPYC 7742 Rome CPUs and 

identical A100 GPUs. This platform is similar because it lacks the NVLink interconnect 

and has the same PCIe gen4 capability. However, critically it supports the peer-to-peer PCIe 

protocol allowing for inter-GPU communication without staging in CPU memory.9 We also 

include measurements taken on the ThunderX2 system compared to Summit, with the latter 

notably supporting peer-to-peer communication using NVLink. Due to memory footprint 

size, we include only 2 GPU results.

Table 6 breakdowns the benchmark run times. We note the following key results:

6 https://github.com/milc-qcd/milc_qcd 
7 https://github.com/lattice/quda 
8 https://github.com/lattice/quda/wiki/Running-the-NERSC-MILC-Benchmarks 
9While NVSHMEM is supported on Rome, we chose to make a more direct comparison by deploying MPI exclusively as the 
communication protocol.
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• Single GPU performance is roughly equivalent between Wombat and Rome 

(2650 s vs. 2705 s), with a slight advantage over Wombat.

• For Dual GPU performance, we see Rome does significantly better (1684s vs. 

1548s), with the primary deficit arising due to the “compute”.

• The non-GPU accelerated computation “host” shows that Wombat is more than 

competitive with Rome.

• The raw copy bandwidth between host and device seems to favor the Altra, 

regardless of the direction of the copy.

• Summit performs significantly better overall than ThunderX2 (2645 s versus 

3186 s), with the primary deficit being due to compute.

To better understand the poor scaling of Wombat on two GPUs, in Figure 3 we plot 

the performance of the HISQ stencil for the three precisions, the application of which 

is responsible for the bulk of the time spent in the mixed-precision solver. Without 

communication, we see performance parity between the two platforms. However, when we 

include communication overhead, we see that Wombat’s performance is severely impacted. 

In particular, we note that half-precision on 2 GPUs is 45% slower on Wombat versus 

Rome. We do not include the ThunderX2 and Summit results here for brevity, but we note 

that a similar picture is painted: with ThunderX2 having a 54% performance deficit for the 

half-precision stencil.

4.6 NAMD and VMD

4.6.1 Background.—NAMD [26] and VMD [17] are biomolecular modeling 

applications for molecular dynamics simulation (NAMD10) and for preparation, analysis, 

and visualization (VMD11). Researchers use NAMD and VMD to study biomolecular 

systems ranging from individual proteins, large multi-protein complexes, photosynthetic 

organelles, and entire viruses. Both programs support hardware platforms ranging from 

personal laptops, workstations, and clouds, up to the largest parallel supercomputers [1]. 

NAMD and VMD are written in C++, C, CUDA, and some platform-specific SIMD vector 

intrinsics and assembly language for specific performance-critical routines. NAMD is based 

on the Charm++ parallel runtime system [18], which provides an adaptive, asynchronous, 

distributed, message-driven, task-based parallel programming model using C++. NAMD and 

VMD incorporate built-in interpreters for Tcl and Python to provide easy-to-use scripting.

4.6.2 Notes on porting for functionality and correctness experience.—The 

first adaptations of NAMD and VMD to Arm hardware were performed with SoC on-chip 

GPU embedded system platforms (NVIDIA CArmA, KAYLA, Jetson TK1, and Jetson 

TX1), or PCIe-attached GPU (Applied Micro X-Gene/ThunderX + Tesla K20c) system [31]. 

Wombat presented no compilation barriers for NAMD or VMD, but some minor issues are 

noted. The Charm++ parallel runtime system used by NAMD did not compile cleanly with 

10 https://www.ks.uiuc.edu/Research/namd/ 
11 https://www.ks.uiuc.edu/Research/vmd/ 
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GCC 11.1.0, so GCC 10.2 was used to compile NAMD and its associated components. 

Besides the CUDA toolkit, NAMD also requires FFTW and Tcl libraries, which were easily 

built on Wombat. Performance results for GPU-resident NAMD are reported in Table 7 and 

Table 8.

VMD used a new startup query of CPU SIMD vector instruction set extensions for runtime 

dispatch of performance-critical loops to hand-vectorized CPU kernels. VMD was extended 

to query Arm64 CPU vector instruction availability using the Linux kernel getauxval() 

API, enabling runtime detection and kernel dispatch for Arm64 NEON and SVE vector 

instructions. New hand-vectorized data-parallel NEON and SVE kernels were developed 

for key atom selection operations and for molecular orbital analysis and visualization, with 

performance reported in [11] The new NEON and SVE molecular orbital kernels are direct 

mathematical and algorithmic descendants from previous CPU and GPU kernels [25, 31–

35].

Testing of SVE vector instructions on Fujitsu A64fx nodes demonstrated that two recent 

versions of the Arm compiler toolchain (21.1 and 22.0) and LLVM (Clang) 10.0.1 generated 

incorrect code for particular SVE vector intrinsics used in the VMD molecular orbital 

kernel. As such, the older Arm HPC toolkit version 20.3 was used for the reported results. 

Similarly, LLVM/Clang versions older than 11.0.1 did not generate correct results for SVE, 

so the newer version was used for reported results.

4.6.3 NAMD performance and comparisons.—Benchmarks are shown for the new 

GPU-resident code path in NAMD [26], which is able to fully utilize an A100 GPU. 

Although GPU-resident NAMD scales across multiple GPUs on a single node, it depends 

on high-performance peer-to-peer GPU communication through NVLink using relatively 

fine-grained load-store operations within CUDA kernels. The lack of this capability on 

ORNL Wombat limited this study to single GPU performance and the best use of the 

Ampere Altra.

Two systems are benchmarked representing the extremes of system sizes that are well suited 

to single-GPU simulation, ApoA1 (92K atoms) and STMV (1M atoms), and performance 

is compared with two x86-based configurations, A100–PCIe with Intel Xeon 6134 and 

A100–SXM4 with AMD EPYC Milan 7763 (a single A100 on DGX–A100). The results are 

shown in Table 7 and Table 8, where performance is reported as the number of simulated 

nanoseconds attainable per day. Each hardware configuration shows the fixed CPU cores 

and SMT setting together with the number of threads used by NAMD, in which the best 

performance is achieved when running one thread per core. As the simulated atoms move, 

the updating of the domain decomposition and rebuilding of device-side data structures are 

still done on the CPU. The optimal number of threads depends on the size of the system, 

since adding threads can improve performance up until the thread management overhead 

exceeds the available computational gain.

The A100–SXM4 configuration proves to be the fastest due to a faster-clocked GPU and 

PCIe 4.0 bus. The Ampere Altra A100 configuration is the next fastest due to also having 
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a PCIe 4.0 bus. Even though the Ampere Altra cores are SMT 1 and have independent L1 

cache memory, performance was improved, especially for the larger system in Table 8, by 

staggering the thread mapping to use just the even-numbered cores. Simulations on A100 

are as much as 50% faster than on V100. Similar performance is demonstrated for Cavium 

ThunderX2 and IBM POWER9, with the latter benefiting from its low latency NVLink 

connection between CPU and GPU.

In addition the NAMD study, we also performed an assessment of VMD’s performance on 

the Wombat testbed. Details of this assessment can be found in [11]

4.7 PIConGPU

4.7.1 Background.—PIConGPU [5] is a C++ application that is a scalable, 

heterogeneous, and fully relativistic particle-in-cell (PIC) code and provides a modern 

simulation framework for laser-plasma physics and laser-matter interactions suitable for 

production-quality runs. The code is used to develop advanced particle accelerators for 

cancer radiation therapy, high-energy physics, and photon science. PIConGPU utilizes the 

alpaka [19, 23] abstraction layer and the particle-in-cell algorithm for its science case 

simulations.

For this work, we use a configuration of PIConGPU that simulates a Weibel instability in 

a plasma of electrons and positrons, i.e., where all particle species have equal mass. Three 

variations with different computational intensity are considered: one with a cubic-spline 

particle shape using single-precision floating point and two with quadratic-splines using 

single- and double-precision, respectively.

Structurally, PIConGPU is a stencil code with spatial domain decomposition. To facilitate 

scaling benchmarks, automatic estimation of suitable buffer sizes for particle exchange 

was introduced into PIConGPU. Each MPI rank exchanges boundary/guard values and 

particles passing the boundaries with its spatial neighbors using asynchronous point-to-point 

communication. The particle-grid operations are spatially local and so fit in this scheme.

For the following performance evaluation, we used the aforementioned configuration and 

verified the correctness of the results by comparing them to previous benchmark results we 

have collected on other systems.

4.7.2 Performance and comparisons.—Our main analysis focus was execution on 

Wombat’s Ampere nodes Since PIConGPU is not yet a fully heterogeneous code, we did 

separate runs for the CPUs and the A100 GPUs. Additionally, we evaluated both single 

precision and double precision data. For all benchmarks, we used the Triangular Shape 

Cloud (TSC) particle form factor. Variation across multiple grid dimensions would result in 

more MPI overhead, so we restricted the benchmark variants to the z dimension.

Experimental setup.: For the CPU runs, we used one MPI rank per node. Each MPI utilized 

80 OpenMP threads. From PIConGPU’s perspective, this constitutes a single CPU device 
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per node. For the GPU runs, we used two MPI ranks per node with one rank per A100 GPU. 

Both configurations maximise the use of the available resources.

Weak scaling.: For the weak scaling analysis, we used a base problem size of 100 time 

steps and 256×256×256 cells per computation device. Then we added another 256 cells to 

the z dimension for any additional device. Table 14 in [11] shows the setup per node in 

more detail. The results of the weak scaling benchmarks are shown in Table 9. With the 

efficiency staying above 90% for all cases, it can be demonstrated that PIConGPU scales 

well across multiple Ampere compute nodes – on a previously unknown HPC system and 

equally unfamiliar hardware – with minimal porting effort.

However, there are also significant differences between CPU and GPU efficiency. This can 

be explained by the absolute runtime required for the computation as shown in Table 11. The 

GPUs perform the computations much faster than the CPUs. In turn, the GPU weak scaling 

efficiency is affected by MPI communication overhead much more than the CPU efficiency, 

likely due to GPU to host data transfer.

Strong scaling.: For the strong scaling analysis, we used a base problem size of 100 time 

steps and 256×256×z cells per computation device. z varies between CPUs and GPUs: For 

CPUs, it is 6912; for GPUs (with less available memory), it is 1024.

Table 10 shows the strong scaling speedup achieved by running PIConGPU across multiple 

nodes. The results corroborate the weak scaling findings: the CPU runs achieve near-perfect 

speedups when spread across multiple nodes, while the GPU speedups are noticeably below 

the ideal. In absolute numbers, the GPUs are again much faster than the CPUs (as shown in 

Table 12), so one needs to account for the strong impact of MPI communications.

4.8 QMCPACK

4.8.1 Background.—QMCPACK[20] is an open-source, high-performance Quantum 

Monte Carlo (QMC) package that solves the many-body Schrödinger equation using 

a variety of statistical approaches. The few approximations made in QMC can be 

systematically tested and reduced, potentially allowing the uncertainties in the predictions 

to be quantified at a trade-off of the significant computational expense compared to 

more widely used methods such as density functional theory. Applications include weakly 

bound molecules, two-dimensional nanomaterials, and solid-state materials such as metals, 

semiconductors, and insulators.

The present study’s goal is to evaluate the performance of the Diffusion Monte Carlo (DMC) 

algorithm on NVIDIA A100 GPUs and Arm Ampere CPUs using QMCPACK’s standard 

performance tests. They consist of short DMC calculations of variously sized supercells 

of bulk nickel oxide, NiO. The computational cost of these calculations formally scales 

cubically with the total electron count, which in turn is determined by the atoms in the 

supercell and their elemental composition.

ELWASIF et al. Page 16

Proc Int Conf High Perform Comput Asia Pac Reg HPC Asia 2023 Workshops (2023). Author manuscript; available in PMC 2024 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.8.2 Performance and comparisons.—We set up a set of problem sizes in the NiO 
supercell benchmark characterized by the number of electrons in the system. Memory usage 

is formally quadratic in the electron count. As memory requirements increase, the number of 

potential “walkers” that can fit in the GPU or on-node memory reduces. Because the GPU 

implementation batches work over the number of walkers, the achievable efficiency can be 

limited if the batch size can not be large enough before the GPU memory is exhausted.

Performance is measured using a throughput metric. As defined in (1), throughput is 

measured as the computational cost associated with a single DMC simulation yielding to 

the frequency of advancing walkers in the DMC simulation, with higher values indicating 

better performance. The cost is cubic in the electron count and linear in the walker count. 

Thus the throughput drops dramatically at large electron counts.

Throughput = walkers × blocks × steps
DMC time (1)

GPU-only Results.: The initial focus on targeting Wombat’s NVIDIA’s A100 GPUs on 

Ampere nodes is to understand the number of possible “walker count per GPU device” 

for the NiO supercell benchmark for different system sizes. Walker counts in QMCPACK 

are equivalent to the “batch size” for GPU computation, finding the maximum number of 

walkers also allows for efficient use of each available GPU. We apply a bisectional search 

to find the maximum walker count limits due to memory limitations within a single walker 

count range for accuracy (±1 walkers). The resulting walker count limits per A100 GPU 

(40 GB) are given in Table 13 which also provides this information for reference on the 

V100 GPU, offering 16 GB of memory, from our experiments on Summit. As the system 

size increases, the benefits of the A100 memory become larger, with the largest measured 

system size of 6144 electrons surpassing the simple memory ratio between A100 and V100 

of 2.5x by a factor of 32 due to the significant additional memory overheads in storing 

wavefunctions used in the calculation.

We use the walker count on Table 13 on each system to compare the DMC performance 

throughput on (1) ranging from 1 GPU to the maximum limit using Summit’s 6 V100 GPUs 

and Wombat’s 2 A100 GPUs per node. Results are illustrated in Figure 4 showing the results 

obtained on Wombat using the NVHPC compiler and on Summit. As expected, single A100 

GPU runs on Wombat outperform those on V100s, with significantly larger throughput for 

nearly all problem sizes. When using all the available GPUs per node on each system, we 

observe that for smaller cases, Summit 6 V100 GPUs out-perform in terms of throughput per 

node. However, Wombat’s A100 2 GPUs are significantly more performant for the largest 

and most computationally challenging case. For these system sizes, greater GPU memory is 

the biggest factor in increased performance.

In addition to the study using GPU offloading, we performed an assesment using CPU only 

configuration for QMCPACK. Those results can be found in Section 4.8 in [11].
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4.9 SPEC HPC 2021

4.9.1 Background.—SPEChpc 2021 is a benchmark suite comprised of real-world 

application codes designed for portable performance across heterogeneous CPU and GPU 

architectures [2]12. SPEChpc provides C/C++ and Fortran codes, accelerated by OpenMP, 

OpenMP Offloading, OpenACC, and CUDA programming models. On Wombat, we utilized 

SPEChpc 2021 to evaluate single-node performance using one to two NVIDIA A100 GPUs 

while varying the number of cores bound to each GPU.

4.9.2 Performance and comparisons.—We ran the SPEChpc 2021 suite on Wombat 

comparing the results to ORNL’s Summit. The compilers used on Wombat were NVHPC 

22.1 using OpenMP target offloading (NVHPC-TGT) and OpenACC offloading (ACC), 

and LLVM v15.0.0 using OpenMP target offloading (LLVM-TGT). POT3D, SOMA, and 

Weather benchmarks data is not provided since LLVM is not built with Fortran support. 

Three iterations of the tiny benchmark were performed on Wombat. On Wombat, we tested 

with combinations of one and two NVIDIA A100 GPUs. We ran the benchmark suite using 

one and two ranks per GPU for a total of four data points for each acceleration model. 

On Summit, we tested the use of six V100 GPUs with one iteration using one rank per 

GPU. Summit displays several runtime errors while running on one V100 GPU because the 

SPEChpc tiny benchmark targets about 40 GB of memory usage, which exceeds the V100 

limit of 16 GB.

Figure 5 and Figure 6 show the performance (measured as wall-time) of the OpenMP target 

offloading implementations of NVHPC and LLVM on Wombat and Summit, respectively, 

relative to NVHPC OpenACC. A 19x speed-up difference in runtime is observed in 

Minisweep from NVHPC-ACC to NVHPC-TGT on Wombat using a single GPU, one rank 

per GPU, and a 14x difference is observed when using both A100 GPUs. This behavior 

is not limited to Wombat, as Summit also observed an 8x slowdown from NVHPC-ACC 

to NVHPC-TGT when using all 6 GPUs, one rank per GPU. This behavior is also not 

limited to NVHPC’s OpenMP offloading, as LLVM-TGT demonstrates a 4–6x slowdown on 

Minisweep on both Summit and Wombat.

Using one GPU on Wombat, five of the six codes that complete with NVHPC–TGT are 

slower than when using NVHPC–ACC, and all three of the codes that complete for LLVM-

TGT are slower than when using NVHPC-ACC. On all GPUs, 7 of the 9 codes run faster 

using ACC than TGT on Wombat, and 5 of the 7 codes that complete without a runtime 

error on Summit run faster using ACC than TGT.

4.10 SPH-EXA2

4.10.1 Background.—The SPH-EXA2 project is a multidisciplinary effort that extends 

the SPH-EXA[6] project and aims to scale the Smoothed Particle Hydrodynamics (SPH) 

method to enable exascale hydrodynamics simulations for Cosmology and Astrophysics. On 

Wombat, we used the Sedov-Taylor blast wave explosion test [14] to simulate a spherical 

12 https://www.spec.org/hpc2021/ 
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shock generated by the instantaneous injection of thermal energy at a single point in 

a static uniform background. This test requires the code to simulate shock-fronts while 

correctly maintaining spherical symmetry and conservation laws. SPH-EXA213 is open 

source, written in C++17, parallelized with MPI and OpenMP, and accelerated with CUDA 

and HIP.

4.10.2 Performance and comparisons.—To investigate the impact of using the Arm 

CPU on SPH-EXA2, we conduct tests on three different systems within the Wombat 

platform (described in Section 2.2) and two x86_64 non-Arm systems (described in [11, 

Table 20]). We report and compare the performance results of a CPU-only run and a 

CPU+GPU run using a single node executing the Sedov–Taylor blast test case with 2003 

particles for 800 time-steps.

CPU-onlyResults.: Figure 7 shows the results for the MPI+OpenMP code version of SPH-

EXA2 on CPU only setup. The average time in seconds per time-step of the simulation is 

shown on the top chart (lower is better), and the achieved iteration throughput per minute 

of the simulation is shown on the bottom chart (higher is better). On Wombat, the best 

performance is obtained with the GNU compiler on the Ampere N1 CPU, while the overall 

best performance is achieved on x86_64 CPUs. Systems with fewer cores per socket lead to 

lower overall performance than those with higher core counts. Additionally, the results on 

Marvel ThunderX2 and Fujitsu A64FX systems show that the SPH-EXA2 code compiled 

with the GNU compiler outperforms the Arm compiler.

Further code profiling using the Arm Performance Reports tool allowed us to identify 

the cause of the performance difference between Ampere N1 and Fujitsu A64FX CPUs 

since the former has fewer cores but performs better in our tests. Profiling showed that a 

higher number of L2 cache misses and stalled cycles on the Fujitsu A64FX CPUs cause 

performance degradation. We believe this is due to the Ampere N1 having only 1 NUMA 

node compared to the 4 NUMA nodes of Fujitsu A64FX. Further analysis is needed to use 

the vectorization support (SVE) better and increase compute performance.

CPU+GPU Results.: Figure 8 shows the execution times of the MPI+OpenMP+CUDA 

version of the SPH-EXA2 code. The Ampere N1 system on Wombat slightly outperforms 

the x86_64 reference system. The difference in performance is caused by the Ampere N1 

having PCIe 4.0 compared to the x86_64 reference system’s PCIe 3.0 port, which creates the 

difference between data transfer rates between the CPU and the GPU. The size and speed 

of CUDA memcpy operations reported in Table 14 show that the same amount of data was 

transferred between host (H) and device (D) on both systems, with higher transfer rates on 

Wombat’s Ampere N1.

Using Nsight, SPH-EXA2’s top kernels were identified as compute-bound, and the 

measured performance shows that using Arm as the host CPU has no negative impact on the 

execution time of the kernels.

13 https://github.com/unibas-dmi-hpc/SPH-EXA 
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5 RELATED WORK

Prior work has primarily focused on the evaluation of HPC applications on the Arm Cavium 

ThunderX2 with the Aries interconnect as part of the Isambard supercomputer [24] and the 

A64FX processor with TOFU interconnect in the Fugaku system [28] and with InfiniBand 

interconnect [12] on the Okami system. Other related work has looked at Arm-based 

performance portability with ThunderX2 and previous generation Ampere nodes [9] and 

concludes that Kokkos and OpenMP provide performance portability across Arm and x86 

platforms. A more recent update adds SYCL evaluation but comes to similar conclusions 

[10].

In terms of more cloud-HPC-focused efforts, a recent hackathon run by the non-profit Arm 

HPC User Group, AWS, and Arm supported the testing and development of HPC codes on 

AWS’s custom Graviton2 instances. This event, the AHUG Hackathon: Cloud Hackathon 

for Arm-based HPC 14, supported 30 teams to investigate the top HPC applications used 

on AWS and helped test Spack packages with flags for the Graviton2 setup as well as 

Reframe testing scripts for Arm and x86 platforms. The effort focused on porting several 

HPC applications running on Arm, including a full set of mini-apps and applications15, but 

it did not include any accelerated nodes. This work complements other HPC application 

efforts on AWS, including Nalu16, a CFD modeling code, and NWChem17, a widely used 

quantum chemistry code.

6 CONCLUSIONS

In this work, we used the Wombat testbed at the Oak Ridge Leadership Computing Facility 

(OLCF) to study the readiness and usability of a modern GPU-accelerated Arm-based 

HPC platform, the NVIDIA Arm HPC Developer Kit. Ten representative applications from 

different scientific domains, and using a variety of programming models and languages were 

selected, built on the platform and tested for correctness. Wherever possible, performance 

was compared with other leading HPC platforms used for production science, as well as 

other Arm-based platforms that are part of the Wombat system.

As seen from the various application experiences, the porting process was straightforward 

and mostly required minor modifications to the build systems to compile and run on the 

target platform. The availability of a fairly mature set of compilers that cover the gamut 

of used programming models was crucial in achieving this seamless porting process. 

Of particular note, the availability of the NVIDIA HPC SDK facilitated the porting 

process or those applications that currently use this tool-chain on other GPU-accelerated 

supercomputers, such as Summit. Furthermore, the maturity of Arm support in the spack 

package management system greatly facilitated the deployment of third-party tools and 

libraries needed by the various application teams.

14 https://community.arm.com/arm-community-blogs/b/high-performance-computing-blog/posts/aws-arm-ahug-hpc-cloud-hackathon 
15 https://github.com/arm-hpc-user-group/Cloud-HPC-Hackathon-2021/tree/main/Applications 
16 https://community.arm.com/arm-community-blogs/b/high-performancecomputing-blog/posts/low-mach-number-cfd-modeling-
with-nalu-on-graviton2-aws-m6g 
17 https://www.youtube.com/watch?v=xq_sj4nAk3k 
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While exhaustive performance optimization was not a primary goal of this work, we carried 

out preliminary performance measurements to assess the overall platform readiness. For 

application considered GPU-dominant, performance improvements were commensurate with 

the hardware capabilities of the NVIDIA Ampere GPU (A100) relative to the previous 

generation NVIDIA Volta GPU (V100), and using an Arm-based CPU did not adversely 

impact the outcome. We carried out several CPU-only experiments for a subset of the 

applications where the code can be configured to run only on the CPU. We observed that the 

Ampere CPU’s performance was generally competitive with leading X86–64 and Power9 

CPUs. It should be noted that the lack of an appropriate fast and fully RDMA-capable 

CPU-GPU bus in the Wombat testbed (similar to NVIDIA NVLink on POWER9 CPU in 

Summit or AMD’s xGMI in the newly installed Frontier supercomputer at OLCF) and the 

lack of NVLink across the CPU and GPUs adversely impacted performance for applications 

that require fast data movement across the different processing elements in the platform. 

Exploiting these features requires a holistic design that combines needed system software 

with a hardware design that adopts a GPU-centric platform design. Such a design can be 

found in systems such as NVIDIA DGX18 or Frontier19, where the GPUs are connected 

directly to the NICs on the node. In the near future, more tightly integrated cache-coherent 

CPU-GPU platforms (e.g. NVIDIA Grace Hopper Superchip) will further enhance developer 

productivity and platform programmability.

Evaluating testbeds is a continuous process. As our next step, we plan to investigate the 

Arm platform’s usability for large data and machine learning workloads and the exploitation 

of NVIDIA Blue-Field Data Processing units (DPU). As more Arm-based platforms from 

various vendors become available in the market, we anticipate continuing this evaluation 

effort to better understand the platform’s strengths and potential incompatibilities with 

different classes of applications.
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Fig. 1. 
Performance of GPU I-TASSER on Wombat and Summit.
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Fig. 2. 
Cost breakdown of different MFC subroutines on various architectures. Cases V100 and 

A100 have all compute kernels on the respective GPUs, so the associated CPU architecture 

is not meaningful. Numbers above the bars indicate the absolute wall-clock time (in 

seconds) as shown in table 5.
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Fig. 3. 
Performance of the QUDA–HISQ stencil with and without overlapping communication. 

Wombat-1 and Rome-2 denotes Wombat and Rome systems with one A100 GPU. Wombat-2 

and Rome-2 denotes Wombat and Rome systems with two A100 GPUs with half (H), single 

(S), and double (D) precision.
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Fig. 4. 
QMCPACK DMC throughput for Wombat and Summit nodes as a function of the number of 

electrons in the NiO benchmark from Table 13.
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Fig. 5. 
Performance of SPEChpc 2021 on Wombat using OpenMP Target (TGT) offloading, relative 

to OpenACC.
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Fig. 6. 
Performance of SPEChpc 2021 on Summit using OpenMP Target Offloading (TGT) 

offloading, relative to OpenACC.
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Fig. 7. 
SPH-EXA2 execution using MPI+OpenMP on the CPU-only setup with 2003 particles and 

800 time-steps for the Sedov-Taylor test.
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Fig. 8. 
Execution times of SPH-EXA2 executing the Sedov-Taylor blast test 

(MPI+OpenMP+CUDA, CPU+GPU) for 800 time-steps with 2003 particles, using 1 

NVIDIA A100-PCIe-40GB per compute node.
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Table 1.

Applications evaluated on the Wombat testbed.

App. Name Science Domain(s) Language Parallel Programming Model(s)

ExaStar Stellar Astrophysics Fortran OpenACC, OpenMP offload

GPU-I-TASSER Bioinformatics C OpenACC

LAMMPS Molecular Dynamics C++ MPI, OpenMP, KOKKOS

MFC Fluid Dynamics Fortran MPI, OpenACC

MILC QCD C/C++ CUDA

NAMD/VMD Molecular Dynamics C++ Charm++, CUDA

PIConGPU Plasma Physics C++ Alpaka, CUDA

QMCPACK Chemistry C++ OpenMP offload, CUDA

SPECHPC 2021 Variety of applications C/C++, Fortran OpenMP offload, OpenMP

SPH-EXA2 Hydrodynamics C++ MPI, OpenMP, CUDA, HIP
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Table 2.

Comparison of thornado wall-clock times on each platform for the Streaming Sine Wave test problem. All runs 

used the nvfortran compiler. Green rows indicate NVIDIA ARM HPC Development Kit hardware.

CPU GPU Cores:SMT:Thrds. Prog. Model Time (sec)

Power9 None 1:1:1 OpenMP 129

ThunderX2 None 1:1:1 OpenMP 244

Ampere Altra None 1:1:1 OpenMP 99.0

Power9 None 21:1:21 OpenMP 14.8

Power9 None 21:2:42 OpenMP 17.0

Power9 None 21:4:84 OpenMP 21.3

ThunderX2 None 28:1:28 OpenMP 18.6

ThunderX2 None 28:2:56 OpenMP 17.8

ThunderX2 None 28:4:112 OpenMP 18.5

Ampere Altra None 80:1:80 OpenMP 6.72

Power9 V100 1:1:1 OpenACC 3.75

ThunderX2 V100 1:1:1 OpenACC 5.54

Ampere Altra A100 1:1:1 OpenACC 2.96
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Table 3.

Comparison of thornado wall-clock times on each platform for the Relaxation test problem. All runs used the 

nvfortran compiler. Green rows indicate NVIDIA ARM HPC Development Kit hardware.

CPU GPU Cores:SMT:Thrds. Prog. Model Time(sec)

Power9 None 1:1:1 OpenMP 199

ThunderX2 None 1:1:1 OpenMP 374

Ampere Altra None 1:1:1 OpenMP 167

Power9 None 21:1:21 OpenMP 24.6

Power9 None 21:2:42 OpenMP 25.0

Power9 None 21:4:84 OpenMP 26.3

ThunderX2 None 28:1:28 OpenMP 48.9

ThunderX2 None 28:2:56 OpenMP 46.4

ThunderX2 None 28:4:112 OpenMP 44.3

Ampere Altra None 80:1:80 OpenMP 15.3

Power9 V100 1:1:1 OpenACC 1.21

ThunderX2 V100 1:1:1 OpenACC 1.32

Ampere Altra A100 1:1:1 OpenACC 0.71
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Table 4.

Performance of Kokkos-based benchmarks on different platforms. Latencies are measured in microseconds 

(us), atomic throughput in billion updates per second (GUp/s), transfer rates in GB/s, and LAMMPS 

performance in million atomsteps per second (MAS/s). Except for latencies, higher is better.

Benchmark Arm+A100 x86+A100 P9+V100

latency par_for (μs) 2.1 2.3 6.3

latency par_for+fence (μs) 10.0 8.7 15.0

latency par_red (μs) 2.3 2.7 6.2

latency par_red+fence (μs) 16.0 13.0 19.0

atomic histogram (GUp/s) 0.030 0.038 0.048

atomic force update (GUp/s) 0.150 0.170 0.470

atomic mat.-assembly (GUp/s) 0.150 0.170 0.470

transfer h-d regular (GB/s) 12 11 12

transfer d-h regular (GB/s) 11 11 11

transfer h-d pinned (GB/s) 18 25 62

transfer d-h pinned (GB/s) 15 21 60

transfer h-d managed (GB/s) 17 11 8

transfer d-h managed (GB/s) 12 17 26

LAMMPS 1-MPI 32k (MAS/s) 122 148 125

LAMMPS 2-MPI 32k (MAS/s) 95 89 98

LAMMPS 1-MPI 256k (MAS/s) 420 404 320

LAMMPS 2-MPI 256k (MAS/s) 201 201 139
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Table 5.

Comparison of wall-clock times per time step on various architectures. All comparison use either the NVHPC 

v22.1 or GCC v11.1 compilers as indicated. Highlighted rows indicate NVIDIA Arm HPC Development Kit 

hardware.

# Cores Compiler Time [s] Slowdown

NVIDIA A100 — NVHPC 0.28 Ref.

NVIDIA V100 — NVHPC 0.50 1.7

2xXeon 6248 40 NVHPC 2.7 9.6

2xXeon 6248 40 GCC 2.1 7.5

Ampere Altra 40 NVHPC 3.9 14

Ampere Altra 40 GCC 2.7 9.6

2xPOWER9 42 NVHPC 4.4 16

2xPOWER9 42 GCC 3.5 12

2xThunderX2 64 NVHPC 21 75

2xThunderX2 64 GCC 5.4 19

A64FX 48 NVHPC 4.3 15

A64FX 48 GCC 13 46
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Table 6.

NERSC MILC Medium Benchmark Time Breakdown (seconds)

A100 V100

Wombat Rome Summit ThunderX2

GPUs 1 2 1 2 2 2

host 281 170 301 231 462 271

compute 1834 1207 1878 996 2133 1729

h-d 75.4 39.8 68.8 46.3 76 231

d-h 93.8 44.4 98.1 72.7 89 63

comms 163 110 164 99.3 213 155

other 203 113 195 103 206 229

total 2650 1684 2705 1548 3186 2645
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Table 7.

NAMD single-GPU performance for 92K-atom ApoA1 simulation, NVE ensemble with 12Å cutoff, rigid 

bond constraints, multiple time stepping with 2fs fast time step, and 4fs for PME. Green rows indicate 

development kit hardware.

CPU :Cores:SMT:Threads GPU Comp. (ns/day)

ThunderX2 : 32:4:2 V100-PCIe GCC 124.9

2xPower9 : 42:4:7 V100-NVLINK XLC 125.7

2xXeon 6134 : 16:2:4 A100-PCIe ICC 181.4

Ampere Altra : 80:1:4 A100-PCIe GCC 182.2

DGX-A100 : 128:2:2 A100-SXM4 GCC 187.5
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Table 8.

NAMD single-GPU performance for 1M-atom STMV simulation, NVE ensemble with 12Å cutoff, rigid bond 

constraints, multiple time stepping with 2fs fast time step, and 4fs for PME. Green rows indicate development 

kit hardware.

CPU : Cores:SMT:Threads GPU Comp. (ns/day)

ThunderX2 : 32:4:8 V100-PCIe GCC 9.43

2xPower9 : 42:4:7 V100-NVLINK XLC 10.26

2xXeon 6134 : 16:2:8 A100-PCIe ICC 14.52

Ampere Altra : 80:1:40 A100-PCIe GCC 15.09

DGX-A100 : 128:2:8 A100-SXM4 GCC 15.87
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Table 9.

Weak Scaling Efficiency for PIConGPU (where ideal = 1.000). Problem size per device: 256 × 256 × 256 and 

100 timesteps using TSC Particle form factor (SP: single precision, DP: double precision)

Nodes Scaling Altra SP Altra DP A100 SP A100 DP

1 Weak 1.000 1.000 1.000 1.000

2 Weak 0.998 0.997 0.992 0.986

4 Weak 0.995 0.994 0.982 0.970

8 Weak 0.992 0.989 0.930 0.911
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Table 10.

Strong Scaling Factors for PIConGPU (where ideal = N). Problem size per device: 256 × 256 × 256 and 100 

timesteps using TSC Particle form factor (SP: single precision, DP: double precision)

Nodes Scaling Altra SP Altra DP A100 SP A100 DP

1 Strong 1 1 1 1

2 Strong 2.00 2.04 1.89 1.92

4 Strong 3.99 4.08 3.28 3.48

8 Strong 7.94 8.09 4.73 5.20
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Table 11.

Total computation times for PIConGPU’s weak scaling benchmark. Problem size per device: 256 × 256 × 256 

and 100 timesteps. Particle form factor: TSC. SP: single precision, DP: double precision.

Nodes Altra SP Altra DP A100 SP A100 DP

1 173.91 s 209.18 s 8.56 s 14.82 s

2 174.24 s 209.79 s 8.62 s 15.03 s

4 174.78 s 210.36 s 8.72 s 15.27 s

8 175.33 s 211.50 s 9.20 s 16.27 s
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Table 12.

Total computation times for PIConGPU’s strong scaling benchmark (100 timesteps). Particle form factor: 

TSC. SP: single precision, DP: double precision.

# Nodes Altra SP Altra DP A100 SP A100 DP

1 4624.76 s 5661.73 s 16.40 s 29.01 s

2 2311.38 s 2772.75 s 8.67 s 15.14 s

4 1158.34 s 1389.25 s 5.00 s 8.34 s

8 582.00 s 699.63 s 3.46 s 5.58 s
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Table 13.

The maximum number of walkers (batch size) on a single Wombat A100 and Summit V100 GPU.

NiO supercell max walkers max walkers

electrons Summit V100 Wombat A100

48 65535 65535

96 35419 65534

192 12554 32797

384 818 2047

768 785 2047

1152 423 1244

1536 240 719

2304 96 322

3072 43 174

6144 1 32
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Table 14.

GPU: CUDA memcpy operations between host and device

sph-exa sedov-cuda HtoD HtoD DtoH DtoH

-n200 -s800 N1 Clake N1 Clake

Size (GB) 1744 1744 1488 1488

Time (s) 134 302 125 214

Bandwidth (GB/s) 13.0 5.8 11.9 7.0
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