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Abstract

Phase-amplitude modulation (the modulation of the amplitude of higher frequency oscillations by 

the phase of lower frequency oscillations) is a specific type of cross-frequency coupling that has 

been observed in neural recordings from multiple species in a range of behavioral contexts. Given 

its potential importance, care must be taken with how it is measured and quantified. Previous 

studies have quantified phase-amplitude modulation by measuring the distance of the amplitude 

distribution from a uniform distribution. While this method is of general applicability, it is not 

targeted to the specific modulation pattern frequently observed with low-frequency oscillations. 

Here we develop a new method that has increased specificity to detect modulation in the sinusoidal 

shape commonly observed in neural data.
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I. INTRODUCTION

Modulation of high-frequency amplitude by low-frequency phase is a widely studied 

measure of EEG and intracranial activity [1]. In particular, gamma (40-70 Hz) amplitude 

modulation by theta (4-8 Hz) phase has been previously reported in electrocorticogram 

(ECoG) recordings from patients performing a variety of language and motor tasks 

(passive listening, linguistic target detection, verb generation, hand and mouth motor 

activation, auditory working memory, auditory-vibrotactile target detection) [2]. Theta-

gamma phase-amplitude modulation in the hippocampus has been linked to short-term [3] 

and working memory [4]. In the domain of decision making, theta-gamma phase-amplitude 

modulation has previously been reported in the orbitofrontal cortex of rodents in an 

olfactory discrimination go/nogo task [5]. Phase-amplitude coupling has also been observed 

in humans performing decision-making tasks, specifically, theta-gamma and theta-delta 

coupling in the medial frontal cortex has been shown to be related to feedback valence [6].

In this contribution, we report significant theta-gamma phase-amplitude modulation in 

human patients instrumented with stereotactic electroencephalogram (sEEG) electrodes 

during option selection, outcome anticipation, and feedback stages of a multi-attribute 

decision task. We start by developing a novel method to characterize phase-amplitude 

correlations based on the specific (approximately sinusoidal) shape of the observed 

modulation of gamma band amplitude by theta band phase, and then apply it to neural 

data recorded intracranially in human patients.

II. METHODS

A. Curve Fitting

A commonly used method to quantify phase-amplitude modulation computes a Modulation 

Index from the Kullback-Leibler distance from a uniform amplitude distribution across 

phase [7]. This approach is equally sensitive to any deviation from uniform amplitude across 

phase and therefore makes no particular assumptions about any specific structure in the 

modulation, i.e. a particular functional relationship between phase and amplitude. While 

this may be a desirable feature of the method in many cases, it is often the case that 

phase-amplitude modulation in neural signals does show a more consistent structure. With 

our novel method, we seek to capture this structure. Rather than measuring the deviation of 

amplitude as a function of phase from uniformity in any way, we will selectively target a 

presumed functional form. Here, we use a first-order sinusoid, as this seems to be generally 

reflective of the pattern of modulation we observe in neural data (see Section IV for a 

discussion of this choice). Fig. 1 shows examples of synthetic data with strong modulation 

that do (panels A,B) or do not (C,D) follow a clear sinusoidal form, resulting in very similar 

Modulation Indices (MI), but markedly different fitting errors from a sinuoid (ρsin, defined 

below).

Intracranial stereo EEG recordings (sEEG) were performed in human patients (see Section 

II-C) while they performed a multi-attribute decision task (Section II-D). To characterize 

phase-amplitude modulation, sEEG time series data are first aligned to some time point of 
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interest, e.g. the time at which feedback (on gain or loss of reward) is delivered. Data are 

then subjected to bandpass filtering to select the two frequency bands of interest, e.g. theta 

(4–8 Hz) and gamma/high gamma (40–200 Hz; for simplicity we will refer to this whole 

range as gamma). Here, we denote these bandpass-filtered signals θ(t) and γ(t), although 

any frequency bands of interest could be substituted. Phase information is extracted from 

the lower-frequency (θ) filtered data via Hilbert transform, i.e. the phase ϕθ(t) = arg[ℋ(θ(t))]; 
we used the angle(ℎilbert(x)) function from Matlab (Mathworks Inc., Natick MA). This 

low-frequency phase information is then sorted into 18 equal-width bins, each corresponding 

to π/9 radians. The amplitude of the normalized high-frequency-filtered (γ) data across all 

event-aligned time periods of interest is then computed and averaged across all epochs when 

the phase of the theta oscillation falls into a given bin. Figs. 2 and 3 show examples of these 

epochaveraged gamma amplitudes across phase bins of theta for two recording contacts. 

The gamma amplitude is well-correlated with theta phase in the latter but not in the former 

contact.

Let us denote these epoch-averaged amplitudes as Aγ ϕθ . In order to quantify the phase-

amplitude modulation that follows an assumed functional form, we can fit these amplitudes 

to that function. While any periodic function (with its attendant assumptions) could be 

employed in this step, one simple functional form that is essentially consistent with the 

typically observed features of phase-amplitude modulation in neural data is a sinusoid. 

Therefore, we fit Aγ ϕθ  to a curve defined by:

f(ϕθ) = a0 + a1 cos ϕθ + b1 sin ϕθ .

(1)

We determine the values of the parameters a0, a1, and b1 by minimizing the least-squares 

error:

ρsin = ∑Aγ(ϕθ) − (a0 + a1 cos ϕθ + b1 sin ϕθ)2
nbins

(2)

Based on the fit curve, we can quantify the modulation present in several ways. First, the 

value of the least-squares error ρsin itself indicates where there exists a clear structure of 

Aγ ϕθ  in the form of a sinuoid. Also of interest is the depth of the modulation, i.e. the 

difference between maximum and minimum of Aγ as predicted by the best-fit sinusoid. 

Finally, of particular interest are the phase bins at which the minimum and maximum of this 

function occur, ϕmax and ϕmin.

B. Permutation Testing

To test significance of our results, for a given electrode and time period, the gamma 

amplitudes across theta phase bins, Aγ ϕθ , are calculated and then the amplitudes are 

shuffled across the phase bins 10,000 times. Each iteration within this shuffled distribution is 

fit to a sinusoid and the least-squares error for each is calculated. An electrode is considered 

Subritzky-Katz et al. Page 3

Annu Conf Inf Sci Syst. Author manuscript; available in PMC 2024 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to show significant modulation if the error of fit of a sinusoid to the real data is lower than 

99% of the shuffled data (p < 0.01).

C. Neural Recordings

Simultaneous behavioral and neural data were recorded from four patients with implanted 

stereotactic electroencephalogram electrodes using a tablet-based multi-attribute decision 

making task. Data were collected at the University of Pittsburgh Medical Center. All sEEG 

recordings come from patients who are undergoing treatment for medically intractable focal 

epilepsy. Patients are implanted with electrodes according to their clinical care plan and 

then placed under observation until sufficient seizure data are collected to develop a plan 

for surgical intervention. Neither this nor any other research study has any influence on 

the location of the implanted electrodes and accordingly, different patients have data from 

different brain regions. Fig. 4A shows an example of the placement of sEEG electrodes in 

one patient.

D. Multi-Attribute Decision Task

Patients are presented with two options (gambles) on an electronic tablet screen. Each option 

corresponds to the possibility of winning or losing virtual money (neutral outcomes are also 

possible). On a given trial, either two winning or two losing options are presented. Each 

option is defined by two attributes, the amount they can win or lose, and the probability that 

this will happen. Importantly, the values of these attributes are “hidden” originally. Instead 

of each value, a colored symbol is shown that indicates what value is “hidden” beneath it, as 

follows: winning amount: green dollar sign; winning probability: green dice symbol; losing 

amount: red dollar sign; losing probability: red dice symbol. Only when a patient taps on the 

disk the value is revealed for 1s (or until the patient taps another symbol). They can look 

back at each option as many times as they want, by tapping on its red or green symbols. 

Once they have decided which of the gambles they want to bet on, they tap its “select” 

button. The properties of their chosen gamble (amounts and probabilities) will be briefly 

displayed, and after that, the screen will show the outcome, i.e. how much virtual money 

they have won or lost in this round. Fig. 4B shows a screenshot of the multiattribute decision 

making task in use with one attribute (win probability for option 1) unmasked.

III. RESULTS

We apply our new approach to quantifying phase-amplitude modulation to sEEG recordings 

from four patients. Figure 5 summarizes the phase-amplitude modulation results for a set of 

recording locations from one patient that showed significant theta-gamma phase-amplitude 

modulation in the time period aligned to feedback, separated by whether the outcome of the 

trial was positive (win or avoided loss) or negative (loss or failure to win). Of note, several 

recordings from the orbitofrontal cortex show signficant phase-amplitude modulation only 

following positive outcomes (left panel, colored rows), but not following negative outcomes 

(right panel, white rows).

Another noteworthy feature of the observed modulation patterns is that the highest gamma-

band amplitude tends to fall either close to the peak ϕθ = 0  or the trough ϕθ = ± π  of the 
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theta oscillation. We call the former situation “peak-max” and the latter “trough-max”, see 

below for a formal definition (note that no particular phase of the fit sinusoid is assumed 

in the curve-fitting procedure). This feature of the modulation is consistent with previous 

reports [8], [9] and underscores the rationale for defining a measure of phase-amplitude 

modulation that is based on a functional form with only one local maximum and one local 

minimum per cycle.

Table I summarizes the prevalence of significant phase-amplitude modulation in sEEG 

recordings from four patients. Part A lists the total number of recording contacts that show 

significant modulation for each patient and alignment point relative to the total number 

of contacts during the anticipation and feedback time periods (columns 2, 3). Also shown 

are the numbers of contacts in which significant phase-amplitude modulation was found 

when the outcome was positive (column 4) or negative (column 5). For all four patients, 

the number of contacts with significantly higher phase-amplitude modulation for positive 

outcomes exceeded that in which the modulation was higher for negative outcomes. These 

differences were significant for patients 1 and 4 (p < 0.05, Fisher’s Exact Test).

In Parts B and C, the number of contacts with two specific types of modulation are shown 

relative to the total number of contacts with significant modulation. The two modulation 

patterns are defined by the values of ϕθ at which Aγ ϕθ  is at its maximum. Recall that 

the peak of the theta wave is at phase ϕθ = 0. If the maximum of gamma amplitude, 

i.e the maximum of Aγ ϕθ , is within the interval ϕθ ∈ [ − π/2, π/2], it is labeled peak-max 

modulation and included in Part B of the Table. If the maximum of Aγ ϕθ  is in the union 

of the intervals [ − π, − π/2] and [π/2, π], it is labeled trough-max modulation and listed in 

Part C. Across all patients, subsets of channels show peak-max and trough-max modulation 

of gamma amplitude. The prevalence of significant phase-amplitude modulation at the 

analyzed time points varies considerably between patients, each with different electrode 

placement. But broadly, numerous recordings do show significant modulation.

IV. LIMITATIONS

A limitation of our method is that we assume a sinusoidal wave form for the low-frequency 

(theta) wave while brain oscillations can deviate from sinusoidal shapes (review: ref [10]). 

This is of relevance for our approach since non-sinusoidal waveforms can result in the 

“detection” of artifactual phase-amplitude coupling [11]. Another issue is that oscillations 

may not always be present, a situation not covered in the standard spectral (Fourier) 

framework. New methods have been developed to identify periods when oscillations are 

present vs. when they are not, such as delay differential analysis [12].

As a practical matter, inspection of the relationship between gamma amplitude and theta 

phase should reveal any drastic deviations from sinusoidal theta behavior and result in a poor 

fit, i.e. a large value of ρsin in eq 2. An example of a poor fit is shown in Fig 2; this may 

be due to excessive noise, absence of phase-amplitude coupling, or a theta waveform that 

is dramatically different from a sinusoid. In contrast, the good fit shown in Fig 3 inspires 

confidence that the assumption of sinusoidal theta is justified.
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In any case, if it is suspected either by a poor fit or by other considerations that the theta 

wave is not sinusoidal, it is easy to generalize our method to other wave shapes by changing 

eq. 1 to other functional dependencies and then fit the physiological data to this function. 

However, given the widespread use of spectral (Fourier) methods in the field, we expect that 

in many cases eq. 1 will be applicable without any change being needed.

V. DISCUSSION AND CONCLUSIONS

Given the potential importance of phase-amplitude modulation to the neural mechanisms 

of diverse cognitive processes, it is of critical importance to clarify the assumptions 

inherent in how the phenomenon is quantified. Often, a strict definition that includes a 

presumed functional form is desirable. Here, we propose a measurement of phase-amplitude 

modulation based on the least-squares error in a fit to a first-order sinusoid. This measure 

is conceptually simple and well-suited to a particular type of phase-amplitude modulation 

that we observe in a number of locations in sEEG recordings from patients engaging in a 

multi-attribute decision task. The general framework of this method could be readily applied 

to quantify other types of modulation by fitting the observed A(ϕ) to other functions such as 

higher-order sinusoids, sawtooths, or square waves. Further, this method is complementary 

to the Modulation Index based on a divergence-from-the uniform distribution, as it is 

selective for a specific type of modulation that would also be captured in by that index.
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Fig. 1. 
Different types of phase-amplitude modulation illustrated with synthetic data. A and C 

show a 40 Hz (gamma) oscillation modulated in amplitude by the phase of a 4 Hz (theta) 

oscillation. In A, amplitude is high around the peak of the theta waves and low around the 

trough of the theta waves. This pattern is well-fit a by a first order sinusoid (shown in B). 

In C, gamma amplitude is strongly modulated by the phase of the theta oscillation, but this 

modulation does not follow a pattern that would be well fit by a simple functional form. 

Both types of modulation result in a similar value of the Modulation Index based on a KL 

divergence from the uniform distribution (MI), but result in very different errors in the fit to 

the sinusoid (ρsin , see eq. 2).
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Fig. 2. 
Theta-phase gamma-amplitude relation from one sEEG electrode located in the amygdala. 

The panel shows an example of gamma amplitude (red circles) with no clear structure in its 

relation to theta phase. The blue line is the best sinusoidal fit for the gamma amplitude data.
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Fig. 3. 
Theta-phase gamma-amplitude relation in the hippocampus, from a different sEEG electrode 

than in Fig 2. Here, the gamma amplitude closely follows a sinusoidal function of theta 

phase. Symbols as in Fig 2.
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Fig. 4. 
Tablet-based multi-attribute decision making task and intracranial recordings. A. Example of 

sEEG electrode placement in one patient. B. Screenshot of the tablet-based multi-attribute 

decision task. Here, two options are presented, each of which has two attributes: a 

probability of winning and amount to win. When an attribute is tapped, the underlying 

value is unmasked for 1s, here the probability of winning of the upper option
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Fig. 5. 
Recording contacts with significant phase-amplitude modulation in one patient. Each row 

corresponds to a single recording location for the one-second time period immediately 

following feedback presentation for positive (left) and negative (right) outcomes. Red 

shades correspond to relatively higher gamma amplitude and blue shades correspond to 

relatively lower gamma amplitude. Gamma amplitude is normalized relative to the mean 

gamma amplitude for each recording contact. For electrodes in which only one of the 

conditions showed significant phase-amplitude modulation, the corresponding row for the 

other condition is shown in white.
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TABLE I

PREVALENCE OF PHASE-AMPLITUDE MODULATION IN SEEG RECORDINGS FROM FOUR PATIENTS.

A total number of contacts with significant modulation

patient anticipation feedback positive outcome negative outcome

1 67/138 70/138 58/138 34/138

2 46/189 40/189 42/189 35/189

3 15/225 13/225 13/225 11/225

4 150/254 143/254 118/254 90/254

B peak-max: −π/2 < arg max Aγ ϕθ < π/2
patient anticipation feedback positive outcome negative outcome

1 42/67 43/70 32/58 17/34

2 21/46 4/40 11/42 4/35

3 7/15 8/13 5/13 8/11

4 72/150 86/143 62/118 60/90

C trough-max: arg max Aγ ϕθ < − π/2 or arg max Aγ ϕθ > π/2
patient anticipation feedback positive outcome negative outcome

1 25/67 27/70 24/58 16/34

2 18/46 35/40 25/42 30/35

3 7/15 5/13 8/13 2/11

4 65/150 49/143 48/118 24/90
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