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Abstract: Conventional point prediction methods encounter challenges in accurately capturing the
inherent uncertainty associated with photovoltaic power due to its stochastic and volatile nature. To
address this challenge, we developed a robust prediction model called QRKDDN (quantile regression
and kernel density estimation deep learning network) by leveraging historical meteorological data
in conjunction with photovoltaic power data. Our aim is to enhance the accuracy of deterministic
predictions, interval predictions, and probabilistic predictions by incorporating quantile regression
(QR) and kernel density estimation (KDE) techniques. The proposed method utilizes the Pearson
correlation coefficient for selecting relevant meteorological factors, employs a Gaussian Mixture
Model (GMM) for clustering similar days, and constructs a deep learning prediction model based on
a convolutional neural network (CNN) combined with a bidirectional gated recurrent unit (BiGRU)
and attention mechanism. The experimental results obtained using the dataset from the Australian
DKASC Research Centre unequivocally demonstrate the exceptional performance of QRKDDN in
deterministic, interval, and probabilistic predictions for photovoltaic (PV) power generation. The
effectiveness of QRKDDN was further validated through ablation experiments and comparisons with
classical machine learning models.

Keywords: photovoltaic power forecasting; quantile regression; probabilistic forecasting; deep
learning hybrid model

1. Introduction
1.1. Problem Statement

In recent years, the rapid development of renewable energy, particularly photovoltaic
(PV), has led to a gradual increase in its share within the installed capacity of the power
system. However, as PV power penetration rates rise, the inherent randomness and
volatility associated with it may have an impact on the main power grid [1]. Therefore,
the accurate prediction of PV power generation is crucial for enabling the power dispatch
department to formulate a rational power generation plan that supports frequency and
voltage regulation within the power grid, ensuring both security and economic efficiency
in the electricity supply [2].

1.2. Literature Survey

PV power prediction is categorized based on the prediction process, spatial scale, form,
and method [3]. In recent years, deep learning methods have garnered significant attention
from researchers due to their exceptional feature extraction and transformation capabilities,
leading to remarkable achievements in PV power prediction [4]. Long short-term memory
(LSTM), as a classical deep learning approach, with its unique architecture facilitating the
transfer of available information from previous states to the current state through memory
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units, is well suited for PV power forecasting [5–7]. The aforementioned studies did not
succeed in enhancing the forecasting accuracy through improvements to the LSTM structure.
However, a pioneering study [8] introduced LSTM into an independent PV day-ahead
power prediction model and proposed a correction method that considers the correlation
among different PV power generation modes, thereby improving the predictive accuracy
of the LSTM model. To address the issue of slow convergence in LSTM [9,10], this study
combined a gated recurrent unit (GRU) with weather forecast data to predict horizontal
irradiance for a 24-h period. The results demonstrate that GRU outperforms LSTM in terms
of prediction error and training time. Compared to alternative deep learning methodologies,
CNN networks enable the efficient extraction of usable features from extensive training
data and employ multiple convolutional kernels as feature extractors to enhance the
performance of feature extraction. These techniques have been successfully applied in
various time series prediction domains, including wind speed prediction, solar irradiation
prediction, and photovoltaic power prediction [11–13]. In contrast to the limitations of
single model predictions, the integration of multiple models allows for the leveraging of
their respective strengths and the effective harnessing of information from PV power data
and meteorological data series, thereby significantly improving prediction accuracy. The
fusion of CNN and LSTM in [14] demonstrates that the combined model outperforms
individual models based on a real-world Moroccan dataset. In [15], the convolutional
long- and short-term memory model (CLSTM) was optimized using the enhanced sparrow
search algorithm (SSA). Comparative experiments conducted on real operational data from
a photovoltaic power plant in northern China demonstrated that the PV output prediction
accuracy of the CLSTM hybrid neural network, based on optimized parameters obtained
through improved SSA, significantly outperforms that of individual neural networks such
as back propagation (BP), CNN, and LSTM. Furthermore, it surpasses the prediction
accuracy of an unoptimized CLSTM hybrid neural network. In another study [16], a
TSF-CGANs algorithm was proposed by integrating conditional generative adversarial
networks (CGANs) with CNNs and bidirectional long short-term memories (BiLSTM)s. The
results obtained from real data predictions indicate that the time series forecasting based
on the CGANs (TSF-CGANs) algorithm exhibits superior prediction accuracy compared to
traditional single models. Additionally, ref. [17] introduces a similar day model clustering
fusion CNN-Informer for PV power prediction, which utilizes CNN for feature extraction
and combines its outputs with Informer model inputs. By leveraging information source
modeling techniques to establish temporal feature correlations among historical data, this
approach achieves accurate PV power predictions.

The point prediction method is a deterministic approach, but it fails to capture the
probability distribution and fluctuation range of the prediction results. In complex weather
conditions, photovoltaic power generation exhibits significant fluctuations within short
periods, thereby compromising the accuracy of the point prediction method and posing
challenges for maintaining a stable and secure power grid [18–20]. Probabilistic density pre-
diction, on the other hand, offers a more comprehensive forecasting technique by effectively
representing uncertainty as a probability distribution centered around the predicted value.
This is achieved through QR and KDE, enabling operators to obtain prediction intervals in
terms of a probability density function (PDF) for improved decision making [21]. Currently,
the research on the probabilistic prediction of PV power is in its nascent stage. With a focus
on ensuring accurate point predictions, current research aims to establish machine learning-
based models such as QR [22], Gaussian process regression (GPR) [23], and KDE [24] to
obtain prediction intervals and probabilistic density functions for PV power predictions
under fixed confidence conditions. The research [25] developed a PV power prediction
interval model based on linear programming, employing an extreme learning machine
and QR method. The effectiveness of the method and the higher computational efficiency
of the model were verified through a numerical study using Danish PV data, enabling
the accurate quantification of the variability and uncertainty in electricity generation from
PV systems. The proposed PV power probabilistic prediction method [26] is based on the
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dynamic weighting method, k-nearest neighbor (KNN) algorithm, and quantile regression
neural network (QRNN). Its validity was confirmed through validation using the IEEE
Working Group on Energy Forecasting (IEEE WGEF) data, thus establishing its credibility.
In another study [27], Bayesian bootstrapping was applied to three probabilistic prediction
models: linear quantile regression, the gradient augmented regression tree, and the quan-
tile regression neural network. Sample bootstrap distributions were computed to predict
power quartiles and conduct probabilistic prediction tests on two real PV power genera-
tion datasets: the HEIG-VD ReIne Lab and Global Energy Forecasting Competition 2014
(GEFCOM2014). The effectiveness of this approach was demonstrated. The authors of [28]
proposed a PV power prediction model based on various meteorological data, including
cloudiness and visibility. They developed a hybrid prediction method that combines QR
with a coupled input forgetting gate (CIFG) network to predict the conditional quartiles of
PV output power. Additionally, they employed a KDE method to estimate the probability
density function of PV output. Probabilistic forecasting has also been explored in other
research domains, such as wind power forecasting and load forecasting. The authors of [29]
introduced a wind speed interval prediction approach using variational modal decompo-
sition (VMD), phase space reconstruction (PSR), a whale optimization algorithm (WOA),
QR, and gated recurrent unit networks (GRU). They established a PSR-IWOA-QRGRU
model for wind speed interval prediction by superimposing the predictions from different
components. A hybrid generalized forecasting framework was developed by a study [30],
which proposed a probabilistic wind speed prediction method in the form of point es-
timation and interval prediction. This approach combines empirical wavelet transform
with neural network-based QR to enhance the generalization and stability of probabilistic
forecasting. In addition, ref. [31] introduced a probability density forecasting approach
based on Yeo-Johnson transformed QR of Gaussian kernel functions, combining empirical
bandwidth-based Gaussian kernel density estimation with Yeo-Johnson transformed QR
for short-term electricity load probability density forecasting. The performance of the
presented model was validated using one-hour historical load data for August, summer,
and December, winter, 2014 in Ottawa, Canada. In a study [32], a QRNN probabilistic
load forecasting model considering both temperature uncertainty and load variations was
proposed, an innovative quantile regression neural network with parameter embedding
was built to capture the load variations, and temperature forecasts were generated in a
probabilistic manner using temperature scenario-based techniques, and the results show
that the proposed method outperforms the commonly used benchmark models.

1.3. Motivation of the Study

The accurate estimation of the fluctuation interval in output power is essential for
grid dispatching due to the intermittent and fluctuating nature of the photovoltaic power
supply. Deterministic point prediction fails to quantitatively describe the uncertainty
associated with PV power, whereas probability interval prediction can provide a range of
fluctuations in predicted power, along with upper and lower bounds at a certain confidence
level. Simultaneously, predicting the probability distribution and confidence interval of
the photovoltaic power output enhances the reliability of the photovoltaic power station
output, guides reactive power planning in distribution networks, facilitates real-time power
operation planning, and effectively promotes renewable energy consumption. Moreover,
the existing probabilistic interval models exhibit inadequate reliability and sensitivity,
particularly when confronted with significant fluctuations in PV power. Consequently, a
single traditional model alone cannot achieve accurate predictions. To address this issue,
we propose a hybrid approach for PV power prediction in this paper. Our model integrates
CNN, BiGRU, and attention mechanisms to enable probabilistic forecasting encompassing
point estimation, interval prediction, and probability density estimation.

1.4. Research Content

The core research content and innovation of this article are as follows:



Sensors 2024, 24, 1593 4 of 24

(1) In this paper, the QRKDDN short-term PV power prediction model is proposed by fusing
the QR and KDE methods and combining CNN, BiGRU, and attention mechanisms.

(2) The proposed probabilistic interval prediction model is validated through determinis-
tic, interval, and probabilistic predictions to provide valuable insights for quantifying
the uncertainty associated with future PV power.

(3) The significance of data preprocessing in short-term PV power forecasting is inves-
tigated in this study. The Pearson correlation coefficient is employed to perform
correlation analysis on the variables in the dataset, and the utilization of multivariate
inputs enables the model to effectively capture interdependencies between variables,
thereby enhancing the accuracy of PV power prediction. Additionally, the clustering
of PV data on similar days is conducted using the GMM method, and comparative ex-
periments demonstrate that this approach significantly improves prediction precision.

The subsequent sections of this paper are organized as follows: Section 2 provides an
overview of the relevant methodologies employed in this study. Section 3 demonstrates the
efficacy of the proposed approach through illustrative examples. Finally, Section 5 presents
a comprehensive conclusion.

2. Methods
2.1. Gaussian Mixture Model

The Gaussian Mixture Model is a probabilistic clustering method that effectively
captures attribute correlation and dependency, unlike traditional approaches such as hi-
erarchical clustering and fuzzy clustering, which heavily rely on initial conditions and
distance measures [33]. The GMM algorithm operates by assigning clusters solely based on
probability theory. The principle of the GMM algorithm is briefly described as follows:

Assuming K represents the number of GMM clusters, the mean µ0, covariance ∑k,
and weights ω0 of the parameters are randomly initialized. The expectation-maximization
(EM) algorithm comprises an E-step and an M-step. In the E-step, the probability that each
sample point zi belongs to the kth distribution is calculated using the following expression:

γk(zi) =
ωk N(zi | µk, ∑k)

∑k
k=1 ωk N(zi | µk, ∑k)

(1)

where N(zi | µk, ∑k) is the Gaussian probability density function, and µk, ∑k , and ωk are
the mean, covariance, and weight of the kth distribution, respectively.

The parameters of each distribution are solved for using the M-step and updated with
the expression

µk =
∑N

i=1 γk(zi)xi

∑N
i=1 γk(zi)

(2)

∑k =
∑N

i=1 γk(zi)(zi − µk)(zi − µk)
T

∑N
i=1 γk(zi)

(3)

ωk =
1
N ∑N

i=1 γk(zi) (4)

The aforementioned steps were iteratively performed until the parameters reached
convergence. Subsequently, the sample points were effectively clustered by means of the
resulting GMM.

The clustered feature vectors were obtained by utilizing the mean and standard
deviation as feature metrics, while transforming the five meteorological factors exhibiting
strong correlation and historical PV power into daily feature metrics. The resulting clustered
feature vector is denoted as Xj =

[
Xj,1, Xj,2, · · · , Xj,10

]
(j = 1, 2, · · · , N). According to the

Bayesian information criterion (BIC), the optimal number of clusters for GMM is calculated
as 3, enabling the classification of PV power fluctuation characteristics into three distinct
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weather types: sunny, cloudy, and rainy days. Consequently, a set of samples representing
similar PV power patterns on different days was established.

2.2. Multivariate Correlation Analysis

The power generation efficiency of photovoltaic systems is influenced by various
environmental variables to varying degrees. Employing the Pearson correlation coefficient
method for meteorological factor analysis and selecting environmental variables with
higher correlation coefficients as prediction inputs can enhance the accuracy of prediction
models [16]. The Pearson correlation coefficient is calculated as follows:

ρx,y =
∑n

i=1 (xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

(5)

where x̄ and ȳ represent the respective mean values of variables xi and yi, and a positive
correlation coefficient ρx,y indicates a direct relationship between the two variables. Con-
versely, a negative correlation coefficient suggests an inverse relationship, with values
closer to 0 indicating weaker degrees of correlation.

2.3. Quantile Regression

The conditional quantile relationship between the independent variable X = [x1, x2, · · · , xn]
and the dependent variable Y = [y1, y2, · · · , yn] can be estimated using the QR method.
Unlike traditional regression techniques, which rely on assumptions about the error distri-
bution, QR directly models the error distribution function. Therefore, it does not impose
any restrictive assumptions regarding datasets or prediction error normality [34]. The
corresponding formula for QR is as follows:

Qyt(τ | xt) = f [xt, β(τ)], t = 1, 2, ···, n (6)

where Qyt(τ | xt) is the conditional quantile of the dependent variable, where the value of
τ ranges from 0 to 1. β(τ) is the regression coefficient, the estimate of which is calculated
by the formula

β̂(τ) = argmin∑n
t=1 ψτ [yt − xtβ(τ)] (7)

ψτ(u) =
{

τu, u ≥ 0
(τ − 1)u, u < 0

(8)

where ψτ(u) is an asymmetric function.
The conditional quantile of the dependent variable yt is

Q̂yt(τ | xt) = xt β̂(τ) (9)

2.4. Kernel Density Estimate

Similar to QR, KDE is a non-parametric method that enables the direct calculation of
the probability density for predicting PV power values without making distributional as-
sumptions. In this study, we employed the cosine kernel function as the KDE technique [35].
The formula for KDE computation is presented as follows:

f̂d(x) =
1

Nd∑N
i=1 K

(
Ti − x

d

)
(10)

where d is the bandwidth, and d > 0. The variable N represents the total count of quartiles,
while T denotes the dataset comprising conditional quartiles. K(α) refers to the cosine
kernel function, and its formula is presented as follows:

K(α) =
{

π
4 cos π

2 α, α ∈ [−1, 1]
0, α /∈ [−1, 1]

(11)
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The model performance is optimized by employing grid search methods, which
systematically explore various combinations of parameters. In this study, a cross-validation-
based grid search approach was employed to select the bandwidth parameter relevant to
the research [36].

2.5. Convolutional Neural Network

Due to space limitations, this article provides a brief description of the basic model
structure. The CNN network effectively leverages the correlation between historical
weather data of PV power plants and PV power generation for extracting significant
features, which can be mathematically represented by Equations (12) and (13) [37].

Ci = f (Ci−1 ⊗ Wi + bi) (12)

C0 = I (13)

where Ci and Ci−1 are the feature outputs of layers i and i − 1; ⊗ is the convolution
operation; bi denotes the offset of layer i; and the original input C0 corresponds to I.

The classical CNN architecture is depicted in Figure 1 [38].
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2.6. BiGRU Model

LSTM networks possess the capability to acquire correlation information between
long- and short-term sequential data, while GRU, as a variant of LSTM with reduced
parameters, exhibits a faster convergence rate. In contrast to LSTM, GRU replaces the input
and forgetting gates with update gates [39]. The computation of the GRU hidden layer unit
ht can be derived from Equations (14)–(17).

rt = σ(Wrxt + Urht−1) (14)

zt = σ(Wzxt + Uzht−1) (15)

h̃t = tanh(rt ◦ Uht−1 + Wxt) (16)

ht = (1 − zt) ◦ h̃t + zt ◦ ht−1 (17)

where zt and rt represent the updated and reset gates, respectively; σ denotes the sigmoid
function; and Wr, Ur, Wz, Uz, W, and U are matrices of training parameters. rt is the reset
gate, ht−1 is the hidden layer neuron output of the previous moment, xt is the input of
the present moment, and W and U denote the matrices of the training parameters, which
collectively determine h̃t, the candidate activation state of the current moment. Additionally,
zt ◦ ht−1 signifies the composite relationship between zt and ht−1.

The flow of information in a unidirectional neural network is typically sequential,
propagating from front to back. However, the photovoltaic power at any given moment
exhibits correlations with both past and future periods. To capture the deep features of PV
power data, the BiGRU network integrates historical and future information seamlessly.
Figure 2 illustrates the structure of the BiGRU model [40].
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2.7. Attention Mechanism

The attention mechanism is rooted in the modeling of attentional characteristics ob-
served in the human brain, which enhances information processing efficiency by allocating
differential weights [41]. Figure 3 illustrates the structure of the attention unit. The expres-
sion for the attention mechanism is presented below:

ei = utanh(whi + b) (18)

αi =
exp(ei)

∑i exp(ei)
(19)

C = ∑i αihi (20)
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The attention score at moment i is denoted by ei, where u and w are the weighting co-
efficients, b represents the bias coefficient, ai signifies the feature weights, and C represents
the output of the attention layer at time i.

2.8. Structure of the QRKDDN Model

The structure of the QRKDDN model proposed in this paper is shown in Figure 4.
The following provides a concise elucidation of the principles and procedures involved
in forecasting. After preprocessing the historical data of photovoltaic power, the Pearson
correlation coefficient method is employed to select the correlations among meteorological
variables. The GMM algorithm is employed to cluster historical PV power data from
similar days, followed by the division of training and test sets, and normalization prior
to inputting into the prediction model. The QRKDDN model consists of a CNN layer,
bidirectional BiGRU layer, and attention layer. The CNN layer exhibits strong local feature
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extraction capabilities, effectively tracking the actual PV power prediction value and re-
ducing uncertainty during periods of sharp power fluctuations. The bidirectional BiGRU
neural network captures long-term dependent relationships within sequences, enabling
it to capture changes in internal information features, which are then inputted into the
attention mechanism layer. This attention mechanism dynamically assigns weights to
output vectors based on weight distribution principles, calculating corresponding proba-
bilities for different feature vectors. Through constant updates and iterations of optimal
weight parameter matrices, high-precision prediction of photovoltaic power is achieved.
Prediction intervals are generated using the QR algorithm, while probability prediction
results are obtained through KDE methods.
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3. Case Study
3.1. Data Description

In this study, the Desert Knowledge Australia Solar Centre (DKASC) Hanwha Solar
dataset was selected as the research subject. Specific information about this PV power
plant is presented in Figure 5 [42]. The original data used for analysis encompass the
output power of the PV generation system and meteorological data collected through an
array of sensors from 1 January to 31 December 2020. The weather data comprise crucial
meteorological variables, including temperature, relative humidity, radiation data, and
rainfall. To ensure the accuracy of the results, only data collected between 6:00 and 19:00
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each day were retained for analysis due to the negligible power output during the morning
and evening hours. The raw resolution of the dataset was set at five-minute intervals,
with a total of 163 sampling points throughout the day. A training-to-test ratio of 7–3
was employed.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 24 
 

 

3. Case Study 
3.1. Data Description 

In this study, the Desert Knowledge Australia Solar Centre (DKASC) Hanwha Solar 
dataset was selected as the research subject. Specific information about this PV power 
plant is presented in Figure 5 [42]. The original data used for analysis encompass the out-
put power of the PV generation system and meteorological data collected through an ar-
ray of sensors from 1 January to 31 December 2020. The weather data comprise crucial 
meteorological variables, including temperature, relative humidity, radiation data, and 
rainfall. To ensure the accuracy of the results, only data collected between 6:00 and 19:00 
each day were retained for analysis due to the negligible power output during the morn-
ing and evening hours. The raw resolution of the dataset was set at five-minute intervals, 
with a total of 163 sampling points throughout the day. A training-to-test ratio of 7–3 was 
employed. 

 
Figure 5. The map of the system. 

Due to equipment failure or maintenance, potential data loss may occur, necessitat-
ing data processing as a preliminary step. In cases where the daily sampling data exhib-
ited a continuous absence of ≤3 points, interpolation was performed using the upper and 
lower mean padding method; however, if there were more than 3 missing values or con-
secutively missing points in the daily sampling data, the entire day’s dataset was excluded 
from analysis. Following the interpolation process for handling missing values, a total of 
345 days’ worth of data were retained throughout the year. Outliers were identified using 
the box plot method and replaced by taking an average between adjacent non-outlier data 
points before and after each outlier occurrence. The processed thermogram illustrating 
PV power over the course of one year is presented in Figure 6. 

Figure 5. The map of the system.

Due to equipment failure or maintenance, potential data loss may occur, necessitating
data processing as a preliminary step. In cases where the daily sampling data exhibited
a continuous absence of ≤3 points, interpolation was performed using the upper and
lower mean padding method; however, if there were more than 3 missing values or
consecutively missing points in the daily sampling data, the entire day’s dataset was
excluded from analysis. Following the interpolation process for handling missing values, a
total of 345 days’ worth of data were retained throughout the year. Outliers were identified
using the box plot method and replaced by taking an average between adjacent non-outlier
data points before and after each outlier occurrence. The processed thermogram illustrating
PV power over the course of one year is presented in Figure 6.
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The utilization of normalized data in prediction aims to mitigate the influence of
data dimensionality on prediction outcomes and reduce training time. Nevertheless, it
is crucial that the final outcome represents the predicted photovoltaic power generation
value, necessitating a comparison with actual power generation for evaluating predictive
performance. Consequently, reverse normalization becomes imperative. The formulas for
both normalization and reverse normalization are presented as follows:

x′t =
(xt − xmin)

(xmax − xmin)
(21)

xt = (xmax − xmin)x′t + xmin (22)

The variable xt represents the sample value, xmax and xmin denote the sample maxi-
mum and minimum values, respectively, and x′t is the sample normalized value.

3.2. Evaluation Indicators

In this paper, root mean squared error (RMSE) and goodness of fit R2 are selected as
the evaluation metrics for point prediction, with the following formulas:

eRMSE =

√
1
n∑n

i=1(yi − ŷl)
2 (23)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1

(
yi − ∑n

i=1
yi
n
)2 × 100% (24)

where yi and ŷi represent the true power value and the model-predicted value at moment
i, respectively; n denotes the number of test samples. A lower RMSE indicates higher
prediction accuracy, while a value of R2 closer to 1 suggests more accurate predictions.

Interval evaluation metrics such as PICP (prediction interval coverage probability) and
PINAW (prediction interval normalized average width) were employed. The PICP value
represents the probability that an observation falls within the upper and lower bounds
of the prediction interval at a given confidence level, with higher values indicating better
prediction accuracy. When comparing equal PICP values, smaller PINAW values indicate
superior predictions. The formula is as follows:

IPICP =
1
N ∑N

n=1 Sn (25)

IPINAW =
1

NE∑N
i=1

(
Pupi − Pdowni

)
(26)

where IPICP represents the coverage value of the prediction interval, and IPINAW denotes
the average width value of the prediction interval. Sn is a binary variable, taking a value of
1 when the observation falls within the prediction interval and 0 otherwise. E represents
the range between the maximum and minimum values of the observation, while Pupi and
Pdowni represent, respectively, the upper and lower bounds of the prediction interval.

The continuous ranked probability score (CRPS) is commonly employed to assess
probabilistic predictions’ accuracy, with smaller CRPS values indicating higher accuracy.
The formula for CRPS is as follows:

PCRPS =
1
N ∑N

i=1

∫ +∞

−∞

(
F
(

Ppi
)
− H

(
Ppi − Pri

))2dPpi (27)

F
(

Ppi
)
=

∫ Ppi

−∞
p(x)dx (28)

H
(

Ppi − Pri
)
=

{
0, Ppi < Pri

1, Ppi ≥ Pri
(29)
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where P(x) represents the probability density function, F
(

Ppi
)

denotes the cumulative
distribution function of Ppi, and H

(
Ppi − Pri

)
corresponds to the step function.

3.3. Feature Selection

The Pearson correlation coefficient heatmap offers a more intuitive depiction of the
interdependence among variables, as illustrated in Figure 7. Based on the level of cor-
relation, we selected global tilted radiation, global horizontal radiation, diffuse tilted
radiation, weather relative humidity, and diffuse horizontal radiation as input variables for
the predictive model.
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3.4. Similar Day Clustering

The GMM clustering method was employed to identify similar days for the raw PV
power samples, and the dataset of 345 days in a year was categorized into three types
of similar day samples: sunny, cloudy, and rainy. Specifically, there were 172 sunny
days, 112 cloudy days, and 61 rainy days. The clustering outcomes for different weather
conditions are illustrated in Figure 8 (only data for a randomly selected subset of 20 days
are presented).

3.5. Parameter Settings

The model structure and parameter settings are presented in Table 1. After multiple
rounds of experimental testing and optimization, the QRKDDN parameter is set to achieve
optimal performance. To ensure experimental comparability, the structural parameters
and experimental settings of the comparison models (QR-GRU, QR-BiGRU, QR-BiGRU-
Attention, QR-CNN-BiGRU, and QR-CNN-BiLSTM-Attention) adhere to the standards
defined in QRKDDN. Due to space limitations within this paper, a detailed description of
the comparative model’s structure is omitted; however, it can be found in the reference,
along with its schematic diagram.
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Table 1. Comparative analysis of model structural parameter settings and performance.

Models Parameters Characteristic Possible Defects

QR-GRU [43] Number of GRU units: 128 Simple model structure and
fast running speed

Inadequate capacity to
capture long-term

dependencies in time
series data

QR-BiGRU [40] Number of BiGRU units: 128
Effectively capturing

bidirectional dependencies in
sequential data

Overfitting may arise in
certain elementary sequences.

QR-BiGRU-Attention [44]
BiGRU layer: 128 BiGRU units

Attention layer: assigned
according to weights

The attention mechanism
effectively enhances the

model’s focus on
crucial information.

Prone to interference from
noise in sequence data
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Table 1. Cont.

Models Parameters Characteristic Possible Defects

QR-CNN-BiGRU [45]

CNN_1 layer: 64 convolutional
kernels, Kernel size: 4

Padding: same
CNN_2 layer: 128 convolutional

kernels, Kernel size: 4,
Padding: same

BiGRU layer: 128 BiGRU units
Activation function: ReLU

Efficiently integrating local
and global information in

time series analysis

The key model information
cannot be captured accurately.

QR-CNN-BiLSTM-
Attention [46]

CNN_1 layer:
64 convolutional kernels

CNN_2 layer:
128 convolutional kernels

BiLSTM layer:
128 BiLSTM units

Activation function: ReLU

Reconciling the strengths of
each model in a synergistic

manner to transcend the
limitations inherent in any

single model

The extended duration of
operation and relatively

limited capability in
extracting features

QRKDDN

CNN_Layer 1:
64 convolutional cores

Kernel size: 4
Padding: same

Activation function: ReLU
CNN_Layer 2: 128
convolutional cores

Kernel size: 4
Padding: same

Activation function: ReLU
BiGRU layer: 128 BiGRU units

MaxPooling: Pooling size: 3
Step length: 2

Attention layer: assigned
according to weights

The model exhibits
exceptional predictive

performance, demonstrates a
robust ability to capture
features during temporal

changes, and offers relatively
efficient time series prediction.

The complexity of the training
process is high and may

necessitate greater
computational resources.

Sliding window width 18
Forecast time step 1
Training rounds 200

Batch size 128
Dropout 0.2

Initial learning rate 0.01
Learning rate decay factor 0.1

Minimum learning rate 0.001
Training/test set ratio 0.7/0.3

Cross-validation method Rolling cross validation
Loss function MSE

Optimizer Adam

All the experiments in the article were conducted in a computing environment based
on an Intel(R) Core(TM) i7-11800H (2.30 GHz) 16 GB RAM (Intel, Santa Clara, CA, USA)
and Windows 64-bit operating system (Microsoft, Redmond, DC, USA), and the proposed
main algorithmic model is built by frameworks such as Tensorflow 2.12, Keras, etc., and is
written in Python 3.9.

4. Results

To showcase the advancements of QRKDDN in the short-term interval prediction and
probabilistic forecasting of PV power, a comparative analysis was conducted between the
prediction results obtained from the QRKDDN model and those derived from a comparative
model across three distinct weather types. For visualization and analysis purposes, one day
per weather type was randomly selected. Meanwhile, three specific time points during each
day (9:00 a.m., 12:00 noon, and 5:00 p.m.) were chosen to plot the probabilistic prediction
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outcomes. The predictions were averaged over 10 runs of the models, with a confidence
level set at 95%.

4.1. Sunny

The prediction results of the QRKDDN model and the comparison model under sunny
conditions are illustrated in Figure 9.
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As depicted in Figure 9, the QRKDDN model exhibits the most favorable prediction
interval width. To facilitate visual comparison of the predictive performance among
models, a radar plot of the evaluation metrics for the sunny day dataset is presented in
Figure 10.
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Figure 10. Radar chart of predictive evaluation indicators of sunny weather.

According to Figure 10, QRKDDN exhibits the smallest RMSE of 0.029120 and the
highest R2 value of 0.999869 under sunny weather conditions. The prediction interval
coverage achieves a perfect score of 100%, while simultaneously demonstrating the narrow-
est prediction interval width with a value of 0.035062 for PINAW. Notably, the QRKDDN
model outperforms other models in terms of its optimum CRPS, surpassing the QR-GRU
model by a margin of 65.62%, being 48.60% lower than the QR-BiGRU model, exhibiting a
reduction of 45.42% compared to the QR-BiGRU-Attention model, showcasing an improve-
ment of 25.37% relative to the QR-CNN-BiGRU model, and achieving an enhancement of
11.77% when compared to the QR-CNN-BiLSTM-Attention model.

The probabilistic prediction results of the QRKDDN model on the sunny day dataset
are presented in Figure 11, while Table 2 shows the predicted values, true power values,
and prediction errors for three time points. As depicted in the figure, the probability density
curve is relatively full, and the observed values are located at its center, indicating that our
probabilistic predictions are more reliable. Specifically, we achieved a mean absolute error
of −0.199391%, 0.395191%, and 0.387813% for each of these time points, respectively, under
sunny weather conditions; the overall assessment suggests that QRKDDN demonstrated
superior predictive performance.
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Table 2. Prediction error of QRKDDN model for selected time points in sunny weather.

9:00 12:00 17:00

Predicted Value (kW) 3.233906 5.067883 1.678685
Actual Value (kW) 3.240367 5.047934 1.672200

Prediction Error (%) −0.199391 0.395191 0.387813

4.2. Cloudy

The uncertainty of weather changes is amplified under cloudy conditions, as depicted
in Figure 12, which presents the interval prediction results of the QRKDDN model and
the comparison model. A few predicted power points lie outside the prediction interval,
primarily concentrated during periods of higher power fluctuations when wider amplitude
intervals are observed. Conversely, narrower prediction intervals correspond to stable
weather changes, aligning with actual weather conditions.
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The radar plot in Figure 13 illustrates the evaluation of prediction results for each
model under cloudy weather conditions. QRKDDN consistently exhibits superior perfor-
mance with a minimal PV power prediction error evaluation metric RMSE of 0.254880 and
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the highest goodness-of-fit R2 value of 0.980080. Moreover, it outperforms the five compar-
ison models in terms of interval prediction coverage, demonstrating the narrowest average
width (PINAW = 0.137654) and highest coverage probability (PICP = 0.985626) for cloudy
weather predictions. Additionally, QRKDDN achieves the smallest CRPS value, surpassing
other models by significant margins: it is 27.21% lower than QR-GRU, 24.23% lower than
QR-BiGRU, 23.12% lower than QR-BiGRU-Attention, 18.47% lower than QR-CNN-BiGRU,
and finally, it is 17.23% lower than the QR-CNN-BiLSTM-Attention model.
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The probabilistic forecast results for cloudy weather are presented in Figure 14. Table 3
displays the predicted values, actual power values, and corresponding prediction errors
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−0.749630%, −0.619644%, and 1.203359%.
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Table 3. Prediction error of QRKDDN model for selected time points in cloudy weather.

9:00 12:00 17:00

Predicted Value (kW) 3.871129 4.906641 1.627384
Actual Value (kW) 3.900367 4.937234 1.608033

Prediction Error (%) −0.749622 −0.619638 1.203396

In summary, QRKDDN exhibits the smallest deterministic prediction error, superior
prediction interval coverage, and narrower interval width in cloudy weather conditions.
The obtained prediction results not only meet the expected requirements, but also demon-
strate the exceptional feature-mining capability of QRKDDN.
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4.3. Rainy

In the presence of complex changes in rainy weather, PV power experiences more
pronounced fluctuations. As depicted in Figure 15, the prediction results of QRKDDN and
comparative models demonstrate a significant improvement in prediction error compared
to sunny and cloudy weather conditions. Notably, the QRKDDN model exhibits the
narrowest interval width and achieves superior interval coverage.
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The radar charts in Figure 16 depict the evaluation of point prediction, interval predic-
tion, and probabilistic prediction for each model under rainy weather conditions. It can
be observed from the figure that QRKDDN exhibits the smallest RMSE error evaluation
index value of 0.301985 and the highest goodness-of-fit R2 value of 0.972064. Although
there is a slight reduction in the accuracy of point predictions compared to sunny and
cloudy weather, overall, the prediction errors meet the expected requirements satisfactorily.
The prediction interval coverage reaches an impressive 98.1698%, with PINAW having the
narrowest width at a value of 0.164986 among all models considered here.
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Furthermore, when evaluating probabilistic predictions using CRPS as a metric,
QRKDDN outperforms the other models significantly: it achieves a CRPS value that
is 32.51% lower than that of the QR-GRU model, 26.20% lower than that of the QR-BiGRU
model, 21.58% lower than that of the QR-BiGRU-Attention model, 13.23% lower than that
of the QR-CNN-BiGRU model, and finally, it is better by being approximately 6.57% lower
than the performance achieved by the QR-CNN-BiLSTM-Attention model.

The performance evaluation of time series prediction is more representative in highly
fluctuating data. Therefore, we conducted a case study on rainy weather with highly
fluctuating power generation to compare the effects of the CNN layer and the attention
layer on the prediction model’s performance. Firstly, we compared the reference model,
QR-BiGRU-Attention, with the QRKDDN prediction results. The addition of a CNN layer
to QRKDDN resulted in a 24.29% lower point prediction error RMSE and a 5.11% higher
R2 compared to the QR-BiGRU-Attention model. Additionally, the interval prediction
evaluation metrics showed that PICP was 6.51% higher and PINAW was 21.17% lower
for QRKDDN with CNN layer integration. These findings demonstrate that CNN can
effectively leverage sequence features and local details of PV power data to enhance model
prediction performance.

The incorporation of an attention mechanism assigns higher weights to crucial in-
formation, thereby effectively mitigating the issue of missing data caused by long time
sequences. From the prediction results, it is evident that the QRKDDN model with the
attention mechanism exhibits a 23.93% reduction in point prediction error RMSE compared
to the QR-CNN-BiGRU model, along with a 3.55% increase in R2; moreover, the interval
prediction evaluation indicators demonstrate a 0.84% improvement in PICP and an 11.63%
decrease in PINAW, indicating that the attention mechanism significantly enhances the
accuracy of time series predictions.

The probabilistic prediction results during rainy weather are illustrated in Figure 17.
Table 4 presents the predicted values, true power values, and corresponding prediction
errors for the three time points. In the case of highly fluctuating rainy weather conditions,
the overall probability density curves exhibit a relatively full distribution, with both true
and predicted values predominantly centered within these curves. Notably, at 12:00 noon,
the probability density curve indicates distinct power states or clusters near the current
time point, reflecting significant power fluctuations attributed to external factors such as
changes in weather patterns and cloud cover. The point prediction errors for this specific
time period are −5.087916%, −6.979951%, and −1.965111%. These results demonstrate
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that our proposed model retains excellent predictive capabilities even under challenging
circumstances characterized by drastic weather variations on rainy days; it effectively
tracks PV power changes through historical meteorological data.
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Table 4. Prediction error of QRKDDN model for selected time points in rainy weather.

9:00 12:00 17:00

Predicted Value (kW) 0.955164 3.916206 1.585224
Actual Value (kW) 1.006367 4.210067 1.617000

Prediction Error (%) −5.087905 −6.979960 −1.965121

The prediction results demonstrate that the QRKDDN model exhibits superior overall
performance in rainy weather conditions.

4.4. Integrated Assessment

To compare the computational efficiency of the proposed model with the comparative
model, the model was configured and run 10 times according to the parameters in Table 1.
The resulting average running time is illustrated in Figure 18.
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The model training time was compared and analyzed using the sunny day dataset.
QRKDDN incorporates an additional layer of an attention mechanism compared to QR-
CNN-BiGRU, resulting in a 4.20% increase in training time; however, it leads to a certain
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improvement in comprehensive prediction performance. In comparison with QR-BiGRU-
Attention, the inclusion of an extra CNN layer increases runtime by 19.68%, while effectively
enhancing model performance, as well. Due to increased structural complexity, the training
time for QRKDDN is elevated by 59.36% when compared to the QR-GRU model and by
26.27% when compared to the QR-BiGRU model; nevertheless, it experiences a reduction
of 35.64% in training time relative to the QR-CNN-BiLSTM-Attention model. These results
demonstrate that although there is a delay in running speed for QRKDDN compared
to single structure models like GRU, its prediction accuracy is significantly improved;
moreover, the excellent architecture of QRKDDN substantially reduces training time when
contrasted with the QR-CNN-BiLSTM-Attention model.

To comprehensively compare the enhancement effect of GMM similar day clustering,
Figure 19 presents the prediction results and evaluation index cube diagrams of QRKDDN
without employing similar day clustering. Specifically, we selected a period of three days
(from 5 November to 7 November) with typicality for display purposes. The ratio of the
training set and test set was 7:3, which was consistent with the clustering prediction.
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The results presented in Table 5 demonstrate that the QRKDDN model, when not
incorporating the GMM clustering algorithm, exhibits significantly larger errors in both
point prediction and interval prediction compared to those obtained from similar day
clustering prediction results. This observation highlights the superiority of the GMM
similar day clustering algorithm in PV power prediction.

Table 5. Predicted evaluation indicators.

Dataset RMSE R2 PICP PINAW

Sunny (Clustered) 0.029120 0.999869 1.000000 0.035062
Cloudy (Clustered) 0.254880 0.980080 0.985626 0.137654
Rainy (Clustered) 0.301985 0.972064 0.981698 0.164986

Weather Unclustered 0.393528 0.960222 0.953765 0.181110

To demonstrate the enhanced prediction performance of QRKDDN compared to tra-
ditional models, this paper selects classical models such as LSTM, CNN, RNN, and ELM
(extreme learning machine) for comparison. Each model was validated 10 times using the
rainy dataset as an example, and the prediction results are presented in Table 6. As shown
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in Table 6, QRKDDN exhibits a longer computational time compared to other methods due
to its complex network structure. However, when compared with methods like RNN, the
difference in training time is not significant and still meets practical application require-
ments. The evaluation metrics for point prediction and probabilistic prediction indicate that
QRKDDN outperforms traditional models by accurately predicting PV power generation.
This provides robust data support for decision makers in power system management.

Table 6. Predicted results and training time (QRKDDN vs. baseline model).

Method Model Training Time (Average of 10 Times)
Rainy

RMSE R2 PICP(%) PINAW

QR-LSTM [29] 118 0.874331 0.857201 0.883229 0.223071
QR-CNN [11] 71 0.624928 0.874490 0.902856 0.207942
QR-RNN [28] 137 0.562490 0.929510 0.918628 0.196856
QR-ELM [11] 53 1.085463 0.825938 0.865367 0.246330

QRKDDN 154 0.301985 0.972064 0.981698 0.164986

5. Conclusions

The present study proposes a QRKDDN PV power interval probabilistic prediction
model. Firstly, meteorological variables highly correlated with PV power were selected
using the Pearson correlation coefficient method. Secondly, a multivariate multi-feature-
based GMM clustering algorithm was employed to cluster the historical data. Finally, the
time series prediction performance of QRKDDN was validated on similar daily datasets
representing three weather types: sunny, cloudy, and rainy. For performance comparison
purposes, the QR-GRU, QR-BiGRU, QR-BiGRU-Attention, QR-CNN-BiGRU, and QR-CNN-
BiLSTM-Attention models were chosen as benchmark models. The results demonstrate
that the interval prediction performance of the proposed QRKDDN model surpasses that
of the other models due to its well-designed structure, which effectively captures deeper
features among variables during drastic weather changes. This reduction in prediction
uncertainty enables reliable probabilistic predictions for decision making in power system
operation and maintenance.

The utilization of a data-driven approach derived from sensors plays an indispensable
role in enhancing the precision and comprehensiveness of contemporary time series pre-
diction research. Due to the limited availability of data resources, the proposed method
was solely validated using photovoltaic power data. Meanwhile, the proposed QRKDDN
model still exhibits the characteristics of high model complexity, relatively long running
time, and demanding hardware requirements. Therefore, we intend to further explore
efficient optimization algorithms to enhance the performance of the model. Furthermore,
we aim to enhance the applicability of this approach by conducting practical validation in
diverse domains, such as wind power forecasting, power load estimation, and battery life
prediction, in future investigations.

Author Contributions: Data curation, D.Z.; methodology, W.G.; formal analysis, T.W.; resources, L.X.;
software, X.T. and W.G.; validation, T.W.; writing—original draft, W.G. and D.Z.; writing—review
and editing, W.G. and X.T.; supervision, X.T. and L.X.; visualization, W.G. and X.T. All authors have
read and agreed to the published version of the manuscript.

Funding: This research study was funded by the Subproject IV of the National Key Research and De-
velopment Program of China, “Integrated Technology and Application of Multi-Energy Fusion for Wa-
ter Transportation Ports and Ships (Demonstration Application)” (Project No.: SQ2021YFB2600063).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The required datasets for the experiment can be obtained for free from
https://dkasolarcentre.com.au/ (accessed on 4 May 2023).

https://dkasolarcentre.com.au/


Sensors 2024, 24, 1593 23 of 24

Acknowledgments: The authors would like to thank the editors and the anonymous reviewers for
their insightful comments and suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Liu, L.; Zhao, Y.; Chang, D.; Xie, J.; Ma, Z.; Sun, Q.; Yin, H.; Wennersten, R. Prediction of short-term PV power output and

uncertainty analysis. Appl. Energy 2018, 228, 700–711. [CrossRef]
2. Guo, X.; Mo, Y.; Yan, K. Short-Term Photovoltaic Power Forecasting Based on Historical Information and Deep Learning Methods.

Sensors 2022, 22, 9630. [CrossRef]
3. Wang, K.; Qi, X.; Liu, H. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural

network. Appl. Energy 2019, 251, 113315. [CrossRef]
4. Qu, J.; Qian, Z.; Pei, Y. Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network

embedded with multiple relevant and target variables prediction pattern. Energy 2021, 232, 120996. [CrossRef]
5. Zheng, J.; Zhang, H.; Dai, Y.; Wang, B.; Zheng, T.; Liao, Q.; Liang, Y.; Zhang, F.; Song, X. Time series prediction for output of

multi-region solar power plants. Appl. Energy 2020, 257, 114001. [CrossRef]
6. Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-Term Residential Load Forecasting Based on LSTM Recurrent

Neural Network. IEEE Trans. Smart Grid 2019, 10, 841–851. [CrossRef]
7. Andrade, C.H.T.D.; Melo, G.C.G.D.; Vieira, T.F.; Araújo, Í.B.Q.D.; Medeiros Martins, A.D.; Torres, I.C.; Brito, D.B.; Santos,

A.K.X. How Does Neural Network Model Capacity Affect Photovoltaic Power Prediction? A Study Case. Sensors 2023, 23, 1357.
[CrossRef]

8. Wang, F.; Xuan, Z.; Zhen, Z.; Li, K.; Wang, T.; Shi, M. A day-ahead PV power forecasting method based on LSTM-RNN model
and time correlation modification under partial daily pattern prediction framework. Energy Convers. Manag. 2020, 212, 112766.
[CrossRef]

9. Ubrani, A.; Motwani, S. LSTM- and GRU-Based Time Series Models for Market Clearing Price Forecasting of Indian Deregulated
Electricity Markets. Soft Comput. Signal Process. 2019, 2, 693–700.

10. Gao, B.; Huang, X.; Shi, J.; Tai, Y.; Xiao, R. Predicting day-ahead solar irradiance through gated recurrent unit using weather
forecasting data. J. Renew. Sustain. Energy 2019, 11, 043705. [CrossRef]

11. Dong, N.; Chang, J.-F.; Wu, A.-G.; Gao, Z.-K. A novel convolutional neural network framework based solar irradiance prediction
method. Int. J. Electr. Power Energy Syst. 2020, 114, 105411. [CrossRef]

12. Huang, Q.; Wei, S. Improved quantile convolutional neural network with two-stage training for daily-ahead probabilistic
forecasting of photovoltaic power. Energy Convers. Manag. 2020, 220, 113085. [CrossRef]

13. Zhao, X.; Jiang, N.; Liu, J.; Yu, D.; Chang, J. Short-term average wind speed and turbulent standard deviation forecasts based on
one-dimensional convolutional neural network and the integrate method for probabilistic framework. Energy Convers. Manag.
2020, 203, 112239. [CrossRef]

14. Agga, A.; Abbou, A.; Labbadi, M.; Houm, Y.E.; Ou Ali, I.H. CNN-LSTM: An efficient hybrid deep learning architecture for
predicting short-term photovoltaic power production. Electr. Power Syst. Res. 2022, 208, 107908. [CrossRef]

15. Li, S.; Yang, J.; Wu, F.; Li, R.; Rashed, G.I. Combined Prediction of Photovoltaic Power Based on Sparrow Search Algorithm
Optimized Convolution Long and Short-Term Memory Hybrid Neural Network. Electronics 2022, 11, 1654. [CrossRef]

16. Huang, X.; Li, Q.; Tai, Y.; Chen, Z.; Liu, J.; Shi, J.; Liu, W.; Lund, H.; Kaiser, M.J. Time series forecasting for hourly photovoltaic
power using conditional generative adversarial network and Bi-LSTM. Energy 2022, 246, 123403. [CrossRef]

17. Wu, Z.; Pan, F.; Li, D.; He, H.; Zhang, T.; Yang, S. Prediction of Photovoltaic Power by the Informer Model Based on Convolutional
Neural Network. Sustainability 2022, 14, 13022. [CrossRef]

18. Alcántara, A.; Galván, I.M.; Aler, R. Deep neural networks for the quantile estimation of regional renewable energy production.
Appl. Intell. 2023, 53, 8318–8353. [CrossRef]

19. Sheng, H.; Xiao, J.; Cheng, Y.; Ni, Q.; Wang, S. Short-Term Solar Power Forecasting Based on Weighted Gaussian Process
Regression. IEEE Trans. Ind. Electron. 2018, 65, 300–308. [CrossRef]

20. Zhang, D.; Han, X.; Deng, C. Review on the research and practice of deep learning and reinforcement learning in smart grids.
CSEE J. Power Energy Syst. 2018, 4, 362–370. [CrossRef]

21. Wang, H.; Yi, H.; Peng, J.; Wang, G.; Liu, Y.; Jiang, H.; Liu, W. Deterministic and probabilistic forecasting of photovoltaic power
based on deep convolutional neural network. Energy Convers. Manag. 2017, 153, 409–422. [CrossRef]

22. Wen, Y.; AlHakeem, D.; Mandal, P.; Chakraborty, S.; Wu, Y.-K.; Senjyu, T.; Paudyal, S.; Tseng, T.-L. Performance Evaluation of
Probabilistic Methods Based on Bootstrap and Quantile Regression to Quantify PV Power Point Forecast Uncertainty. IEEE Trans.
Neural Netw. Learn. Syst. 2020, 31, 1134–1144. [CrossRef]

23. Zazoum, B. Solar photovoltaic power prediction using different machine learning methods. Energy Rep. 2022, 8, 19–25. [CrossRef]
24. Ma, M.; He, B.; Shen, R.; Wang, Y.; Wang, N. An adaptive interval power forecasting method for photovoltaic plant and its

optimization. Sustain. Energy Technol. Assess. 2022, 52, 102360. [CrossRef]
25. Wan, C.; Lin, J.; Song, Y.; Xu, Z.; Yang, G. Probabilistic Forecasting of Photovoltaic Generation: An Efficient Statistical Approach.

IEEE Trans. Power Syst. 2017, 32, 2471–2472. [CrossRef]

https://doi.org/10.1016/j.apenergy.2018.06.112
https://doi.org/10.3390/s22249630
https://doi.org/10.1016/j.apenergy.2019.113315
https://doi.org/10.1016/j.energy.2021.120996
https://doi.org/10.1016/j.apenergy.2019.114001
https://doi.org/10.1109/TSG.2017.2753802
https://doi.org/10.3390/s23031357
https://doi.org/10.1016/j.enconman.2020.112766
https://doi.org/10.1063/1.5110223
https://doi.org/10.1016/j.ijepes.2019.105411
https://doi.org/10.1016/j.enconman.2020.113085
https://doi.org/10.1016/j.enconman.2019.112239
https://doi.org/10.1016/j.epsr.2022.107908
https://doi.org/10.3390/electronics11101654
https://doi.org/10.1016/j.energy.2022.123403
https://doi.org/10.3390/su142013022
https://doi.org/10.1007/s10489-022-03958-7
https://doi.org/10.1109/TIE.2017.2714127
https://doi.org/10.17775/CSEEJPES.2018.00520
https://doi.org/10.1016/j.enconman.2017.10.008
https://doi.org/10.1109/TNNLS.2019.2918795
https://doi.org/10.1016/j.egyr.2021.11.183
https://doi.org/10.1016/j.seta.2022.102360
https://doi.org/10.1109/TPWRS.2016.2608740


Sensors 2024, 24, 1593 24 of 24

26. Cheng, Z.; Zhang, W.; Liu, C. Photovoltaic power generation probabilistic prediction based on a new dynamic weighting method
and quantile regression neural network. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China,
27–30 July 2019; pp. 6445–6451.

27. Bozorg, M.; Bracale, A.; Carpita, M.; Falco, P.D.; Proto, D. Bayesian bootstrapping in real-time probabilistic photovoltaic power
forecasting. Sol. Energy 2021, 225, 577–590. [CrossRef]

28. Liu, R.; Wei, J.; Sun, G.; Muyeen, S.M.; Lin, S.; Li, F. A short-term probabilistic photovoltaic power prediction method based on
feature selection and improved LSTM neural network. Electr. Power Syst. Res. 2022, 210, 108069. [CrossRef]

29. Zhang, C.; Ji, C.; Hua, L.; Ma, H.; Nazir, M.S.; Peng, T. Evolutionary quantile regression gated recurrent unit network based on
variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction.
Renew. Energy 2022, 197, 668–682. [CrossRef]

30. Zhang, X. Developing a hybrid probabilistic model for short-term wind speed forecasting. Appl. Intell. 2023, 53, 728–745.
[CrossRef]

31. He, Y.; Zheng, Y. Short-term power load probability density forecasting based on Yeo-Johnson transformation quantile regression
and Gaussian kernel function. Energy 2018, 154, 143–156. [CrossRef]

32. Gan, D.; Wang, Y.; Yang, S.; Kang, C. Embedding based quantile regression neural network for probabilistic load forecasting. J.
Mod. Power Syst. Clean Energy 2018, 6, 244–254. [CrossRef]

33. Meixia, Z.; Li, L.; Xiu, Y.; Gaiping, S.; Yahui, C. A load classification method based on Gaussian mixture model clustering and
multi-dimensional scaling analysis. Power Syst. Technol. 2020, 44, 4283–4293.

34. Tuyen, N.D.; Thanh, N.T.; Huu, V.X.S.; Fujita, G. A combination of novel hybrid deep learning model and quantile regression for
short-term deterministic and probabilistic PV maximum power forecasting. IET Renew. Power Gener. 2023, 17, 794–813. [CrossRef]

35. Wahbah, M.; Mohandes, B.; El-Fouly, T.H.M.; El Moursi, M.S. Unbiased cross-validation kernel density estimation for wind and
PV probabilistic modelling. Energy Convers. Manag. 2022, 266, 115811. [CrossRef]

36. Ma, X.; Du, H.; Wang, K.; Jia, R.; Wang, S. An efficient QR-BiMGM model for probabilistic PV power forecasting. Energy Rep.
2022, 8, 12534–12551. [CrossRef]

37. Guo, J.; Wang, W.; Tang, Y.; Zhang, Y.; Zhuge, H. A CNN-Bi_LSTM parallel network approach for train travel time prediction.
Knowl. Based Syst. 2022, 256, 109796. [CrossRef]

38. Jingwei, H.; Wang, Y.; Zhou, J.; Tian, Q. Prediction of hourly air temperature based on CNN–LSTM. Geomat. Nat. Hazards Risk
2022, 13, 1962–1986.

39. Wang, T.; Fu, L.; Zhou, Y.; Gao, S. Service price forecasting of urban charging infrastructure by using deep stacked CNN-BiGRU
network. Eng. Appl. Artif. Intell. 2022, 116, 105445. [CrossRef]

40. Yang, W.; Huang, B.; Zhang, A.; Li, Q.; Li, J.; Xue, X. Condition prediction of submarine cable based on CNN-BiGRU integrating
attention mechanism. Front. Energy Res. 2022, 10, 1023822. [CrossRef]

41. Xiang, L.; Yang, X.; Hu, A.; Su, H.; Wang, P. Condition monitoring and anomaly detection of wind turbine based on cascaded and
bidirectional deep learning networks. Appl. Energy 2022, 305, 117925. [CrossRef]

42. DKA Solar Centre. Available online: https://dkasolarcentre.com.au/ (accessed on 4 May 2023).
43. Duan, Y.; Liu, Y.; Wang, Y.; Ren, S.; Wang, Y. Improved BIGRU Model and Its Application in Stock Price Forecasting. Electronics

2023, 12, 2718. [CrossRef]
44. Cui, L.; Liao, J. Intelligent power grid energy supply forecasting and economic operation management using the snake optimizer

algorithm with Bigur-attention model. Front. Energy Res. 2023, 11, 1273947. [CrossRef]
45. Bao, Z.; Jiang, J.; Zhu, C.; Gao, M. A New Hybrid Neural Network Method for State-of-Health Estimation of Lithium-Ion Battery.

Energies 2022, 15, 4399. [CrossRef]
46. Zhang, J.; Peng, Y.; Ren, B.; Li, T. PM2.5 Concentration Prediction Based on CNN-BiLSTM and Attention Mechanism. Algorithms

2021, 14, 208. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.solener.2021.07.063
https://doi.org/10.1016/j.epsr.2022.108069
https://doi.org/10.1016/j.renene.2022.07.123
https://doi.org/10.1007/s10489-022-03644-8
https://doi.org/10.1016/j.energy.2018.04.072
https://doi.org/10.1007/s40565-018-0380-x
https://doi.org/10.1049/rpg2.12634
https://doi.org/10.1016/j.enconman.2022.115811
https://doi.org/10.1016/j.egyr.2022.09.077
https://doi.org/10.1016/j.knosys.2022.109796
https://doi.org/10.1016/j.engappai.2022.105445
https://doi.org/10.3389/fenrg.2022.1023822
https://doi.org/10.1016/j.apenergy.2021.117925
https://dkasolarcentre.com.au/
https://doi.org/10.3390/electronics12122718
https://doi.org/10.3389/fenrg.2023.1273947
https://doi.org/10.3390/en15124399
https://doi.org/10.3390/a14070208

	Introduction 
	Problem Statement 
	Literature Survey 
	Motivation of the Study 
	Research Content 

	Methods 
	Gaussian Mixture Model 
	Multivariate Correlation Analysis 
	Quantile Regression 
	Kernel Density Estimate 
	Convolutional Neural Network 
	BiGRU Model 
	Attention Mechanism 
	Structure of the QRKDDN Model 

	Case Study 
	Data Description 
	Evaluation Indicators 
	Feature Selection 
	Similar Day Clustering 
	Parameter Settings 

	Results 
	Sunny 
	Cloudy 
	Rainy 
	Integrated Assessment 

	Conclusions 
	References

