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Abstract

Principal component analysis (PCA) is an essential algorithm for dimensionality reduction in 

many data science domains. We address the problem of performing a federated PCA on private 

data distributed among multiple data providers while ensuring data confidentiality. Our solution, 

SF-PCA, is an end-to-end secure system that preserves the confidentiality of both the original 

data and all intermediate results in a passive-adversary model with up to all-but-one colluding 

parties. SF-PCA jointly leverages multiparty homomorphic encryption, interactive protocols, and 

edge computing to efficiently interleave computations on local cleartext data with operations 

on collectively encrypted data. SF-PCA obtains results as accurate as non-secure centralized 

solutions, independently of the data distribution among the parties. It scales linearly or better 

with the dataset dimensions and with the number of data providers. SF-PCA is more precise 

than existing approaches that approximate the solution by combining local analysis results, and 

between 3x and 250x faster than privacy-preserving alternatives based solely on secure multiparty 

computation or homomorphic encryption. Our work demonstrates the practical applicability of 

secure and federated PCA on private distributed datasets.

1. Introduction

Principal component analysis (PCA) [1], [2] is an algorithm for analyzing a high-

dimensional dataset, represented as a matrix of samples (rows) by features (columns), to 

uncover a small set of orthogonal directions—principal components (PCs)—that together 

maximally capture the observed variance among the data samples. Given the ability of 

PCA to reduce the dimensionality of a dataset while preserving its information content, 

it is commonly used in many data analysis workflows, including predictive modeling and 

exploratory data analysis (e.g., clustering and data visualization) [3], [4], [5], [6], [7], 

[8], [9], [10]. PCA is also a common pre-processing technique in machine learning (ML) 
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pipelines, where the goal is to reduce the number of features to avoid overfitting and 

improve generalization performance [7], [11], [12], [13], [14]. While more sophisticated 

non-linear dimension-reduction approaches have been proposed (e.g., based on autoencoders 

[15], [16]), PCA remains the de-facto standard method for dimension reduction, as it is 

computationally efficient, theoretically well-understood, and reliably accurate [6], [17].

Many modern applications of PCA involve data from individuals, raising privacy-related 

challenges that limit the availability of data for such analyses. In the biomedical domain, 

the high-dimensional nature of biomedical measurements often necessitate the use of 

PCA to extract key features from personal data, including genetic sequences [9], [18], 

single-cell transcriptomic data [19], [20], medical images [4], [21] and time-series data 

[7], [22]. PCA is also commonly used in other domains involving personal data, including 

quantitative finance [8] and recommender systems [10]. Due to the privacy and security 

implications, the sharing of personal data in these domains is often prohibited, rendering 

the data analysis difficult or even impossible. This results in sensitive data remaining siloed 

in access-controlled repositories and not shared across organizations, which often hinders 

research, innovation, and routine organizational tasks [23].

Federated privacy-preserving analytics, which aims to facilitate the joint analysis of sensitive 

data held by multiple parties using privacy-enhancing technologies [24], [25], [26], [27], 

[28], has emerged as a promising solution to the aforementioned challenges with the 

potential to overcome regulatory barriers in data sharing [29]. Despite the growing interest, 

many essential tools for data analysis including the PCA, especially those upstream of 

widely studied tasks such as model training and inference, have received limited interests 

and are often omitted from federated workflows. This creates an important gap in secure 

analytics, potentially undermining their security or utility if one falls back on a non-secure 

or less-accurate alternative in order to perform the full analysis.

A key challenge in developing a secure federated solution for PCA is that it requires 

complex and iterative computations (e.g. matrix factorization), which are costly given a 

large-scale input. These operations are not directly amenable to efficient computation with 

generic cryptographic techniques [30], [31], [32]. Reflecting this difficulty, many existing 

federated solutions [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], propose that 

the data providers (DPs) independently perform an initial dimension reduction on their local 

data, before they combine their intermediate results and execute the final decomposition 

on the merged results. This approach, which we refer to as meta-analysis, results in a loss 

of accuracy as it alters the original PCA problem and is prone to overlooking patterns 

spanning multiple DPs’ datasets, especially when the data distributions differ among the 

DPs. Furthermore, most meta-analysis solutions require the DPs’ intermediate results to be 

revealed to an aggregator server (or to other DPs) hence are not end-to-end secure. Other 

existing PCA solutions based on secure multiparty computation (SMC) techniques [43], 

[44], [45], [46] require the entire input data to be securely shared with a few computing 

servers. With the high communication overhead of SMC, these solutions have difficulty 

supporting a large number of parties.
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In this paper, we propose an efficient and secure system for performing a federated PCA on 

a distributed dataset, where the data remains protected and locally stored by the respective 

DPs. Our solution, named SF-PCA (for Secure Federated PCA), executes the randomized 

PCA (RPCA) algorithm [47], the de facto standard for PCA on large-scale matrices, in a 

federated manner using a multiparty extension of homomorphic encryption [48]. Contrary to 

meta-analysis solutions, SF-PCA directly executes a standard PCA algorithm (i.e., RPCA) to 

achieve state-of-the-art accuracy similar to a centralized analysis, while ensuring end-to-end 

privacy by protecting even the intermediate results. Unlike SMC solutions, SF-PCA is more 

communication-efficient and can be used by a large number of DPs. Note that our setting 

is related to cross-silo federated learning [49], except we do not focus on predictive model 

training and we use cryptographic techniques to provide end-to-end privacy.

Specifically, SF-PCA is built upon the cryptographic framework of multiparty homomorphic 

encryption (MHE; see §.3). In MHE, analogous to related works on threshold HE [50], [51], 

[52], [53], the collective secret (or decryption) key is secret-shared among all the DPs, and 

the corresponding public key and additional evaluation keys required for homomorphic 

operations are known by all DPs. This ensures that, while encryption and ciphertext 

computations can be independently performed by each DP, decrypting ciphertexts requires 

all DPs to collaborate [48]. MHE’s ability to offload certain computations to be locally 

performed by each party using the cleartext data leads to key performance improvements, as 

we show in our work. Performing a compute-intensive algorithm like RPCA, which involves 

sophisticated linear algebra operations (e.g., orthogonalization and eigendecomposition) on 

input vectors and matrices of a wide range of dimensions, while efficiently working within 

the constraints of MHE and maximally exploiting its strengths is the key challenge we 

address in SF-PCA by introducing optimization strategies and efficient MHE linear algebra 

routines.

Our evaluation demonstrates the practical performance of SF-PCA on six real datasets. For 

example, SF-PCA securely computes five PCs on the MNIST dataset [54] with 60,000 

samples and 760 features, split among six DPs, in 2.22 hours. In the same setting, it obtains 

the two PCs from a lung cancer dataset [55] with 9,098 patients and 23,724 genomic 

features in 3.5 hours. SF-PCA scales at most linearly with the input dimensions and with 

the number of DPs. SF-PCA is one to two orders of magnitude faster than a centralized-

HE solution. It is up to ten times faster than existing SMC solutions [45], which scale 

poorly with the number of DPs. We also show that SF-PCA is highly accurate, resulting 

in Pearson correlation coefficients of above 0.9 (compared to the ground truth) in all 

settings, whereas meta-analysis often obtains inaccurate results (e.g., a correlation below 

0.75 for both datasets mentioned above). Moreover, SF-PCA executes PCA while ensuring 

end-to-end data confidentiality as long as one DP is honest, whereas meta-analysis reveals 

the intermediate results to the aggregator server. Both centralized-HE and the previous 

SMC solution [45] require an honest third-party to hold the decryption key or to distribute 

correlated randomness for efficiency, respectively.

In this work, we make the following contributions:
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• We propose SF-PCA, a system for an efficient, federated, and end-to-end 

confidential execution of PCA [47].

• We demonstrate key design strategies underlying the practical performance of 

SF-PCA, including: (i) maximizing operations on the DPs’ cleartext local data by 

restructuring the computation and (ii) developing efficient linear algebra routines 

under a consistent vectorized encoding scheme for encrypted matrices to fully 

utilize the packing and single-instruction multiple-data (SIMD) property of MHE 

without costly encoding conversion.

• We introduce an adaptive approach for choosing both the high-level 

computational approach for PCA and the low-level MHE routines to maximize 

efficiency, based on the input dimensions for each computational step.

• We propose efficient MHE-based algorithms for sophisticated linear algebra 

operations on encrypted matrices, including matrix multiplication, factorization, 

and orthogonalization, in the federated setting.

• We demonstrate the practical performance of SF-PCA on six real datasets and 

illustrate its utility for biomedical data analysis. We show that SF-PCA is more 

scalable than existing solutions for privacy-preserving PCA while producing 

accurate results comparable to a centralized execution of PCA regardless of the 

data distribution among the parties.

To the best of our knowledge, SF-PCA is the first system to enable federated PCA in a 

scalable and end-to-end confidential manner. We note that SF-PCA’s optimization strategies 

and linear algebra building blocks are broadly applicable to the development of secure 

federated algorithms and thus are of independent interest.

2. Related Work

2.1. Homomorphic Encryption (HE)

We discuss prior works on linear algebra in HE and on distributed HE schemes, two 

essential components of SF-PCA (§.6).

HE for Linear Algebra.—Multiple works have shown how to optimize matrix-vector 

multiplications [24], [56] and multiplications between small matrices (i.e., fitting in a single 

ciphertext) [57], [58], [59], [60]. Multiplication of large encrypted matrices, whose rows 

do not fit into single ciphertexts, has been less studied. PCA requires multiple types of 

multiplications involving large matrices of varying dimensions, and efficiently performing 

these operations under encryption is key to achieving practical performance. SF-PCA jointly 

leverages a range of matrix multiplication methods whose complexities scale differently 

with the input dimensions, making an adaptive choice for each computational step in RPCA 

(§.6.1).

Distributed HE.—When multiple parties use HE to combine their private data, they can 

either share all of their data encrypted under the same key held by a trusted entity (e.g., 

in a centralized scheme [61], [62]), or adopt a distributed scheme where no single entity 
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holds the decryption key. In threshold encryption schemes [63], [64], the encryption key 

is known to all parties whereas the decryption key is secret-shared among the parties such 

that a predefined number of them must collaborate to decrypt a ciphertext. In multi-key [65] 

schemes (including a hybrid with threshold schemes [66]), the parties have their own key 

pair and can jointly compute on data encrypted under different keys, but the complexity 

scales with the number of parties. In SF-PCA, we rely on a multiparty HE scheme (MHE) 

proposed by Mouchet et al. [48], which corresponds to an s-out-of-s threshold scheme. This 

scheme enables local computation with complexity independent of the number of parties and 

provides a lightweight, interactive protocol to refresh (bootstrap) a ciphertext—a key factor 

for SF-PCA’s efficiency in contrast to alternative approaches (see §.5).

2.2. Principal Component Analysis (PCA)

Secure Centralized PCA.—Few solutions have been proposed for the secure centralized 

computation of PCA due to its computational complexity. Pereiral and Aranhal [67] 

proposed a method for performing PCA on an encrypted dataset using homomorphic 

encryption (HE). HE-based solutions typically incur a high computational overhead 

compared to their cleartext counterparts. In addition, they require a costly centralization of 

the data and have a single point-of-failure, i.e., the holder of the decryption key. In SF-PCA, 

since the exchanged data are encrypted with a collective key, no single entity can decrypt 

them, and compute-intensive HE operations (e.g., bootstrapping) are replaced by lightweight 

interactive protocols. In §.7.6, we compare SF-PCA with an HE-based centralized solution.

Non-Secure Federated PCA.—Solutions that enable PCA on distributed data without 

privacy protection fall in two main categories: iterative [68], [69], [70], [71] and non-

iterative [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43]. In the former, the DPs 

communicate and collaborate in order to perform each step of the algorithm. In the latter, 

the DPs perform the decomposition locally and then merge their results; we also refer to 

this approach as meta-analysis. Meta-analysis requires less communication but introduces 

inaccuracies by approximating PCA with two levels of decomposition, i.e., an independent 

local decomposition by each DP and a global one for the merged results. These solutions 

typically require that the local data distribution be consistent across DPs to obtain accurate 

results. In addition, they are not end-to-end secure as they require the DPs’ intermediate 

results to be revealed to an aggregator server (or to other DPs), representing a single point 

of failure. Intermediate results have been shown to reveal information about the original data 

in federated settings, e.g., in PCA [70] and ML [72], [73]. In contrast, SF-PCA implicitly 

performs RPCA on the joint data without altering the original approach, thus obtaining 

accurate results independently of the data distribution among the DPs (§.7). It also keeps all 

the exchanged information secret and does not rely on an aggregator server.

SMC-based PCA.—Several solutions [43], [44], [45], [46] leverage secure multiparty 

computation (SMC) to perform PCA on data that are secret-shared among a limited number 

of parties (e.g., three). These solutions require the data to be outsourced to computing 

parties, incurring a high communication overhead for large datasets. Unlike SMC solutions, 

SF-PCA can be efficiently used by a large number of parties, and their data are kept locally 

with a minimal amount of encrypted information exchanged for the PCA computation. In 
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§.8, we discuss an extension of SF-PCA where SMC techniques are integrated into our 

system to aid in carrying out non-polynomial function evaluations on small-dimensional 

inputs.

HE-based PCA.—To our knowledge, Liu et al. [74] proposed the only existing 

homomorphic encryption (HE)-based solution for federated PCA. However, they rely on 

an aggregator server that decrypts the aggregated values at each step of the process. Since 

the intermediate results can reveal information about the parties’ local data, these methods 

are not end-to-end secure. SF-PCA demonstrates that a fully decentralized and end-to-end 

secure solution for PCA is practically feasible.

Differential Privacy-based PCA.—Solutions based on differential privacy [75], [76], 

[77] fundamentally differ from SF-PCA in that their goal is to limit the privacy leakage 

of the intermediate or final results. To achieve this goal, these solutions introduce noise 

into the computation, making the final results less accurate. Furthermore, analogous to 

meta-analysis, some of these solutions rely on a local decomposition followed by a global 

aggregation of results, introducing an approximation error in addition to the noise added for 

differential privacy. In SF-PCA, no intermediate result is revealed, hence differential privacy 

is not needed to protect the information exchanged during the algorithm. On the other hand, 

if the DPs wish to reveal the final PCA result with differential privacy, such guarantee can be 

added to SF-PCA (§.8).

3. Background

Notation.

Matrices and vectors are denoted by boldface uppercase and lowercase characters, 

respectively. The i-th row (resp. column) of a matrix X a × b  with a rows and b columns 

is denoted by X i, :  (resp. X : , i ). The submatrix from (resp. up to but not including) row 

i and column j is denoted as X i: , j:  (resp. X : i, : j ). The i-th element of a vector of b
elements y b × 1  is denoted by y i . Cleartext data are indicated by a tilde (e.g., X). A matrix 

multiplication is denoted by ×.

Principal Component Analysis (PCA).

PCA is used to extract the most prominent set of linearly independent directions, i.e., 

principal components (PCs), that underlie a set of correlated features (columns of a data 

matrix). The PCs are identified in a descending order of the variance among the data points 

that each one captures. The PCs can be viewed as the leading eigenvectors of the feature 

covariance matrix, where the corresponding eigenvalues represent the variance explained. 

Dimension reduction of the dataset can be achieved by projecting the data points onto 

the PCs. Formally, PCA takes the matrix A n × m  and outputs the reduced matrix A′ n × ψ

obtained from the projection of the input matrix onto its ψ (with ψ ≪ m) PCs.
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Randomized PCA (RPCA)

RPCA [47] is an efficient randomized algorithm for PCA, which lowers the complexity 

of the matrix decomposition by first reducing the input dimension via random projection 

[47]. Fig. 1 depicts the workflow of RPCA. It takes as input the matrix A and a random 

sketch matrix Π (Step 1). We adopt the count-sketch approach [78] for generating the latter, 

where the elements are drawn from {−1,0,1}. The columns of the input matrix A are first 

mean-centered (Step 2); O denotes the matrix in which each column contains the mean of 

the corresponding column of A. Next, the input matrix is projected to a lower-dimensional 

space by multiplying with the sketch matrix (Step 3). For improved accuracy [47], the 

projected matrix P  is recursively multiplied with the covariance matrix ATA for p iterations 

(Step 4). At each iteration, the resulting matrix is orthogonalized using the QR factorization 

for numerical stability. We denote this step by QRT , as this algorithm is applied to the 

rows of the matrix, not columns, in our setting. In Step 5, a small symmetric matrix Z
representing the feature covariance in the low-dimensional space is computed by multiplying 

the result P  of Step 4 on both sides of the covariance matrix. In Step 6, the eigenvectors W
of Z are computed via eigendecomposition (Eigen); we use the QR iteration algorithm with 

tridiagonalization and implicit shifting of eigenvalues [79] (see §.6.2 for details), which are 

standard techniques for improving the convergence. RPCA reduces the original problem of 

factorizing A ∈ ℝ n × m  to decomposing the tiny, constant-size matrix Z ∈ ℝ ρ × ρ , where 

ρ = ψ + α with ψ the desired number of principal components and α an oversampling 

parameter. The latter is used to increase the accuracy of the algorithm [47]. In Step 7, it 

reconstructs the eigenvectors in the original space (i.e., the PCs W ) and finally projects the 

data points of A onto the PCs in Step 8 to construct the output.

Multiparty Homomorphic Encryption (MHE).

To securely perform PCA across distributed datasets, we rely on a multiparty (or distributed) 

fully-homomorphic encryption scheme [48] in which the secret key sk is shared among the 

parties via a secret-sharing scheme, whereas the corresponding collective public key pk is 

known to all of them. As a result, each party can independently compute on ciphertexts 

encrypted under pk, but all parties have to collaborate to decrypt a ciphertext.

Mouchet et al. [48] showed how to adapt ring-learning-with-errors-based homomorphic 

encryption schemes [61], [62], [80] to the multiparty setting. In SF-PCA, we instantiate 

the multiparty scheme with the Cheon-Kim-Kim-Song (CKKS) cryptosystem [61]. CKKS 

is a homomorphic encryption scheme that enables approximate arithmetic over ℂN/2; 

the plaintext and ciphertext spaces share the same domain RQL = ℤQL[X]/(XN + 1), with 

QL = ∏0
L qi in our case and N a power of 2. Both plaintexts and ciphertexts are represented 

by polynomials of degree up to N − 1 (with N coefficients) in this domain, each encoding 

a vector of up to t = N/2 floating-point values. Any operation is SIMD, i.e., simultaneously 

performed on all encoded values. CKKS’s security is based on the ring learning with errors 

(RLWE) problem [80] and some noise is added directly in the least significant bits of the 

encrypted values. Mouchet et al. [48] have shown that the distributed protocols (described 

below) introduce only additive noise, linear in the number of DPs. To limit the noise 
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growth during homomorphic operations in SF-PCA, we leverage general scale-management 

techniques for CKKS [81], [82], [83]. We refer to Appendix A for cryptoscheme details.

Main MHE Operations.—The DPs each have a public key pki and the corresponding 

secret key ski (with ski  the set of all DPs’ secret keys) and can collectively execute the 

following operations. We denote a collectively encrypted vector by c and a plaintext vector 

by p. Symbols are summarized in Tab. 3 (Appendix B).

• pk, evks DKeyGen ski  generates the collective public key pk and evaluation 

keys evks, which are required for ciphertext transformations such as rotations. 

The DPs aggregate the local shares of keys (randomly generated based on a 

public source of randomness) to obtain public collective keys [48].

• c DBootstrap c′, ski  collectively refreshes a ciphertext to obtain a fresh 

encryption. This operation is required after every λ multiplications to ensure 

a correct decryption.

• cpk′ DKeySwitch c, pk′, ski  changes the encryption of a ciphertext c
from the public key pk to another public key pk′, without decrypting the 

ciphertext. The collective decryption is a special case of this operation (i.e., 

DKeySwitch c, ∅, ski . To prevent information leakage upon decryption [84], 

a fresh noise with a variance larger than that of the ciphertext is added before 

decryption [48], [84], [85], [86].

Each DP can independently encrypt, and perform the following operations listed in order of 

increasing computational complexity (Tab. 2):

• cpk ∈ RQL
2 Enc(pk, p) with a plaintext vector p, such that 

DKeySwitch cpk, ∅, ski ≈ p.

• c′′ = c + c′, addition of encrypted vectors.

• c′ = c · p, element-wise multiplication of an encrypted vector and a cleartext 

vector. The result needs to be rescaled to maintain ciphertext scale.

• c′′ = c · c′, element-wise multiplication of two encrypted vectors. The result 

needs to be relinearized and rescaled to maintain ciphertext size and scale.

• c′ = Roty c, evks , cyclic rotation of length y to the left (to the right if y is 

negative) on the encrypted vector c.

• c′′ = c · c′, dot product of two encrypted vectors. The result is encoded in the first 

position of a one-hot encoded vector c′′.

• c′ = Dupy c , duplication of the first element of c to the first y positions of c′ with 

log2 y  rotations and additions.
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4. SF-PCA System and Security Models

Our system model is illustrated in Fig. 2. We consider a cleartext dataset, represented as a 

matrix A ∈ ℝ n × m , that is horizontally split among a set of interconnected data providers 

DP1, …, DPs such that each DPi has Ai ∈ ℝ ni × m  with ∑i ni = n. The number of data samples 

held by each DP (i.e., ni) is considered public. We discuss the vertically partitioned case in 

§.8.

SF-PCA enables the DPs to collaboratively execute a randomized PCA on their joint data. 

In the end, each DP obtains ψ collectively encrypted PCs, on which each DP can locally 

project its data. If required by the application, each DP’s projected data (encrypted under the 

collective key) can be collectively switched (DKeySwitch, §.3) to each DP’s public key pki

to be locally decrypted. Similarly, the PCs can be collectively decrypted and shared among 

the DPs.

We adopt the semi-honest model, where the DPs follow the protocol as specified, but might 

try to infer information about another DP’s data, potentially colluding with other DPs. We 

require that the DPs’ data and all intermediate results remain confidential. In other words, 

SF-PCA provides input confidentiality, i.e., no DP is able to learn any information about 

any other DP’s local data other than what it can infer from the final output of PCA (e.g., its 

projected local data). We require that this property holds as long as one DP remains honest 

and does not collude with others.

5. SF-PCA Protocol Design

We introduce an end-to-end confidential and federated approach to execute a RPCA (§.3) 

jointly over s DPs holding their local data. At each step of the PCA execution, the DPs 

collectively compute encrypted global intermediate results through interactive protocols that 

combine the results of local computation on each DP’s cleartext data. The intermediate 

results remain encrypted under the DPs’ collective key and are never revealed. While our 

system’s ability to leverage local cleartext computation opens the door to efficient multiparty 

algorithms, a careful algorithmic design is still necessary for developing a practical PCA 

protocol.

Leveraging existing approaches for secure computation (e.g., HE or SMC), the DPs could 

outsource their encrypted (or secret-shared) data to one or multiple computing parties to 

jointly perform the PCA. However, the communication overhead of sharing the entire 

dataset as well as the computational burden of performing complex computations (e.g., 

multiplication and factorization of matrices) on the pooled dataset render these solutions 

impractical for large-scale datasets. Note that the repeated matrix multiplications are 

challenging to perform efficiently under HE due to the costly bootstrapping procedure. 

SF-PCA addresses these challenges by introducing efficient MHE-based protocols based 

on a federated approach to joint computation. We compare SF-PCA’s performance with 

existing approaches in §.7.
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5.1. Key Strategies for Accuracy and Efficiency

In RPCA (Fig. 1), many matrix multiplications involving the input matrix A n × m  (or its 

covariance matrix) largely determine the protocol’s complexity. These multiplications are 

interspersed with sophisticated linear algebra transformations, such as the QR factorization 

invoked at the end of each power iteration (Step 4 in Fig. 1) and eigendecomposition (Eigen 

in Step 6), which view the matrix as a set of row (or column) vectors and apply vector-level 

operations. Below, we explain our strategies to carry out these computations efficiently 

while maintaining the accuracy of results.

Obtaining Accurate Results by Emulating Centralized PCA.—Existing federated 

approaches to PCA that combine the results independently obtained by the DPs (e.g., 

meta-analysis), are prone to errors introduced by differences in data distribution among the 

DPs. In SF-PCA, we avoid this pitfall by securely combining the intermediate results at each 

step of the protocol (via collective aggregation Ξ in Alg.1) to emulate a centralized analysis, 

thus obtaining the same PCs regardless of how the data are split (§.7.7).

Efficient Edge-Computing on Local Cleartext Data.—Working with an encrypted 

form of the entire input matrix (A in Fig. 1) would require the DPs to transfer large amounts 

of data (e.g., for centralized HE or secret sharing) or to perform costly ciphertext operations 

on large matrices, both of which become impractical for large-scale datasets. In SF-PCA 

(Alg.1), the DPs jointly perform the PCA without encrypting or exchanging the input data. 

They collaborate instead by computing on their local cleartext data (i.e., the sub-matrix 

Ai) and exchanging only low-dimensional and aggregate-level encrypted information. This 

enables the DPs to minimize communication and maximize the use of low-cost MHE 

operations involving the cleartext data (e.g., with our default parameters, cleartext-ciphertext 

multiplication is eight times faster than a ciphertext-ciphertext multiplication; Tab. 2). We 

also modify the RPCA computation to use only the cleartext input throughout the workflow. 

For example, instead of directly constructing a mean-centered input matrix (Step 2 in Fig. 

1), which needs to be encrypted due to the means being private, SF-PCA keeps each local 

matrix Ai in cleartext and associates with it an encrypted mean vector o to correct for 

mean shifts in subsequent steps (see Step 2 in Alg.1). This enables a key optimization for 

the matrix multiplications in Steps 3–5, 7 and 8 (Alg.1), where the cleartext matrix Ai is 

pre-transformed to minimize costly ciphertext operations such as rotations in later steps. In 

§.6.1.3, we show how to efficiently multiply an encrypted matrix with another containing 

only duplicated rows (or columns), which is used for lazy mean correction in Steps 4, 5, 7 

and 8.

Adaptive Selection of Computational Routines based on Data Dimensions.
—In practice, PCA is applied to datasets whose dimensions vary greatly depending on 

the application, e.g., from tens of features in small predictive modeling tasks to tens of 

thousands of features in genomic studies (§.7). To achieve practical performance in a 

wide range of settings, we propose an adaptive approach for optimizing the computational 

routines based on the input dimensions. In Alg.1, we introduce two different workflows 

for performing RPCA: Precomp and Seq. In Precomp, the encrypted covariance matrix G
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is precomputed in the beginning of Step 4 and reused, such that most of the following 

operations scale primarily with the number of features m. In Seq, A is kept in cleartext 

and used for matrix multiplications, which is more efficient than using G, but now the 

computation scales with both m and the number of samples n. In addition, in §.6.1, we 

describe several matrix multiplication methods, each of which scales differently with the 

input dimensions; SF-PCA selects the best approach for each step in its workflow. Similarly, 

in §.6.2, we introduce two approaches for performing the QR factorization on an encrypted 

matrix (QR in Step 4), with different complexities depending on the input dimensions.

Optimized Data Encoding for Linear Algebra on Encrypted Matrices.—The 

secure execution of RPCA requires that the DPs iteratively perform various matrix 

operations on encrypted data, including multiplication and factorization. For example, the 

QR factorization, which is repeatedly executed in-between matrix multiplications (in Steps 

4, 6, and 7 of RPCA; Fig. 1), is performed over the rows of an encrypted matrix in SF-PCA. 

Selecting a row in a matrix of m columns, where the columns are individually packed 

in ciphertexts, would require m homomorphic multiplications, additions, and rotations; 

in contrast, row selection incurs no cost when the matrix is row-wise encoded. In fact, 

the overwhelming cost of transforming encrypted matrices from one encoding to another 

would make our system impractical. We therefore adopt a consistent vectorized encoding 

scheme throughout the algorithm to represent encrypted matrices and tailor the operations 

to efficiently work with this format without costly conversions. This also allows SF-PCA 

to fully utilize the packing and SIMD properties of MHE thus minimizing its overall 

computation and communication costs.

Selective Bootstrapping to Minimize Communication.—After a certain number 

of multiplications, a ciphertext needs to be bootstrapped (DBootstrap, §.3) to restore 

its capacity for computation. In SF-PCA, this is a collective operation, which is 

computationally lightweight in contrast to its centralized equivalent, but requires the 

ciphertext to be exchanged among all DPs. To further minimize this communication 

overhead, we restrict the invocation of DBootstrap to places where an intermediate result 

is already globally synced and of a small dimension (e.g., during QR factorization in Steps 

4 and 7 in Alg. 1; see §.6.2), while flexibly allowing a ciphertext to be bootstrapped even if 

some multiplication capacity remains.

5.2. Workflow Details

We describe the workflow of SF-PCA from the point of view of DPi in Alg. 1. Recall 

that the DPs aim to compute ψ encrypted PCs (rows of matrix W ) on their joint data. 

RPCA identifies ρ = ψ + α components with a small oversampling parameter α for improved 

accuracy. In addition to Alg. 1, we show in Fig. 8 in the Appendix how the matrix 

dimensions evolve in SF-PCA’s workflow. The DPs interact by aggregating (represented 

by Ξ) encrypted matrices and broadcasting the encrypted result to all DPs.

Step 1: Setup.—Each DPi holds A ni × m , a submatrix of the global input matrix A n × m . 

The DPs generate the required public keys (DKeyGen, §.3) and agree on the PCA 
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parameters, including: the number of power iterations p, the number of QR iterations 

w for eigendecomposition, the desired number of PCs ψ, the oversampling parameter α
(resulting in the number of components ρ = ψ + α for RPCA), and a public random sketch 

matrix Π ρ × n  (e.g., generated from a shared seed). In addition, the DPs together decide the 

specifics of certain computational steps in SF-PCA, such as the approximation intervals for 

non-linear operations (§.6.3) and the method of choice for costly linear algebraic operations 

(matrix multiplication and transformations; see §.6), taking the input dimensions into 

account to maximize performance. All the parameters introduced in this step are considered 

public. Note that the procedure to agree upon the parameters is orthogonal to SF-PCA; e.g., 

the DP initiating the collaboration could propose the parameters.

Step 2: Mean Calculation.—The DPs compute the encrypted vector o 1 × m  of column 

averages of the input matrix A n × m  by securely aggregating their local column sums 

divided by n, encrypted under the collective public key.
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Step 3: Random Projection.—DPi projects Ai to a subspace of ρ dimensions using the 

public sketch matrix Π ρ × n . DPi locally computes the product of Ai and the corresponding 

submatrix Πi
ρ × ni

 of Π ρ × n  to obtain its local sketch in cleartext. The result is then encrypted 

and aggregated among all DPs to obtain the encrypted sketch P  of the global matrix A.

Step 4: Power Iterations.—The sketch of the input matrix obtained in the previous step 

is repeatedly multiplied with the input matrix to increase the spectral gap between the top 

eigenvectors of interest and the rest [47]. We execute this step differently depending on the 

input dimensions for optimized performance; the two approaches considered by SF-PCA are 

described below. Notably, in both approaches, we leverage the fact that the cost of cleartext 

operations is almost negligible compared to that of HE to optimize the computation.
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Approach 1: Precompute & Reuse (Precomp):  Each DPi precomputes the covariance 

matrix Gi
m × m  once and reuses it in every iteration for multiplying with P . Note that Gi needs 

to be encrypted due to the mean-centering operation using the encrypted global column 

means o 1 × m . SF-PCA’s optimized matrix multiplication routines between an encrypted 

and a cleartext matrix (§.6.1) minimize the computation involving the encrypted matrix 

by precomputing certain transformations of the cleartext matrix at a negligible cost. To 

efficiently apply these methods to the encrypted Gi, we obtain the transformations of Gi by 

transforming the cleartext Ai and Ai
T
 before multiplying them.

Approach 2: Sequentially Multiply (Seq):  The DPs sequentially multiply P  by the 

cleartext matrix Ai (and its transpose) on the fly. The covariance matrix is never explicitly 

constructed. To keep the input matrix Ai in cleartext, SF-PCA performs the mean-centering 

of Ai in a lazy manner (lazy mean-centering): instead of subtracting the encrypted vector 

o 1 × m  from each row of Ai, which would transform the whole input matrix into an 

encrypted matrix, multiplication is performed using the original cleartext Ai and the resulting 

matrix is corrected to account for the mean shift. More precisely, we multiply encrypted P
with mean-centered Ai in three efficient steps: (1) multiply P  with the cleartext matrix Ai, 

(2) compute the inner product between each row of P  and o (see §.6.1.3), and (3) subtract 

each inner product value from all elements in the corresponding row of the matrix from 

(1). We observe that Precomp requires fewer multiplications per power iteration and its 

computation cost is mostly independent of n. Seq requires more operations but maximizes 

cleartext operations by reusing the cleartext matrix A. We compare the performance of both 

approaches in §.7.

In each iteration, a QR factorization (QRT ; Alg. 3) is applied to either the aggregated 

matrix P ρ × m , in both approaches, or the intermediate (P × Ai
T) ρ × ni  in Seq. In the latter, 

the factorization is optionally performed using a new interactive protocol DQRT , when the 

computational speedup of each DP computing on a matrix with ni columns vs. one DP 

computing on an aggregated matrix with m columns exceeds the additional communication 

cost, i.e., when ni ≪ m (see §.6.2).

Step 5: Reduction.—In the Precomp approach, the matrix P  resulting from Step 4 

is transformed to a small symmetric matrix Z by multiplying the covariance matrix Gi

from both sides. In the Seq approach, this is performed by using the cleartext matrix Ai
T

and then by multiplying the result by its transpose. As in Step 4, SF-PCA employs lazy 
mean-centering for this step.

Step 6: Eigendecomposition.—The eigendecomposition (introduced in §.3) is executed 

on the encrypted matrix Z. We detail our MHE-based algorithm for this step in Alg. 4. It 

requires the iterative execution of QRT  and matrix multiplications.
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Step 7: Reconstruction.—The PCs (rows of W ) are computed by multiplying the 

eigenvectors from Step 6 with the approximated subspace from Step 3, followed by a final 

round of power iteration and orthogonalization QRT  for numerical stability.

Step 8: Projection.—Each DPi projects its local cleartext data Ai
T
 onto the collectively 

encrypted PCs in W  to obtain their projected data Ai
′, which is also encrypted under the 

collective public key. If required by the application, by using DKeySwitch, the PCs and/or 

the DPs’ projected data can be collectively decrypted or re-encrypted under the public keys 

of specific entities to grant controlled access to the decrypted results.

6. Optimized Routines for Linear Algebra and Non-Polynomial Functions 

on Encrypted Data

We describe how SF-PCA efficiently executes matrix multiplications, sophisticated linear-

algebra transformations and non-polynomial function evaluations on encrypted data. 

Although the methods in this section can also be employed in the centralized setting, 

we note that the adaptive use of matrix multiplication routines and the higher-level 

protocols for matrix transformations (e.g., QR factorization) are optimized while accounting 

for the unique properties of MHE, e.g., the availability of local cleartext data and a 

lightweight interactive bootstrapping routine, both of which alter the tradeoff between 

different computational strategies and present new ways to optimize the algorithm. Our 

secure federated routines may be of independent interest for other applications.

6.1. Matrix Multiplications

Encrypted matrix multiplications are frequently invoked in SF-PCA’s workflow and hence 

are a key determinant of its performance. As outlined in Alg. 1, we introduce two high-

level algorithmic workflows—Precomp and Seq—for executing RPCA. Both approaches 

involve different types of multiplications over matrices of varying dimensions, motivating 

our adaptive strategy for choosing the most efficient routine for each computational step in 

SF-PCA among a range of multiplication methods.

6.1.1. Adaptive Strategy.—We identify two main types of matrix multiplications in 

Alg. 1: (i) unbalanced multiplications between a large encrypted matrix and a large cleartext 

(or pre-transformed encrypted) matrix in Steps 4, 7 and 8, with the key property that 

operations are cheap on one matrix (cleartext) and expensive on the other (ciphertext); 

and (ii) duplicated-vector multiplications, referring to multiplications between a large 

encrypted matrix and another encrypted matrix whose rows (or columns) are identical (e.g., 

corresponding to the encrypted mean vector o).

In §.6.1.2, we detail three different approaches (M1, M2, and M3) for unbalanced 

multiplications, each with a complexity that scales differently with the input dimensions. 

We denote by ζM
* (a, b, c), the function that takes the three input dimensions for multiplying 

M a × b  and N b × c  matrices and outputs the cost associated with the most efficient 

multiplication routine. The cost we compare is a weighted sum of the multiplication and 
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rotation invocation counts, where the weights are determined by the estimated runtime 

per operation in the given computational environment. The cost of a cleartext-ciphertext 

multiplication is set to be around 8 times lower than that of a ciphertext-ciphertext 

multiplication according to our estimates (Tab. 2).

We identify the matrix multiplication costs of Precomp and Seq for a single iteration as 

ζM
* ρ, m, m  and ζM

* ρ, m, nmax + ζM
* ρ, nmax, m , respectively, where ρ is the number of reduced 

dimensions in RPCA, m is the number of input features, and nmax = maxi ni  represents the 

largest number of samples locally held by the DPs. We consider the worst-case complexity 

as the overall runtime being as fast as the slowest DP. In addition, for both approaches, 

we incorporate the cost of lazy mean-centering when comparing the overall cost; Precomp 
requires 3b Mults and b Rots, whereas Seq requires two duplicated-vector multiplications, 

which we detail in §.6.1.3. We further compare these approaches in §.7.

6.1.2. Unbalanced Multiplications.—We describe the HE implementations of three 

matrix multiplication strategies: Dot-Product Method (M1), Element-Duplication Method 

(M2), and Diagonal Method (M3; adapted from Jiang et al. [59]). We jointly consider these 

three methods because their costs scale differently with the input dimensions, enabling 

SF-PCA to optimize its performance in a wide range of scenarios. For each method, we 

show its cost in terms of the invocations of ciphertext rotations (Rots) and multiplications 

(Mults) for multiplying a pair of a × b and b × c matrices. The cost of cleartext operations is 

negligible. To simplify the computational complexity analysis, we assume that b and c are 

powers of two without loss of generality. We denote by t the ciphertext capacity, i.e., the 

number of values that can be packed in a ciphertext. Due to SF-PCA’s vectorized encoding, 

the inner dimension b reduces to a small constant b
t  in terms of the number of ciphertext 

operations.

Dot-Product Method (M1).: Each element of R is obtained from the dot product (•) 

between a row of M and a column of N (Line 4 in M1). The result of the dot-product is 

moved to position j (0-based) by masking and rotating the vector by j positions to the right 

(i.e., Rot − j ; see §.3). In SF-PCA, this method is used (in Step 5 in Alg. 1) to multiply an 

encrypted matrix by its transpose without any additional transformation, since the encrypted 

rows of M can be directly used as the columns of N. The multiplication and rotation costs 

mainly depend on the outer dimensions.

M1: Dot-Product Method

Input: Encrypted M a × b  and cleartext (indicated by a tilde) N b × c
.

Output: Encrypted R a × c = M × N

Cost:(⌈b
t ⌉ + 1) · ac Mults and ac · ⌈b

t ⌉ · log2(t) Rots

 1: R 0 a × c
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 2: fori = 0, …, a − 1do

 3:   for j = 0, …, c − 1 do

 4:    R i, : R i, : + Rot − j M i, : • N : , j
 5:   end for

 6: end for

Element-Duplication Method (M2).: This method avoids the computation of pairwise dot 

products (used in M1) by duplicating each element of M to construct a vector of length c and 

by multiplying this vector (element-wise) with each row of N (Line 4 in M2). The results are 

aggregated to obtain R. This method’s cost depends mostly on the left matrix dimensions.

M2: Element-Duplication Method

Input: Encrypted M a × b  and cleartext (indicated by a tilde) N b × c

Output: Encrypted R a × c = M × N

Cost:⌈b
t ⌉ · ab Mults and ab · log2 min c, t  Rots

 1: R 0 a × c

 2: fori = 0, …, a − 1do

 3:  for j = 0, …, b − 1 do

 4:   R i, : R i, : + Dupc M i, j · N j, :
 5:  end for

 6: end for

Diagonal Method (M3).: This approach is based on the technique of Jiang et al. [59], 

which we adapt to large-scale matrices that cannot be packed in a single ciphertext. This 

method transforms the cleartext matrix (by rotating its columns) such that one of its rows 

corresponds to the diagonal of the original matrix (Line 2 in M3). The rows of the encrypted 

M are then rotated (Line 8) before being multiplied with the transformed rows of N at 

each iteration along the common dimension b (Line 9). We use the baby-step giant-step 

approach [87] to reduce the number of rotations on the rows of M from b to 2 b by storing 

the intermediate results in three-dimensional tensors (i.e., M′ and R′) (Lines 8 and 9), 

introducing a tradeoff between computation and memory usage (see §.7.4). The intermediate 

results are then aligned and aggregated in the final matrix R (Line 14). The rows of M are 

duplicated or truncated to have c elements Lenc ·  before the multiplication. This method’s 

cost also depends mostly on the dimension of the left matrix but, contrary to M2, its number 

of rotations scales with the square root of the inner dimension times the number of packed 

ciphertexts along the same dimension.
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M3: Diagonal Method

Input: Encrypted M a × b  and cleartext (indicated by a tilde) N b × c

Output: Encrypted R a × c = M × N

Cost:⌈b
t ⌉ · ab Mults and ⌈b

t ⌉ · (⌈ c
b⌉ + 2a · ⌈ b⌉) Rots

1: fori = 0, …, c − 1do

2:  N : , i Roti N : , i
3: end for

4: M′ 0 a × b × c
, R′ 0 a × b × c

5: fori = 0, …, b − 1do

6:  y i mod b , g i/ b
7:  for j = 0, …, a − 1 do

8:   if M′ j, y, : = ∅ then M′ j, y, : Lenc Roty M j, :
9:   R′ j, g, : R′ j, g, : + M′ j, y, : · N i mod m, :

10:  end for

11: end for

12: fori = 0, …, a − 1do

13:  for l = 0, …, b − 1 do

14:   R[i, : ] R[i, : ] + Rotl · b R′[i, l, : ]
15:  end for

16: end for

6.1.3. Duplicated-Vector Multiplications.—This method addresses a special setting 

where we multiply an encrypted matrix M with another encrypted matrix Γ whose rows 

(Case 1) or columns (Case 2) are identical vectors μ. This setting frequently arises in 

SF-PCA for the lazy mean-centering operations (i.e., all operations involving o in §.5.2). 

Our method accounts for this redundancy in the matrix to minimize the number of rotations 

on both encrypted matrices.

M4: Vector-Duplication Method

Input: Encrypted M a × b  and encrypted Γ b × b

   where Γ = 1 × μT  (Case 1) or Γ = μ × 1T  (Case 2)

Output: Encrypted R a × b = M × Γ

Cost:⌈b
t ⌉ · a Mults and ⌈b

t ⌉ · 2a · log2(min{b, t}) Rots

1: R 0 a × b
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2: fori = 0, …, ado

3:  if Case 1 then R i, : Dupb M i, : • 1 · μ
4:  if Case 2 then R i, : Dupb M i, : • μ
5: end for

6.1.4. Further Optimizations.—We note that all multiplication methods are 

parallelizable at the row level. Each multiplication of a ciphertext is followed by a rescale 

and a relinearization operation (the result of a multiplication with a plaintext only needs 

to be rescaled, see §.3). When the results of several multiplications need to be aggregated, 

we defer the rescale and relinearization operations until after the aggregation step so they 

can be executed once overall, rather than for every multiplication. Because these operations 

account for between 52% and 75% of the multiplication time (Tab. 2) and SF-PCA heavily 

relies on matrix multiplications, this optimization considerably improves SF-PCA’s overall 

performance. For example, it reduces the runtime of multiplying an encrypted M(8 × 28) with 

a cleartext N(28 × 28) with M3 from 24.6 to 3.8 seconds; the improvement is expected to be 

greater for larger matrices.

6.2. Matrix Transformations and Factorizations

We introduce new routines for executing sophisticated linear algebra operations required by 

the PCA on encrypted matrices and vectors. We begin with the Householder transformation 

[88], a key building block in other matrix transformations such as QRT  and Eigen, which 

we subsequently describe. We also present a new algorithm, DQRT , for executing a QR 

factorization on a matrix that is distributed among multiple parties. Note that all methods 

except DQRT  require communication only for bootstrapping (DBootstrap; §.3), which has a 

negligible computation cost. The reported communication costs are thus measured by our 

optimized number of invocations of bootstrapping on a single ciphertext.

Algorithm 2 - Encrypted Householder Vector (HH)

Input: Encrypted v ℎ × 1

Output: Encrypted v′ ℎ × 1 , such that H = I ℎ × ℎ − 2v′ × v′T  ensures H × v all zeros except the first 
coordinate

Comp. Cost:3 · l d + 6 Mults and 2 · log2 ℎ  Rots; l d  defined in text

Comm. Cost:(5 + 3(⌈1 + log2 d ⌉)
λ ) · ⌈ℎ

t ⌉ Ciphertexts

 1: v2 v · v 6: u v

 2: ∥ v ∥2 v2 • 1 7: u 0 δ + v 0

 3: ∥ v ∥ ∥ v ∥2 8: u2 u · u

 4: δ v[0]/ v[0]2 9: k u2[0] + ( ∥ v ∥2 − v2[0])
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 5: δ δ · ∥ v ∥ 10: k′ Dupℎ(1/ k 0 )
11: v′ u · k′

Householder Transformation of Encrypted Vectors.—Alg. 2 performs a key step 

in the Householder transformation, which reflects a vector about a given hyperplane, on an 

encrypted vector. For use in PCA, we need to choose a specific reflection hyperplane that 

transforms the input vector v into a vector (of the same norm) with zeros in all coordinates 

except for the first. The output v′ of Alg. 2 represents this hyperplane; the Householder 

matrix obtained as H = I ℎ × ℎ − 2v′ × v′T , where I is the identity matrix, satisfies that H × v
has a nonzero element only in the first coordinate. This method is used in QRT  to iteratively 

apply orthogonal transformations to the input matrix to convert it into a lower triangular 

matrix. Following the standard technique, the norm of the input vector (computed in Lines 

1–3) is added to or subtracted from its first coordinate (Line 7), depending on the sign of the 

first coordinate (Line 4) for numerical stability. Afterwards, the vector is normalized (Lines 

9–11) to obtain the desired reflection vector.

Alg. 2 requires the evaluation of non-polynomial functions, including the sign function 

(alternatively, g(x) = x/ x2, Line 4), the square root, and the inverse square root. To this 

end, SF-PCA applies Chebyshev polynomial approximation [89] to each function on a 

pre-determined input range (agreed upon in Step 1; §.5.2). In addition, we use the baby-

step giant-step technique [90] to further reduce the complexity of evaluating degree-d

polynomials, resulting in a multiplicative depth of log d + 1  and 2 · 2d + 1
2 log2 d + O 1

ciphertext multiplications. We denote this quantity as l d  in our algorithms. We discuss the 

choice of approximation intervals in §.6.3. For the communication cost, we calculate the 

number of DBootstrap executions as the multiplicative depth of this method divided by the 

number of available ciphertext levels λ (§.3).

QR Factorization of Encrypted Matrices.—QR factorization decomposes an input 

matrix V  into an orthogonal matrix Q and a lower-triangular matrix R such that V = R × Q. 

This is repeatedly used in Steps 4, 6 and 7 of SF-PCA’s workflow. In Alg. 3, we 

describe both the transposed-QR factorization QRT  that is executed by one DP on an 

encrypted matrix and its distributed equivalent DQRT . DQRT  performs a QR factorization 

in a federated manner on an encrypted matrix that is distributed among the DPs, requiring 

the DPs to aggregate (denoted by Ξ) their partial results in Lines 3, 5, and 18. In Step 4 

of SF-PCA, QRT  is executed on a matrix with ℎ = m columns (i.e., same as the number 

of features), whereas DQRT  is executed on a matrix with ℎ = n columns distributed among 

the DPs, where each DPi has ni columns. HH and the vector-matrix multiplications in Lines 

5 and 18 are the only operations with a cost that depends on ℎ . DQRT  requires more 

communication among the parties, and the complexity of QR factorization depends mainly 

on the number of rows δ, which is the same in both QRT  and DQRT , and not on ℎ. Hence, we 

use DQRT  only when the difference between ni and m is large enough to compensate for the 
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communication overhead, i.e., when ξ · log2 nmax < log2 m , with a factor ξ determined by the 

properties of the network setup (e.g., latency). Note that nmax = maxi ni .

Algorithm 3 - Encrypted QRT  Factorization (or DQRT):

Input: Encrypted V δ × ℎ

Output: Encrypted Q δ × ℎ
 and R δ × δ , such that R × Q = V

Comp. Cost:O δ2 + δ · ζHH  Mults, O δ2 · 1 + log2 ℎ + δ · ζHH  Rots, where ζHH refers to the cost of HH
(Alg. 2).

Comm. Cost:C = δ · ζHH + 4δ2
λ · ⌈ℎ

t ⌉ Cipher. (DQR:C + 3 · δ · ⌈ℎ
t ⌉ Cipher.)

1: H 0 δ × ℎ 12:   V j, : Rot1 V j + 1, :

2: for i = 0, …, δ − 1 do 13:  end for

3:  v HH(V [0, : ]T ) 14: end for

  (DQR: Ξ in Line 2 of Alg. 2)
15: Q [I δ × δ 0 δ × ℎ − δ ]

4:  H i, : vT 16: for i = δ − 1, …, 0 do

5:  v′ V × v (DQR: Ξ v′ ) 17:  H i, : Rot − i H i, :
6:  for j = 0, …, δ − i − 1 do 18:  h′ Q × H[i, : ]T

7:   V j, : V j, :   (DQR:Ξ h′

  −2 · vT · Dup δ − i v′ j 19:  for j = 0, …, δ − 1 do
20:   Q j, : Q j, :

8:  end for    −2 · H[i, : ]T · Dupi h′ j
9:  r Rot − i V 0, : 21:  end for

10:  R i, : r :δ 22: end for

11:  for j = 0, …, δ − i − 1 do

From Lines 1 to 14, the input matrix V  is multiplied by the Householder matrix 

H = I − 2v × vT , where v = HH(V [0, : ]T ) is the Householder vector obtained by Alg. 2 

with the first row of V  as input. This transformation is recursively performed on the i, i
minors of V  by discarding the first row and the first column to incrementally obtain the 

lower-triangular matrix R. Due to SF-PCA’s vectorized encoding scheme, the sub-matrix is 

efficiently obtained by applying a single ciphertext rotation per row (Line 9). In SF-PCA, 

R is only used during the eigendecompostion in Step 6. Q is computed in the second part 

(Lines 15 to 22) and corresponds to the product of all Householder matrices H.

Recall that we minimize bootstrapping by refreshing only small-dimensional data that are 

globally shared among the DPs (§.5). The intermediate values in QRT  satisfy this condition 

as they are derived from the input matrix that is already aggregated. Hence, the optimized 

number of invocations of DBootstrap ·  for QRT  corresponds to its multiplicative depth 

divided by λ. For DQRT , the input matrix is split among the DPs. In this case, the results 
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of the collective aggregation Ξ  in Lines 5 and 18, which constitute globally shared vectors 

among the DPs, are bootstrapped before being broadcast (shown as the additional cost).

Eigendecomposition of Encrypted Matrices.—Alg. 4 decomposes an encrypted 

matrix M into Q × L × QT , where Q is a matrix of eigenvectors and L is a diagonal matrix 

with the diagonal defined by the encrypted vector of eigenvalues l. The eigenvalues are 

ordered from the largest to the smallest. We adapt the standard QR iteration algorithm 

[79], [91] to the setting with an encrypted input matrix. The encrypted matrix is first 

tridiagonalized, i.e., transformed to a matrix where the only nonzero elements are in 

the diagonal, the subdiagonal, or the superdiagonal, which is known to improve the 

convergence rate of eigendecomposition [79]. The tridiagonalization is achieved by applying 

Householder transformations (using Alg. 2) to different subparts of the matrix to introduce 

zeros (Lines 2 to 11 in Alg. 4). The resulting encrypted matrix T  is then iteratively factorized 

using QRT  (Line 17) into R × Q′ (note the row-wise application of QR) and reconstructed 

as Q′ × R to gradually transform the matrix into a diagonal matrix. During this process, the 

last diagonal element converges to the smallest eigenvalue of the input. This is then executed 

for each eigenvalue in an ascending order, and the corresponding eigenvectors are obtained 

from the product of all Q′ matrices. We perform all small-matrix multiplications (Lines 6, 7, 

8, 18) by encoding each matrix in a single ciphertext and employing the technique of Jiang 

et al. [59]. We refer to this method as M5 to distinguish from the large-scale, unbalanced 

setting in M3 with ciphertext-cleartext multiplications. Multiplying two s × s encrypted 

matrices requires 5s Mults and 3s + 5 s Rots. We convert the matrices to our row-wise 

encoding scheme (in Lines 6, 9, 10, 12, 15, 17, 20, 22, 23) using one multiplication and one 

rotation per row, only to efficiently perform row and column selections. Similarly as Alg. 

3, this method operates on globally shared inputs, and its optimized communication cost 

scales with the multiplicative depth divided by λ, in addition to the costs of the HH and QRT

subroutines.

Algorithm 4 - Encrypted Eigendecomposition (Eigen):

Input: Encrypted symmetric M η × η , number of iterations w

Output: Encrypted Q η × η
 and l 1 × η

, where the rows of Q are eigenvectors of M, and l has corresponding 
eigenvalues

Comp. Cost:O η · 1 + ζHH + w · ζQR + η · 1 + w · ζM5  Mults and 

O η · ζHH + w · ζQR + η · 1 + w · ζM5  Rots, where ζHH, ζM5 and ζQR refer to the costs of HH, M5 and QRT .

Comm. Cost:(η − 1) · ζHH + w · ζQR + η − 1 · 4 + 3w
λ · η

t  Ciphertexts

 1: Q I η × η
, T 0 η × η 13: for i = η − 1, …, 1 do

 2: for i = 0, …, η − 3 do 14: for j = 0, …, w − 1 do

 3:  v HH(M[0,1: ]T ) 15:   S T i, i × I i, :

 4:  P I η − i × η − i 16:   T T − S
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 5:  P 1:1: I η − i − 1 × η − i − 1 − 2 · v × vT 17:   Q′, R QRT T
18:   T Q′ × R

 6:  Q i: , : P × Q i: , : 19:   T T + S
 7:  PM P × M 20:   Q : i + 1, : Q : i + 1, : × Q′

 8:  M PM × P T

 9:  T i: i + 2, i: i + 2 M :2, :2 21:  end for
22:  l i T i, i

  10:  M M 1: , 1: 23:  T T : i, : i
  11: end for 24: end for

  12: T η − 2: , η − 2: M 25: l 0 T 0,0

6.3. Non-Polynomial Functions on Encrypted Inputs

To approximate non-polynomial functions on chosen intervals, SF-PCA’s default approach 

is to rely on homomorphic evaluations of Chebyshev polynomial approximations [90]. In 

Step 1 (Alg. 1), the DPs agree on the intervals and on the degree of the approximations. 

The complexity of the polynomial evaluation increases with the degree but is independent of 

the interval size, which influences the precision. While any interval selection approach may 

be used with SF-PCA, the approach we adopt in our evaluation in §.7 is for a DP (e.g., the 

one coordinating the collaboration or the one with the highest number of local samples) to 

set the intervals based on the estimated range of intermediate values to be encountered by 

running RPCA on a simulated dataset, obtained by upsampling its local data to match the 

size of the joint data. In §.8, we discuss an extension to SF-PCA that enables it to switch 

to secret sharing for the evaluation of non-polynomial functions, for which efficient bit-wise 

protocols exist for scaling the input to a common range for approximation. This effectively 

removes the need to choose intervals and, depending on the parameters, can further improve 

SF-PCA’s accuracy (Appendix D.1).

7. System Evaluation

We show that SF-PCA, enabled by our optimization techniques (§.5), efficiently computes a 

PCA on high-dimensional inputs distributed among a large number of DPs. We demonstrate 

SF-PCA’s practicality and accuracy on various datasets with the number of features ranging 

from 8 to 23,724 and including up to 60,000 samples. SF-PCA consistently obtains PCs that 

are highly similar r2 > 0.9  to those obtained by a standard non-secure PCA. SF-PCA also 

outperforms alternative privacy-preserving approaches in terms of accuracy and runtime, and 

offers stronger security guarantees compared to some. In §.7.7, we show that, contrarily 

to meta-analysis, SF-PCA remains accurate regardless of potential differences in the data 

distribution among the DPs.

7.1. Formal Analysis of Costs

SF-PCA’s communication cost depends mainly on the number of features m, the number of 

components ρ and the number of power iterations p. SF-PCA’s computation cost depends 

on the same parameters and optionally on the number of samples per DP ni. For both, the 

Froelicher et al. Page 23

Proc IEEE Symp Secur Priv. Author manuscript; available in PMC 2024 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



overall cost is amortized over the ciphertexts due to packing and the SIMD property of HE, 

effectively dividing the contributions of m and ni to the complexity by the ciphertext capacity 

t. In Tab. 1, we show the theoretical costs for a single DP DPi  for each step in SF-PCA 

(Alg. 1).

The communication in Step 1 is due to the generation of the public key pk and evaluation 

keys evks (including a relinearization key and log2(t) rotation keys). All rotations in SF-PCA 

are executed by combining rotations of power-of-two shifts using the pre-generated keys. 

DBootstrap requires each DP to transmit and receive the equivalent of a ciphertext, and to 

perform one ciphertext addition (at a negligible cost). In the remaining steps, we analyze the 

communication cost in terms of the number of DBootstrap invocations, which depends on 

the cryptographic parameters and the number of multiplications to perform in each routine 

(§.6.2). In turn, the number of multiplications depends on the input dimensions, the degree 

of polynomial approximations and, for Eigen, the number of iterations w.

SF-PCA’s overall communication cost is independent of the number of samples and is 

dominated by the bootstrapping execution. We optimize the performance of SF-PCA by 

selecting the computation approach with the lowest complexity, e.g., by choosing Precomp 
(whose complexity is independent of ni) if the number of samples is large.

7.2. Implementation Details and Evaluation Settings

We implemented SF-PCA in Go [92], building upon Lattigo [93] and Onet [94], which 

are open-source Go libraries for lattice-based cryptography and decentralized system 

development, respectively. The communication between DPs is through secure TCP 

channels (using TLS). We evaluate our prototype based on a realistic network emulated 

using Mininet [95], with a bandwidth of 1 Gbps and a communication delay of 20ms 

between every two nodes. Unless otherwise stated, we uniformly and horizontally distribute 

the input data among 6 DPs. We deploy each DP on a separate Linux machine with Intel 

Xeon E5-2680 v3 CPUs running at 2.5 GHz with 24 threads on 12 cores and 256 GB of 

RAM. We provide the default system parameters of SF-PCA considered in our evaluation in 

Appendix B.

7.3. Microbenchmarks for MHE Protocols in SF-PCA

In Fig. 2, we summarize the runtimes for SF-PCA’s main ciphertext operations as well 

as high-level linear algebra routines. Recall that each ciphertext contains up to t = 213

values and any operation is concurrently executed on all encrypted values. Multiplying a 

cleartext with a ciphertext is almost 8x faster than multiplying two ciphertexts with the 

default parameters. The transmission time of a ciphertext Send c  depends mostly on the 

communication delay (20ms in our setting). In our default setting, DKeyGen takes 9 seconds 

to generate the public key, relinearization key, and 13 rotations keys.

7.4. Practical Scalability of SF-PCA Performance

We evaluated SF-PCA’s scalability on simulated datasets of varying sizes. In Fig. 3, we 

show that SF-PCA’s runtime (when computing eight PCs with ten power iterations) remains 
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almost constant when the dimensions are smaller than the ciphertext capacity t (set to 8,192 

by default). It then grows linearly with the number of ciphertexts, i.e., with the number of 

features m  and samples per DP ni  divided by t. Note that, since the protocol is synced 

among the DPs at each aggregation step, SF-PCA’s runtime depends on the slowest DP, 

e.g., the DP with the largest local dataset, as shown in Fig. 3 and Fig. 7c in appendix. 

In all figures, we omit the negligible execution times of Steps 1 to 3. These steps require 

mostly non-iterative cleartext operations. In Fig. 3 (left panel), we set ni = 1,024 and show 

that all SF-PCA’s approaches (i.e., Precomp and Seq with QRT  or DQRT) similarly scale 

linearly with m. Precomp is the most efficient approach for this range of values for m and 

n = 6,144 but becomes impractical with a large m. In these experiments, we found DQRT

to be consistently inferior to QRT  as the former’s communication overhead overshadows 

its computational speedup. This is expected, since the computational gain of using DQRT

depends on how much smaller ni is with respect to m (see §.6.2). This difference is never 

large enough to compensate for the communication overhead in our settings. The results in 

Fig. 3 (right panel), for which m is set to 256, show that SF-PCA’s runtime remains constant 

when using Precomp, which does not depend on the number of samples.

We remark that SF-PCA’s runtime is dominated by the time dedicated to the communication 

between the DPs (Fig. 4). The communication overhead ranges between 90% of the runtime 

with small input dimensions, i.e., when the packing capacity of the cryptoscheme is 

less exploited, and 45% of the runtime when the dimensions are equal or larger than t. 
Although SF-PCA is able to minimize its computation runtime with optimized federated and 

parallelized computation methods, its communication overhead is bounded by the available 

communication network. When the number of DPs s  doubles, SF-PCA’s runtime increases 

only by a factor of around 1.1. This is because the amount of local computation does not 

grow with s (Table 1) and because the cost of interactive routines only slightly increases 

with s. Based on Fig. 4, we estimate practical runtimes even for hundreds of DPs, e.g., 

110 minutes for 200 DPs with a maximum of 1,024 data samples per DP. We discuss in 

§.8 how SF-PCA can be extended to handle availability issues given many DPs. In Fig. 4, 

SF-PCA’s runtime grows linearly with the number of components in all its steps except in 

Step 6, where the eigendecomposition cost depends on the small matrix dimensions: ρ × ρ. 

SF-PCA’s runtime increases linearly with the number of power iterations; however, this 

parameter typically does not grow with the data size for RPCA.

In our default scenario, SF-PCA’s runtime is multiplied by a small factor of 1.1x when 

the available bandwidth is halved and the communication delay doubled. Moreover, each 

ciphertext accounts for 2.5 MB, thus executing SF-PCA on a dataset with 8,192 features (or 

less) requires each DP to send 3.8 GB, independently of the number of samples n (which can 

be large).

7.5. Accuracy of SF-PCA Results

We demonstrate SF-PCA’s accuracy and practicality on six real datasets, including MNIST 

[54] and two genomic datasets [55], [96] with thousands of patients and up to 23,724 

features (see Appendix E for dataset details). We evenly and randomly split each dataset 
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among the DPs. In §.7.7, we show that SF-PCA computes the same results regardless of 

the data distribution among the DPs. In Fig. 5, we show that SF-PCA and the cleartext non-

secure centralized Randomized PCA (RPCA, Fig. 1) achieve similar accuracy (according to 

the mean-squared error, MSE; and Pearson Correlation Coefficient, r2), with respect to the 

PCs obtained using the standard non-secure PCA, i.e., the RPCA implemention provided by 

the sklearn Python package [97].

7.6. Comparison with Existing Works

We compare SF-PCA with existing approaches for federated or multiparty PCA, which 

we categorize into meta-analysis, centralized HE (C-HE), and secret sharing-based SMC 

solutions. A more detailed review of these approaches is provided in §.2.

Meta-analysis.—For comparison, we replicate the meta-analysis approach of Liang et al 

[41], whereby a central computing server performs a truncated SVD on the combined SVD 

results obtained independently by each DP. In Fig. 5, we show that this solution yields the 

least accurate results across all datasets. Note that SF-PCA significantly improves upon the 

accuracy of meta-analysis by emulating a centralized PCA. Moreover, most meta-analysis 

solutions [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43] are not end-to-end 

secure as the DPs’ intermediate results are revealed to an aggregator server (or to the other 

DPs). These solutions achieve similar runtimes as non-secure centralized solutions because 

they also operate on unprotected cleartext data.

Centralized HE (C-HE).—We estimate the runtime of an HE-based centralized solution 

based on SF-PCA’s runtime as follows. We account for the fact that the computations cannot 

be distributed among the DPs and that all operations must be performed on the encrypted 

data. Recall that SF-PCA exploits local cleartext operations to optimize computation (e.g., 

§.6.1) and that multiplying two ciphertexts is 8 times slower than a plaintext-ciphertext 

multiplication. We also include the overhead brought by a centralized bootstrapping 

routine [90], which is two orders of magnitude slower than DBootstrap, e.g., 26 seconds 

for [90] vs. 0.49 seconds with DBootstrap. Furthermore, since centralized bootstrapping 

consumes levels and lowers the number of available levels for multiplications, C-HE would 

require more conservative cryptographic parameters with larger ciphertexts, and thus higher 

computation and communication costs. In Fig. 5, we show the estimated lower bound of 

the runtime for a C-HE solution executed by a single DP. We remark that SF-PCA, by 

distributing its workload and relying on efficient interactive protocols, is consistently 1–2 

orders of magnitude faster than a C-HE solution. We note that we consider C-HE solutions 

based on the same underlying scheme of SF-PCA with comparable parameters, and that 

more sophisticated centralized solutions could be devised. However, those would still suffer 

from a high communication overhead and introduce a single point of failure due to the data 

centralization.

Secret Sharing-based SMC.—In Fig. 5, we compare SF-PCA’s runtime with the linear 

(additive) secret sharing-based SMC solution proposed by Cho et al. [45]. In this solution, 

two computing servers perform PCA on secret-shared data, and a third server is responsible 

for the generation and distribution of correlated random numbers used in SMC protocols 
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(e.g., Beaver triples [101]). This additional party is trusted to correctly generate these values 

and not to collude with any other party. We ran Cho et al.’s publicly available, two-party 

solution [102] in our evaluation environment. We further estimated the runtime of this 

solution with 6 DPs under linear scaling with the number of DPs. We observe that SF-PCA 

is between 3x and 10x faster than the SMC solution while operating in a stronger threat 

model without the need for an honest third party. We also note that the SMC solution 

requires the entire dataset to be secret-shared among the computing parties, which can 

be costly for large datasets and complicate regulatory compliance. For example, with the 

Lung dataset [55], this represents a communication overhead of more than 60 GB. Finally, 

we note that SMC solutions heavily rely on interactive computations, leading to many 

rounds of communication in total. Since a large portion of SF-PCA is local non-interactive 

computation by each DP, SF-PCA remains practical even in constrained networks with high 

communication delays, unlike the SMC solutions. For example, when we double the delay 

from 20ms to 40ms, we observed that SF-PCA’s runtime remains almost constant, whereas 

the SMC solution becomes 1.9 times slower in the two-party setting. In §.8, we describe an 

extension of SF-PCA which uses secret sharing specifically for non-polynomial operations 

over low-dimensional inputs.

7.7. Example Application of SF-PCA in Genomics

To further demonstrate the utility of SF-PCA, we used it to analyze a genomic dataset 

of 2,504 individuals with 1,773 features (a subset of genetic variants from chromosome 

20). PCA is a standard step in many genomic analysis workflows, e.g., in genome-wide 

association studies [9], for capturing ancestry patterns in a dataset. We split the data among 

three DPs such that each DP only has samples belonging to a specific ancestry group (Fig. 

6.d). The plots show individual samples projected onto the first two PCs. Consistent with 

the quantitative evaluation in §.7.5, SF-PCA (Fig. 6.b) is able to accurately identify the 

low-dimensional structure spanned by the data samples, almost exactly replicating the output 

of a centralized cleartext PCA on the full dataset, independently of how the data is split 

among the parties (Fig. 6.a). The meta-analysis approach for PCA (Fig. 6.c) results in a 

distorted data landscape due to the limited view of each DP. In Fig. 6.d, we highlight the 

output of SF-PCA that is visible to one of the DPs; while all DPs obtain projected data 

according to a unified subspace identified by the PCA, each DP sees only a portion of the 

output associated with their local data as required by our security model.

8. Extensions

SF-PCA can be extended in several ways to incorporate additional features. First, SF-PCA’s 

multiparty construction enables it to seamlessly and securely (i.e., without decryption) 

switch between MHE and secret sharing-based SMC [30], [31], [103] (see Appendix 

D.1). This enables SF-PCA to leverage more efficient and accurate protocols to evaluate 

non-polynomial functions (e.g., sign tests) on small-dimensional inputs, while using MHE 

for operations over large encrypted vectors and matrices where the SIMD property of MHE 

leads to efficient performance with minimal communication. Next, the modular design 

of SF-PCA enables its federated routines to be used to perform RPCA on vertically 

partitioned data (Appendix D.2). SF-PCA could also be extended to provide differential 
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privacy (Appendix D.3), although setting a meaningful privacy parameter may be difficult, 

by incorporating an interactive protocol in which the DPs sequentially shuffle an encrypted 

list of noise values before adding them to the results upon decryption [104]. Lastly, to cope 

with the possibility of a subset of DPs becoming unavailable during the PCA computation

—particularly relevant for the setting with many DPs, SF-PCA can be instantiated with a 

threshold secret sharing of the MHE secret key [53] to allow a subset of DPs to continue the 

protocol execution (Appendix D.4).

9. Discussion and Conclusions

We introduced SF-PCA, a decentralized system for securely and efficiently executing PCA 

on data held by multiple data providers. SF-PCA ensures input confidentiality as long as at 

least one DP is honest. Furthermore, the local private data never leave the DPs’ premises 

given the federated design of SF-PCA. Our system builds on a range of optimized MHE-

based routines we developed for key computational operations in PCA such as large-scale 

cleartext-ciphertext matrix multiplications and sophisticated linear algebra transformations, 

including matrix factorization and orthogonalization. SF-PCA obtains accurate results 

within practical runtimes on large matrices including tens of thousands of features, and 

efficiently scales with the number of data providers and the input dimensions due to our 

optimization strategies.

Our work shows that an end-to-end secure solution for high-complexity data analysis tasks 

such as PCA is practically feasible. Incorporating SF-PCA into existing privacy-preserving 

federated analysis methods (e.g., see Appendix G) and deploying it in a range of practical 

applications are natural next steps for our work. Our design principles and optimization 

techniques that have led to the practical performance of SF-PCA, as well as the optimized 

MHE routines for key linear algebra operations such as eigendecomposition are broadly 

applicable to other problems in federated analytics.
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Appendix A: CKKS

We instantiate SF-PCA’s multiparty scheme with the Cheon-Kim-Kim-Song (CKKS) 

cryptosystem [61]. CKKS parameters are denoted by the tuple N, Δ, η, mc , where N is 

the ring dimension; Δ is the plaintext scale by which any value is multiplied before it 

is quantized and encrypted/encoded; η is the standard deviation of the noise distribution; 

and mc represents a chain of moduli q0, …, qL  such that Πι ∈ 0, …, κ qι = Qκ is the ciphertext 

modulus at level κ, with QL the modulus of fresh ciphertexts. Operations on a ciphertext 

c at level κ and scale Δ with Δ < Qκ are performed modulo Qκ. We denote by c, L, Δ , 

with c = c0, c1 ∈ RQL
2 , and p ∈ RQL, a fresh ciphertext at level L with scale Δ and a plaintext, 

respectively.
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Appendix B: Symbols & Default Values

TABLE 3:

Glossary of Symbols and Their Default Values in SF-PCA.

Symbol Definition Default

s, p, w # DPs, # power and eigen iterations 6, 10, 5

ψ + α = ρ # PCs + oversampling = # components 4 + 4 = 8

ζ *, ζ, d Optimized cost, cost, approx. degree -, -, 31

m, n, ni # features, # samples tot. & at DPi 28, 6144, 210

N, λ Ring dim., # available levels 214, 7

RQ Plain/Ciphertext domain -

c encrypted vector/ fresh ciphertext with
c = c0, c1 ∈ RQL

2 -

p ∈ RQL, sk, pk plaintext, secret & public keys -, -, -

t, • c capacity, dot product 213, -

M a × b , N b × c Generic encrypted and cleartext matrices -, -

M i, j , v i Matrix/vector elem. at index i, j /i -, -

Appendix C: Security Analysis

We rely on the real/ideal simulation paradigm [105] to show that SF-PCA achieves the 

input confidentiality requirement defined in §.4. A computationally bounded adversary that 

controls up to all but one DP cannot distinguish a real world experiment, in which the 

adversary is given actual data from an execution of our protocol from the views of the 

compromised DP(s), and an ideal world experiment, in which the adversary is given random 

data generated by a simulator.

The semantic security of the CKKS scheme used in SF-PCA is based on the hardness of the 

decisional-RLWE problem [61], [80], [106]. Mouchet et al. [48] proved that their distributed 

protocols, i.e., DKeyGen and DKeySwitch, are secure under the simulator paradigm. They 

show that the distribution of the cryptoscheme preserves its security in the passive-adversary 

model with all-but-one dishonest DPs, as long as the decisional-RLWE problem is hard. 

Their proofs are based on the BFV cryptoscheme; Froelicher et al. [24] showed that the 

proofs still hold with CKKS, as the same computational assumptions hold, and the security 

of CKKS is based on the same hard problem as BFV. They make a similar argument 

for DBootstrap and prove its security. The security of the cryptoscheme used by SF-PCA 

follows from these results.

Proposition 1.

Assume that SF-PCA uses CKKS encryptions with parameters N, Δ, η, mc  ensuring post-
quantum security. Given a passive adversary corrupting at most s − 1 parties out of s parties 
in total, SF-PCA achieves input confidentiality.
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Sketch of the Proof.

We consider a real-world simulator S that simulates the view of a computationally-bounded 

adversary corrupting s − 1 parties, i.e., it has access to the inputs and outputs of s − 1 parties. 

In Step 1 of SF-PCA’s workflow (Alg. 1), the simulator obtains the public parameters and 

the entire matrix A, except the rows that belong to the honest DP. From Step 1 to the end, 

the DPs exchange only collectively encrypted information. In Step 8, each DP projects its 

local data on the obtained collectively encrypted PCs. If required by the application, the 

collectively encrypted result is switched to each DP’s public key so that they can decrypt the 

final result. To avoid information leakage about data and/or about the encryption keys from 

the processed ciphertexts [84], we rely on existing countermeasures [48], [85], [86] and add 

fresh noise (i.e., rerandomizing) sampled from a distribution that has a variance significantly 

larger than that of the input ciphertext’s noise distribution to the processed ciphertext [84]. 

Alternatively, this result can be kept encrypted and used for future steps without ever being 

decrypted. Hence, by generating random ciphertexts with parameters N, Δ, η, mc , S can 

simulate all the values communicated during the entire process such that the real outputs 

cannot be distinguished from the ideal ones. The sequential composition of all cryptographic 

functions remains simulatable by S as there is no dependency between the random values 

that an adversary can exploit. Also, the adversary cannot decrypt collectively encrypted data 

unless all DPs collude, which would contradict the considered threat model (§.4). Following 

this, SF-PCA ensures input confidentiality for the honest DP(s).

Appendix D: Extensions

D.1. Hybrid Use of Multiparty Security Primitives

SF-PCA’s multiparty construction enables it to seamlessly switch between MHE and 

secure multiparty computation (SMC) primitives based on secret sharing [30], [31], [103]. 

Intuitively, an MHE ciphertext is transformed to linear (additive) secret shares (LSS) through 

a collective masked decryption by the DPs, i.e., each DP partially decrypts the ciphertext 

and masks the result with its secret share, whereas the last DP decrypts and obtains its 

share. After the computations in the LSS domain, to transform the result back to an MHE 

ciphertext, each DP encrypts its local share of the result such that it can be aggregated under 

MHE with all DPs’ encrypted shares. We detail these procedures in Protocol 1. SF-PCA 

always employs MHE to execute large-dimensional matrix operations and can perform non-

polynomial operations, e.g., square root and divisions (in Alg. 2), as well as small-matrix 

operations (in Alg. 4), using LSS-based routines [45]. This combines the strengths of 

both approaches: On the one hand, relying on edge-computing and the SIMD property of 

MHE, SF-PCA efficiently performs vectorized and parallel operations over large encrypted 

matrices while minimizing communication. On the other hand, relying on LSS-based SMC, 

SF-PCA simplifies its usage by removing the need to choose intervals for non-polynomial 

function approximations. Note that efficient protocols exist for computing the bit-length of 

a secret-shared value [107], which can be used to map the input to a common interval 

for accurate approximation. In addition, LSS-based routines can be more efficient for 

computation over small data, e.g., eigendecomposition of a tiny matrix in RPCA, where 

the ciphertext packing is underutilized for MHE. In SF-PCA, all costly non-polynomial 
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operations (e.g., see Alg. 2) are executed on a single scalar input. Thus, executing these 

operations on compact secret-shared data can further reduce the computational cost of 

SF-PCA.

LSS Scheme.

We implemented a collection of SMC routines used by the prior work on LSS-based PCA 

[45] to perform the required non-linear operations (comparison, square root, and division), 

newly extending the support to more than two DPs and 128-bit security. These protocols 

build upon a combination of existing SMC techniques [31], [101], [103], [107], [108], [109], 

[110]. All values and shares are encoded as field elements x‾ (or x for a vector of elements) 

in ℤp‾, with p‾ a prime, by relying on a fixed-point representation [108]. For example, with 

2 parties, x ∈ ℤp‾ is secret shared as r ∈ ℤp‾ and x − r ∈ ℤp‾. Additions consist in simple 

share additions, whereas multiplications are done by relying on Beaver multiplication triples 

[101]. Following the prior work, we adopt the server-aided model of preprocessing whereby 

a third-party generates these triples to facilitate the main interactive computation with 

efficiency. This scheme can be modified to avoid the need of a trusted node at setup, thus 

following SF-PCA’s default threat model, by relying on an interactive protocol for the setup 

to be executed among all DPs. Adapting existing solutions [30], [48] to SF-PCA is part of 

future work.

Protocol to Switch Between MHE and LSS.

We build on the collective bootstrapping protocol [48]. We split this protocol in two rounds 

and add a conversion to/from the field ℤp‾ of the LSS scheme, see Protocol 1. We assume 

that DP1 wants to perform a function fLSS on the encrypted vector c. The security of the 

protocol can be derived from the security of the original DBootstrap (for which Froelicher 

et al. [24] prove that statistical indistinguishability is preserved as long as the masks are 

sampled from the correct distribution), from the LSS scheme guarantees (i.e., statistical 

indistinguishability), and from the security of CKKS and the hardness of the decisional-

RLWE problem [61], [80], [106].

Evaluation.

Switching to LSS removes the need for defining approximation intervals to evaluate 

non-polynomial functions hence simplifies the usage of SF-PCA. Depending on the 

setting, it can also improve SF-PCA’s accuracy. The intervals for the non-polynomial 

operations depend on the DPs’ data and, as SF-PCA’s intermediate results are repeatedly 

orthogonalized (through QRT), these ranges can be accurately inferred upfront by the DPs, 

e.g., by simulating the protocol (§.6.3).

Protocol 1

MHE  LSS

Input:DP1 has cpk = (c0, c1) = {c, τ, Δ} ∈ RQτ
2

 a ciphertext encrypting p . ν is a security parameter, ski the 

secret-key of each DP i, χerr a distribution over R, where each coefficient is independently sampled from Gaussian 
distribution with the standard deviation σ = 3.2, and bound 6σ . Encode ·  is the mapping from a plaintext 
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encoded in R to the equivalent encoding in ℤp‾. Let T  be the bound on all possible coefficients in the polynomial 
representation of p encoding real data values and l be the bound on the possible bit length of real data values encoded in 
ℤp‾.

Output:cpk
′ = c′, L, Δ

Constraints:Qτ > s + 1 · T · 2ν & s + 1 · 2ν + l < p‾
  1: DP1 broadcasts c, τ, Δ
  2: Each DPi for i = 2, …, s
  3:  Samples ai Uniform RT · 2ν , ei χerr

  4:  Sends hi = ski · c1 + ai + ei mod Qτ  to DP1

  5:  Assigns ai = Encode −ai mod p‾
  6: DP1:

  7:  Samples a1 Uniform RT · 2ν , e1 χerr

  8:  Computes h1 = sk1 · c1 + a1 + e1 mod Qτ

  9:  Computes h′ = c0 + ∑i = 1
s hi mod Qτ

10:
 Assigns a1 = Encode(h ′‾ − a1)mod(p‾)

11: All DPi :

12:  Compute ri = fLSS ai

13:  Compute ri = ri − bi mod p‾ , with bi Uniform(ℤ2ν + l
N/2 )

14:  Encrypt cpk
i = Enc pk, bi

15: Each DPi for i = 2, …, s : Sends cpk
i
 and ri to DP1

16: DP1 :

17:  Computes r′ = ∑i = 1
s ri mod p‾  and encrypts cpk

′ = Enc pk, r′
18:  Computes cpk

′ = cpk
′ + ∑i = 1

s cpk
i

For example, with the MNIST dataset and the parameters of Fig. 5, the DPs define 16 

distinct intervals to evaluate 1,047 polynomial approximations. This is because the ranges of 

values are constant across the dimensions and across the iterations of the same operations. 

For the same dataset, relying on SF-PCA +LSS improves the Pearson correlation between 

SF-PCA’s PCs and the PCs obtained with a standard non-secure centralized PCA from 

0.91 to 0.92 (when using our default parameters, Tab. 3). SF-PCA’s accuracy depends on 

the size and degree of the intervals hence can be improved by refining these parameters. 

We illustrate this on the execution of a single QRT  in Fig. 7b. We note that QRT  is used 

(iteratively) in Steps 4, 6 and 7 of SF-PCA and that all non-polynomial operations in 

SF-PCA are executed in the Householder (HH, Alg. 2) that is called in line 2 of QRT . 

For QRT  on a 8×8 matrix, HH is called seven times and requires the evaluation of three 

non-polynomial functions. In SF-PCA, this requires the definition of 21 approximation 

intervals, i.e., one per non-polynomial function. We show that using a single large interval 

(with a polynomial of degree 63; [0:1000;63]) for all operations already yields results that 

are correlated with the results obtained by a cleartext solution. SF-PCA’s accuracy can then 

be improved by either downsizing the interval (to [0:100;63]), increasing the approximation 
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degree (to [0:1000;127]), or by using more fine-grained intervals for the different steps in 

the computation ([0:100;63] for the first execution of HH and [0:1;63] afterwards).

In Fig. 7a, we show that SF-PCA’s runtime is similar with or without this extension. SF-

PCA’s computational cost is reduced by computing on secret shares, instead of on encrypted 

vectors, but this gain is overshadowed by the communication overhead brought by both 

the protocol for switching between MHE and LSS and by LSS distributed computations. 

SF-PCA scales similarly with its default approach (SF-PCA in Fig. 7a) and when switching 

to LSS for non-polynomial and small-dimensional operations (SF-PCA +LSS). Switching 

to LSS only for non-polynomial operations (SF-PCA +LSS-OP) is around 1.4x slower than 

SF-PCA +LSS due to the communication overhead brought by the high-number of switches 

between the two schemes. SF-PCA can optimize its runtime for the small-dimensional 

eigendecomposition (Step 6) by performing it entirely in the LSS domain, which is up to 

1.5x faster than in its basic approach in this scenario. When operating on larger dimensions, 

i.e., in Step 4 (Alg. 1), SF-PCA only switches to LSS for small-dimensional (i.e., single 

value as shown in Alg. 2) non-polynomial operations as this can improve its precision. 

Performing sequences of operations in LSS in Step 4 would require to switch and operate on 

large-dimensional secret-shared elements, which would further increase the communication 

overhead. In Fig. 7b, we show that the runtimes of most LSS operations are in the same 

order of magnitude as MHE operations.

D.2. Vertically Partitioned Data

SF-PCA’s workflow can be easily adapted to work with a vertically partitioned input matrix 

by modifying the interactive computation among the DPs while leveraging the same local 

operations as before. Because of the different way the data is split, some of the DPs’ 

intermediate results have to be combined (aggregated or concatenated) at different points in 

SF-PCA’s workflow; this does not change the nature of the underlying operations that are 

optimized in the default setting of SF-PCA. In the vertical case, the overall computation and 

communication complexities depend on the total number of samples n and the number of 

features per DP mi, whereas these depend on ni and m in SF-PCA’s original approach. We 

show both approaches in Fig. 8. The mean-centralization is up to eight times less expensive 

than in SF-PCA’s original workflow, because each DPi keeps its part of the averages’ vector 

oi in cleartext.

D.3. Differential Privacy

SF-PCA can be extended to provide differential privacy by leveraging an interactive protocol 

in which the DPs sequentially shuffle an encrypted list of noise values before adding them 

to the results upon decryption [104]. The choice of privacy parameters and maintaining 

accuracy are part of future work.

D.4. Fault Tolerance

To cope with the possibility of a subset of DPs becoming unavailable during the PCA 

computation, which is particularly relevant when there are many DPs, SF-PCA can be 
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extended by employing a ŝ-out-of-s threshold secret-sharing for the MHE secret keys [53], 

where s is the number of DPs. Note that the main setting of SF-PCA considers ŝ = s. Setting 

ŝ to be smaller than s changes SF-PCA’s security model to tolerate up to ŝ − 1 dishonest 

DPs. As long as at least ŝ DPs are available for each interactive step, SF-PCA’s execution 

continues without interruption. In certain steps of SF-PCA the omission of a subset of 

parties may result in their local data not being accounted for in the computation. However, 

given the iterative nature of the RPCA algorithm, the overall results are expected to be 

robust against such omissions with a sufficient number of iterative steps.

Appendix E: Datasets

The Wine dataset [98] contains 4,898 wine samples with physicochemical attributes as 

features and a quality score as label. The Lung dataset [55] contains 9,098 patients with 

23,724 genomic variations (as features) and a label indicating the presence of a cancer. 

The PIMA dataset (768×8) [99] contains medical observations collected from an Indian 

community that can be used to predict the presence of diabetes. Chr20 (2,502×1,773) [96] is 

a subset of the genomic data available in the 1,000 Genomes dataset. In the MNIST dataset 

(70,000×784) [54], each sample describes the grey-scale image of a single handwritten digit. 

Finally, the Vehicle [100] dataset contains 19 features extracted from each of the 435 images 

of buses or cars.

Figure 7: 
In Fig. 7a, we show SF-PCA’s runtime when using LSS extension. In Fig. 7b, [0 : 100;63] 

indicates that the approximations are done in an interval between 0 and 100 with a degree 

of 63. Fig. 7c depicts SF-PCA’s runtime when one DP has 32,786 data samples and the 

remaining samples are evenly split among 5 DPs.
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Figure 8: SF-PCA’s secure workflow with horizontally (left) and vertically (right) partitioned 
data.
The execution is depicted from DPi’s point of view. The filled boxes indicate encrypted 

matrices and the empty boxes show cleartext matrices. The dimensions are shown with 

the box sizes and are indicated on the left and top of the corresponding box. Ξ indicates 

a collective aggregation, Θ a collective concatenation, and, in both cases, the result is 

broadcast to all DPs. The dimensions equal to 1 are omitted and vectors replicated to comply 

with the matrix-multiplication dimensions are not shown. A tilde indicates cleartext.

Appendix F: Runtime Scales with the Slowest DP

We show in Figure 7c that SF-PCA’s runtime depends on the maximum number of local 

samples among the DPs. In this example, the DP with the maximum number of samples has 

32,768 samples and the other samples are evenly split among the remaining 5 DPs. Even as 

the total number of data samples increases, SF-PCA’s runtime remains constant since the 

maximum number of local samples stays the same.

Appendix G: Using SF-PCA to Improve Machine Learning Efficiency and 

Accuracy

By combining SF-PCA with a privacy-preserving solution for a downstream machine 

learning (ML) task, a secure federated ML workflow supporting the full analytic pipeline, 

encompassing pre-processing (e.g., dimension reduction), training, and inference, can 
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be built. For example, SF-PCA can be seamlessly integrated with existing MHE-based 

solutions for training generalized linear models [24], [27] or neural networks (NNs) [26]. 

As the training time of these solutions increase with the number of features in the dataset, 

SF-PCA may be a useful solution for reducing the scale of high-dimensional datasets to 

speedup model training. For example, executing SF-PCA on the MNIST dataset (see Fig. 

5) to project it on 5 PCs takes 1 hour and reduces the number of features by a factor of 

152. Training a model using the PCs instead of the original features would reduce by a 

factor 7 the runtimes of previously mentioned secure solutions. Such an approach can also 

improve the accuracy of ML models when dimension reduction results in noise removal 

and more informative features, especially in limited data settings [111], [11], [12], [13]. We 

illustrate this use case by training a NN model (i.e., a multilayer perceptron with hidden 

layer made of four nodes, sigmoid activation functions, and one output node) to perform 

classification on the Vehicle dataset [100], which contains 435 samples with 18 features 

derived from vehicle images (Appendix E). We observed that the model trained without any 

preprocessing achieves a prediction accuracy of 55% on the test set, whereas training the 

model on 5 PCs obtained by SF-PCA (applied to the training data) as features yields an 

accuracy of 87%, which increases to 97% with 8 PCs. This small example illustrates the fact 

that by de-correlating the features and reducing their number, PCA can improve ML model 

accuracy.
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Figure 1: Randomized PCA Workflow.
Matrix dimensions are shown with the box sizes and are indicated on the left and top of the 

corresponding box.
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Figure 2: SF-PCA System Model and Functionality.
Each DPi holds a ni × m submatrix as input and collaboratively executes SF-PCA to obtain 

encrypted PCs and/or the projection of its local data.
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Figure 3: Runtime scaling with the number of features and samples.
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Figure 4: Runtime with the number of DPs and components.
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Figure 5: Comparison with existing works on six real datasets.
MSE: mean-squared error, r2: Pearson correlation coefficient compared with ground truth 

PCs.
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Figure 6: Demonstration of SF-PCA on Genomic Data.
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TABLE 1:
Communication and computation costs of SF-PCA (Alg. 1).

ζx dim  returns the cost of the function x according to the dimensions (dim). The functions’ costs are defined in 

§.6.1 for M, in Alg. 3 for QR and in Alg. 4 for Eigen.

Step Comm. Computation

1 log2(t) + 2.5 -

2 1 · m
t -

3 ρ · m
t -

4
p · (ρ · m

t
+ζQR ρ, m )

p · Precomp or Seq + ζQR ρ, m ; Precomp = ζM
* ρ, m, m

Seq = ζM
* ρ, m, ni + ζM

* ρ, ni, m

5 ρ · ρ
t

Precomp:ζM
* ρ, m, m + ζM

* ρ, m, ρ
Seq:ζM

* ρ, m, ni + ζM
* ρ, ni, ρ

6 ζEigen ρ, ρ ζEigen ρ, ρ

7
ψ · m

t
+ζQR ψ, m

Precomp:ζM
* ψ, ρ, m + ζQR ψ, m ; Seq:

ζM ψ, ρ, ni + ζM ψ, ni, m + ζQR ψ, m

8 - ζN
* ψ, m, ni
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TABLE 2:
SF-PCA’s micro-benchmarks with default parameters.

Send c  transmits a ciphertext c from one DP to another. M5 refers to the small encrypted matrix multiplication 

in §.6.2.

Operation Runtime (s) Operation Runtime (s)

+ 7 · 10−4
M1 - (M(8 × 28) × N(28 × 28)) 59

v · c 0.013 M2 - (M(8 × 28) × N(28 × 28)) 51

c · c′ 0.083 M3 - (M(8 × 28) × N(28 × 28)) 3.8

Rot · 0.08 M4(M(8 × 28) × μ(1 × 28)) 0.7

c(1 × 28) • c′(1 × 28) 0.73 M5 - (M 8 × 8 × N 8 × 8 ) 0.9

QRT (M(8 × 28)) 117 Send c 0.026

DQRT (M(8 × 28)) 227 DBootstrap · 0.49

QRT (M 8 × 8 ) 94 DKeyGen · 9.0
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