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Abstract

Video-based point cloud compression (V-PCC) is a state-of-the-art moving picture experts group 

(MPEG) standard for point cloud compression. V-PCC can be used to compress both static and 

dynamic point clouds in a lossless, near lossless, or lossy way. Many objective quality metrics 

have been proposed for distorted point clouds. Most of these metrics are full-reference metrics 

that require both the original point cloud and the distorted one. However, in some real-time 

applications, the original point cloud is not available, and no-reference or reduced-reference 

quality metrics are needed. Three main challenges in the design of a reduced-reference quality 

metric are how to build a set of features that characterize the visual quality of the distorted 

point cloud, how to select the most effective features from this set, and how to map the selected 

features to a perceptual quality score. We address the first challenge by proposing a comprehensive 

set of features consisting of compression, geometry, normal, curvature, and luminance features. 

To deal with the second challenge, we use the least absolute shrinkage and selection operator 

(LASSO) method, which is a variable selection method for regression problems. Finally, we map 

the selected features to the mean opinion score in a nonlinear space. Although we have used only 

19 features in our current implementation, our metric is flexible enough to allow any number of 

features, including future more effective ones. Experimental results on the Waterloo point cloud 

dataset version 2 (WPC2.0) and the MPEG point cloud compression dataset (M-PCCD) show that 

our method, namely PCQAML, outperforms state-of-the-art full-reference and reduced-reference 

quality metrics in terms of Pearson linear correlation coefficient, Spearman rank order correlation 

coefficient, Kendall’s rank-order correlation coefficient, and root mean squared error.
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I. INTRODUCTION

Point clouds enable a realistic representation of three-dimensional (3D) objects [1] [2]. A 

point cloud consists of a set of points, each of which is characterized by its 3D coordinates, 

together with attributes such as color, surface normal, and reflectance. As the data size of 

a point cloud is typically huge, point cloud compression is critical for efficient storage and 

transmission [3]. The moving picture experts group (MPEG) has been developing two point 

cloud compression (PCC) standards: geometry-based point cloud compression (G-PCC) [4] 

and video-based point cloud compression (V-PCC) [5]. In these two standards, quantization 

of the geometry and attribute information leads to reconstruction errors [6].

In addition to quantization errors, data acquisition and transmission over an unreliable 

channel may produce further distortions in the geometry and color information. The 

diversity of factors that cause distortion make point cloud quality assessment a challenging 

task. Objective quality assessment metrics for a point cloud can be divided into three 

categories: full-reference (FR), reduced-reference (RR), and no-reference (NR). The main 

FR quality metrics are the point-to-point [7], point-to-plane [8], point-to-mesh [9], angular 

similarity [10], graph similarity [11] [12], and curvature [13] metrics. These metrics 

compute the difference between the reference and distorted point clouds with respect to 

the geometry, color, normal, curvature, and structural information. However, FR point cloud 

quality metrics are usually used only at the encoder side because they need the whole 

original point cloud information, which is not available at the decoder side. Generally, RR 

point cloud quality metrics extract a small amount of information from the reference and 

distorted point clouds, and then compare and analyze the extracted feature data to predict 

the point cloud quality [14] [15]. NR quality metrics do not require any information from 

the original point cloud and extract and analyze features from the distorted point cloud 

only. Inspired by NR image quality assessment [16], the existing NR point cloud quality 

metrics also tend to use deep learning techniques [17] [18] [19]. Since NR and RR point 

cloud quality assessment metrics can be applied to the whole communication system, their 

application field is wider than FR metrics. On the other hand, as RR metrics extract more 

information from the original point cloud than NR metrics, their prediction accuracy is 

normally higher.

RR point cloud quality metrics can be split into two categories according to the features 

used. Metrics in the first category focus on distortion caused by compression and rely on 

compression parameters [14]. Taking into account the sensitivity of the human visual system 

to structural and chromatic information [20], metrics in the second category use features 

derived from the luminance, geometry, and normals of the points [15]. Metrics in both 

categories map the feature space to a quality score via simple linear models. Previous studies 

have shown that the proposed features can reflect the quality of point clouds to a certain 
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extent. However, in real-time applications, where computing resources are scarce, it is not 

advisable to use too many features. Determining how to select from a large set of candidate 

features a small subset of features that simultaneously ensure accuracy of the metric and 

meet the time complexity requirements of the underlying system is a major challenge. 

Moreover, exploring whether there is a more effective model than a linear model to map the 

selected features to a quality score is another key issue. Finally, as more effective features 

are likely to emerge, building a model that can easily incorporate new features is also an 

important challenge.

In this paper, we propose an RR quality assessment metric for static point clouds 

compressed with V-PCC. We focus on V-PCC as it gives state-of-the-art compression 

results. Drawing upon the sensitivity of the human visual system to structure and color 

information, we extract several associated features. These include geometry, luminance, 

normals, and curvature features. At the same time, building upon the fact that quantization 

can significantly affect the reconstruction quality of the compressed point cloud, we 

use the V-PCC geometry and color quantization parameters as additional features. In 

summary, quantization, geometry, luminance, normal, and curvature features form our 

feature candidate pool (FCP). Then, we use the least absolute shrinkage and selection 

operator (LASSO) [21] estimator to select a subset of features from the FCP based on their 

importance for the perceptual quality of the point cloud. Here, we determine the importance 

of a feature by its absolute coefficient in the LASSO regression. Finally, we fuse the selected 

features with support vector regression (SVR) [22]. We use SVR because it can handle 

high-dimensional data and is very robust [23] [24] [25]. Note that the novelty of our model 

lies not only in the extracted features but also in effectively using these features while 

considering the practicality of real-world transmission systems and the scalability of the 

method. Our method is flexible and can be used with any initial set of features. Thus, if 

more effective features are developed in the future, including them in the feature candidate 

pool is expected to improve our results. Since our method minimizes the number of selected 

features according to their predictive importance, its time complexity is markedly lower than 

that of competing methods that use a larger number of predictors.

The main contributions of this paper are as follows:

1. We propose an RR point cloud quality metric based on SVR. SVR can learn 

complex data patterns for an effective and generalizable mapping of the features 

to a target score. This approach can address the challenge of model parameter 

estimation for a model that aims at emulating the complex human visual system 

characteristics.

2. The proposed RR quality metric is built on a comprehensive candidate feature 

pool consisting of compression, geometry, normal, curvature and luminance 

features. While 19 features are used in our current implementation, our metric is 

flexible enough to accommodate any number of features, including future more 

effective ones.
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3. The LASSO estimator is adopted to select the most important features. Using 

this small subset of features reduces the complexity of the model and improves 

its accuracy.

4. Experimental results on two benchmark datasets show that for almost all the 

tested point clouds the proposed method achieves better performance than 14 

traditional and state-of-the-art FR and RR methods.

The remainder of this paper is organized as follows. Section II gives an overview of FR, RR, 

and NR point cloud quality metrics. Section III presents our SVR-based point cloud quality 

prediction method. Section IV validates the proposed method on the WPC2.0 and M-PCCD 

datasets. Finally, Section V concludes the paper.

II. RELATED WORK

FR point cloud quality evaluation methods can be divided into four categories: point-based, 

plane-based, projection-based and feature-based. The most representative point-based point 

cloud quality metric is the point-to-point peak signal-to-noise ratio (PSNR).The PSNR can 

be calculated for the geometry information with either the Euclidean distance (PSNRM, o) 

[9] or Hausdorff distance (PSNRH, o) [26] between each point in the reference point cloud 

and its nearest neighbor in the distorted point cloud. For the color information, the PSNR 

(PSNRY) [27] is usually calculated using the mean squared error between the luminance 

of the points in the reference point cloud and the luminance of the nearest points in 

the distorted point cloud. Another popular metric for the geometry information is the 

plane-based PSNR [8], which can be computed for the Euclidean or Hausdorff distance 

(PSNRM, l and PSNRH, l, respectively).Alternatively, the projection-based point cloud quality 

metrics SSIMp, MS − SSIMp, IW − SSIMp, V IFP p and PSNRP use the image quality 

assessment methods SSIM [28] [29], MS – SSIM [30], IW – SSIM [31], V IFP  [32], and 

PSNR, respectively, to predict the quality of the point cloud from the average quality of six 

projection images.

Except that, Yang et al. [33] projected the 3D point cloud onto six perpendicular image 

planes of a cube for the color texture image and depth image, and aggregate image-based 

global and local features among all projected planes for the final quality. Feature-based point 

cloud quality metrics such as PCQM [34] and PointSSIM [35], evaluate the point cloud 

quality by fitting a set of features. Diniz, Freitas, and Farias [36] proposed a framework 

to design visual quality metrics for point cloud contents that are based on the statistics of 

local binary pattern-based texture descriptors and the local color patterns descriptor. Xu et 
al. [37] quantified the distortion using energy differences by comparing the elastic potential 

energy differences between reference and distorted point clouds. On this basis, Yang et 
al. [38] further proposed potential energy discrepancy to quantify point cloud distortion. 

While Lu et al. [39] exploited edge feature which extracted by the dual-scale 3D-DOG 

filters. Viola, Subramanyam, and Cesar [40] extracted one color histogram feature and used 

the histogram distance as a measure of distortion of a test point cloud with respect to a 

reference. However, a single color histogram feature cannot easily measure various point 
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cloud quality degradations. Unlike the above metrics, GraphSIM [11] constructs a graph in 

the reference and distorted point clouds to calculate a similarity index.

RR quality metrics usually extract features from the point cloud, analyze the loss of feature 

information, then predict the quality of the point cloud. Zhou et al. [41] utilize the content-

oriented similarity and statistical correlation measurements features from the projected 

saliency maps of point cloud to evaluate the perceptual quality of point clouds. Viola and 

Cesar [15] extract 21 geometry, normal, and luminance features from the reference and 

distorted point clouds and build an RR quality metric (PCMRR) as a weighted sum of their 

absolute differences. However, compression features are not considered, there is no feature 

selection, and the model is limited by the linearity constraint. Liu et al. [14] predicted the 

point cloud quality by applying linear fitting to compression features (PCQARR). Although 

the prediction accuracy is high, the method uses only compression features and only linearly 

weighted features to predict the point cloud quality.

NR quality metrics usually use deep learning techniques to predict the quality of the point 

cloud. Tao et al. [17] build 2D color and geometry projection maps, and exploit a multi-scale 

feature fusion network to blindly evaluate the quality of the point cloud. Liu et al. [18] 

design a feature extraction module to extract features from multiple projections of the point 

cloud and use the point cloud distortion type classification task to pre-train it. Instead of 

transforming a 3D point cloud into several 2D projection images, Liu et al. [19] directly 

use a stack of sparse convolutional layers and residual blocks to extract features in 3D 

space. Then a global pooling module and a regression module are used to map the feature 

vectors to a quality score. Tu et al. [42] designed a dual-stream convolutional network 

from the perspective of global and local feature description to extract texture and geometry 

features of the projection maps generated from distorted point cloud. While Liu et al. [43] 

proposed a NR metric ResSCNN based on sparse convolutional neural network to accurately 

estimate the subjective quality of point clouds. However, the above-mentioned deep learning 

networks are relatively complex. In addition to metrics based on deep learning, Su et al. [44] 

proposed one of the first attempts developing a bitstream-based no-reference model by using 

the encoding parameters for perceptual quality assessment of compressed point clouds.

III. PROPOSED QUALITY METRIC

Extracting features from a point cloud and mapping them to an accurate measure of 

perceptual quality is a very challenging problem due to the complex nature of the human 

visual system. To simplify this problem, we attack it in three steps. In the first step, we build 

a large pool of potential features. In the second step, we use an optimization process to select 

the most important features from this pool. Since linear models [14] [15] [34] [35] have been 

successfully used to map features to a quality score, we use the LASSO linear regression 

method for feature selection. In the third step, we use a machine learning algorithm to map 

the selected features to a visual quality score. As a machine learning algorithm, we adopt 

SVR, which can handle both linear and non-linear regression problems.

Fig. 1 illustrates our framework. The process is composed of three stages: feature extraction 

to generate the FCP, feature selection, and SVR. In the feature extraction stage, we extract 
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19 features covering the characteristics of compression, geometry, luminance, normal, and 

curvature. In the second stage, we use the LASSO estimator to select the most important 

features. In the third stage, SVR is used to map the selected features to a final point cloud 

quality score.

A. Feature Extraction

The RR metric needs to extract a set of features to predict the level of distortion in the 

content under assessment. Considering the factors affecting the quality of the compressed 

point cloud, we extract the following features to form the FCP.

1) Compression Features: So far, MPEG has standardized two point cloud 

compression schemes: V-PCC(focusing on immersive communication) and G-PCC(focusing 

on autonomous driving) [45]. In the V-PCC encoder, the point cloud sequence is converted 

into a set of 2D images along six projection planes. Then state-of-the-art video codecs are 

used to compress the geometry and color information separately. During the compression 

process, the main distortion is generated by quantization which is controlled by a geometry 

quantization parameter (QP) and a color QP. Therefore, we use the geometry QP (QPg) and 

color QP (QP c) as features reflecting compression distortion.

2) Geometry Features: The geometry features are based on the coordinate information 

of the points [35].

Consider a distorted point cloud ℙ formed of N points pi = xi, yi, zi, Ri, Gi, Bi , i = 1, …, N, 

where xi, yi, zi are the geometry coordinates and Ri, Gi, Bi are the intensity values of the 

red, green, and blue components, respectively. We use the K-nearest neighbor (KNN) search 

method [46] to determine the set Si of the K nearest neighbors of the point pi. Then, the 

variance (V ari), median (Medi), mean absolute deviation (mADi), median absolute deviation 

(MADi), and coefficient of variation (CoV i) for every point pi are obtained as

V ari =
∑n = 1

K An
i − μi

2

K

Medi = Med An
i

mADi =
∑n = 1

K An
i − μi

K

MADi = Med An
i − Medi

CoV i = V ari
μi

,

(1)

where An
i is the Euclidean distance between pi and its n-th nearest neighbor in Si, μi is the 

mean value of the Euclidean distances between pi and its K nearest neighbors, and Med is 

the median operator. For the point cloud ℙ, we build five geometry features V argeo, Medgeo, 
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mADgeo, MADgeo, and CoV geo defined as the mean values of V ari, Medi, mADi, MADi, and 

CoV i, i = 1, …, N.

3) Normal Features: The normal features are built to reflect the uniformity of the shape 

of the local surface. We first obtain the normal of each point pi in ℙ from the coordinate 

information [35]. Then, we compute the angular similarity between the normal vector of pi

and its K nearest neighbors [47]. Next, we compute the variance, median, mean absolute 

deviation, median absolute deviation, and coefficient of variation of the angular similarity 

for every point pi as in (1). Finally, as in 2), we obtain five normal features (V arnor, Mednor, 

mADnor, MADnor, and CoV nor) by computing the mean values over all points in the distorted 

point cloud.

4) Curvature Features: The curvature can be calculated by the methods in [13] [35] 

[48]. We use a curvature prediction algorithm from the point cloud library [48] to calculate 

the curvature of each point pi. To better consider the structural relationship between the 

current point and its neighbors, we calculate the standard deviations

Stdi = std Curi ,

(2)

where Curi is the set of curvature values of the points in Si. Then the maximum (Max), 

average of maximum and minimum values (med), and standard deviation (TwiStd) of Stdi

are calculated as

Max = max Stdi

med = max Stdi + min Stdi
2

TwiStd = std Stdi ,

(3)

For consistency of notation, we call these curvature features Maxcur, medcur, and TwiStdcur, 

respectively.

5) Luminance Features: When extracting color features, we work in the luminance 

channel as it shows a better correlation with the human perception of colors [49]. We 

convert the color attributes R, G, B at each point pi into Y, CB, CR components using the 

matrix defined in ITU-R Recommendation BT.709 [50]. Then, for each point pi(i = 1, …, N)
in the distorted point cloud, we compute the standard deviation Stdi

lum of the luminance 

of its K nearest neighbors. Finally, we take as luminance features Maxlum = max Stdi
lum , 

medlum = med Stdi
lum , meanStdlum = mean Stdi

lum , and TwiStdlum = std Stdi
lum , that is, the 

maximum, the average of maximum and minimum values, mean, and standard deviation 

of Stdi
lum, i = 1, …, N.
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To evaluate how well the features in the FCP are related to the perceptual quality, the MOSs 

computed from the ratings of subjects participating in an experiment are used as the ground 

truth. The correlation between every independent feature and MOS is typically benchmarked 

with the application of a four-parameter regression model [51]

f(x) = β1 − β2

1 + e− x − β3 / β4
+ β2,

(4)

where x is the value of a feature, f(x) is the fitted objective score using the feature value, 

and the parameters βj(j = 1, 2, 3, 4) are chosen to minimize the least-squares error between the 

subjective score and the fitted objective score. For an ideal match between the independent 

features and the subjective quality scores, both the Pearson linear correlation coefficient 

(PLCC) [52] and the Spearman rank order correlation coefficient (SRCC) [53] should be 

equal to 1. Fig. 2 shows that all the features are correlated with MOS to some extent. 

However, considering the time and hardware cost of the quality metric, it is necessary to 

select as few and as effective features as possible.

B. Feature Selection

Although the features in FCP have varying degrees of impact on the quality of the point 

cloud, it is not realistic to use them all, because this would greatly increase the time 

complexity of the quality metric and may cause over-fitting. Therefore, it is necessary to 

select the most effective features from FCP.

Feature selection in the context of regression consists of finding the best subset of 

features to minimize the objective function. The problem can be formulated as an l0 norm 

regularized minimization problem which, in general, is NP-hard [54] [55]. Under certain 

mild conditions, the l1 norm can provide the tightest convex approximation to the l0 norm 

[56]. When the l1 norm is used, LASSO [21] can produce an optimal convex approximation 

to the best subset selection regression [21]. LASSO estimates a vector of linear regression 

coefficients by minimizing the residual sum of squares penalized by the l1 norm of the 

coefficient vector. That is, LASSO solves the optimization problem

min
X, β

1
2n y − Xβ 2

2 + λ β 1,

(5)

where λ is a non-negative hyper-parameter, y is an n × 1 vector of target MOSs, β is a p × 1
vector of coefficients, X is an n × p matrix of features for all the used point clouds, p is 

the number of features, and n is the number of training point clouds. The LASSO estimator 

typically results in many zero coefficients and thus has the ability for variable selection. To 

determine an appropriate λ, we use a five-fold cross-validation splitting strategy.

More specifically, theoretical results have been established for LASSO considering the 

following regression model,
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y = Xβ0 + ϵ,

(6)

where y and X are as in Eq. (5), β0 ∈ ℝp is assumed to be the (unknown) true coefficient 

vector, and ϵ is an n-dimensional noise vector. When the set of true regression coefficients 

is sparse, one assumes that β0 has a sparsity level of s = β0 0. The nonzero coefficients of β0

correspond to informative features, while the others to non-informative ones.

C. Feature Fusion

SVR is a powerful machine learning method frequently used in many applications [57] [58]. 

In this paper, we formulate the point cloud quality prediction problem as the regression task 

of mapping the selected features to a quality score.

Let s be the number of features selected with LASSO. Given n training point clouds p1, …, pn

and their associated subjective quality scores y1, …, yn, we first extract the feature vector 

xi ∈ ℝs of each point cloud pi(i = 1, …, n). Next, we use ϵ-SVM regression [59] to build a 

function F  that maps any input feature vector x ∈ ℝs to a quality score y ∈ ℝ. Function F  is 

built such that the deviation from F xi  to yi is at most ϵ for all i = 1, …, n, with

F (x) = ∑
i = 1

n
αi − αi

∗ G xi, x + b

(7)

where αi and αi
∗ are nonnegative numbers, G is a kernel function, and b is a bias. The 

coefficients αi and αi
∗ are obtained by minimizing the function

1
2 ∑

i = 1

n
∑

j = 1

n
(αi − αi

∗)(αj − αj
∗)G(xi, xj) +

ϵ ∑
i = 1

n
(αi + αi

∗) − ∑
i = 1

n
yi(αi − αi

∗)

subjectto ∑
i = 1

n
(αi − αi

∗) = 0

0 ≤ αi ≤ C
0 ≤ αi

∗ ≤ C

(8)

where C is a parameter. To solve this optimization problem, we use sequential minimal 

optimization (SMO) [60].

Any function satisfying Mercer’s requirements can be used as a kernel function [59]. In this 

paper, we use the three classical kernel functions listed in Table I.
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IV. EXPERIMENTAL RESULTS

A. Datasets

We assessed the performance of our quality metric on the Waterloo point cloud dataset 

version 2 (WPC2.0) [14] and on the MPEG point cloud compression dataset (M-PCCD) 

[61].

The WPC2.0 dataset contains 400 distorted static point clouds obtained by using the 

MPEG V-PCC test model v7 [62] to compress 16 reference point clouds at 25 distortion 

levels. These 25 levels were obtained with all combinations of five geometry quantization 

parameters and five color quantization parameters. The MPEG point cloud dataset (M-

PCCD) [61] consists of eight static point clouds. We built 40 distorted point clouds by 

compressing the point clouds in M-PCCD with the five V-PCC geometry-color QP pairs 

((24,33), (24,30), (20,27), (18,20), and (16,16)).

For the WPC2.0 dataset, 30 subjects consisting of 15 males and 15 females aged between 

20 and 35 took part in the study. For the M-PCCD dataset, the subjective evaluation 

experiments took place at EPFL and UNB. Both the EPFL and UNB experiments involved 

40 subjects: 16 females and 24 males with an average age of 23.4 at EPFL, and 14 females 

and 26 males with an average age of 24.3 at UNB. More details can be found in [14] and 

[61].

B. Methodology Implementation

Many LASSO models were built with iterative fitting along a regularization path, and the 

best model was selected by fivefold cross-validation. All the training parameters followed 

the default values in Scikit-learn [63]. Features whose importance were greater than or equal 

to the threshold 10−5 were kept while the others were discarded.

The selected features and the corresponding MOSs were used as input to the SVR regression 

module to train the point cloud quality model with the LIBSVM package [64]. When 

deploying SVR to train the prediction module, the parameters C = 1, ϵ = 0.01 were used. In 

Table I, the parameters c and d of the polynomial kernel were set to 0.01 and 4, respectively, 

and the parameter γ of the polynomial and RBF kernels was set to the value that provided 

the highest PLCC. We chose the LIBSVM package [64] for regression because of its 

convenience for parameter selection [65].

C. Quality Assessment Results

1) Feature Selection: Fig. 3 shows the importance of the 19 features for MOS on 

the WPC2.0 dataset. We can see that the four features, QPg, QP c, MeanStdlum, and Maxlum

were more important than the remaining 15 features, and that their importance exceeded 

the threshold 10−5. Therefore, we only retained these four features as input features to the 

SVR regression module. It is worth noting that the feature importance of QPg and QP c

is significantly better than that of other features. This result can be explained as follows. 

PCQAML is designed for point clouds compressed with V-PCC. V-PCC converts the input 

point cloud sequence into two video sequences and encodes each video with H.265. The 
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point cloud sequence is then reconstructed from the decoded videos. As the reconstruction 

accuracy of the two videos decreases with increasing quantization error, the two quantization 

parameters QPg and QP c play the most important role in the point cloud distortion.

2) Accuracy of the Proposed PCQAML: The common evaluation criteria PLCC, 

SRCC, Kendall’s rank-order correlation coefficient (KRCC) [66], mean absolute error 

(MAE), and root mean squared error (RMSE) were adopted to compare the accuracy of the 

objective evaluation methods. PLCC represents the linear correlation between the predicted 

objective scores and the subjective scores. SRCC can evaluate the prediction monotonicity. 

MAE represents the average value of the difference between the predicted objective scores 

and the subjective scores. RMSE is a measure of deviation between the predicted scores and 

the subjective scores. In general, for an accurate visual quality assessment method the PLCC 

and SRCC should be close to 1, and the MAE and RMSE should be close to 0. To evaluate 

the accuracy and reliability of the proposed PCQAML with different kernel functions, we 

calculated the PLCC, SRCC, KRCC, MAE, and RMSE between the ground truth MOS 

and predicted MOS 1000 times. Each time, 50% of the distorted point clouds are randomly 

selected from the dataset, while the remaining 50% point clouds in the dataset are treated 

as the testing set. There is no overlap between the training set and the testing set. Fig. 4 

shows the results for the WPC2.0 dataset. The results confirm the accuracy of the proposed 

model with different kernel functions. Although there is not a huge difference between the 

performance of the different kernels, the polynomial and RBF kernels were relatively more 

effective. This is because they can handle non-linear problems, while the linear kernel can 

handle only linear ones.

To further compare the performance of different kernels and verify the reliability of the 

proposed PCQAML, we computed various statistics such as the mean, median, maximum, 

minimum, mode, and variance, of 1000 repeated experimental results. The results in Table 

II show that the proposed PCQAML was stable for all kernels as the variance was low. The 

results also show that the polynomial and RBF kernels gave high-quality results with the 

best performance achieved with the polynomial kernel followed by the RBF kernel. Since 

the RBF kernel requires fewer hyper-parameters than the polynomial kernel, we adopted it 

along with the polynomial kernel although its performance was lower.

We also repeated the experiment 1000 times with different kernel functions to verify the 

reliability of the proposed quality model on M-PCCD. The average PLCC, SRCC, and 

KRCC are shown in Table III. We can see that the average PLCC of the proposed quality 

model with different kernel functions was larger than 0.82, confirming its effectiveness on 

a different dataset. Note how the PLCC was similar on the two datasets, indicating the 

reliability of the proposed quality model.

3) Results without Feature Selection: To illustrate the effectiveness of the 

feature selection module, we give the results with feature selection (PCQAML) and 

without(PCQAML_W/O_FS). The RBF kernel was used in this experiment. For a fair 

comparison, the same training and test sets were used. The results are presented in Table 

IV. They show that in all cases PCQAML gave the same or better results than PCQAML 

W/O FS. We explain this as follows. PCQAML_W/O_FS performed less effectively than 
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PCQAML due to its use of a large number of features, leading to overfitting. Note that 

PCQAML significantly reduced the time complexity as it uses four features instead of 19.

some of the comparison results of these two methods are the same. In some cases, the results 

show that PCQAML is slightly more accurate than PCQAML_W/O_FS. The main reason 

is that PCQAML_W/O_FS used 19 features, which led to overfitting; that is, the prediction 

of the machine learning model on the training set is much more accurate than on the test 

set. More importantly, PCQAML significantly reduces the time complexity as it uses four 

features instead of 19.

4) Comparison with FR and RR Methods: In this section, we compare our method 

with 14 traditional and state-of-the-art FR and RR point cloud quality metrics on WPC2.0 

(Table V). In our method, we used the polynomial kernel. In GraphSIM, we used the 

same parameters as in [11]. The FR metrics were chosen to cover diverse design strategies, 

including point-based, plane-based, projection-based and feature-based ones. As RR point 

cloud quality metric benchmarks, we used PCQARR [14] and PCMRR [15].

We chose the eight point clouds (“bag”, “cake”, “cauliflower”, “mushroom”, “ping − 

pong_bat”, “puer_tea”, “ship”, and “statue”) for testing and the remaining eight for training. 

The SRCC, PLCC, KRCC, MAE, and RMSE results are given in Table V. Since the quality 

ratings predicted by different point cloud quality metrics may have different ranges, we 

used a four-parameter mapping function [51] to map them to a common space. Note that 

the quality metrics can either directly evaluate the quality or indirectly predict the quality 

by evaluating the distortion. Therefore, the criteria (e.g., PLCC, SRCC, and KRCC) can be 

positive or negative.

As shown in Table V, the methods that only consider the geometry structure or color(i.e., 

PSNRM, o, PSNRM, l, PSNRH, o, PSNRH, l, PSNRY , and PSNRp) did not perform well. The 

major reason is that point clouds contain both geometric and color information, and it is 

insufficient to consider only one of them. The performance of the projection-based and 

feature-based methods that comprehensively consider geometry and color information was 

significantly better, especially V IFP p whose PLCC was 0.80 and SRCC was 0.79. Note that 

the PLCC and SRCC of PCMRR were only 0.43 with the optimal feature weights provided 

in [67]. We can explain the poor performance of PCMRR by the fact that it uses a very 

large number of features, which limits its generalization ability. In the proposed PCQAML, 

we overcome this shortcoming by selecting effective features. In addition, PCMRR does 

not use compression features, which play an important role in the reconstruction quality 

of the point cloud. On the other hand, PCQARR uses the compression features to predict 

the point cloud quality, resulting in a PLCC rise to 0.90. In contrast, the proposed 

method considers multiple features, such as compression features, geometry features, normal 

features, curvature features and luminance features, and selects the most effective ones. As 

a result, both the PLCC and SRCC of the proposed PCQAML reached 0.91, outperforming 

the existing point cloud quality methods.

To further verify the performance of the proposed PCQAML, we tested it on M-PCCD. We 

trained our model on the four points clouds amphoriskos, biplane, loot, and the20smaria, and 
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tested it on the four point clouds head, longdress, romanoillamp and soldier. We used the 

polynomial kernel in SVR. Table VI shows the PLCC, SRCC, KRCC, MAE, and RMSE. 

In addition to our method, we provide results for all other methods using their published 

models. We can see that the proposed metric showed an excellent performance and was 

more accurate than the state-of-the-art ones.

In general, the performance of PCQARR was much higher on WPC2.0 than on M-PCCD, 

while the converse was true for PCMRR. This is because the transformation base of the model 

parameters of PCQARR was obtained by training on WPC2.0, and the model parameters 

of PCMRR were obtained by training on M-PCCD. In both cases, the parameters were 

determined from the entire sample of the training dataset, which inevitably introduces 

different degrees of overfitting due to the different sizes of the datasets. In contrast, the 

parameters of the proposed quality metric are determined from the support vector under 

relaxed conditions, which overcomes the overfitting problem to a certain extent. This 

explains why our method was more robust than these two previous methods, achieving a 

PLCC of more than 0.91 on both datasets.

5) Cross-dataset Validation: To further verify the robustness of our method, we 

trained our model on the WPC2.0 dataset with different kernel functions and tested it on 

the M-PCCD dataset. The results in Table VII show that the proposed approach was still 

able to deliver competitive performance in a cross dataset setting. The experimental results 

in this section show that the proposed PCQAML has a strong generalization capability.

6) Time Complexity: An effective point cloud quality assessment metric should both 

provide an accurate point cloud quality prediction and be computationally efficient. In this 

subsection, we compare the time complexity of the proposed PCQAML to that of state-of-

the-art RR point cloud quality metrics. All competing methods were evaluated in terms of 

their execution time for eight representative point cloudswith different content complexity 

levels. Experimental results are shown in Table VIII. The source codes were written in 

MATLAB R2018a and run on a Windows 7 Pro 64-bit desktop computer with a 8G RAM 

and 2.8 GHz CPU processor. The metrics. All competing methods were evaluated in terms 

of proposed PCQAML was not only much faster than PCMRR, their execution time for eight 

representative point clouds it also has a relatively low time complexity.

V. CONCLUSION

We proposed an RR visual quality metric for V-PCC compressed static point clouds. Starting 

from a large set of features, we used LASSO for optimal feature selection. Then, we applied 

SVR to map the selected features to a visual quality score. Extensive experimental results 

on two benchmark datasets showed that our method outperforms state-of-the-art RR and 

some FR point cloud quality metrics in terms of prediction of the MOS. Future work will 

include extending our method to V-PCC compressed dynamic point clouds and to G-PCC 

compressed point clouds, as well as exploring more effective features.
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Fig. 1. 
Proposed RR point cloud quality assessment (PCQAML) framework. MOS denotes mean 

opinion score.

Su et al. Page 18

IEEE Trans Multimedia. Author manuscript; available in PMC 2025 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
PLCC (blue bars) and SRCC (green bars) for each feature.
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Fig. 3. 
Importance of the 19 features with respect to MOS using the LASSO estimator on the 

WPC2.0 dataset. The vertical axis represents the absolute value of the logarithm of the 

feature value.
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Fig. 4. 
PLCC, SRCC, and KRCC of the proposed PCQAML with different kernel functions for 

WPC2.0. The calculations are repeated 1000 times, each time with a randomly selected 

subset of point clouds.
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TABLE I

KERNEL FUNCTIONS.

Kernel name G xi, x Parameters

Linear xixT -

Polynomial γxixT + c d γ, c, d

Radial basis function (RBF) e−γ(‖xi − x‖2) γ
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TABLE II

STATISTICAL RESULTS FOR DIFFERENT KERNEL FUNCTIONS ON WPC2.0

Kernel Mean Median Maximum Minimum Mode Variance

PLCC

Linear 0.84 0.84 0.88 0.66 0.85 0.00

Polynomial 0.89 0.90 0.94 0.80 0.90 0.00 

RBF 0.84 0.85 0.91 0.72 0.85 0.00

SRCC

Linear 0.84 0.85 0.88 0.70 0.85 0.00

Polynomial 0.89 0.89 0.93 0.80 0.90 0.00 

RBF 0.84 0.85 0.90 0.73 0.86 0.00

KRCC

Linear 0.65 0.65 0.69 0.53 0.66 0.00

Polynomial 0.70 0.71 0.77 0.59 0.72 0.00 

RBF 0.65 0.65 0.72 0.53 0.66 0.00

MAE

Linear 9.44 9.335 13.33 8.25 9.18 0.36

Polynomial 7.75 7.65 10.56 5.70 7.49 0.50 

RBF 9.24 9.155 11.99 7.57 8.67 0.55

RMSE

Linear 12.05 11.91 16.46 10.68 11.77 0.53

Polynomial 9.89 9.78 13.14 7.36 9.47 0.77 

RBF 11.78 11.715 15.33 9.52 12.37 0.92
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TABLE III

MEAN RESULTS OF THE PROPOSED PCQAML USING DIFFERENT KERNEL FUNCTIONS ON M-PCCD

Kernel PLCC SRCC KRCC MAE RMSE

Linear 0.82 0.80 0.62 0.48 0.58

Polynomial 0.86 0.80 0.62 0.43 0.51 

RBF 0.83 0.78 0.60 0.47 0.57
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TABLE IV

COMPARISON BETWEEN PCQAML_W/O_FS AND PCQAML WITH RBF KERNEL ON WPC2.0. (S) INDICATES THAT 

PCQAML GAVE THE SAME RESULTS AS PCQAML_W/O_FS, (B) INDICATES THAT IT GAVE BETTER RESULTS.

Method Name Metric Mean Median Maximum Minimum Mode Variance

PCQAML_W/O_FS

PLCC 0.84 0.84 0.91 0.69 0.84 0.00

SRCC 0.83 0.84 0.90 0.70 0.84 0.00

KRCC 0.64 0.64 0.72 0.50 0.64 0.00

PCQAML

PLCC 0.84(S) 0.85(B) 0.91(S) 0.72(B) 0.85(B) 0.00(B)

SRCC 0.84(B) 0.85(B) 0.90(S) 0.73(B) 0.86(B) 0.00(S)

KRCC 0.65(B) 0.65(B) 0.72(S) 0.53(B) 0.66(B) 0.00(S)
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TABLE VII

CROSS DATASET VALIDATION OF THE PROPOSED PCQAML, TRAINED ON WPC2.0 AND TESTED ON M-PCCD

Kernel PLCC SRCC KRCC MAE RMSE

Linear 0.89 0.89 0.71 0.40 0.47 

Polynomial 0.86 0.88 0.71 0.43 0.53

RBF 0.76 0.75 0.57 0.54 0.67
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TABLE VIII

CPU TIMES OF RR POINT CLOUD QUALITY METRICS.

Point Cloud╲RR quality metrics PCQARR PCMRR PCQAML

bag 11.44 482.61 27.06

cake 24.36 881.65 112.06

cauliflower 18.75 676.61 42.65

mushroom 10.04 421.24 22.82

ping — pong_bat 6.69 244.21 12.15

puer_tea 3.54 165.96 8.26

ship 6.43 242.03 12.15

statue 14.78 557.04 28.53
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