Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Genetics logoLink to Genetics
. 2004 Mar;166(3):1581–1583. doi: 10.1534/genetics.166.3.1581

Decomposing multilocus linkage disequilibrium.

Root Gorelick 1, Manfred D Laubichler 1
PMCID: PMC1470787  PMID: 15082571

Abstract

We present a mathematically precise formulation of total linkage disequilibrium between multiple loci as the deviation from probabilistic independence and provide explicit formulas for all higher-order terms of linkage disequilibrium, thereby combining J. Dausset et al.'s 1978 definition of linkage disequilibrium with H. Geiringer's 1944 approach. We recursively decompose higher-order linkage disequilibrium terms into lower-order ones. Our greatest simplification comes from defining linkage disequilibrium at a single locus as allele frequency at that locus. At each level, decomposition of linkage disequilibrium is mathematically equivalent to number theoretic compositions of positive integers; i.e., we have converted a genetic decomposition into a mathematical decomposition.

Full Text

The Full Text of this article is available as a PDF (59.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ardlie Kristin G., Kruglyak Leonid, Seielstad Mark. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet. 2002 Apr;3(4):299–309. doi: 10.1038/nrg777. [DOI] [PubMed] [Google Scholar]
  2. BENNETT J. H. On the theory of random mating. Ann Eugen. 1954 Mar;18(4):311–317. doi: 10.1111/j.1469-1809.1952.tb02522.x. [DOI] [PubMed] [Google Scholar]
  3. Cheverud J. M., Routman E. J. Epistasis and its contribution to genetic variance components. Genetics. 1995 Mar;139(3):1455–1461. doi: 10.1093/genetics/139.3.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dausset J., Legrand L., Lepage V., Contu L., Marcelli-Barge A., Wildloecher I., Benajam A., Meo T., Degos L. A haplotype study of HLA complex with special reference to the HLA-DR series and to Bf. C2 and glyoxalase I polymorphisms. Tissue Antigens. 1978 Oct;12(4):297–307. doi: 10.1111/j.1399-0039.1978.tb01337.x. [DOI] [PubMed] [Google Scholar]
  5. Hastings A. Linkage disequilibrium, selection and recombination at three Loci. Genetics. 1984 Jan;106(1):153–164. doi: 10.1093/genetics/106.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Palopoli M. F., Wu C. I. Rapid evolution of a coadapted gene complex: evidence from the Segregation Distorter (SD) system of meiotic drive in Drosophila melanogaster. Genetics. 1996 Aug;143(4):1675–1688. doi: 10.1093/genetics/143.4.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rawson Paul D., Burton Ronald S. Functional coadaptation between cytochrome c and cytochrome c oxidase within allopatric populations of a marine copepod. Proc Natl Acad Sci U S A. 2002 Sep 23;99(20):12955–12958. doi: 10.1073/pnas.202335899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Thomson G., Baur M. P. Third order linkage disequilibrium. Tissue Antigens. 1984 Oct;24(4):250–255. doi: 10.1111/j.1399-0039.1984.tb02134.x. [DOI] [PubMed] [Google Scholar]
  9. Wagner G. P., Laubichler M. D., Bagheri-Chaichian H. Genetic measurement of theory of epistatic effects. Genetica. 1998;102-103(1-6):569–580. [PubMed] [Google Scholar]
  10. Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES