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ABSTRACT

Neural networks have been trained to predict the
subcellular location of proteins in prokaryotic or
eukaryotic cells from their amino acid composition.
For three possible subcellular locations in prokaryotic
organisms a prediction accuracy of 81% can be
achieved. Assigning a reliability index, 33% of the
predictions can be made with an accuracy of 91%. For
eukaryotic proteins (excluding plant sequences) an
overall prediction accuracy of 66% for four locations
was achieved, with 33% of the sequences being
predicted with an accuracy of 82% or better. With the
subcellular location restricting a protein’s possible
function, this method should be a useful tool for the
systematic analysis of genome data and is available
via a server on the world wide web.

INTRODUCTION

Within the last couple of years the complete sequence has been
determined for a number of genomes (1,2). This has created the
need for fully automated methods to analyse the vast amount of
sequence data now available. The assignment of a function for a
given protein has proved to be especially difficult where no clear
homology to proteins of known function exists (3). Knowing the
subcellular location that a protein resides in may give important
insights as to its possible function, making an automated method
that assigns proteins to a certain subcellular location a useful tool
for analysis. For example, a strong location prediction may help
to distinguish between a number of alternative functional
predictions for a protein. Even when the basic function of a
protein is known, knowing its location in the cell may give
insights as to which pathway an enzyme is part of. As previous
studies have shown (4), intra- and extracellular proteins differ
significantly in their amino acid composition and these differences
are strong enough to be used as the basis for a prediction method.
However, to be useful for genome analysis a larger number of
subcellular locations need to be distinguished.

This study examines whether the differences in amino acid
composition between other subcellular locations is strong enough
to establish a prediction method. As yet only two automatic
methods for assignment of the subcellular location are publicly
available. One of these (5) does not distinguish intracellular
proteins as cytoplasmic or mitochondrial and handles eukaryotic

and prokaryotic sequences together, while the other is based on
an expert system, strongly relying on the existence of targeting or
leader sequences (6,7). In large genome analysis projects genes
are usually automatically assigned and these assignments are
often unreliable for the 5′-regions. For Caenorhabditis elegans,
for example, automatic assignment methods alone predict <70%
of the start codons correctly (S.J.M.Jones, personal communica-
tion). This can lead to leader sequences being missing or only
partially included, thereby causing problems for prediction
algorithms depending on them. A method based on the amino
acid composition should be comparatively stable to this sort of
ambiguous assignment.

Initial trials using standard statistical methods for prediction
(e.g. Mahalanobis distance; 8) did not yield satisfying results, as
cross-validation showed a large variation in prediction accuracy.
This method has previously been shown to be sensitive to noise
within the data set (9). Neural networks on the other hand have
been shown to be reliable tools for protein structural prediction
purposes (10), so it was decided to apply them in this study.

MATERIALS AND METHODS

The database

Sequences whose subcellular location was annotated were
extracted from release 33.0 of the SWISSPROT database (11).
Subcellular location annotation was found for 15 775 out of
52 205 sequences in this release. This set of sequences was
filtered to remove: sequences that were annotated as fragments of
larger proteins; sequences that contained ambiguities (such as
amino acids denoted by X within the sequence); sequences which
were annotated as residing in more than one subcellular location;
annotations made by similarity or marked as probable or possible
concerning the subcellular location; i.e. essentially sequences
were only kept if they appeared complete and had what appeared
to be reliable location annotations coming direct from experiment.
For this study transmembrane proteins were also excluded, as
reliable prediction methods for this group of proteins already exist
(12). It has also been shown that the extra- and intracellular
domains of transmembrane proteins differ in their amino acid
composition as do whole proteins (13) and therefore do not need
to be considered as a separate compartment. Plant sequences were
also excluded, as initial tests showed that their composition
appears to be sufficiently different to have a negative influence on
prediction accuracy for eukaryotic proteins (plant sequences were
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predicted at an accuracy of 20–30% lower than other eukaryotic
proteins by a neural network trained on a combined data set). As
not enough sequences for plants within the various subcellular
locations exist, it was not possible to treat them as an independent
group. After these steps 5134 sequences remained (9.8% of the
whole release). The sequences were divided into 11 different
groups according to their subcellular location and whether they
belonged to eukaryotic or prokaryotic species. Within each group
the sequence identity was calculated between all pairs and
sequences were kept such that none had >90% sequence identity
to any other. This was done to avoid a bias towards large sequence
families with high similarity. Overall 3420 sequences remained,
distributed over the 11 groups as shown in Table 1.

Table 1. Number of sequences within each subcellular location group

Location Number of sequences

Cytoplasmic (eukaryotic) 684

Cytoplasmic (prokaryotic) 687

Extracellular (eukaryotic) 325

Extracellular (prokaryotic) 105

Glycosomal 9

Glyoxysomal 21

Lysosomal 15

Mitochondrial 321

Nuclear 1097

Periplasmic 201

Peroxisomal 66

Number of sequences in the 11 different subcellular locations that were distinguished
for analysis. The glycosomal, glyoxysomal, lysosomal and peroxisomal groups
were considered to contain too few data to be statistically analysed.

As can be seen from Table 1, for four of these groups the
amount of data available is too small for a statistical analysis to
be performed. As this leads to the exclusion of only 3.2% of all
sequences in this database, a distinction between the remaining
groups should still prove useful for analysis. Once the number of
sequences available for the excluded groups becomes large
enough for statistical analysis they can be included in the
prediction method. To provide a further independent data set the
above procedure was performed on sequences which first
appeared in SWISSPROT releases 34 and 35. This yielded
another 749 eukaryotic and 243 prokaryotic sequences. A list of
the sequences within each group is available on request.

The neural network

The Stuttgart Neural Network Simulator (14) was used to build
and train all the neural networks used.

Two different types of neural networks were used in prediction.
A simple fully connected architecture with 20 input units, one for the
fraction of each amino acid, and two output but no hidden units was
used for predictions that distinguish between two possible locations.
Each input unit was connected to each output unit. An output
scheme of {1, 0} or {0, 1}, indicating one or the other location was

selected, which made it possible to use the difference between the
values of both output units as a reliability measure.

Two more general neural networks, predicting a sequence as
belonging to one of three locations for prokaryotic or one of four
locations for eukaryotic sequences, were built with a somewhat
more complex architecture. Each consisted of 20 input units and
three and four units in a hidden layer for prokaryotic and
eukaryotic sequences respectively. Extensive tests showed that
this number of units in the hidden layer yields optimal results (see
Results). The number of output units matched the number of
possible locations. Each input unit was connected to each hidden
unit as well as each output unit. Also, each hidden unit was
connected to each output unit. Again, a coding scheme for the
output was chosen which assigns 1 to the correct location and 0 to
all other locations. A standard back propagation algorithm was
used during training, with η = 0.2.

Cross-validation testing

Using neural networks three data sets are needed to perform a
jack-knife test. While the neural network learns from a training
set, a test set is used to determine when the training process has
to be stopped. As during this procedure the information within the
test set is implicitly used, a third completely independent data set
is needed to evaluate the prediction accuracy of the trained neural
network. Accordingly, all data sets were split into three equally
sized subsets. To provide cross-validation the sets were used for
training, testing and evaluation in every possible combination,
yielding six different neural networks. The overall prediction
accuracy was determined as the average of the prediction
accuracies of all six neural networks.

Weighted training

To prevent a bias of the neural network a weighted training has
to be performed. The same number of sequences for each location
has to be presented to the network during training. This causes a
problem, as some of the groups are considerably larger than
others. To include all information given in large groups some of
the sequences in small groups have to be used repeatedly. This is
done by first splitting into three subsets for training, testing and
evaluation and then repeatedly using sequences within the subset.

Applying a reliability index

As the output nodes of the neural networks have values between
0 and 1, the difference between the highest and next highest node
(∆0) can be used as a reliability index for a prediction. Reliabilities
were binned in five groups (with ascending reliability index) for
analysis: 0 < ∆0 < 0.2; 0.2 < ∆0 < 0.4; 0.4 < ∆0 < 0.6; 0.6 < ∆0 <
0.8; 0.8 < ∆0.

Calculation of prediction accuracies

The prediction accuracies quoted throughout are the average of the
accuracies determined for each subcellular location independently.
This procedure is necessary because a weighted training of the
neural networks for the cross-validation tests was performed. As
a result, their prediction accuracy weights each subcellular
location equally, regardless of the number of sequences within the
group. Accuracies should therefore be compared with random
values of 50% for 2 states, 33.3% for 3 states and 25% for 4 states.
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Table 2. Prediction accuracies achieved for the prediction of all
subcellular locations against eachother

The accuracy achieved by neural networks in predicting the subcellular
location using only the amino acid composition as input. For each prediction
accuracy the standard deviation in percent is given as yielded from cross
validation tests.

RESULTS

Pairwise neural network prediction accuracy

The average fraction for each amino acid and its standard error
was calculated for all subcellular locations which featured enough
data for analysis (data not shown, but can be found at <URL
http://predict.sanger.ac.uk/nnpsl/aminoacidcomposition.html >).
Only phenylalanine (F), histidine (H), methionine (M) and
tryptophan (W) show minor fluctuations, while the other amino
acids show strong differences between different subcellular
locations. Although the fractions of some amino acids are similar
between locations [e.g. A, D, E, F, G, H, L, M, N, T, V, W and Y
between extracellular (Eu) and mitochondrial], other amino acids
differ substantially (e.g. C, I, K, P, Q, R and S). No uniform
behaviour distinguishing eukaryotic from prokaryotic sequences
is apparent except for alanine, for which prokaryotic proteins
show a clearly higher average fraction than eukaryotic proteins.
Overall the differences in the amino acid composition between all
groups appear strong for prediction purposes. To determine how
effective a measure the amino acid composition is, neural
networks were trained to distinguish subcellular locations in a
pairwise manner. Their prediction accuracy, as determined by
cross-validation, varies from 74 to 94%, as shown in Table 2.

Neural networks distinguishing between a subcellular location
of eukaryotic origin on the one hand and of prokaryotic origin on
the other tend to achieve a very high prediction accuracy, showing
that eukaryotic and prokaryotic organisms exhibit substantial
differences with respect to their amino acid composition. This
makes it necessary to handle them separately, although other
studies imply that this is not the case (5).

Comparing subcellular locations of prokaryotic organisms
against each other also shows substantial differences between all
compartments, with the lowest prediction accuracy at 82.6%. It
is worth noticing that the standard deviation (SD), as determined
by cross-validation, is especially high in this case. This is most
likely due to the fact that for both groups distinguished
(extracellular and periplasmic) only a comparatively small
number of sequences could be used (see Table 1). Neural
networks are known to improve in performance as the amount of
data for training increases, so the considerably smaller number of

Table 3. Summary of the prediction performances of the neural networks
for eukaryotic and prolaryotic sequences

Summary of the prediction accuracy achieved by the neural networks for eukaryotic
and prokaryotic sequences. Shown is the overall accuracy and the accuracy for the
various reliability groups together with the standard deviation σ as yielded by cross
validation tests.

sequences used for training of this specific neural network may
have resulted in the network being less stable.

The subcellular locations in eukaryotic organisms seem to be
less distinct from each other. Cytoplasmic and mitochondrial
proteins in particular appear to show common features, with the
neural network distinguishing them only reaching a prediction
accuracy of ∼74%, while the standard deviation for prediction is
low (2.6), indicating good convergence of the neural networks
trained on the data. The same is true for the neural network
distinguishing cytoplasmic and extracellular proteins (prediction
accuracy 77%, SD 2.4). The fact that the neural network for
extracellular and mitochondrial proteins reaches a prediction
accuracy of ∼83% indicates that cytoplasmic proteins share some
features with mitochondrial and some with extracellular proteins,
while these features do not overlap. The accuracy for predictions
with a high reliability index was considerably higher than the
overall accuracy (the prediction accuracy for all sequences) (data
not shown).

General prediction of subcellular location

Pairwise networks are interesting to investigate the relative
differences between different compartments, however, a practical
prediction system requires the ability to distinguish between
multiple compartments. Neural networks were therefore built and
trained to assign proteins to one of three and four possible
subcellular locations for prokaryotic and eukaryotic sequences
respectively.

The four different subcellular locations taken into account for
eukaryotic proteins were cytoplasmic, extracellular, mitochondrial
and nuclear. The overall prediction accuracy reached 66.1%, with
individual neural networks scoring between 64.5 and 68.7% (σ =
1.59). The low variation in the accuracy of individual networks
indicates that the results are independent of the specific sequences
within the training, test and evaluation sets. The accuracy for
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Figure 1. (a) The prediction accuracy for eukaryotic proteins was calculated cumulatively with respect to the various reliability indices by starting with sequences
with the highest reliability index and then progressively including those with lower indices until the number calculated for the lowest reliability index is equal to the
overall prediction accuracy. The percentage of the total number of sequences being considered was similarly calculated cumulatively. Plotting both variables against
each other for a number of neural networks with a varying number of units within the hidden layer reveals that the neural network with no hidden units shows a pattern
strongly deviating from those of the other neural networks. This indicates that introduction of hidden units leads to further information being picked up by the neural
network. (b) As for (a) except showing only the results for the best network, with data broken down by location.

a

b

predictions with a high reliability index was considerably higher
than the overall accuracy (the prediction accuracy for all
sequences), as can be seen in Table 3. This compares with an
accuracy of 25.0% from random guesses for four locations with
a balanced set of data as considered here. For comparison, 66.1%
corresponds to a slightly higher real life prediction accuracy of
67.2%, which includes the bias from the different fraction of
proteins in each location in the current database.

Testing various neural networks with different numbers of units
within the hidden layer reveals that the network with no hidden
units not only performs considerably less well (overall prediction
accuracy of 61.7%), but also deviates from the behaviour
observed for networks with hidden units if the cumulative
prediction accuracy for the reliability index groups is plotted
against the cumulative number of sequences within each group
(specificity against sensitivity), as can be seen in Figure 1a. This
indicates that further information is gained through the introduction
of hidden units into the neural networks. Networks with hidden
units show a uniform behaviour, which converges for networks
with three or more hidden units (overall prediction accuracy for

three to nine hidden units varies only from 65.8 to 66.3%).
However, changes in the distribution of sequences over groups
with different reliability indices makes the neural network with
four hidden units the best choice, as it performs slightly better for
groups with the highest reliability index, achieving a prediction
accuracy of 82.5% for 21.5% of all sequences and predicting a
further 11.7% of the sequences at an accuracy of 81.9%. As these
groups are the most useful for practical prediction purposes, the
neural network architecture with four units in the hidden layer
was chosen for further use, although it doesn’t feature the highest
overall prediction accuracy. A further plot of specificity against
sensitivity for the best network subdivided by location is shown
in Figure 1b. It can be seen that the accuracies are best for
extracellular and nuclear proteins, but that this is not an effect of
data size, since the extracellular group has the second smallest
data size and is more likely to reflect the strength of the signal for
different locations.

It was also found that for eukaryotic sequences the correct
subcellular location has either the highest or second highest
neural network output value in 80–91% of all cases, throughout
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the reliability index groups. Attempts were made to better
distinguish between these top two locations. Proteins predicted
within the lowest reliability group were again predicted with the
appropriate pairwise neural network. However, no improvement
could be achieved in this way, as all such proteins were predicted
within the lowest reliability group of the pairwise network as well.

The three possible subcellular locations for prokaryotic proteins
were cytoplasmic, extracellular and periplasmic. This neural
network yielded an overall prediction accuracy of 80.9%, with the
accuracy of various neural networks lying between 78.2 and
83.4% (σ = 1.99), which compares with the accuracy for random
predictions of 33.3%. Varying the number of units in the hidden
layer from zero to nine does not cause any considerable change
in the overall prediction accuracy (80.9 to 81.7%). However,
plotting the cumulative prediction accuracy for the different
reliability groups against the cumulative number of sequences
covered by the groups, as shown in Figure 2a, showed that again
the neural networks behave in a fairly uniform way once at least
one hidden unit is present, while the network with no hidden units
clearly differs in its pattern from the others. Although the
difference in the overall prediction accuracy between the
networks with and without hidden units is not as grave as for
eukaryotic sequences, the deviating behaviour of the network
without hidden units indicates that additional information is
gained by the introduction of hidden units. Overall the architecture
with three units within the hidden layer performs slightly better
then the rest, achieving 33.4% of all sequences predicted with an
accuracy of 91.0% and another 21.3% with an accuracy of 84.9%.
As for eukaryotes, a further plot of specificity against sensitivity
for the best network subdivided by location is shown in Figure 2b,
with similar conclusions.

In the introduction we claimed that a method based on
composition would be more robust to errors in 5′ gene annotation
than other methods. We tested this by repeating the generation of
both eukaryotic and prokaryotic networks with identical training
and test data but with the leading 10 amino acids removed, to
represent the effect of such uncertainty. The accuracies changed
little (63.5 instead of 66.1% for eukaryotic and 80.5 instead of
80.9% for prokaryotic proteins), leading us to conclude that the
method is robust in this respect.

Tests on new data

The specific requirements during training of the neural networks
led to only one third of the available data being included in the
training set. As it is a well-known fact that neural networks tend
to improve with the amount of data presented to them during
training, it was interesting to see how a network trained with a
much larger number of sequences than the jack-knifing procedure
allows will perform on independent data. Final versions of both
the eukaryotic and prokaryotic neural networks were created
using nine tenths of the available data for training and one tenth
as a test set to prevent over-training on the specific data set. These
neural networks were trained on ∼2.5 times more data than those
used for cross-validation. They were used to predict the
subcellular location of proteins which appeared as new in
SWISSPROT database release 34 or 35. These new sequences can
be treated as a randomly chosen and completely independent data set
that should have no systematic connection to the training set used.

For eukaryotic proteins the prediction accuracy increases by
∼1% (from 66.1 to 67.0%). With at least 50 sequences within each

Figure 2. (a) The cumulative prediction accuracy and percentage of sequences
for prokaryotic proteins in groups with different reliability indices was calculated
as for eukaryotic proteins. Plotting both variables against each other for a number
of neural networks with a varying number of units within the hidden layer reveals
that the neural network with no hidden units shows a pattern strongly deviating
from those of the other neural networks. (b) As for (a) except showing only the
results for the best network, with data broken down by location.

a

b

group and 749 sequences altogether this outcome is not very
likely to be due to random fluctuations. For prokaryotic proteins
the situation is less clear. Although the calculation shows an
increased prediction accuracy (from 80.9 to 82.7%), the very
small number of sequences within the extracellular (only six
sequences) and periplasmic groups (only 25 sequences) makes an
influence of random fluctuations on the outcome quite possible.

This method relies on sequence composition, which is fairly
orthogonal to sequence homology (data not shown), however,
since training and testing sequences share some sequence
homology it was felt that an effect from this on prediction
accuracy should be checked for. The new sequences from
SWISSPROT releases 34 and 35 were therefore grouped
according to the highest similarity with a sequence in the training
set. The prediction accuracy for each group was calculated and
the results are shown in Figure 3a. For prokaryotic proteins
sequences with higher similarity to those within the training set
do not achieve higher prediction accuracy than less similar ones
and for eukaryotic proteins only a slight trend seems to exist.
Another possibility is that similar sequences are more likely to be
predicted in the same way as the closest training set member as
the homology between them increases. Figure 3b shows that for
pairs which share the same location there is only a weak
correlation between sequence similarity and the chance of the



2235

Nucleic Acids Research, 1994, Vol. 22, No. 1Nucleic Acids Research, 1998, Vol. 26, No. 92235

Figure 3. (a) For each predicted sequence the sequence with the highest sequence identity within the training set of the neural network was determined. The predicted
sequences were then grouped according to this similarity in 5% steps for eukaryotic proteins and 10% steps for prokaryotic proteins (for the latter there were too few
sequences to use 5% steps). For each group of sequences obtained in this way the prediction accuracy was determined. (b) For each predicted sequence the sequence
with the highest sequence identity within the training set of the neural network was determined. Sequence pairs that had the same location were then grouped according
to this similarity in 5% steps for eukaryotic proteins and 10% steps for prokaryotic proteins, as for (a). The fraction with identical prediction (both correct or both
incorrect) was determined for each group.

a

b

same prediction (i.e. both predicted right or both predicted
wrong). We conclude that the effect of sequence homology in
biasing this prediction is minimal and does not decrease the value
of the prediction methods.

DISCUSSION

Amino acid composition alone has been shown to contain
sufficient information to distinguish proteins of different subcellular
locations at a detailed level.

At the present level of prediction accuracy the method is not
reliable enough for eukaryotic proteins to be used for blindly
assigning a subcellular location to large numbers of potential
proteins. It can, however, be used to give initial clues for further
analysis. A further improvement in prediction accuracy may be
achieved by passing ambiguous cases to an expert system for a

final decision. This approach appears to be especially promising,
as sequences of one of the two subcellular locations which are
hard to distinguish (cytoplasmic and mitochondrial proteins)
feature targetting sequences, although the previously mentioned
problem of incorrect assignments in the 5′-region of automatically
annotated genes is an issue when doing this.

As was shown through a test on independent data, the prediction
accuracy can be improved by including more sequences in training
of the neural network, although the increase of only ∼1% in
prediction accuracy for the eukaryotic neural network indicates
that an upper limit may have been reached in this case. Taking into
account that the cross-validation test for this network showed a
very good convergence (σ = 1.55%), it seems likely that the
amount of data used for initial training was already sufficient,
which explains why only fairly small improvements can be
achieved by including more sequences in the training. The neural
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network for prediction of prokaryotic sequences on the other hand
converged somewhat less (σ = 1.99%), indicating that additional
sequences in training may result in a further improvement in
prediction accuracy.

The prediction method is available on the world wide web at
location <URL: http://predict.sanger.ac.uk/nnpsl >. An Email-based
service for large numbers of sequences will be made available at the
same address shortly. The site includes a link to the world wide
web-based service for prediction of transmembrane proteins (12), to
make it easier for users to test sequences for transmembrane regions
before making a subcellular location prediction. Large non-
membrane spanning domains of transmembrane proteins can be
predicted by the described method, by handling them as independent
protein chains. Also, work is in progress to add predicted subcellular
location annotations to TREMBL (15,16) entries based on a
combination of transmembrane prediction and this method.
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