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Summary
We study the role of partial autocorrelations in the reparameterization and parsimonious modeling
of a covariance matrix. The work is motivated by and tries to mimic the phenomenal success of the
partial autocorrelations function (PACF) in model formulation, removing the positive-definiteness
constraint on the autocorrelation function of a stationary time series and in reparameterizing the
stationarity-invertibility domain of ARMA models. It turns out that once an order is fixed among the
variables of a general random vector, then the above properties continue to hold and follows from
establishing a one-to-one correspondence between a correlation matrix and its associated matrix of
partial autocorrelations. Connections between the latter and the parameters of the modified Cholesky
decomposition of a covariance matrix are discussed. Graphical tools similar to partial correlograms
for model formulation and various priors based on the partial autocorrelations are proposed. We
develop frequentist/Bayesian procedures for modelling correlation matrices, illustrate them using a
real dataset, and explore their properties via simulations.
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1 Introduction
Positive-definiteness and high-dimensionality are two major obstacles in modeling the p × p
covariance matrix Σ of a random vector Y = (Y1, ⋯Yp)′. These can partially be alleviated using
various decompositions which in increasing order of effectiveness are the variance-correlation
(Barnard et al., 2000), spectral (Yang and Berger, 1994;) and Cholesky (Pourahmadi, 1999;
Chen and Dunson, 2003) decompositions. Only the latter has the unique distinction of
providing an unconstrained and statistically interpretable reparameterization of a covariance
matrix, but at the expense of imposing an order among the entries of Y. Three close competitors
are, (i) the covariance selection models (Dempster, 1972; Wong et al., 2003) based on full
partial correlations obtained from Σ−1, which are statistically interpretable, but constrained,
(ii) the logarithm of eigenvalues and logit of Givens angles (Daniels and Kass, 1999; Yang and
Berger, 1994) and (iii) the matrix-logarithm models (Chiu et al., 1996). The latter two are based
on an unconstrained, but not necessarily interpretable reparameterization of Σ.
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We present yet another unconstrained and statistically interpretable reparameterization of Σ
using the notion of partial autocorrelation from time series analysis (Box et al., 1994;
Pourahmadi, 2001, Chap. 7), which, like the Cholesky decomposition also imposes an order
among the entries of Y; this reparamaterization is also ideal for models that directly include
correlation matrices, instead of covariance matrices, including multivariate probit models
(Chib and Greenberg, 1998) and copulas (Pitt et al., 2006). For covariance matrices, we start
with the decomposition Σ = DRD or the variance-correlation strategy (Barnard et al, 2000) and
reduce the problem to and focus on reparameterizing a correlation matrix R = (ρij) in terms of
a simpler symmetric matrix Π = (πij) where πii = 1 and for i < j, πij is the partial
autocorrelation between Yi and Yj adjusted for the intervening (not the remaining) variables.
We note that unlike R and the matrix of full partial correlations (ρij), Π has a simpler structure
in that it is not required to be positive-definite and hence its entries are free to vary in the
interval (−1,1). Furthermore, using the Fisher z transform Π can be mapped to the matrix Π˜
where the off-diagonal entries of the latter take values in the entire real line (−∞, +∞). The
process of going from a constrained R to a real symmetric matrix Π˜ is reminiscent of finding
a link function in the theory of generalized linear models (McCullagh and Nelder, 1989).
Therefore, the analogues of graphical and analytical machineries developed in the contexts of
regression and the Cholesky decomposition in Pourahmadi (1999, 2007) and references therein,
can be brought to the service of modeling correlation matrices. In the sequel, to emphasize the
roles, the properties and the need for (time-) order with a slight abuse of language we refer to
Π as the partial autocorrelation function (PACF) of Y or Σ, just as in time series analysis.

Compared to the long history of the use of the PACF in time series analysis (Quenouille,
1949; Daniels, 1956; Barndorff-Nielson and Schou, 1973; Ramsey, 1974; Jones, 1980; Jones
1987), research on establishing a one-to-one correspondence between a general covariance
matrix, its PACF and connecting the latter to the entries of the Cholesky factor of the former
has a rather short history. An early work in the Bayesian context is due to Eaves and Chang
(1992), followed by Zimmerman (2000) and Pourahmadi (1999; 2001, p.102) and Daniels and
Pourahmadi (2002) for longitudinal data, and Dégerine and Lambert-Lacroix (2003) for the
time series setup. For a general random vector, Kurowicka and Cooke (2003, 2006) and Joe
(2006) have relied on graph-theoretical and standard multivariate techniques, respectively. The
origins of a fundamental determinantal identity involving the PACF, unearthed recently by
these three groups of researchers can be traced to a notable and somewhat neglected paper of
Yule (1907, equ. 25) and in the literature of time series in connection with the Levinson-Durbin
type algorithms. It plays a central role in Joe's (2006) method of generating random correlation
matrices with distributions independent of the order of the indices, and we use it effectively in
introducing priors for the Bayesian analysis of correlation matrices. For a similar application
in time series analysis, see Jones (1987).

Correlation matrices themselves are accompanied by additional challenges. The constraint of
diagonal elements fixed (at one) complicates both reparameterizations, decompositions and
computations. Other than the partial correlation parameterization proposed here, there are no
unconstrained parameterizations currently in the statistical literature for a correlation matrix.
In addition, recent advances in Bayesian computations for correlation matrices (i.e., sampling
with Markov chain Monte Carlo algorithms) rely on augmenting the correlation matrix with a
diagonal scale matrix to create a covariance matrix (i.e., parameter expansion algorithms). The
strategy is to then sample the inverse of this covariance matrix from a Wishart distribution and
then transform back to the correlation matrix; see, e.g., Liu (2001) and Liu and Daniels
(2006). However, these approaches do not easily extend to structured correlation matrices (as
we will discuss here).

The outline of the paper is as follows. In Section 2, we review the recent results in
reparameterizing a correlation matrix via PACF and the Cholesky decomposition. We use the
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latter to derive a remarkable identity expressing determinant of R as a simple function of the
partial au-tocorrelations. This identity obtained by Dégerine and Lambert-Lacroix (2003), Joe
(2006) and Kurowicka and Cooke (2006), plays a fundamental role in introducing prior
distributions for the correlation matrix R which is independent of the order of indices used in
defining the PACF. The role of a generalized partial correlogram in formulating parsimonious
models for R is discussed and illustrated using Kenward's (1987) cattle data. In Section 3, we
introduce new priors for correlation matrices based on this parameterization, examine their
properties and relation to other priors that have appeared in the literature (Barnard, et al.,
2000), present a simple approach to sample from the posterior distribution of a correlation
matrix, and do some simulations to examine the behavior of these new priors. Section 4
provides guidance on use of these models and tools in applications in behavior and social
sciences. Section 5 wraps up and provides directions for future work.

2 Reparameterizations of a Correlation Matrix
Modeling correlation matrices and simulating random or “typical” correlation matrices are of
central importance in various areas of statistics (Chib and Greenberg, 1998; Barnard et al.
2000; Pan and Mackenzie, 2003; Pitt, Chan, and Kohn, 2006), engineering and signal
processing (Holmes, 1991), social and behavior sciences (Liu, Daniels, and Marcus, 2009),
finance (Engle, 2002) and numerical analysis (Davies and Higham, 2000). An obstacle in
dealing with a correlation matrix R is that all its diagonal entries are the same and equal to one.

In this section, first we reparameterize correlation/covariance matrices of a general random
vector Y = (Y1, ⋯, Yp)′ in terms of the partial autocorrelations between Yj and Yj+k adjusted
for the intervening variables. Then, using the concept of regression which is implicit in
introducing the partial autocorrelations and the Cholesky decomposition of matrices, we point
out the connections among the PACF, the generalized autoregressive parameters and the
innovation variances of Y introduced in Pourahmadi (1999).

2.1 Reparameterization in terms of Partial Autocorrelations
The notion of PACF is known to be indispensable in the study of stationary processes and
situations dealing with Toeplitz matrices such as the Szegö's orthogonal polynomials,
trigonometric moment problems, geophysics, digital signal processing and filtering (see
Landau, 1987; Pourahmadi, 2001), identification of ARMA models, the maximum likelihood
estimation of their parameters (Jones, 1980) and simulating a random or “typical” ARMA
model (Jones, 1987). The one-to-one correspondence between the stationary autocorrelation
functions {ρk} and their PACF {πk} (Barndorff-Nielsen and Schou, 1973; Ramsey, 1974)
makes it possible to remove the positive-definiteness constraint on {ρk}, and work with {πk}
which are free to vary over the interval (−1,1) independently of each other.

We parameterize a (non-Toeplitz) correlation matrix R = (ρij) in terms of the lag-1 correlations
πi,i+1 = ρi,i+1,i = 1, ⋯, p − 1 and the partial autocorrelations πij = ρij|i+1,⋯,j−1 for j − i ≥ 2, or
the matrix Π = (πij). This allows swapping the constrained matrix R by the simpler matrix Π
with ones on the diagonal and where for i ≠ j, the πij's can vary freely in the interval (−1,1).
The key idea behind this reparameterization is the well-known recursion formula (Anderson,
2003, p.41), see also (1) below, for computing partial correlations in terms of the marginal
correlations (ρij). It also lies at the heart of Kurowicka and Cooke (2003,2006) and Joe
(2006) approaches to constructing Π; however the recursive Levinson-Durbin algorithm used
by Dégerine and Lambert-Lacroix (2003) will be used in our presentation in Section 2.3.
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Following Joe (2006), for j = 1, ⋯, p−k, k = 1, ⋯, p−1, let ,
and R2(j,k) be the correlation matrix corresponding to the components (j + 1,…, j + k−1). Then,
the partial autocorrelations between Yj and Yj+k adjusted for the intervening variables, denoted

by , are computed using the expression

(1)

In what follows and in analogy with R, it is convenient to arrange these partial autocorrelations
in a matrix Π where its (j,j + k)th entry πj,j+k Note that the function g(·) in (1) that maps a
correlation matrix R into the partial autocorrelation matrix Π, is indeed invertible, so that
solving (1) for ρj,j+k, one obtains

(2)

where Djk is the denominator of the expression in (1). Then, the formulae (1)-(2) clearly
establish a one-to-one correspondence between the matrices R and Π. In the sequel, with a
slight abuse of language and following the tradition in times series analysis we refer to the
matrix Π or πj,j+k viewed as a function of (j, k), as the partial autocorrelation function (PACF)
of Y.

Evidently, when R is a stationary (Toeplitz) correlation matrix, then πj,j+k depends only the lag
k, see (1). Consequently, Π is a stationary (Toeplitz) matrix. Fortunately, the converse is also
true and follows from (2). For ease of reference, we summarize these observation in Lemma
1 in Section 2.3. A correlation matrix R is stationary (Toeplitz) if and only if its associated
PACF Π is a stationary (Toeplitz) matrix.

Moreover, for a stationary correlation matrix, R reduces precisely to the celebrated Levinson-
Durbin formula (Pourahmadi, 2001, Theorem 7.3) for computing the PACF recursively.

2.2 An Alternative Reparameterization: Cholesky Decomposition
Next, we present an alternative reparameterization of a covariance matrix via its Cholesky
decomposition or the idea of autoregression for the underlying random vector.

Consider a mean-zero random vector Y with the positive-definite covariance matrix Σ = (σst).
For1 ≤ t ≤ p, let Ŷt be the linear least-squares predictor of Yt based on its predecessors Y1, ⋯,
Yt−1 and let εt = Yt −Ŷt be its prediction error with variance . Then, there are unique

scalars φtj so that  or
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(3)

Let ε = (ε1, ⋯, εp)′ be the vector of successive uncorrelated prediction errors with

. Then, (3) rewritten in matrix form becomes ε = TY, where T is
a unit lower triangular matrix with 1's on the main diagonal and −φtj in the (t,j)th position for
2 ≤ t ≤ p, j = 1, ⋯, t −1. Note that  is different from σtt = Var(Yt) However, when
the responses are independent, then φtj = 0 and , so that the matrices T and D gauge the
“dependence” and “heterogeneity” of Y, respectively.

Computing covariances using ε = TY, it follows that

(4)

The first factorization in (4), called the modified Cholesky decomposition of Σ, makes it
possible to swap the p(p + 1)/2 constrained parameters of Σ with the unconstrained set of
parameters φtj and log  of the same cardinality. In view of the similarity of (3) to a sequence
of varying order autoregressions, we refer to the parameters φtj and  as the generalized
autoregressive parameters (GARP) and innovation variances (IV) of Y or Σ (Pourahmadi,
1999). A major advantage of (4) is its ability to guarantee the positive-definiteness of the
estimated covariance matrix given by T ̂−1D ̂T ̂′−1 so long as the diagonal entries of D ̂ are positive.

It should be noted that imposing structures on Σ will certainly lead to constraints on T and D
in (4). For example, a correlation matrix R with 1's as its diagonal entries is structured with
possibly p(p − 1)/2 distinct parameters. In this case, certain entries of T and D are either known,
redundant or constrained. In fact, it is easy to see that the diagonal entries of the matrix D for
a correlation matrix are monotone decreasing with  For this reason and others, it seems
more prudent to rely on the ordered partial correlations when reparameterizing a correlation
matrix R as in Section 2.1, than using its Cholesky decomposition.

2.3 A Multiplicative Determinantal Identity: Partial Autocorrelations
First, we study the role of partial autocorrelations in measuring the reduction in prediction error
variance when a variable is added to the set of predictors in a regression model. Using this and
the second identity in (4) we obtain a fundamental determinantal identity expressing |Σ| in terms
of the partial autocorrelations and diagonal entries of Σ. Joe (2006) and Kurowicka and Cooke
(2006) had obtained this identity using determinantal recursions and graph-theoretical methods
based on (1), respectively. An earlier and a slightly more general determinantal identity for
covariance matrices in the context of nonstationary processes was given by Dégerine and
Lambert-Lacroix (2003, p.54), using an analogue of the Levinson-Durbin algorithm.

For u and v two distinct integers in {1, 2, ⋯, p}, let L be a subset of {1, 2, ⋯, p}\{u, v} and
πuv|L stand for the partial correlation between Yu and Yv adjusted for Yℓ, ℓεL. We denote the
linear least squares predictor of Yu based on Yℓ, ℓεL by Ŷ u|L, and for v an integer Lv stands for
the union of the set L and the singleton {v}.
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Lemma 1. Let Y = (Y1, ⋯, Yp)′ be a mean-zero random vector with a positive-definite
covariance matrix Σ. Then, with u,v and L as above, we have

a.

(5)

b.

(6)

Proof. (a) Let sp{Yu; uεL} stand for the linear subspace generated by the indicated random
variables. Since Yv − Ŷv|L is orthogonal to sp{Yu; uεL} it follows that

and from the linearity of the orthogonal projection we have

where αuv, the regression coefficient of Yu on Yv − Ŷv|L is given by

Since Ŷu|Lε sp{Yi; iεL} is orthogonal to Yv − Ŷv|L, the numerator of the expression above can
be replaced by Cov(Yu −Ŷ u|L, Yv −Ŷv|L), so that
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(b) From the first identity in (5), it is immediate that

or

(7)

Computing variances of both sides of (7) and using the fact that Yu −Ŷu|Lv is orthogonal to
Yv−Ŷv|L, it follows that

Now, substituting for αuv from (a), the desired result follows.

Next, we use the recursion (6) to express the innovation variances or the diagonal entries of
D in terms of the partial correlations or the entries of π. Similar expressions for φtj's, the entries
of T, are not available. The next theorem sheds some light on this problem. Though the
expressions are recursive and ideal for computation (Levinson-Durbin algorithm), they are not
as explicit or revealing. The approach we use here is in the spirit of the Levinson-Durbin
algorithm (Pouramadi, 2001, Corollary 7.4) as extended by Dégerine and Lambert-Lacroix
(2003) to nonstationary processes.

Theorem 1. Let Y = (Y1, ⋯, Yp) be a mean-zero random vector with a positive-definite
covariance matrix Σ which can be decomposed as in (4).
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a. Then, for t = 2, ⋯, p; j = 1, ⋯, t − 1, we have

b.

c. For t = 2, ⋯, p; L = {2, ⋯, t − 1}

d. φtj = φtj|L − φt1φ1,t−j|L, for j = 2, ⋯, t −1,

where φtj|L and φ1,t−j|L are, respectively, the forward and backward predictor coefficients of
Yt and Y1 based on {Yk; kεL}, defined by

Proof (a) follows from the repeated use of (6) with u = t and v = j,j = 1, ⋯, t −1. (b) follows
from (4) and (a).

Part (c) proved first in Pourahmadi (2001, p.102) shows that only the entries of the first column
of T are multiples of the ordered partial correlations appearing in the first column of π. However,
for j > 1, since φtj is a multiple of the partial correlation between Yj and Yt adjusted for {Yi; i
ε [1, t)\{j}}, (see Lemma 1(a)), it is not of the form of the entries of π. Note that these
observations are true even when Y is stationary or Σ is Toeplitz (Pourahmadi, 2001, Lemma
7.8 and Theorem 7.3). In the search for connection with the entries of π, it is instructive to note
that the nonredundant entries of T−1 = (θtj) can be interpreted as the generalized moving average
parameters (GMAP) or the regression coefficient of εj when Yt is regressed on the innovations
εt, ⋯, εj, ⋯, ε1, see Pourahmadi (2001, p.103). An alternative interpretation of θtj as the
coefficient of Yj when Yt is regressed on Yj, Yj−1, ⋯, Y1 is presented in Wermuth et al. (2006
Sec. 2.2). Consequently, θtj is a multiple of the partial correlation between Yt and Yj adjusted
for {Y1, ⋯, Yj−1}. We hope these connections and working with partial correlations will offer
similar advantage to working with the GARP in terms of the autoregression interpretation
(Pourahmadi, 2001, Sections 3.5.3 and 3.5.4).

2.4 An Attractive Property of the PACF parameterization
Parsimonious modeling of the GARP of the modified Cholesky decomposition often relies on
exploring for structure as a function of lag; for example, fitting a polynomial to the GARP as
a function of lag (Pourahmadi, 1999). For such models, the GARP, in a sense, have different
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interpretations within lag; i.e., the lag 1 coefficient from the regression of Y3 on (Y2, Y1) is the
Y2 coefficient, when another variable, Y is also in the model; however, for the regression of
Y2 on Y1, the lag 1 coefficient is the Y1 coefficient with no other variable in the model. So, for
a given lag k, the lag k coefficients all come from conditional regressions where the number
of variables conditioned on are different. However, by construction, the lag k partial
autocorrelations are all based on conditional regressions where the number of conditioning
variables are the same, always conditioning on k − 1 intervening variables. This will facilitate
building models for the partial autocorrelations as a function of lag. We discuss such model
building in the next section.

2.5 Parsimonious Modeling of the PACF
In this section, we use the generalized partial correlogram, i.e. the plot of {πj,j+k; j = 1, ⋯, p
−k} versus k = 1, ⋯, p−1, as a graphical tool to formulate parsimonious models for the PACF
in terms of the lags and other covariates. If necessary, we transform its range to the entire real
line using z transform. Such modeling environment is much simpler and avoids working with
the complex constraints on the correlation matrix R (Barnard et al., 2000; Daniels and Normand,
2006) or the matrix of full partial correlations constructed from Σ−1 (Wong et al. 2003); note
that the full partial correlations are defined as the correlation between two components
conditional on all the other components.

Note that the partial autocorrelations πj,j+k between successive variables Yj and Yj+k are
grouped by their lags k = 1, ⋯, p−1, and heuristically, πj,j+k gauges the conditional (in)
dependence between variables k units apart conditional on the intervening variables, so one
expects it to be smaller for larger k. In the Bayesian framework, this intuition suggests putting
shrinkage priors on the partial autocorrelations that shrink the matrix Π toward certain simpler
structures (Daniels and Kass, 2001).

2.6 Data illustration
To illustrate the capabilities of the generalized correlograms in revealing patterns, we use the
cattle data (Kenward, 1987) which consists of p = 11 bi-weekly measurements of the weights
of n = 30 cows. Table 1, displays the sample (partial) correlations for the cattle data in the
lower (upper) triangular segment and the sample variances are along the main diagonal. It
reveals several interesting features of the dependence in the data that the commonly used profile
plot of the data cannot discern. For example, note that all the correlations are positive, they
decrease monotonically within the columns (time-separation), they are not constant
(nonstationary) within each subdiagonal. In fact, they tend to increase over time (learning
effect). Furthermore, the partial autocorrelations of lags 2 or more are insignificant except for
the entries 0.56 and 0.35.

Figure 1 presents the generalized correlograms corresponding to the sample correlation matrix
of the data, the full partial correlations, the generalized partial correlogram and the Fisher's z
transform of the PACF. Note that the first two correlograms suggest linear and quadratic
patterns in the lag k, but in fitting such models one has to be mindful of the constraints on the
coefficients so that the corresponding fitted correlation matrices are positive definite. Details
of fitting such models and the ensuing numerical results can be found in Pourahmadi (2001).
The generalized partial correlogram in (c) reveals a cubic polynomial in the lags, i.e. πj,j+k =
γ0 + γ1k + γ2k2 + γ3k3; in fitting such models the only constraint to observe is that the entries
of the matrix Π are required to be in (−1,1). However, the Fisher z transform of the entries of
Π are unconstrained and Figure 1(d) suggests a pattern that can be approximated by an
(exponential) function α + β exp(−k), k = 1, ⋯, p−1, with no constraints on (α, β) or another
cubic polynomials in the lags. The least-squares fits of a cubic polynomial and an exponential
function to the correlograms in Figure 1 (c)-(d) are summarized in Table 2. Note that fitting
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such models to the PACF amounts to replacing the entries of the kth subdiagonal of the matrix
Π by a single number and hence R is approximated by a stationary (Toeplitz) matrix, see Lemma
1 and Theorem 2 below. In addition, this parameterization also allows the marginal variances
to be similarly modelled parsimoniously (as a function of time) similar to the modelling of the
prediction variances in Pourahmadi (1999). The maximum likelihood estimation of the
parameters and their asymptotic properties will be pursued in a future work.

3 Priors for R via the partial autocorrelations
In addition to the advantages for formulating parsimonious models, the unconstrainedness of
the PACF suggests some approaches for constructing priors for R using independent linearly
transformed Beta priors on (−1,1) for the PACF.

3.1 Independent priors on partial autocorrelations
Given that each partial autocorrelation is free to vary in the interval (−1,1), we may construct
priors for R derived from independent priors on the PACF. For example, independent Unif
[-1,1] priors (IU priors) on the partial autocorrelations (Jones, 1987; Joe, 2006) can be shown
to induce the following prior on the correlation matrix R:

(8)

One can express the prior in (8) in terms of the marginal correlations, ρj,j+k by plugging in for
πj,j+k from (1). This prior induces a particular behavior on the marginal correlations.
Specifically, the priors on the (marginal) correlations ρj,j+k, become gradually more peaked at
zero as the lag k grows. As an illustration of this behavior, Figure 2 shows the histograms based
on 10,000 simulations from the uniform prior on the partial autocorrelations for p = 5. As the
dimension p of the correlation matrix grows, the priors become more peaked at zero for larger
lags. This can also be seen by examining the prior probability of being in some interval, say
[−.5, .5], as a function of the lag. For p = 15, the (averaged) probabilities, ordered from lag 1
to lag 14, are respectively, (.50, .59, .65, .70, .73, .76, .78, .80, .82, .83, .84, .85, .86, .87). This
would appear to be a desirable behavior for longitudinal data which typically exhibits serial
correlation decaying with increasing lags.

It is also evident from Figure 2 that the priors for ρj,j+k with k fixed, appear to be the same (see
the subdiagonals). We state this observation more formally in the following theorem; see also
Lemma 1.

Theorem 2. The partial autocorrelations, πj,k have independent “stationary” priors, i.e

(9)

(or the priors are the same along the subdiagonals of Π), if and only if the marginal priors on
the correlations ρjk are also “stationary”, i.e.

(10)

Daniels and Pourahmadi Page 10

J Multivar Anal. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(or the priors are the same along the corresponding subdiagonal of R).

This implies that “stationary” priors on Π induce “stationary” priors on the marginal
correlations and vice versa. Most priors we introduce here satisfy this property.

More generally independent linearly transformed Beta priors on the interval (-1,1) for partial
correlations are a convenient and flexible way to specify a prior for a correlation matrix R.
These priors, denoted by Beta(α,γ), have the density

(11)

Interestingly, the uniform prior on the correlation matrix (Barnard et al, 2000) corresponds to
the following stationary Beta priors on the partial correlations:

(12)

where ; see Joe (2006). We will refer to this prior as Barnard Beta (BB).
As noted in Barnard et al. (2000), such a prior on R results in the marginal priors for each of
the marginal correlations being somewhat peaked around zero (same peakedness for all ρjk).
Also note that the priors become more peaked as p grows.

In general, priors for the correlation matrix proportional to powers of the determinant of the
correlation matrix,

(13)

are constructed by setting  in (12) Priors so constructed are proper, so
improper priors like Jeffreys' for a correlation matrix in a multivariate normal model, π (R) =
|R|−(p+1)/2, are not special cases.

3.2 Shrinkage behavior of the BB and IU priors
The IU priors on the PACF induce desirable behavior for longitudinal (ordered data) by
‘shrinking’ higher lag correlations toward zero. The Beta priors in (12), which induce a uniform
prior for R (BB priors) place a uniform (-1,1) prior on the lag p − 1 partial autocorrelations
and shrink the other partial autocorrelations toward zero with the amount of shrinkage being
inversely proportional to lag. This induces the desired behavior on the marginal correlations,
making their marginal priors equivalent, but it is counter-intuitive for ordered/longitudinal data
with serial correlation; in addition, the shrinkage of the lag one partial autocorrelations for the
BB prior increases with p (recall the form in (12)). In such data, we would expect lower lag
correlations to be less likely to be zero and higher lag correlations to be more likely to be zero.
Thus, the independent uniform priors are likely a good default choice for the partial
autocorrelations in terms of inducing desirable behavior on the marginal correlations and not
counter-intuitively shrinking the partial autocorrelations. We explore this shrinkage behavior
further via some simulations in Section 3.5.
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In addition, we expect many of the higher lag partial correlations to be close to zero for
longitudinal data with serial correlation via conditional independence (see Table 1). To account
for this, we could (aggressively) shrink the partial autocorrelations toward zero (with the
shrinkage increasing with lag) using shrinkage priors similar to those proposed in Daniels and
Pourahmadi (2002) and Daniels and Kass (2001) or by creating such priors based on the Beta
distributions proposed here. We are currently exploring this.

3.3 Some other priors for a correlation matrix
Other priors for R have been proposed in the literature which cannot be derived based on
independent priors on the partial autocorrelations. For example, the prior on R that induces
marginal uniform (-1,1) priors on the ρij's (Barnard et al., 2000) has the form:

(14)

where R[−i,−i] is the submatrix of R with the ith row and column removed and
. Such a prior might not be a preferred one for longitudinal (ordered) data

where the same marginal priors on all correlations (irrespective of lag) may not be the best
default choice.

Eaves and Chang (1992) derived some related reference priors for the set of partial correlations,
π1,j for j = 2,…, p; however, their priors are not natural for longitudinal data. Chib and
Greenberg (1998) specified a truncated multivariate normal distribution on the marginal
correlations. Liechty et al. (2004) placed normal distributions on the marginal correlations with
the goals of grouping the marginal correlations into clusters. The latter two priors along with
those in Wong et al. (2003) for the full partial correlations (pij) are highly constrained given
that they model the marginal correlations directly.

3.4 Bayesian Computing
An additional issue with modeling the correlation matrix is computational. Our development
here will focus on cases without covariates in the correlation matrix (this will be left for future
work) under the class of independent priors on the PACF discussed in Section 3.1. The proposal
here might be viewed as an alternative to the PX-RPMH algorithm in Liu and Daniels
(2006) that explicitly exploits the fact that we are modeling the partial correlations themselves
(a computational comparison will be left for future work). However, our approach will naturally
allow structures in the partial correlations which cannot be done when using current versions
of the PX-RPMH (or similar) algorithms; for example, if the partial autocorrelations are zero
or constant within lag since then the correlation matrix is highly constrained.

In the following, we assume the data, {Yi : i = 1,…, n}are independent, normally distributed
p-vectors with mean Xiβ and with covariance matrix Σ = R (a correlation matrix). A natural
way to sample the partial autocorrelations is via a Gibbs sampling algorithm in which we
sample from the full conditional distributions of each of the partial autocorrelations. Given that
the full conditional distributions of the partial autocorrelations are not available in closed form
there are several options to sample them. We explore a simple one next.

We propose to use an auxiliary variable approach to sample each partial autocorrelation. Define
the likelihood for the partial autocorrelation, πjk as L(πjk) and the prior as p(πjk). As in Damien
et al. (1999), introduce a positive latent variable Ujk such that

Daniels and Pourahmadi Page 12

J Multivar Anal. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(15)

To sample πjk we can proceed in two steps,

1. Sample Ujk ∼ Unif(0,L(πjk)).

2. Sample p(πjk) constrained to the set {πjk : L(πjk) > Ujk}.

Truncated versions of the priors proposed here, linearly transformed Beta distributions (of
which the uniform is a special case), can easily be sampled using the approach in Damien and
Walker (2001). The truncation region for step 2, given that the domain of πjk is bounded, can
typically be found quickly numerically.

The likelihood evaluations needed to find the truncation interval can be made simpler by taking
advantage of the following facts.

Fact 1. If we factor R−1 = CPC, where P is a correlation matrix and C is a diagonal matrix,
the elements of P are the full partial correlations, pij|rest (Anderson, 1984, Chapter 15).

Fact 2. To isolate the likelihood contribution of πj,j+k, we can factor the entire multivariate
normal distribution into p(yj,…, yj+k)p(yl : l < j or l > j + k | yj,…, yj+k). The (l,k) entry of
inverse of the correlation matrix, R[j : j +k] for the first factor is related to the partial correlation
of interest (recall Fact 1).

Fact 3. Using the determinantal identity in Theorem 1(b), the determinant of submatrices of
R in terms of partial correlations can be written as a function of the partial correlations,

(16)

It can be shown that the likelihood in terms of one of the partial correlations of interest, say
πjk, can be written as

(17)

where Sy[j : k] is the submatrix of Σi(yi−Xiβ)(yi−Xiβ)′ and R[j : k] is the submatrix of R based
on the first component of the factorized distribution in Fact 2. above.

Extensions of these computational procedures to modelling the correlation matrix when the
matrix of interest is a covariance matrix is straightforward (see, e.g., Liu and Daniels, 2006).

3.5 Simulations
We now conduct some simulations in a longitudinal setting to

1. examine the mixing behavior of the auxiliary variable sampler here and
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2. compare the risk of the IU prior to the BB prior, the standard default prior for a
correlation matrix.

In terms of the mixing of the Markov chain, the auxiliary variable sampler on the partial
autocorrelations works quite well, with the lag correlation in the chain dissipating quickly. For
example, for p = 5, n = 20, the lag correlations for each partial autocorrelation was negligible
by lag 10. Similar results were seen for other p/n combinations.

For our simulation, we consider three true matrices representing typical serial correlation, an
AR(1) with lag 1 correlation of .8 and one with lag correlation .6. Both these matrices have all
partial autocorrelation beyond lag 1 equal to 0. We also considered a matrix that had more non-
zero partial autocorrelations with lags 1,2,3,4 equal to (.8, .4, .1,0) respectively. We consider
two size matrices/sample size combinations, p = 5 with n = 10,25,50,100 and p = 10 with
sample sizes, n = 20,50,100. We also consider several loss functions, log likelihood (LL) loss,
tr(R̂R−1) − log|R̂R−1| −p, with Bayes estimator the inverse of the posterior expectation of R−1

and squared error loss on Fisher's z-transform of the partial autocorrelations, πjk (SEL-P) and
the marginal correlations, ρjk (SEL-M), with Bayes estimator the posterior mean (of the z-
transformed correlations).

For p = 5, the risk reductions from the IU prior are clear from Table 3, with percentage
reductions as large as 30% for n = 10, 20% for n = 25 and 10% for n = 50. For p = 10, the
risk reductions from the uniform prior are clear from Table 4, with percentage reductions as
large as 40%. The largest risk reductions were for loss SEL-M (squared error loss on the Fisher's
z-transform on the marginal correlations). The lower risk reductions for the first order
autoregressive covariance matrices are related to only the lag 1 partial autocorrelations being
non-zero; so the shrinkage of the BB prior for all the other partial autocorrelations is not
unreasonable. Examination of squared error loss for the partial autocorrelations by lag indicates
large reductions for the lag 1 partial autocorrelations and small increases for the other lag partial
autocorrelations.

In addition, the estimates of the first order lag correlation themselves show large differences
(not shown). For AR(.8) with p = 10 and n = 20, the means were .76 under the IU prior and
about .71 under the BB prior with similar discrepancies for p = 5.

Some of the risk reductions from using the IU priors on the partial autocorrelations are small.
However, they come at no computational cost (unlike some priors for covariance matrices
proposed in the literature) and are consistent with prior beliefs about partial autocorrelations
representing serial correlation. The BB prior is not a good default choice due to its dampening
effects on the important lower order partial autocorrelations. Further risk improvement might
be expected through the use of more targeted shrinkage (Daniels and Pourahmadi, 2002).

4 Partial correlations in the behavior and social sciences
The models and priors for partial correlations are extremely important for many applications
involving longitudinal and functional data in the behavior and social sciences. In particular,
modeling longitudinal data using structural equation and factor analytic models (i.e., latent
variable models in general) typically require careful modeling of correlation matrices (see e.g.,
Daniels and Normand, 2006) as do multivariate probit models (Chib and Greenberg, 1998;
Czado, 2000; Liu, Daniels, and Marcus, 2009). The tools here provide both a general class of
methods for using the ordered partial correlations that allow parsimonious modeling of
correlations via regression modeling and sensible priors on correlations within such models
which is often essential in small to medium sized datasets. Such modeling takes on even more
importance in the presence of incomplete data (Daniels and Hogan, 2008). In addition, the
uniform priors on the partial correlations recommended in Section 3 provide no additional
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computational challenges over standard priors for a correlation matrix. Future work will
illustrate these methods more fully in applications.

5 Discussion
Using the variance-correlation separation strategy, modeling a covariance matrix is reduced to
that of its correlation matrix R which has the additional constraint that all its diagonal entries
must equal to one. Though the Cholesky decomposition can handle the positive-definiteness,
it cannot be applied directly when there are additional constraints such as stationarity or
constancy along diagonals (Pourahmadi, 1999, Sec. 2.6), zero entries (Chaudhuri, Drton and
Richardson, 2007) and separable covariance structures (Lu and Zimmerman, 2005). The
reparameterization in terms of partial autocorrelations is shown to work well in the face of an
additional constraint. It requires ordering the variables which is not a problem for longitudinal
and functional data, but might be difficult to justify for other situations. Related work on trying
to ‘order’ data that does not have a natural ordering can be found in Stein et al (2004) and
Berger and Bernardo (1992). The long history and successful use of the PACF in the time series
literature provide valuable graphical and analytical tools which can be generalized to the
nonstationary setup.

Given the conditioning structure of the partial autocorrelations, we expect many of them to be
zero (see Table 1). Thus, it would be natural to adapt the approach in Wong, Carter, and Kohn
(2003) to zero out the partial correlations. We might expect computational simplifications
given that the PACF are free to vary independently in [−1, 1] unlike the full partial correlations.
In addition, when constructing priors for the probability of a partial autocorrelation being zero,
the lack of exchangeability of the partial autocorrelations (vs. the full partial correlations) given
that they condition on different numbers of variables (i.e., only the intervening variables) must
be taken into account; such issues have been addressed in Liu et al. (2009) in a related setting.

We will explore the computational efficiency of other proposals for Bayesian computing in
future work, including sampling all the partial autocorrelations together. In addition, we will
derive strategies for Bayesian inference when modeling Fisher's z transform of the partial
autocorrelations as a function of covariates.

Acknowledgments
We thank Yanpin Wang for coding the simulations. This research was partially funded by grants from NIH (Daniels)
and NSF (Pourahmadi).

References
Anderson, TW. An Introduction to Multivariate Statistical Analysis. John Wiley & Sons; 1984.
Barnard J, McCulloch R, Meng X. Modeling covariance matrices in terms of standard deviations and

correlations, with applications to shrinkage. Statistica Sinica 2000;10:1281–1312.
Barndorff-Nielsen O, Schou G. On the parameterization of autoregressive models for partial

autocorrelation. J of Multivariate Analysis 1973;3:408–419.
Berger, JO.; Bernardo, JM. On the development of reference priors. In: Bernardo, JM.; Berger, JO.;

Dawid, AP.; Smith, AFM., editors. Bayesian Statistics 4: Proceedings of the Fourth Valencia Meeting;
Clarendon Press; 1992. p. 35-49.

Box, GEP.; Jenkins, GM.; Reinsel, GC. Time Series Analysis-Forecasting and Control. Revised 3rd.
Prentice Hall; NJ: 1994.

Chen Z, Dunson D. Random effects selection in linear mixed models. Biometrics 2003;59:159–182.
Chib S, Greenberg E. Analysis of multivariate probit models. Biometrika 1998;85:347–361.
Chaudhuri S, Drton M, Richardson TS. Estimation of a covariance matrix with zeros. Biometrika

2007;94:199–216.

Daniels and Pourahmadi Page 15

J Multivar Anal. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Chiu TYM, Leonard T, Tsui KW. The matrix-logarithm covariance model. Journal of the American
Statistical Association 1996;91:198–210.

Czado C. Multivariate regression analysis of panel data with binary outcomes applied to unemployment
data. Statistical Papers 2000;41:281–304.

Damien P, Wakefield J, Walker SG. Gibbs sampling for Bayesian non-conjugate and hierarchical models
by using auxiliary variables. Journal of the Royal Statistical Society, Series B: Statistical
Methodology 1999;61:331–344.

Damien P, Walker SG. Sampling truncated normal, Beta, and Gamma densities. Journal of Computational
and Graphical Statistics 2001;10:206–215.

Daniels HE. The approximate distribution of serial correlation coefficients. Biometrika 1956;43:169–
185.

Daniels, MJ.; Hogan, JW. Missing data in longitudinal studies: Strategies for Bayesian modeling and
sensitivity analysis. Chapman & Hall (CRC Press); 2008.

Daniels M, Kass R. Nonconjugate Bayesian estimation of covariance matrices in hierarchical models.
Journal of the American Statistical Association 1999;94:1254–1263.

Daniels MJ, Kass RE. Shrinkage estimators for covariance matrices. Biometrics 2001;57:1173–1184.
[PubMed: 11764258]

Daniels M, Normand SL. Longitudinal profiling of health care units based on mixed multivariate patient
outcomes. Biostatistics 2006;7:1–15. [PubMed: 15917373]

Daniels MJ, Pourahmadi M. Bayesian analysis of covariance matrices and dynamic models for
longitudinal data. Biometrika 2002;89:553–566.

Davies PI, Higham NJ. Numerically stable generation of correlation matrices and their factors. BIT
2000;40:640–651.

Dégerine S, Lambert-Lacroix S. Partial autocorrelation function of a nonstationary time series. J
Multivariate Analysis 2003;89:135–147.

Dempster AP. Covariance selection. Biometrics 1972;28:157–175.
Eaves D, Chang T. Priors for ordered conditional variances and vector partial correlation. J of Multivariate

Analysis 1992;41:43–55.
Engle RF. Dynamic conditional correlation: A simple class of multivariate GARCH models. Journal of

Business and Economics 2002;20:339–350.
Holmes RB. On random correlation matrices. SIAM J Matrix Anal Appl 1991;12:239–272.
Joe H. Generating random correlation matrices based on partial correlations. Journal of Multivariate

Analysis 2006;97:2177–2189.
Jones MC. Randomly choosing parameters from the stationarity and invertibility region of autoregressive-

moving average models. Applied Statistics 1987;36:134–138.
Jones RH. Maximum likelihood fitting of ARMA models to time series with missing observations.

Technometrics 1980;22:389–395.
Kenward MG. A method for comparing profiles of repeated measurements. Biometrics 1987;44:959–

971.
Kurowicka D, Cooke R. A parameterization of positive definite matrices in terms of partial correlation

vines. Linear Algebra and its Applications 2003;372:225–251.
Kurowicka D, Cooke R. Completion problem with partial correlation vines. Linear Algebra and its

Applications 2006;418:188–200.
Landau HJ. Maximum entropy and the moment problem. Bull of the Amer Math Soc 1987;16:47–77.
Liechty JC, Liechty MW, Muller P. Bayesian correlation estimation. Biometrika 2004;91:1–14.
Liu C. Comment on “The art of data augmentation” (Pkg: p1-111). Journal of Computational and

Graphical Statistics 2001;10:75–81.
Liu X, Daniels MJ. A new algorithm for simulating a correlation matrix based on parameter expansion

and reparameterization. Journal of Computational and Graphical Statistics 2006;15:897–914.
Liu X, Daniels MJ, Marcus B. Joint models for the association of longitudinal binary and continuous

processes with application to a smoking cessation trial. Journal of the American Statistical
Association. 2009

Daniels and Pourahmadi Page 16

J Multivar Anal. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Lu N, Zimmerman DL. The likelihood ratio test for a separable covariance matrix. Statistics and
Probability Letters 2005;73:449–457.

McCullagh, P.; Nelder, JA. Generalized Linear Models. 2nd. London: Chapman & Hall; 1989.
Pan J, MacKenzie G. On modelling mean-covariance structures in longitudinal studies. Biometrika

2003;90:239–244.
Pitt M, Chan D, Kohn R. Efficient Bayesian inference for Gaussian copula regression models. Biometrika

2006;93:537–554.
Pourahmadi M. Joint mean-covariance models with applications to longitudinal data: Unconstrained

parameterisation. Biometrika 1999;86:677–690.
Pourahmadi, M. Foundations of Time Series Analysis and Prediction Theory. Wiley; New York: 2001.
Pourahmadi M. Cholesky decompositions and estimation of a covariance matrix: Orthogonality of

variance-correlation parameters. Biometrika 2007;94:1006–1013.
Quenouille MH. Approximate tests of correlation in time series. Journal of Royal Statistical Society,

Series B 1949;11:68–84.
Ramsey FL. Characterization of the partial autocorrelation function. Annals of Statistics 1974;2:1296–

1301.
Stein ML, Chi Z, Welty LJ. Approximating likelihoods for large spatial data sets. Journal of Royal

Statistical Society Series B 2004;50:275–296.
Wermuth N, Cox DR, Marchetti GM. Covariance chains. Bernoulli 2006;12:841–862.
Wong F, Carter CK, Kohn R. Efficient estimation of covariance selection models. Biometrika

2003;90:809–830.
Yang R, Berger JO. Estimation of a covariance matrix using the reference prior. Annals of Statistics

1994;22:1195–1211.
Yule GU. On the theory of correlation for any number of variables treated by a new system of notation.

Roy Soc Proc 1907;79:85–96.
Zimmerman DL. Viewing the correlation structure of longitudinal data through a PRISM. The American

Statistician 2000;54:310–318.

Daniels and Pourahmadi Page 17

J Multivar Anal. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
(a) Generalized sample correlogram for the cattle data, (b) Generalized inverse correlogram,
(c) Generalized partial correlogram, (d) Plot of Fisher z transform of the PACF.
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Figure 2.
Marginal priors on ρjk from independent uniform priors on the partial correlations, πjk. The
subplots are arranged as the matrix R.
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