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Abstract
A methodology for nonlinear modeling of multi-input multi-output (MIMO) neuronal systems is
presented that utilizes the concept of Principal Dynamic Modes (PDM). The efficacy of this new
methodology is demonstrated in the study of the dynamic interactions between neuronal
ensembles in the Pre-Frontal Cortex (PFC) of a behaving non-human primate (NHP) performing a
Delayed Match-to-Sample task. Recorded spike trains from Layer-2 and Layer-5 neurons were
viewed as the “inputs” and “outputs”, respectively, of a putative MIMO system/model that
quantifies the dynamic transformation of multi-unit neuronal activity between Layer-2 and
Layer-5 of the PFC. Model prediction performance was evaluated by means of computed Receiver
Operating Characteristic (ROC) curves. The PDM-based approach seeks to reduce the complexity
of MIMO models of neuronal ensembles in order to enable the practicable modeling of large-scale
neural systems incorporating hundreds or thousands of neurons, which is emerging as a
preeminent issue in the study of neural function. The “scaling-up” issue has attained critical
importance as multi-electrode recordings are increasingly used to probe neural systems and
advance our understanding of integrated neural function. The initial results indicate that the PDM-
based modeling methodology may greatly reduce the complexity of the MIMO model without
significant degradation of performance. Furthermore, the PDM-based approach offers the prospect
of improved biological/physiological interpretation of the obtained MIMO models.
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1 Introduction
The study of neuronal ensemble activity and the quantitative understanding of neural
function remain challenging goals that rely on effective mathematical/computational
methodologies to advance scientific knowledge and enable the design of advanced
neuroprostheses (Schwartz 1990; Abeles 1991; Anderson 1991; Berger et al. 1994, 2001,
2005, 2010; Deadwyler & Hampson 1995, 2006; Churchland & Sejnowski 1999; Anderson
& Eliasmith 2004; Marmarelis 2004). The early use of “integrate-and-fire” models was
useful in the exploratory phase but it soon reached its limits of utility because of its intrinsic
limitations in representing the actual neuronal dynamics with adequate fidelity (Koch &
Segev 1989; Eeckman 1992; Anderson 1996). These limitations are also evident in the use
of “generalized linear models” which can only describe a restricted set of neuronal
characteristics (Dobson 2002). On the other hand, detailed compartmental approaches in the
mold of the Hodgkin-Huxley model or its variants, such as the Fitzhugh-Nagumo, Morris-
Lecar and Hindmarsh-Rose models (Hodgkin & Huxley 1952; Fitzhugh 1955, 1969;
Nagumo et al. 1962; Morris & Lecar 1981; Hindmarsh & Rose1984; Koch & Segev 1989;
Johnston & Wu 1997; Abbott 1999; Koch 1999; Hille 2001; Izhikevich 2007) were proven
rather cumbersome to be practically useful in the context of large-scale neuronal ensembles.
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In addition, these elaborate models describe only the generation of action potentials and
leave out the important neuronal processes of synaptic transmission, somatodendritic
integration and axonal propagation. The introduction of perceptron-type artificial neural
networks (Rosenblatt 1962; Koch & Segev 1989; Widrow & Lehr 1990; Eeckman 1992;
Dobson 2002) or Hopfield-type recurrent neural networks (Hopfield 1982; Hertz et al. 1991)
generated initial excitement which, however, dissipated upon realizing that these
formulations were not necessarily meaningful representations of the dynamics of actual
neural systems. Thus, there exists a need for modeling methodologies that can balance the
dual requirements of fidelity to actual neural function and feasibility within a practical
context. This paper is a contribution in the great effort to develop a general and rigorous
methodology that can yield parsimonious models of neuronal ensembles in a practical
experimental and computational context that can represent the actual neural function with
adequate fidelity in a manner amenable to biological/physiological interpretation. We take
the view that such Multi-Input/Multi-Output (MIMO) models must be based on
experimental time-series data and be able to predict the output of multi-unit neuronal
systems to arbitrary inputs of multi-unit neuronal activity (Song et al. 2007, 2009; Zanos et
al. 2008, 2009; Berger et al. 2010, 2011).

Recent years have seen rapid progress on many fronts of computational neuroscience. The
latter must be viewed as distinct from connectionist approaches of artificial intelligence and
machine learning (e.g. artificial neural networks), because it seeks functional/computational
descriptions (dynamic models) of biologically realistic neurons and neural systems. These
models must capture the essential functional characteristics of the neural systems that are
observed at multiple spatio-temporal scales in order to allow formulation of scientific
hypotheses that can be tested though properly designed experiments. This task is
complicated by the experimental difficulty of collecting neuronal activity data from multiple
neurons simultaneously – a limitation that is gradually overcome with the advent of reliable
multi-electrode arrays and spike-sorting algorithms. Thus, we are currently at the stage of
scientific developments in this area where the main limiting factor has become the
availability of effective data analysis and modeling methods, instead of the data collection
task. Thoughtful treatments of this subject, although lacking the benefit of multi-unit
recordings, have been published (e.g. Amit 1989; Koch & Segev 1989; Schwartz 1990;
Abeles 1991; Eeckman 1992; Anderson 1996; Churchland & Sejnowski 1999; Arbib 2003)
These studies did not have the full benefit of actual multi-unit recordings and were confined,
by necessity, to the detailed modeling study of single neurons and only theoretical or
conjectural explorations of the broader problem of neuronal ensemble modeling (e.g.
Abeles’ “synfire chain” theory). Within the vast literature on the structure and function of
the central nervous system, the work that explicitly addresses the issue of quantitative/
predictive modeling of the dynamic interrelationships among neuronal ensembles based on
actual data includes statistical, Bayesian and information theoretic methods (Barbieri et al.
2001; Borst & Theunissen 1999; Brockwell et al. 2004; Brown et al. 2004; Knill & Pouget
2004; Lewicki 2008; MacKay 1995; Rieke et al. 1997; Theunissen et al. 1996; Victor &
Brown 2003). Considerable progress has also been achieved in the case of sensory systems,
where early nonlinear modeling studies of the visual system (Marmarelis & Naka 1972,
1973, 1974; Marmarelis & Marmarelis 1978; Citron et al. 1981, 1983, 1988; Emerson et al.
1987,1992) and of the auditory system (Eggermont et al. 1983, 1993) led to sophisticated
studies of spatio-temporal receptive fields (Cottaris & DeValois 1998; Dan et al. 1998;
David & Gallant 2005; Pack et al. 2006; Wu et al. 2006) and spectro-temporal receptive
fields (Lewis & van Dijk 2004; Atencio & Schreiner 2008, 2010). An important note ought
to be made regarding the considerable literature on Artificial Neural Networks which,
although shares some of the issues of biological neural networks and has found useful
computational applications, does not represent in our opinion a faithful or credible
representation of the actual networks of neuronal ensembles. We also note some recent

Marmarelis et al. Page 2

J Comput Neurosci. Author manuscript; available in PMC 2013 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



interesting work on structural large-scale modeling of brain regions (Izhikevich 2007;
Izhikevich and Edelman 2008; Lytton 2008) that is based in part on actual data.

Our research group has had a strong interest in the study of neuronal interconnections in the
hippocampus. Over the last 25 years, we have conducted a series of experimental and
modeling studies that have sought to elucidate our understanding of the dynamic (nonlinear)
interrelationships among the various regions of the hippocampus (Berger et al. 1988, 1994,
2010; Deadwyler & Hampson 2004, 2006; Hampson et al. 2003, 2004, 2011; Marmarelis &
Berger 2005; Song et al. 2007, 2009; Dimoka et al. 2008; Zanos et al. 2008, 2009;
Marmarelis et al. 2009). The causal relationship between the activity of neuronal ensembles
in the CA3 and CA1 regions has been quantified by MIMO models estimated from
experimental data recorded via multi-electrode arrays in the hippocampus of rodents
performing specific behavioral tasks (Song et al. 2007, 2009; Zanos et al. 2008, 2009).
These models have been validated through their predictive capability and the efficacy of
model-based multi-unit stimulation patterns to induce specific behavioral responses (Berger
et al. 2011, 2012; Hampson et al. 2012; Marmarelis et al. 2011).

Notwithstanding the success of our previous efforts, the challenge of practicable “scaling
up” of this approach to large populations of neurons remains a formidable task. When the
number of input-output neurons rises into the hundreds or thousands, the complexity of the
current MIMO model begins to test our computational limits. For this reason, considerable
efforts have been dedicated to exploring rigorous ways to compact the MIMO models
without compromising performance. The work presented herein is part of this effort and
concerns the use of the concept of Principal Dynamic Modes (PDM) that has been recently
introduced by our group and applied successfully to various other physiological systems
(Marmarelis 2004). In the PDM modeling approach, we seek to determine a set of basis
functions (the PDMs) that represent an efficient “coordinate system” for the canonical
representation of the general nonlinear (Volterra-like) model of a given system. The PDMs
are obtained from the input-output data following a rigorous methodology that is outlined
below. To complete the nonlinear MIMO model, we must also estimate the associated
nonlinear functions (ANF) representing the nonlinear transformation of the PDM outputs, as
well as the cross-terms of the MIMO model that represent the interactions among the
various inputs as they impact each output. Thus, the PDM modeling approach separates the
representation of system dynamics (PDMs) from its nonlinearities (ANFs) and inter-
modulation characteristics (cross-terms).

An additional benefit of the PDM-based modeling approach is that it offers the potential
means for biological/physiological interpretation of the obtained MIMO model. This is
enabled by examining the form of the obtained PDMs (which describe the dynamic
characteristics of the system) and the obtained ANFs (which describe the interneuronal
connectivity). For instance, it was found that the frequency-domain representations of the
PDMs exhibit resonant peaks at the well-known neural rhythms (delta, theta, alpha, beta,
gamma) that have been associated in numerous previous studies with specific sensory, motor
and cognitive functions. Since a significant ANF indicates an active connection between the
respective Layer 2 (input) and Layer 5 (output) neurons of the pre-frontal cortex (Opris et al.
2011), the specific form of the respective PDM suggests the transfer of specific type of
neural information between the corresponding input and output (e.g. a PDM with a theta-
band resonant peak channels information related to memory functions and sensorimotor
integration). Phase-locked rhythmic activity has been observed in distant brain regions,
suggesting a critical role of neural rhythms in achieving cortical synchronization and
corroborating the temporal coding hypothesis in neural information processing. The latter is
the fundamental conceptual and scientific context within which MIMO modeling can be
interpreted in terms of neuronal function – thus making the PDMs a useful interpretational
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tool for understanding and dissecting neural function. Based on published experimental
observations of neuronal spiking activity, local-field potentials (LFPs),
electroencephalography (EEGs) and magnetoencephalography (MEGs) during behavioral
tasks, there is growing acceptance of the view that cognitive functions (e.g. sensorimotor
integration, memory, attention, decision making and perception) rely on neural rhythms to
coordinate the timing of neuronal firing (Jacobs et al. 2007). Specific neural rhythms have
been associated with specific sensorimotor and/or cognitive functions. The interpretation of
PDM-based MIMO models in terms of neural rhythms is elaborated further in the
Discussion section.

This paper presents the PDM-based MIMO modeling methodology in the case of neural
systems with point-process inputs and outputs (spike trains) and demonstrates its efficacy
using data of neuronal ensemble activity collected from a small number of neurons (4 inputs
and 4 outputs) in the pre-frontal cortex (PFC) of two non-human primates. The results hold
promise in terms of model compaction that, if confirmed in additional studies, can achieve
the ultimate goal of large-scale neural modeling and biological/physiological
interpretability.

2 Methodology
We seek to obtain parsimonious representations of nonlinear MIMO (Volterra-like)
canonical models that are able to describe the dynamic nonlinear transformations of
arbitrary spatio-temporal input-output data (i.e. spike-trains from multiple neurons of
neuronal ensembles). We propose to achieve this by use of the concept of PDMs. The
proposed methodology starts with a previously developed method (Marmarelis 1993;
Marmarelis & Orme 1993; Marmarelis 1997) for efficient estimation of Volterra kernels
using Laguerre expansions for Volterra models of the relationship between each observed
output and its inputs (Marmarelis 2004).

To determine the PDMs of the input-output relationship of interest from the respective
estimated self-kernels, we follow a three-step procedure: (1) we perform eigen-
decomposition on all second-order self-kernels and retain only the “significant” eigen-
vectors that correspond to absolute eigen-values larger than 10% of the maximum absolute
eigen-value (this threshold value was determined empirically by observing the decline of
absolute eigen-values in the results); (2) we construct a rectangular matrix composed of all
the first-order kernels and all the selected significant eigen-vectors of the second-order self-
kernels weighted by the corresponding eigen-values for all inputs and outputs; and (3) we
perform singular value decomposition (SVD) of this rectangular matrix (using the
standardized Matlab SVD algorithm) and select the significant singular vectors by applying
the previously described selection criterion to the respective singular values. The selected
singular vectors are the PDMs of the MIMO model connecting each output to its respective
inputs and represent an efficient kernel expansion basis for all input-output dynamic
relationships in the subject system. Since we are interested in a MIMO model that is valid
during various phases of a behavioral task (e.g. the Sample Presentation and the Match
Presentation phases of the Delayed-Match-to-Sample task of this study), we must obtain the
“global” PDMs of the MIMO model by “fusing” the respective PDMs for the various
phases. This is done by applying SVD to a rectangular matrix composed of the relevant
PDMs and selecting the most significant singular vectors according to the previously
described threshold criterion applied to the respective singular values. The selected “global”
PDMs contain the essential dynamic components of the functional characteristics of the
MIMO system and serve as a “functional coordinate system” for compact model
representation and, at the same time, facilitate the biological/functional interpretation of the
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obtained model. Fusion of PDMs may also occur across different tasks and different
animals.

In order to complete the estimation of the PDM-based MIMO model, we must also
determine the associated nonlinear functions (ANFs) which represent the amplitude
nonlinearities of the system, as well as the cross-terms of the MIMO model that represent
the interactions among the various inputs as they impact each output. The ANF of each
(global) PDM is evaluated by computation of the ratio of the histogram of the specific PDM
output values that correspond to a spike at the respective output divided by the histogram of
all PDM output values (i.e. the ANF may be viewed as the conditional probability of having
an output spike given a specific value of the respective PDM output). The computed ratios
are smoothed with a three-point moving average to redress abrupt changes in the ANF form
due to the inadvertent roughness of the histograms caused by the relative sparsity of the
experimental data.

The cross-terms of the MIMO model are determined on the basis of a statistical significance
test of the correlation coefficient between the respective output and each product of all
possible pairs of PDM outputs. This statistical significance test employs the w-distribution
of the correlation coefficient under the null hypothesis that there is no correlation between a
given pair product of PDM outputs and the respective output (Marmarelis & Marmarelis
1978). A cross-term is included in the MIMO model when this null hypothesis is rejected on
the basis of the available data. The coefficients of the selected significant cross-terms are
then estimated via least-squares regression on the output spike-train, where the sum of the
ANF outputs are also taken into account as another regression variable (for calibration
purposes). The efficacy of this approach has been tested and validated with simulated
examples where “ground truth” is available.

The predictive performance of the PDM-based MIMO model is evaluated through the
computation of Receiver Operating Characteristic (ROC) curves which are the most
commonly used evaluation tools in studies where true-positive predictions must be balanced
against false-positive predictions (e.g. telemetry/detection systems, diagnostic/clinical
procedures and modeling of systems with point-process outputs – such as the spike-trains
generated by neural systems). In this procedure, the numbers of true-positive and false-
positive predictions (normalized by the total number of bins with or without an output spike
respectively) are plotted against each other for each putative threshold value of the
threshold-trigger operator TT, which incorporates an exponential refractory component. The
two parameters (initial amplitude and time-constant) of this refractory component of the TT
operator are determined by maximizing the area under the ROC curve, which is often used
as an index of performance. We take the view that it is more relevant to consider only the
values of the ROC curve for low probability of false-positive predictions (e.g. up to 25 false-
positives in this study), so that the model-predicted spike-trains are not inundated by false-
positives.

Figure 1 shows a schematic (block-diagram) of one module of the PDM-based MIMO
model that corresponds to one output neuron. The full MIMO model is composed of four
such modules – one for each of the four output neurons with four input neurons. The
designation of the PDMs as “global” alludes to the fact that these PDMs result from “fusion”
of PDMs derived for all output neurons and the two phases of the DMS task (Sample
Presentation and Match Presentation). The four PFC-L2 input neurons (and the four PFC-L5
output neurons) are designated for abbreviation purposes as: N1 or UL (upper-left unit), N2
or UR (upper-right unit), N3 or LL (lower-left unit) and N4 or LR (lower-right unit).
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The detailed experimental methods used for the collection of the actual data are described in
(Opris et al. 2011; Hampson et al. 2011b). The data were collected in the labs of Dr.
Deadwyler and Dr. Hampson at Wake-Forest University from Layers 2 (L2) and 5 (L5) of
the pre-frontal cortex (PFC) in non-human primates (NHP) that were trained to acknowledge
a displayed (and immediately removed) computer-generated icon. The NHPs of this study
were adult male rhesus macaque, Macaca mulata. After a random delay, the NHP is
presented with several computer-generated icons, containing among them the previously
acknowledged icon. The NHP is trained to re-select (match) this image by moving a cursor
on the screen -- i.e. a Delayed-Match-to-Sample (DMS) task. When the correct icon is
selected, the animal is rewarded. During this task, the neuronal activity is recorded at PFC
L2 neurons viewed as the “inputs” and PFC L5 neurons viewed as the “outputs” of a
putative MIMO system that represents this transformation of neuronal activity during the
various phases of the DMS task. The presented computer-generated icons are randomly
changed from trial to trial.

We analyzed the collected data in two phases of the DMS task: (1) the “Match Presentation”
phase between the onset of the match-presentation and the NHP behavioral response to the
match stimulus, and (2) the “Sample Presentation” phase between the onset of the sample-
presentation and the NHP behavioral response. The spikes of the collected data were
identified as occurring between the temporal markers for the respective phase and binned
with 2 msec binwidth (Opris et al. 2011; Hampson et al. 2011). A mean-firing-rate between
0.25 and 25 spikes per second was used as an inclusion criterion. We estimated the 1st and
2nd order Volterra kernels using Laguerre expansions with 5 Laguerre basis functions of the
appropriate Laguerre parameter alpha determined through a search procedure (Marmarelis
2004).

3 Results
We seek to estimate the PDM-based MIMO model of the nonlinear dynamic transformation
of spike-train data from four PFC-L2 (input) neurons to four PFC-L5 (output) neurons in
NHPs performing the DMS task. A block-diagram of this MIMO model is shown in Figure
1. The designation of the PDMs as “global” alludes to the fact that they result from “fusion”
of the sets of PDMs derived for all output neurons and the two phases of the DMS task:
Sample Presentation (SP) and Match Presentation (MP). The four PFC-L2 input neurons and
the four PFC-L5 output neurons are designated for abbreviation purposes as: N1 or UL
(upper-left unit), N2 or UR (upper-right unit), N3 or LL (lower-left unit), N4 or LR (lower-
right unit). The spike-train of each input neuron convolves with each of the four global
PDMs to generate the PDM outputs (graded signals) that are subsequently being
transformed by the respective ANFs in a static nonlinear fashion to generate their respective
contributions to the likelihood of firing of each output neuron. The ANF outputs for all
input-PDM-ANF cascades that affect the same output neuron, are summed and added to the
cross-terms affecting this output to yield a graded “internal” signal that is subjected to a
“threshold-trigger” (TT) operator in order to generate the model prediction of the output
spike-train. The TT includes an exponential refractory component with two parameters
(initial refractory amplitude and relaxation time-constant) which are found to be 0.4 and 10,
respectively, following the procedure described in Methods. It should be noted that the
unknown quantities of this PDM-based MIMO model are the ANFs and the coefficients of
the cross-terms, since the global PDMs are fixed for a given behavioral task. The parameters
of the TT operators may also be viewed as unknown quantities of the model but they can
also be viewed in conjunction with the ROC curves as “model evaluation parameters” and
not “structural parameters” of the model.
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Following the previously described procedure for the selection of the global PDMs of the
MIMO model for the SP and the MP phases of the DMS task with correct behavioral
outcome, we obtain the 4 global PDMs for NHP 1504 shown in Figure 2, using the data
from 40 successful trials of the DMS task (Session 0726). These global PDMs are viewed as
an efficient basis of orthonormal functions for representing all kernels of the MIMO model
for NHP 1504 during the SP and MP phases of the DMS task with correct outcome. We note
that each PDM may generally incorporate several biological mechanisms that must be
delineated through subsequent scientific analysis (experimental or computational). These
biological mechanisms pertain to the integrated neuronal dynamics of the transfer and
processing of information from Layer 2 to Layer 5 of the PFC. The specific functional
characteristics of these mechanisms are depicted on the waveform of the global PDMs and
discussed further below.

We see in the frequency-domain representations in the right panel of Figure 2 that the 1st

PDM (top left) exhibits a resonant peak ~25 Hz in the beta-band (15–30 Hz) that has been
associated in previous studies of the PFC in NHPs, using elecroencephalograms (EEGs) and
local field potentials (LFPs), with sensorimotor integration and preparation for motor action.
The 2nd PDM (top right) exhibits a resonant peak ~15 Hz in the high end of the alpha-band
(10–15 Hz) associated in previous EEG studies of the PFC with internalized attention and
memory load, as well as processing of internal mental content. The 3rd PDM (bottom left)
exhibits a resonant peak ~35 Hz in the low end of the gamma-band (30–80) associated in
previous studies with various cognitive tasks (including sensory and working memory) and
motor tasks. The 3rd PDM also has high values in the delta-band (<4 Hz) that has been
associated in previous studies with short-term plasticity, anticipation of reaction, hormonal
secretion, general neuropsycological performance and deep sleep. The 4th PDM (bottom
right) exhibits a theta-band resonant peak ~7 Hz that has been associated in previous studies
with memory tasks, such as memory formation, delineation of memory-encoding from
memory-retrieval, and cortical synchronization. More on the biological/functional
interpretation of the PDMs is given in the Discussion section.

To complete the construction of the MIMO model of this system, we must also estimate the
ANFs, associated with the individual input-PDM “channels” for each output, as well as the
significant cross-terms for each output neuron. Each ANF represents a static nonlinear
transformation of the respective PDM output and defines the relative contribution of each
input-PDM “channel” to the likelihood of firing at the respective output. Note that the ANF
abscissa is the amplitude of the respective PDM output and the ordinate is the relative
contribution of the respective input-PDM “channel” to the probability of firing at the
respective output neuron. The latter has arbitrary units and combines with the outputs of the
other ANFs and the cross-terms to define the internal variable that generates the prediction
of the output spike-train upon application of the TT operator.

For each output neuron, the maximum number of required ANFs is equal to the product of
the number of its inputs times the number of global PDMs (i.e. 4×4=16 ANFs in this case).
Generally, some of these ANFs will make insignificant contributions to the likelihood of
firing at the respective output neuron – suggesting the practical possibility of “pruning”
using a statistical significance test based on the null hypothesis of uncorrelated Poisson
outputs (of the same firing rate as the experimentally observed output) for the given inputs.
Application of this statistical significance test yields the significant set of ANFs shown in
Figure 3 with blue line, while the insignificant (pruned) ANFs are shown in green line. The
latter are not included in the model and, therefore, do not contribute to the predicted firing
probability of the respective output neuron. We observe that only 25 out of a total of 64
ANFs (39%) are found to be significant in this case, demonstrating considerable reduction
of MIMO model complexity without degradation of model predictive performance. The
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latter point was examined and confirmed through the computation of ROC curves based on
the actual data that are shown in Figure 4. We note that the ANFs provide quantitative
guidance about which input-PDM channels are affecting the firing of each output neuron
and to what degree. For instance, it is shown in Figure 3 that the connection between the
first input neuron and the first output neuron is functionally insignificant and the first input
neuron has a significant connection only with the third output in the beta-band PDM channel
(blue line in top-left panel of Figure 3). The strongest connections are between the other
three input neurons (UR, LL and LR) and the 2nd (UR) and 4th (LR) output neurons in the
first two PDM channels that correspond to the beta and alpha bands respectively (see top-
right panel of Figure 3). This affords a level of functional detail and insight in terms of the
information processing characteristics of this neural network that has been heretofore
unavailable – i.e. the ANFs quantify the strength of connectivity between input-output
neurons via specific PDM channels which exhibit the functional characteristics depicted in
Figure 2 (e.g. resonant peaks in frequency bands associated in previous work with specific
cognitive tasks). This important point is further discussed in Section 4.

Final completion of the PDM-based MIMO model requires the inclusion of the significant
cross-terms, using the approach outlined in the previous section. These cross-terms represent
the interactions of the various inputs as they impact the activity of the respective common
output. The significant cross-terms were generally found to be a small proportion of all pair-
product combinations (less than 10%) and seem to have only occasional impact on the
MIMO model prediction performance. This impact is primarily in terms of reducing the
number of false-positives. For instance, the number of significant cross-terms in this
example is 2, 8, 9, and 7 for the four output neurons UL, UR, LL, LR respectively. These 26
significant cross-terms represent only 5.4 % of the total 480 possible pair-products (120 per
output neuron).

The overall predictive performance of the PDM-based and kernel-based MIMO models is
evaluated by means of the respective ROC curves (depicting the relation of true-positive
with false-positive predictions for various thresholds) that are shown in Figure 4. The ROC
curves are comparable for the two types of models, with a slight advantage exhibited by the
PDM-based model (red line), mainly when the cross-terms have some impact on the model
prediction by reducing the number of false-positives. Note that the kernel-based MIMO
model lacks cross-interaction terms but, nonetheless, has more free parameters (greater
model complexity). This supports the proposition that the PDM modeling approach may
indeed offer a more parsimonious alternative for practical MIMO modeling of neuronal
ensembles. We observe in Figure 4 that the probability of true-positive prediction is rather
low in all cases. Since there are about 200 actual spikes in each output-neuron record, this
probability ranges from about 5% (output neuron #1) to about 25% (output neuron #3) when
the detection threshold is chosen so that the number of false-positives is not allowed to
exceed the number of true-positives. For those thresholds, the kernel-based prediction yields
about half the number of true-positives. This demonstrates the superior predictive capability
of the PDM-based (average ~ 15%) relative to the kernel-based model (average ~ 10%),
which becomes even more impressive when placed in the context of linear predictions based
on cross-correlograms (Opris et al. 2011; Hampson et al. 2011). This point is discussed
further in the following section.

Another illustration of the predictive capability of the PDM-based model in comparison with
its kernel-based counterpart is shown in Figure 5, where a 2 sec data segment of output data
(L5 neuron #4) is shown along with the two model predictions. For the indicated thresholds,
we have 3 true-positives and no false-positives for the PDM-based model versus 1 true-
positive and 1 false-positive for the kernel-based model. It is also evident in these model-
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prediction plots that the subthreshold values that potentially give rise to false-positives
(small values of blue line) are generally lower for the PDM-based model.

In order to examine the consistency in the form of the global PDMs for different NHPs, we
repeated the estimation procedure for data from NHP 1418 (34 successful DMS trials of
Session 0727) under similar experimental conditions. The resulting global PDMs for NHP
1418 are shown in Figure 6 (frequency- domain representation only) along with their
counterparts for NHP 1504. The two sets of global PDMs exhibit remarkable similarities in
terms of resonant peaks. However, the obtained ANFs for the two NHPs are different (not
shown in the interest of space), because the precise location of the recording electrode is
somewhat different for different experimental preparations. This is viewed as an indication
that the basic biological mechanisms (quantified by the PDMs) are similar in the two NHPs
but the corresponding “functional connectivities” of the PFC neuronal ensembles that are
probed in each case (and quantified by the ANFs) are distinct. This issue is further discussed
in the following section.

4 Discussion
4.1 MIMO Model Compactness

A key issue in MIMO modeling is the feasibility of scaling up to numerous inputs/outputs,
which depends on the ability to achieve model compactness. The PDM-based approach
offers a significant advantage in this regard, relative to the kernel-based MIMO modeling
approach. Since the total number of ANFs for each output is the product of the number of
PDMs (P) times the number of inputs (I), the complexity of the MIMO model will increase
linearly (i.e. proportionally) with increasing number of inputs (for each output), provided
that the number of cross-terms also grows linearly with the number of inputs. The latter has
been shown to be the case in the NHP pre-frontal cortex data, where the number of cross-
terms was found to be bound by 2PI. If 3 parameters are allotted for the description of each
ANF, then the total number of free parameters in the PDM-based MIMO model (prior to
pruning) is bound by 5PI. On the other hand, the number of free parameters in the kernel-
based 2nd order MIMO model (i.e. the number of required Laguerre expansion coefficients)
is: I(L+2)(L+1)/2+I(I−1)L2/2, when cross-kernels are included (where L denotes the number
of Laguerre basis functions) [Marmarelis 2004; Zanos et al. 2008]. Thus, the relative
complexity ratio of kernel-based to PDM-based MIMO models (as measured by the number
of required free parameters) is: R = [(L+1)(L+2)+(I−1)L2)/(10P), prior to any pruning of
insignificant terms (ANFs or kernels, respectively). Since P<=L, this ratio is always
favorable to the PDM-based approach and increases proportionally to the number of inputs.
For example, we had L=5, P=4 and I=4 in the previously presented results, yielding a
relative complexity ratio of R= 2.92. When the number of inputs increases to 64, then the
relative complexity ratio R rises to 40.42 and the number of model parameters prior to
pruning is 51,744 for the kernel-based model and 1,280 for the PDM-based model.
Obviously, this vast difference in model compactness has important practical implications
for large-scale models. We also note that the PDM-based MIMO model is not limited to any
finite order of nonlinearity, since the ANFs represent the full nonlinearities of the system.

A comment ought to be made regarding the relative predictive capability of these models. It
was found in this study (see, for instance, the ROC curves in Figure 4) that probability of
true-positive prediction by the PDM-based model ranges between 5% and 25% (i.e. an
average of about 15%), while these numbers are about half for the kernel-based model.
Although this predictive capability appears modest when judged by these numbers, we
believe that it is rather remarkable when viewed in the context of the complexity of this task
and the expected large number of “interference spikes” in the output record (i.e. spikes that
are not due to the monitored input neurons). This view is corroborated by the findings of
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previous studies of the same system using predictions based on cross-correlograms (Opris et
al. 2011; Hampson et al. 2011) where significantly fewer output spikes were accounted for
(i.e. less true-positives) than the kernel-based model.

4.2 Biological Interpretation of the PDMs
An important benefit of the advocated PDM-based modeling approach is the potential for
physiological/biological interpretation of the obtained PDMs that can elucidate the
functional characteristics of these neuronal networks and advance our scientific
understanding of the biological mechanisms that subserve the function of these neural
systems. The interpretation of PDM-based MIMO models in terms of neural rhythms attains
great importance because phase-locked rhythmic activity has been observed in distant brain
regions, suggesting a critical role of neural rhythms in achieving cortical synchronization
(e.g. Singer 1993, 1999; Fries 2005). Furthermore, there is growing acceptance of the view
that cognitive functions rely on neural rhythms to coordinate the timing of neuronal firing.
This supports the temporal coding hypothesis in neural information processing, which is the
fundamental justification for the utility of predictive MIMO modeling in the central nervous
system. Thus, the PDMs can be a useful tool for understanding and dissecting neural
function using experimental observations of neuronal spike-trains, local-field potentials
(LFPs) and electroencephalograms (EEGs). It should be emphasized that the presented
comments below are conjectural and careful studies, including pharmacological
manipulations, ought to be conducted in the future in order to substantiate (or refute) these
conjectures.

Specifically, it is shown in Figure 2 that the 1st PDM exhibits a resonant peak ~25 Hz in the
beta-band (15–30 Hz) that has been associated in previous studies, using
elecroencephalograms (EEGs) and local field potentials (LFPs), with sensorimotor
integration (Murthy and Fetz, 1992, 1996; Sanes and Donoghue, 1993; Courtemanche et al.
2003) and preparation for motor action (Baker et al. 1999; Donoghue et al. 1998; Zhang et
al. 2008). Note that the LFPs are not simply a result of neuronal spiking, but they are
involved with the synchronization of spike timing in the sensorimotor and frontal cortex
(Lebedev and Nelson 1995; Baker et al. 1999). Beta-band LFP oscillations have been also
observed in the cerebellum and the striatum in connection with action-selection tasks
(Courtemanche et al., 2002).

The 2nd PDM in Figure 2 exhibits a resonant peak ~14 Hz in the high end of the alpha-band
(10–14 Hz) associated in previous EEG studies of the PFC with internalized attention and
memory load (Klimesch et al. 1998; Aftanas & Golocheikine, 2001; Jensen et al. 2002), as
well as processing of internal mental content (Stein & Sarnthein 2000). This resonant peak is
at a slightly higher frequency than the alpha resonance observed and reported in previous
EEG studies (closer to 12 Hz), but this should be expected because the EEG signal is
recorded after it traverses the brain tissues and the skull -- thus spreading its waveform
somewhat during propagation due to dispersion (about 10–15% downshift). This is not the
case for the signals recorded directly at the PFC.

The 3rd PDM in Figure 2 exhibits a resonant peak ~35 Hz in the low end of the gamma-band
(31–80 Hz) associated in previous studies with various cognitive tasks, including sensory
and working memory functions (Singer 1993, 1999; Fries 2005; Fries et al. 2001, 2007;
Rizzuto et al. 2003; Jensen et al. 2007) and motor tasks (Sanes & Donoghue 1993; Fetz et al.
2000; Lebedev & Nelson 1995). Gamma rhythms are generated in the cortex by either
transient excitation of fast-spiking interneurons via metabotropic glutamate receptors or
neuromodulatory excitation of interneurons and principal cells via cholinergic receptors
(Roopun et al. 2008). Somatic inhibition mediated by GABAA receptors and activation of
interneurons by AMPA receptors are deemed essential for the generation of gamma
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rhythms. The 3rd PDM also has high values in the delta-band (<4 Hz) that has been
associated in previous studies with short-term plasticity (Kiss et al. 2011) and anticipation of
reaction (Gabor et al. 2010). The only possible trace of the delta band on the time-domain
waveform of this PDM is the late (and shallow) negative trough ~ 50 ms, which gives rise to
the low-frequency component in the frequency-domain representation of this PDM. We note
the critical role of the delta rhythm in hormonal secretion through hypothalamic action
(Hobson and Pace-Schott 2002; Brandenberger 2003) and general neuropsycological
performance (Anderson & Horn 2003). Based on the obtained ANFs in Figure 3, the main
PFC connection utilizing this PDM is between the UR Layer-2 neuron (2nd row) and the LL
Layer-5 neuron (lower left panel). Thus, although this PDM seems to have the potential for
playing many intricate roles in terms of neural information processing, its presence is rather
subtle in the MIMO model (based on the ANFs obtained from the data).

Finally, the 4th PDM in Figure 2 exhibits a resonant peak ~7 Hz in the theta-band (5–9 Hz)
that has been associated in numerous previous studies with memory tasks, such as memory
formation (Fox et al. 1986; Buzsaki 2002, 2005; Eckstrom et al. 2005; Jacobs et al. 2006,
2007; Kahana 2006) and the delineation of memory-encoding from memory-retrieval
processes (Hasselmo et al. 2002; Vertes 2005), as well as behavior (Hyman et al. 2005) and
cortical synchronization (Jones & Wilson 2005; Siapas et al. 2005). Based on the obtained
ANFs in Figure 3, the main PFC connection utilizing this PDM is between the UL Layer-2
neuron and the LL Layer-5 neuron. As discussed above for the 3rd PDM, this PDM also
seems to have a subtle presence in the MIMO models (based on the obtained ANFs), in spite
of its potential importance in terms of neural information processing.

The obtained ANFs in Figure 3 indicate that the strongest connections are between the UR,
LL and LR input (Layer 2) and output (Layer 5) neurons over the two PDMs that exhibit
resonant peaks in the beta and alpha bands – suggesting that this is the primary activity in
the probed PFC region during the aforementioned MP phase of the DMS behavioral task
(i.e. sensorimotor integration, preparation for motor action, internalized attention and
memory load, processing of internal mental content).

The significance of the observed resonant peaks in the global PDMs arises from the
possibility that the gain of the respective input-PDM channel of information transmission to
the output neuron is modulated by the activity in the respective frequency-band. The extent
to which each input-PDM channel impacts the activity in an output neuron is quantified by
the respective ANF. Thus, a significant ANF at an input-PDM-output channel of neural
information transmission between Layer 2 and Layer 5 of the PFC indicates that the signal at
the Layer 2 neuron is strengthened within the resonant frequency-band of the respective
PDM. For example, the strong ANF of the 4th PDM (4th column) for the UL input (1st row)
of the LL output (lower left panel) shown in Figure 3 indicates that the activity of the UL
input neuron influences strongly the activity of the LL output neuron when it happens to
have significant power in the theta band (i.e. information associated with memory functions
and cortical synchronization).

4.3 Neural Rhythms and PDM Resonances
The estimated global PDMs exhibit resonant peaks at celebrated neural rhythms in the delta
(1–4 Hz), theta (5–9 Hz), alpha (10–14 Hz), beta (15–30 Hz) and gamma (31–80 Hz) bands.
This implies that a periodic spike-train of frequency consistent with one of those rhythms
will be transferred more efficiently to the respective output through those input-PDM
“channels” that exhibit a resonant peak at the corresponding band. For example, if a
cognitive process is related to a theta oscillation, then this process will employ (and be
facilitated by) the input-PDM channels that exhibit a resonant peak in the theta band. This
effect is expected to become more pronounced when it is cascaded through various neuronal
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layers. Although this is conjectural at this point in time, we postulate that these resonant
peaks in the PDMs are due to either neuronal intermodulation at the respective frequencies
or closed-loop operation of local/regional neural circuitry. It is worth noting in this regard
that the spectral characteristics of the activity of Layer 2 neurons are not very distinctive in
the analyzed PFC data (i.e. broadband spectrum), while the spectra of the activity of Layer 5
neurons exhibit distinctive peaks in the frequency bands associated with the respective
significant ANFs.

4.4 Functional Interpretation of the ANFs
As discussed above, the significant ANFs define the “functional connectivity” or “circuitry”
in this part of the PFC for the respective behavioral tasks. They also ascribe specific
functional characteristics to these neural connections (in the time and frequency domains) by
virtue of the properties of the associated PDMs, which become “active” only when the
respective ANF has significant values. Although it is not presently possible to provide full
and detailed neurophysiological meaning to the obtained sets of ANFs, it is evident that they
enable an organization and representation of neural information flow (akin to neural
encoding) heretofore unavailable. The implications of this novel insight provided by the
ANFs and PDMs are potentially vast in terms of assisting (ultimately) clinical diagnosis of
specific neurological impairments and allowing deliberate and targeted intervention via
properly designed multi-unit neurostimulation patterns. The latter portrays the prospect of a
new generation of functional neurosurgery techniques (Gale et al. 2011; Rigosa et al. 2011).

4.5 Neural Coding and Decomposition of Spike-Trains
The PDM/ANF concepts and the configuration of the PDM-based model allows the
functional “decomposition” of the spike-trains observed at an output neuron into
components that correspond to the various input-PDM-ANF channels (e.g. distinct theta and
beta oscillation components that reach the output neuron via PDM-ANF channels that have
such PDM resonant peaks and significant ANFs). This decomposition points directly to a
plausible spectro-temporal neural coding scheme of the information that flows through the
neuronal ensembles in the form of spatiotemporal spike-trains. The plausibility of this
coding scheme is supported by the aforementioned observation of the spectral characteristics
of Layer 5 neurons matching the respective significant PDM-ANF resonant peaks.

4.6 Relation with the GLM and lateral/recurrent connections
The PDM-based model incorporates the case of the Generalized Linear Model (GLM) as a
special case, because the GLM structure is similar to a single PDM-ANF cascade branch of
the PDM-based model (i.e. the PDM is the linear component/filter of the GLM and the ANF
is its "link" function). It is important to note that lateral output connections may exist in
cortical models (i.e. connections between Layer-5 neurons in this case) and should be
explored in future studies via PDM-based models with such explicit output lateral
connections, which may lead to simplification of the model (e.g. a smaller number of
required PDMs) or improved predictive performance. However, it should be noted that the
possible effects of lateral output connections are also included implicitly in the equivalent
feedforward configuration of the PDM-based model, since each output can be expressed in
terms of all inputs (basic Volterra formulation). Therefore, if the j-th output depends on the
k-th output through a lateral connection, this effect can be expressed in terms of all the
common inputs since the k-th output (and any output) can be expressed in terms of its
inputs. Nonetheless, the practical issue of "efficiency of model representation" remains and
may be well-served by the inclusion of explicit lateral output connections in the model
formulation. This modeling issue can be likened to the relation between auto-regressive and
moving-average models in the linear case. Similar arguments hold in the case of recurrent
connections. Thus, the Volterra-equivalent PDM-based models are valid in all those cases
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and incorporate in principle the effects of lateral or recurrent connections. Nevertheless, the
resulting model parsimony may be improved if such lateral/recurrent connections are
explicitly included in the model configuration.

5 Conclusions
A methodology for modeling the nonlinear interrelationships between neuronal ensembles
with Volterra-equivalent canonical models was presented that may have predictive
capability for arbitrary input patterns and achieves representational efficiency (i.e. model
compactness). This methodology is based on the concept of Principal Dynamic Modes
(PDMs) and their associated nonlinear functions (ANFs) that has been recently applied
successfully to various physiological systems (Marmarelis 2004). The obtained PDM-based
multi-input/multi-output (MIMO) models are dynamic and nonlinear, but their complexity
increases linearly with increasing number of inputs (for each output), while the complexity
of their Volterra-type counterparts increases faster (e.g. quadratically for a second-order
MIMO model). This fact has critical practical implications in the scaling-up of MIMO
models of neuronal ensembles to accommodate hundreds (or even thousands) of input-
output neurons in the future. In addition, the PDM-based approach yields MIMO models of
the relationship between neuronal ensembles that are potentially interpretable in terms of the
respective functional characteristics of the neuronal interconnections and the underlying
biological mechanisms.

Initial results of the application of this methodology to data collected from PFC cortical
neurons of Layer 2 (inputs) and Layer 5 (outputs) in two behaving non-human primates
corroborated the basic premise of the advocated approach by demonstrating significant
reduction in the complexity of the PDM-based MIMO model without any degradation in
predictive performance. If this result becomes confirmed by additional studies involving
larger numbers of input-output neurons, then we will have at our disposal a practical
methodology that can yield PDM-based MIMO models of general applicability with the
ability to incorporate large numbers of input-output neurons within ordinary computational
means. Furthermore, it was discovered that the obtained PDM-based MIMO model reveals
specific functional characteristics of the neuronal interconnections related to the celebrated
neural rhythms (delta, theta, alpha, beta and gamma) with implications for their functional
characterization and utility. This, in turn, points to a plausible neural coding scheme that
decomposes the spike-trains generated by a neuron of interest in terms of band-specific and
connection-specific information.
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Fig. 1.
Block diagram of the PDM-based MIMO model employing 4 global PDMs with 4 PFC-L2
input neurons for a single PFC-L5 output neuron Ni (i=1,2,3,4) (N1: upper-left unit, N2:
upper-right unit, N3: lower-left unit, N4: lower-right unit). In the notation ANF[i, j, k),
i=output #, j=input #, k=PDM #. The threshold-trigger (TT) operator includes an
exponential refractory component (see text).
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Fig. 2.
The four global PDMs of the MIMO model in the time domain (left) and in the frequency
domain (right) that are obtained from the data of NHP1504 during the Sample Presentation
and Match Presentation phases of 40 successful DMS trials of Session 0726 (see text). The
annotated resonant peaks in the frequency-domain representation of these global PDMs
correspond to well-known frequency-bands of neuronal ensemble activity (α, β, γ, δ, θ) that
have been associated in previous studies with specific cognitive functions.
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Fig. 3.
The 64 ANFs for the four output neurons in Layer-5 of the PFC of NHP 1504. The ANFs for
each output are plotted as 4×4 sets of panels where the 4 inputs correspond to 4 rows and the
4 PDMs to 4 columns. The ANFs that make insignificant contributions to output firing (39
out of 64) are pruned by the algorithm described in the text and shown in green line.
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Fig. 4.
The ROC curves obtained for the PDM-based MIMO model with the pruned ANFs of
Figure 3 (red line) and for the kernel-based MIMO model (blue line) for each of the four
output neurons. Overall, the two types of MIMO models exhibit comparable performance
(with a slight advantage for the PDM model), although the complexity of the PDM-based
model is significantly reduced. The axes show the numbers of the true-positives (ordinate)
and false-positives (abscissa) to facilitate interpretation.
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Fig. 5.
Illustrative example of the PDM-based model prediction (middle trace) of the spike-train
output of an actual Layer-5 neuron over a 2 sec data-segment (top trace) and comparison
with its kernel-based counterpart (bottom trace). For the indicated thresholds (red dashed
line), the PDM-based model makes 3 true-positive predictions without any false-positives,
while the kernel-based model makes 1 true-positive and 1 false-positive prediction.
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Fig. 6.
The four global PDMs in the frequency domain for the MIMO model of NHP 1418 (left)
and NHP 1504 (right) exhibiting similar characteristics in terms of resonant peaks.
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