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Abstract Automatic detection of the nipple in mammo-
grams is an important step in computerized systems that
combine multiview information for accurate detection and
diagnosis of breast cancer. Locating the nipple is a difficult
task owing to variations in image quality, presence of noise,
and distortion and displacement of the breast tissue due to
compression. In this work, we propose a novel Hessian-
based method to locate automatically the nipple in screen-
film and full-field digital mammograms (FFDMs). The
method includes detection of a plausible nipple/retroareolar
area in a mammogram using geometrical constraints,

analysis of the gradient vector field by mean and Gaussian
curvature measurements, and local shape-based conditions.
The proposed procedure was tested on 566 mammographic
images consisting of 372 randomly selected scanned films
from two public databases (mini-MIAS and DDSM), and
194 digital mammograms acquired with a GE Senographe
2000D FFDM system. A radiologist independently marked
the centers of the nipples for evaluation of the results. The
average error obtained was 6.7 mm (22 pixels) with refer-
ence to the center of the nipple as identified by the radiol-
ogist. Only two out of the 566 detected nipples (0.35 %) had
an error larger than 50 mm. The method was also directly
compared with two other techniques for the detection of the
nipple. The results indicate that the proposed method out-
performs other algorithms presented in the literature and can
be used to identify accurately the nipple on various types of
mammographic images.

Keywords Digital mammography . Computer-aided
detection and diagnosis . Breast imaging . Nipple detection .

Image processing . Hessian

Introduction

Automatic identification of the nipple in mammograms is a
fundamental step in the development of most algorithms
that serve as an aid to radiologists in the interpretation of
mammograms. Researchers have been developing advanced
computerized techniques to achieve higher performance in
terms of detection and diagnosis of subtle signs of breast
cancer [1–9]. Such advanced approaches consist of
multiple-view analysis of mammograms and can require
point-based alignment and registration procedures in order
to optimize comparison between image sequences. Possible
applications of methods for detection of the nipple are as
follows:
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1. Matching candidate regions or objects for further anal-
ysis in different mammographic projections of the same
subject [1–4].

2. Simultaneous analysis of the current and prior mammo-
grams of the same subject to recognize changes in the
breast [5, 10].

3. Bilateral comparison of the left and right breasts to
analyze asymmetry and relative abnormalities as signs
of breast cancer [6, 7].

4. Masking procedures aimed at reducing false-positive
rates and maintaining high levels of sensitivity, via a
systematic approach to the analysis of mammograms
[11, 12].

5. Integration of lesion information acquired with different
imaging modalities for improved diagnostic efficiency [8].

6. Content-based image retrieval for quantitative descrip-
tion of mammograms and for assessing measures of
similarity [9].

The accuracy in the detection of the nipple is crucial, as it
is the only consistent and stable landmark on a mammo-
gram. Developing robust methods for identification of the
nipple can improve the potential of multiview analysis of
mammograms in improving the chances of survival of can-
cer patients. However, detection of the nipple is still a
difficult task owing to variations in image quality, nipple
position, and appearance in projected mammographic im-
ages. Compression applied during the examination can
cause distortion of the breast tissue, resulting in retraction
of the nipple. Changes in positioning of the breast can lead
to displacement of the nipple. Moreover, the use of different
mammographic acquisition techniques, such as screen-film
mammography (SFM), full-field digital mammography
(FFDM), and imaging devices that have different character-
istics in terms of spatial resolution or contrast, can make the
identification of the nipple difficult by using a single auto-
matic procedure. Regardless, increasing usage of multiview
systems indicates the need for a single algorithm that works
with images acquired with different imaging modalities.

Prior Works

There are several methods proposed in the literature to
identify the nipple in mammograms. One of the first at-
tempts was made by Yin et al. [13], who considered the
maximum of the average gray-level profile computed along
a selected portion of the anterior border of the breast in order
to locate the nipple and perform automated alignment of
digitized mammograms. They reported a mean error of
10 mm over a total of 80 images.

Méndez et al. [14] combined the results obtained by
maximizing the height of the breast border and the second
derivative across the median-top section of the breast. The

mean error reported in their study was 13.5 mm, using 156
images. Chandrasekhar and Attikiouzel [15] used a similar
approach to locate the nipple. Even though they reported an
error of less than 1 mm in 96 % of images, their method was
tested on a small dataset consisting of 24 mammograms.
They also mentioned that their method could fail when the
nipple is noticeably recessed or when benign or malignant
processes modify the intensity profile of the image.

Based on the convergence of the texture pattern towards
the nipple, Zhou et al. [16] developed a method for texture
orientation-field analysis to estimate the nipple location.
They reported a mean error of 2.5 mm on 367 randomly
selected digitized mammograms; however, 2.5 % of the
cases had errors larger than 50 mm. Following a similar
approach, Kinoshita et al. [17] developed a method for
automatic detection of the nipple via image processing in
the Radon domain. Their method was tested on a private
dataset containing 1,080 digitized mammograms and pro-
vided an average error of 7.4 mm.

Iglesias and Karssemeijer [18] proposed a multiatlas algo-
rithm capable of finding the nipple with a low number of outliers
(0.13 % of cases had an error larger than 50 mm in a set of 2340
SFM images); they obtained a mean error of 12 mm. However,
images that did not contain the nipple in their field of view were
discarded during performance evaluation.

The location of the nipple, as proposed by van Engeland
et al. [1], can be estimated as the point on the skin contour
with the largest distance to the chest or the pectoral muscle.
The method was described to have an average error of
14 mm on digitized mammograms [18], not considering
images where the nipple was not in the field of view. To
our knowledge, all of the available methods for the detection
of the nipple have been developed only for and tested with
digitized SFM images. However, FFDM is gradually replac-
ing SFM, and the increasing need of comparison between
mammograms will require robust procedures that are able to
process mammograms acquired with different technologies.

Overview of the Method

This work proposes a method for automatic detection of the
nipple which is applicable to any kind of mammographic
image. Our procedure combines geometrical constraints with
information on the gradient vector field (GVF). After auto-
matic extraction of the breast region by identifying the breast
skin profile in craniocaudal (CC) and mediolateral oblique
(MLO) views, as well as the pectoral muscle in MLO views,
the procedure for detection of the nipple is divided in two
main steps: selection of a search region on the mammogram
where the nipple is most likely to be located, and analysis of
the second-order structure of the selected region by means of
the eigenvalues of the Hessian matrix. The following assump-
tions, derived from observations on the location and pixel
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intensity distribution of the nipple/retroareolar area in mam-
mograms, are made in this study:

1. The nipple is located near the breast skin line.
2. The nipple is located close to the farthest point on the skin

line along the line perpendicular to the pectoral muscle
(for MLO views) or to the chest wall approximated by the
vertical edge of the breast image (for CC views).

3. The GVF locally converges at the center of the nipple.
4. The speed of convergence is approximately the same in

every direction.

The first and second assumptions are used in the present
work to extract a plausible nipple/retroareolar area (PNRA)
on the mammogram by means of the breast skin line and the
least-squares regression slope of the pectoral muscle (in
MLO views). The last two assumptions on local GVF struc-
ture are used to select a cluster of pixels in the PNRA with
certain specified properties in terms of intensity variations
via mean and Gaussian curvature measurements as well as
the condition number of the Hessian matrix. The centroid of
the selected pixels is finally identified as the center of the
nipple. Further details on the proposed procedure are pro-
vided in the following sections.

Materials

Three different databases of mammograms were used in this
study. Digital mammographic images can be obtained di-
rectly using FFDM or by conventional SFM after digitali-
zation. Such mammographic images exhibit different
properties in terms of the relationship between pixel inten-
sity and exposure of the X-ray detector, contrast, spatial
resolution, and noise. In this work, a total of 566 mammo-
graphic images have been randomly selected from multiple
sources, including FFDM and SFM.

The first database consists of 194 digital mammograms
acquired with a GE Senographe 2000D FFDM system at the
Diagnostic Radiology Unit, San Paolo Hospital of Bari,
Italy. The dataset contains 102 CC views and 92 MLO
views. The images have a resolution of 94 μm/pixel and
12 bits per pixel (bpp). Informed consent for anonymous use
of sensitive data for scientific purposes has been obtained
from all patients.

The second set consists of SFM images taken from two
publicly available databases: the mini-MIAS database [19]
and the DDSM database [20].

The mini-MIAS database includes 320 films (only MLO
views) taken from the UK National Breast Screening
Program and digitized originally to 50 μm/pixel and a
gray-scale resolution equal to 8 bpp, with a Joice-Loebl
scanning microdensitometer. The original database was then
down-sampled to a resolution of 200 μm/pixel.

The DDSM database contains a total of 2620 images
obtained from the Massachusetts General Hospital, Wake
Forest University School of Medicine, Sacred Heart
Hospital, and Washington University School of Medicine
in St. Louis. The images have been digitized using four
different scanners: the DBA M2100 ImageClear, Howtek
960, the Lumisys 200 Laser, and the Howtek MultiRad850,
which have sampling rates equal to 42, 43.5, 50, and

Table 1 Dataset of mammograms used in this study

SFM FFDM

Database mini-MIAS DDSM SAN PAOLO

Projections MLO CC and MLO CC and MLO

Spatial
resolution

50 μm/pixel {43.5, 50, 42}
μm/pixel

94 μm/pixel

Gray-level
quantization

8 bits {12, 16} bits 12 bits

Dimension 1024×1024
pixels

variable 2294×1914
pixels

Number of images 90 282 194

Fig. 1 Examples of
mammograms from a the mini-
MIAS, b DDSM, and c FFDM
databases
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43.5 μm/pixel, respectively, and gray-scale resolution equal
to 12 bpp for the Howtek 960, Lumisys 200 Laser, and
Howtek MultiRad850, and 16 bpp for the DBA M2100
ImageClear. Each study contains two MLO and two CC
views. In the present work, 90 mammograms (MLO views)
from the mini-MIAS database and 282 from the DDSM
database, including 142 CC views and 140 MLO views,
were randomly selected to test the proposed algorithm.

Table 1 summarizes the characteristics of the dataset,
while Fig. 1 shows examples of mammograms from each
of the three databases used in this work.

The selected mammograms were annotated by an expert
radiologist, who provided the ground truth for the nipple
position using a graphical user interface; in cases where the
nipple was nearly invisible, the radiologist provided an
estimate of the location of the nipple.

Methods

The proposed procedure, as outlined in the flowchart in
Fig. 2, can be divided into six steps, which are described
in detail in the following six subsections.

STEP 1: Image down-sampling
In order to process the mammograms in the same way,

all of the images were down-sampled to a spatial reso-
lution of 300 μm/pixel using a bicubic interpolation
method. The algorithm assigns to each of the output
pixels a weighted average of pixel values in the nearest
four-by-four neighborhood. The procedure could produce
some values slightly outside the range [0, 1]; such pixels
were set to the corresponding extreme value of the
interval [0, 1].

STEP 2:Extraction of the PNRA
Even if the exact location of the nipple is not yet known,

it is possible to define a region of the breast where the nipple
is most likely to appear on the mammogram. Defining a
small search region on the mammogram can reduce the
chance of false detection of the nipple caused by noise,
artifacts, or the presence of benign or malignant processes,
as will be shown in “Results and Comparative Analysis”.
We refer to this search region as the PNRA and define it so
as to include the position of the nipple even in cases of
retraction or displacement of breast structures. As men-
tioned in “Overview of the Method”, our hypothesis is that
the nipple is located close to the farthest point on the skin
line along the line perpendicular to the pectoral muscle (in
MLO views) or to the chest wall (in CC views). Hence,
localization of the PNRA requires extraction of the breast
skin contour as well as estimation of the orientation of the
pectoral muscle (for MLO views).

The method proposed by Ferrari et al. [21] was used in this
work to detect the pectoral muscle profile using Gabor wavelets
at 3 scales and 36 orientations. The strength of this method is
the ability to detect curvilinear profiles, thus producing accurate
estimation of the straight-line regression of the pectoral muscle.
An approximate breast boundary was extracted by histogram-
thresholding and the morphological operation of closing. Only
the largest area in the result was retained, thus eliminating labels
and other unwanted structures in the background. A localized
version of the active contour model without edges, proposed by
Chan and Vese [22], was used to refine the rough boundary of
the obtained binary mask, thus producing the breast skin con-
tour. An evaluation of the results of this procedure is provided
by Mencattini et al. [23].

By knowing the orientation of the pectoral muscle (for
MLO views) and the laterality of the mammograms, images
of right breasts were mirrored about the vertical axis. All of

Fig. 2 Flowchart of the procedures used to detect the nipple in mam-
mograms. GVF: gradient vector field, PNRA: plausible nipple/
retroareolar area

J Digit Imaging (2013) 26:948–957 951



the images and their binary masks were then rotated so that
the chest wall or the pectoral muscle was at the bottom of
the image and parallel to the horizontal axis. This step
resulted in a 90° rotation for CC views and a (90+α)°
rotation for MLO views, where α is the angle between the
vertical axis and the straight-line regression of the pectoral
muscle. Figure 3a illustrates the result of extraction of the
breast contour after the rotation step is applied. The area
between the inner and the outer portions of the estimated
breast skin line was selected by two 40-pixel vertical shifts
applied to the breast contour (see Fig. 3b). The obtained
region was further bounded by a horizontal line passing
through the highest point of the inner contour, as shown in
Fig. 3c.

STEP 3: Morphological top-hat filtering
The morphological white top-hat filter was applied to the

rotated mammograms in order to enhance the circular struc-
tures present in the breast while darkening the rest of the
breast tissue. A disk-shaped structuring element with a
radius of 30 pixels (9 mm) was used for this purpose (see
an example in Fig. 3d).

STEP 4: Gaussian smoothing filtering
Images were filtered using a Gaussian filter with a stan-

dard deviation of 10 pixels (3 mm) to retain only low-
frequency information (such as the core region of the nipple)
and remove noise and fine structures (see Fig. 3e).

STEP 5: Analysis of the GVF
A common approach to analyze the local intensity behavior

of a given image, I, is to consider the Taylor expansion in the
neighborhood of a pixel x0:

I x0 þ Δxð Þ � I x0ð Þ þ ΔxTrI x0ð Þ þ 1

2
ΔxTH x0ð ÞΔx;

where Δx is a small increment about the pixel x0, rI ¼
@I
@x1

; @I
@x2

� �
is the gradient vector, and H is the Hessian matrix

embedding the second partial derivatives of I as

H ¼
@2I
@x12

@2I
@x1@x2

@2I
@x2@x1

@2I
@x22

" #
:

The second-order local structure of the image can be
evaluated by analysis of the eigenvalues of the Hessian
matrix.

The method described in this paper is inspired by the
work of Wei et al. [24] and Mencattini and Salmeri [25],
who used Hessian features to detect mass candidates. In this
work, we developed a novel approach by considering mea-
surements of the mean curvature (H) and the Gaussian
curvature (K), which are the sum and the product of the
two eigenvalues (k1 and k2) of the Hessian matrix.

Based on the signs of H and K, the local topographic
structure of a given image can be determined as follows:

a b c

d e f

Fig. 3 a Rotation of the image and the relative breast contour with
reference to the pectoral muscle orientation. The straight-line fit to the
pectoral muscle is shown by the black dashed line. b Selection of the

inner and the outer contours. c Extraction of the PNRA. d Result of
top-hat filtering. e Result of Gaussian smoothing filtering (σ=10
pixels). f Magnitude of the gradient
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– If K=0 and H<0 the topographic structure is ridge-
shaped,

– If K=0 and H>0 the topographic structure is valley-
shaped,

– If K=0 and H=0 the topographic structure is planar,
– If K>0 and H<0 the topographic structure is ellipsoidal

and peaked,
– If K>0 and H>0 the topographic structure is ellipsoidal

and cupped,
– If K<0 and H<0 the topographic structure is a saddle,

which is predominantly ridge-shaped,
– If K<0 and H>0 the topographic structure is a saddle,

which is predominantly valley-shaped.

In order to characterize the topographic structure of the
PNRA, the magnitude of the gradient was first computed
from the filtered image (see Fig. 3f), and then measurements
of H and K were derived for each pixel of the PNRA.
Moreover, the singular values of the Hessian matrix were
also computed for each pixel of the PNRA with the aim of
determining the isotropicity of the level lines of I in the
neighborhood of x0, by means of the so-called condition

number (CN), which is the ratio of the largest to the smallest
singular values of the Hessian matrix:

CN ¼ max k1; k2ð Þ
min k1; k2ð Þ

In particular, the condition CN=1 corresponds to the center
of a perfectly radially symmetric structure, while an elongated
topographic structure has CN≫1. Note that even though ap-
plying the filters only to the PNRA is computationally less
expensive, in this work, the filters were applied to the whole
image and then the measurements were derived for the PNRA,
hence avoiding the problems related to the definition of its
border and the extent of its effects. In fact, since the images
were previously down-sampled and the optimization proce-
dure is not the focus of this work, the difference in terms of
computing time would be not significant.

STEP 6: Local shaped-based constraints
Based on the last two assumptions given in “Overview of

the Method”, the nipple results in a locally ellipsoidal and
peaked structure in which the local intensity of the gradient

a b

c d

Fig. 4 a,b Zoomed view of the
GVF superimposed on the
structure of the nipple (a) and
on a benign elongated structure
in the mammogram (b). c,d
Pixels satisfying conditions
K>0 and H<0 (white and gray)
and CN<3 (white)

J Digit Imaging (2013) 26:948–957 953



increases uniformly toward the center of the structure.
Figure 4a illustrates a scaled version of the PNRA and the
corresponding GVF that locally converges at the nipple.
Note that the speed of convergence is almost uniform in
every direction. In Fig. 4b, an example of the GVF for an
elongated benign structure is given, in which the speed of
convergence varies with the direction, decreasing along the
direction of the maximum elongation of the structure.

These assumptions led to the definition of local shaped-
based constraints to select a cluster of pixels with the spec-
ified properties. In particular, constraints were placed so that
the candidates had K>0 and H<0, hence belonging to a
locally ellipsoidal and peaked structure. All of the pixels
satisfying these two conditions are colored in white and gray
within the white frame in Fig. 4c–d. Since the image value
increases toward the center of the nipple but the slope is
approximately the same in every direction, only pixels with
CN<3 were considered as possible candidates. In this way,
pixels belonging to elongated and peaked benign structures,
such as the one shown in Fig. 4b–d, were mostly rejected,
retaining most of the ellipsoidal structures characteristic of
the nipple. The constrained method yielded a map of disjoint
regions, whose pixels satisfied all of the previously stated
conditions. Such selected regions are shown in Fig. 5a. In
order to reject candidates with a small area, the areas of all of
the selected regions were computed and only the top 50% in a
ranked list in decreasing order of area were selected (see the

selected areas in Fig. 5b). Among the remaining regions, the
one with the maximum average Gaussian curvature was se-
lected and its centroid was taken as the center of the nipple.

Results and Comparative Analysis

The proposed algorithm was applied to three different types of
mammograms, including SFM (mini-MIAS and DDSM) and
FFDM images, taking into account the presence of noise,
artifacts, and benign or malignant processes. As an example,
results on the experiments performed on a mammogram in the
presence of a malignant mass are shown in Fig. 5 in order to
understand the key role of the PNRA in reducing the chance of
false detection of the nipple. The local shape-based conditions
were applied to the whole breast region after filtering, and the
obtained results (see Fig. 5d) are compared with the results
obtained by defining the PNRA (see Fig. 5a). The results
show that while the geometrical constraints introduced with
the PNRA reduce the number of candidates and lead to the
detection of the nipple (Fig. 5c), in the case without the
definition of a selected search area, the final candidate corre-
sponds to the mass (Fig. 5f).

To evaluate the efficiency of the method, the Euclidean
distance between the detected position and the center of the
nipple as identified by the radiologist was computed. Figure 6
demonstrates the automatically obtained results with the

a b c

d e f

Fig. 5 Maps of disjoint regions whose pixels satisfied the local shape-
based conditions superimposed on the rotated version of mammogram
with a malignant mass (indicated by the arrow). Results obtained with
(a,b,c) and without (d,e,f) defining the PNRA. a,d Areas satisfying

conditions K>0 and H<0 and with CN<3. b,e Candidates after rejec-
tion of small regions. c,f Final candidate. The result in c is the desired
response
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proposed method for three images, along with the position of
the nipple as marked by the radiologist. As it can be noticed,
the proposed algorithm was able to locate the nipple both
inside the breast profile (Fig. 6a) and on the profile (Fig. 6b–
c). In cases where the nipple was nearly invisible and the
radiologist provided an approximate position, our method
was able to identify the nipple position within 10 mm from
the manually marked center. This was mainly due to the
efficacy of the geometric constrains placed on the PNRA.

The results of the proposed method were compared with
those provided by two other algorithms proposed by
Kinoshita et al. [17] and van Engeland et al. [1], using the
same dataset of images. Table 2 summarizes the comparative
analysis. The results of the three methods are slightly better
with CC views as compared to MLO views. This is due to the
fact that all of the methods depend on accurate segmentation
of the pectoral muscle in MLO views. Moreover, variations in
the orientation of image acquisition (placement of the com-
pressed breast in relation to the imaging platform) tend to
make MLO images prone to alignment errors.

Table 2 indicates the mean and the maximal errors, the
detection accuracy, and the number of outliers in the results
obtained. The detection accuracy refers to the percentage of
images in which the nipple was identified within 10 mm
from the manually marked center. Images that had an error
larger than 50 mm are defined as outliers, but are included in
the derived statistics.

The absolute error obtained by our method was, on the
average, 6.7 mm over the 566 images processed, with a
maximal error of 56.97 mm. Accurate identification of the
nipple was achieved for 79.3 % of images.

Further comparison of the results of the three methods is
provided in Figs. 7 and 8, as the histogram and cumulative
distribution, respectively, of the Euclidean distance between
the automatically detected nipple location and the manually
marked center. It can be observed that the proposed method
outperforms the method of van Engeland et al. [1] and the
method of Kinoshita et al. [17]. The number of outliers is
slightly higher (only one image) for the proposed method as
compared to the results of the method of van Engeland et al.

a b c
Fig. 6 Examples of detected
nipples with the proposed
method, one from each of the
three databases of
mammograms used in the
present study: a FFDM image,
error=0 mm, b mini-MIAS
image, error=1.92 mm, and c
DDSM image, error=1.34 mm.
Two points are shown on each
mammogram corresponding to
the nipple position detected
automatically (square) and
manually marked by the
radiologist (star)

Table 2 Performance of the automated nipple detection method

Method View Number of images Mean error (mm) Maximal error (mm) Detection accuracy Number of outliers

The present study MLO 322 7.29 56.97 77.6 % (250/322) 0.6 % (2/322)

van Engeland et al. [1] MLO 322 9.51 63.92 69.6 % (224/322) 0.3 % (1/322)

Kinoshita et al. [16] MLO 322 16.52 88.31 44.4 % (143/322) 3.4 % (11/322)

The present study CC 244 5.92 49.48 81.6 % (199/244) –

van Engeland et al. [1] CC 244 6.68 32.15 80.7 % (197/244) –

Kinoshita et al. [16] CC 244 8.90 48.73 72.2 % (176/244) –

The present study CC and MLO 566 6.70 56.97 79.3 % (449/566) 0.4 % (2/566)

van Engeland et al. [1] CC and MLO 566 8.28 63.92 74.4 % (421/566) 0.2 % (1/566)

Kinoshita et al. [16] CC and MLO 566 13.23 88.31 56.4 % (319/566) 1.9 % (11/566)

The accuracy and the outliers are quantified as percentages of images in which the detected nipple location was, respectively, within 10 mm and
over 50 mm of the center of the nipple as identified by the radiologist

J Digit Imaging (2013) 26:948–957 955



[1], but significantly lower compared to the results of the
method of Kinoshita et al. [17]. Out of the 566 mammo-
grams processed, the proposed method failed to detect the
nipple in two cases (0.35 %), whereas the method of van
Engeland et al. [1] and the method of Kinoshita et al. [17]
failed to detect the nipple in 1 case (0.18 %) and 11 cases
(1.94 %), respectively. The two images with the incorrectly
detected nipple location are shown in Fig. 9. Both failures
are due to substantial deformation of the breast in MLO
views, which caused a mismatch between the true nipple
position and the estimated PNRA.

A direct comparison with the other methods in the literature
is not possible due to the use of different databases. However, a

comparison in terms of performance is still possible. Yin et al.
[13], Méndez et al. [14], and Iglesias and Karssemaijer [18]
reported average errors larger than the error of 6.7 mm obtained
in this study. The method by Zhou et al. [16], despite having a
mean error of 2.5 mm, which is the best result quoted in the
literature, results in an unacceptable number of outliers with
large errors (2.5 % of the total compared to 0.35 % obtained in
this work). Finally, Chandrasekhar and Attikiouzel [15] tested
their method on only 24 mammograms.

Discussion

This paper presents a unique and fully automatic procedure
that is capable of detecting the nipple on various types of
mammographic images (SFM and FFDM images from mul-
tiple sources) without requiring any type of mapping specific
to the imaging protocol (except spatial resolution). FFDM is
gradually replacing SFM, and robust methodologies for
multiview systems should consider both digital and digitized
images; this requires the development of a unique procedure.
The proposed method was evaluated in terms of the Euclidean
distance between the automatically detected position and the
center of the nipple as identified by the radiologist. Results
and comparative analysis indicate that our method outper-
forms other algorithms presented in the literature.

The strength of our procedure is that it can detect the
nipple even when the nipple is positioned within the breast
profile. Another strength is the robustness of the proposed
procedure to adverse conditions. The method was tested on
a large set of mammograms, including the presence of noise,
artifacts, and malignant processes. Experiments showed that
the preliminary extraction of the PNRA reduces the chance
of false detection of the nipple. Moreover, even when the
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Fig. 7 Histogram of the Euclidean distance between the detected
location of the nipple and the center of the nipple as identified by the
radiologist. Results obtained using the methods of van Engeland et al.
[1] and Kinoshita et al. [11] are included for comparison
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Fig. 8 Cumulative distribution function for the Euclidean distance be-
tween the detected location of the nipple and the center of the nipple as
identified by the radiologist. Results obtained with the methods of van
Engeland et al. [1] and Kinoshita et al. [16] are included for comparison

a b

Fig. 9 Two cases of failure of the proposed method: a error=
51.40 mm, b error=56.97 mm. Two points are shown on each mam-
mogram corresponding to the position of the nipple detected automat-
ically (square) and manually marked by the radiologist (star)
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nipple is nearly invisible on the mammogram, the PNRA
provides a reasonable estimation of the nipple position. The
main disadvantage of the proposed method is that it requires
accurate estimation of the orientation of the pectoral muscle
for MLO views to locate properly the PNRA. Substantial
distortions of the breast during the imaging procedure can
cause failure of the method because of mismatch between
the true nipple position and the estimated PNRA. However,
improper positioning of the breast during the imaging pro-
cedure is also the most frequently encountered problem by
radiologists when interpreting mammograms.

Conclusions

A novel Hessian-based method for the detection of the
nipple has been presented in this work. The local topograph-
ical structure of the PNRA was explored by means of the
eigenvalues of the Hessian matrix. Measures of the mean
and Gaussian curvature together with the condition number
of the Hessian facilitate localization of the center of the
nipple. The proposed algorithm was tested with images from
three different databases of mammograms (mini-MIAS,
DDSM, and FFDM). The high performance obtained on a
large and diversified dataset indicates the robustness of the
method. The proposed approach outperforms several previ-
ously reported methods in terms of the mean absolute error
and accuracy, and can contribute to improved performance
of advanced CAD systems.
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