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Immune responses can make protein therapeutics ineffective or
even dangerous. We describe a general computational protein design
method for reducing immunogenicity by eliminating known and
predicted T-cell epitopes and maximizing the content of human
peptide sequences without disrupting protein structure and func-
tion. We show that the method recapitulates previous experi-
mental results on immunogenicity reduction, and we use it to
disrupt T-cell epitopes in GFP and Pseudomonas exotoxin A with-
out disrupting function.
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Immunogenicity is a major problem in the development of pro-
tein therapeutics. Repeated administration of a protein thera-

peutic can lead to B-cell activation and production of antibodies,
rendering the therapeutic clinically ineffective or cross-reacting
with host proteins (1). Affinity maturation of antibody-producing
memory B cells is initiated by T-cell recognition of peptide epitopes
displayed on major histocompatibility complex class II (MHCII)
proteins on the surface of mature antigen-presenting cells. Immu-
nogenicity may be reduced by eliminating known T-cell epitopes
from the protein sequence and/or increasing the prevalence of
sequences already found in the host genome to which T cells would
already be tolerant, an approach that has met with substantial
clinical success in the humanization of recombinant antibodies (2).
However, unlike antibodies, which have been extensively charac-
terized, the mutational tolerance of most proteins is generally not
known, and hence, the extension of this approach to proteins of
arbitrary structure and function remains a major challenge. Dei-
mmunization efforts have relied, for the most part, on exper-
imental characterization of a large number of point mutants
followed by a combination of individual mutations (3, 4).
To reduce or eliminate immunogenicity, it would be desirable

to have a method that eliminates MHCII-binding epitopes and
increases host sequence content without disrupting interactions es-
sential for proper folding and function. The peptide-binding rep-
ertoire of many MHCII alleles has been extensively characterized
(5), and a number of methods has been developed for predicting the
affinity of novel peptides for a given MHCII (6). Coupling of epi-
tope prediction methods with methods for predicting the structural
and functional consequences of mutations offers the possibility
of reducing the immunogenicity of a target protein without
disrupting structure and function. Epitope prediction methods,
homolog substitution matrices, and structural stability calcu-
lations have been combined to predict optimal epitope-eliminating
mutations (7, 8). Epitope prediction methods have been inte-
grated with structure-based protein design (9) by combining the
9mer epitope PROPRED matrices with protein design of all resi-
dues in a flexible backbone method that allows substantial redesign
of protein cores. The combined method was able to eliminate epi-
tope-like sequences while maintaining native-like values for a num-
ber of predicted protein stability metrics, but folding, function,
and immunogenicity were not evaluated experimentally.
Here, we describe the integration of the Rosetta computa-

tional protein design method with experimental immunogenic

epitope data, MHC epitope prediction tools, and host genomic
data to enable the design of proteins with reduced immunoge-
nicity while retaining function and stability. Our approach goes
beyond PROPRED by implementing a more accurate machine
learning-based epitope prediction method for 28 different H-2,
HLA-DR, and HLA-DQ alleles, restricts design to select 15mer
epitope regions, and uses a greedy stepwise protein design al-
gorithm (10) to eliminate the most immunogenic epitopes with
as few mutations as possible, avoiding disruptive core mutations
likely to destabilize the protein. We compare the performance of
our epitope predictor with PROPRED and another leading epi-
tope prediction method for 13 different human and mouse MHC
alleles, show the effectiveness and generality of the method with in
silico tests on previously characterized deimmunized protein tar-
gets, and show experimentally for GFP in mice and Pseudomonas
exotoxin A (PE38) in humans that the method eliminates T-cell
epitopes without disrupting function.

Results
Overview of Computational Method. For a given target protein and
set of host MHC alleles, potential T-cell epitopes are first identified
using a support vector machine (SVM). These regions are then
optimized to eliminate the T-cell epitopes while retaining structure
and function using an extension of the Rosetta all-atom protein
design methodology with modifications to both the energy function
used in the design calculations and the optimization procedure.
The energy function used in the sequence optimization is

supplemented with two terms that incorporate immunologically
relevant data. The first term calculates predicted epitope content
using SVMs trained with experimentally determined peptide–
MHC binding data. Scores from SVMs for each MHC allele in
each 15mer sequence frame are averaged and then summed over
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each frame. The second term uses known host genome 9mer
data and known epitope data, rewarding each host 9mer in pro-
portion to its frequency of occurrence in the host genome and
penalizing known epitopes. Both deimmunization scores favor
negatively charged residues on the surface of the protein; hence,
we also introduce a net charge constraint into the total objective
function, penalizing deviations from the input protein formal
charge. By weighting this term appropriately against the deimmu-
nization terms, negatively charged residues may be placed at
critical epitope-disrupting surface positions while compensatory
positively charged residues are introduced at other positions.
Sequence optimization is carried out using a protocol that fo-

cuses on solutions that reduce the energy with a relatively small
number of mutations and allows use of computationally expensive
objective functions in design calculations that otherwise might be
unacceptably slow. The energies of all point mutants at each de-
sign position are first computed and then sorted. At each position,
all point mutants within a certain threshold of the lowest energy
mutant are saved for subsequent combination. These lowest en-
ergy point mutations are then combined using a greedy stepwise,
steepest descent heuristic (Methods), allowing for structural re-
laxation at each step, until mutations have been attempted at all
design positions. Multiple diverse near-optimal designs can be
generated in parallel by stochastically accepting the placement of
near-optimal mutations during the combination process.

T-Cell Epitope Prediction. We initially trained our SVMs on experi-
mentally measured MHC binding affinities for 26 allelic variants
(11). For each MHC allele type represented in the training set, we
collected all epitope sequences from the Immune Epitope Database
(IEDB) known to elicit T-cell activation (5). We restricted addi-
tional analysis to alleles with at least 25 known T-cell epitopes in the
IEDB. In the absence of sufficient data on nonbinding peptides for
each allele, we assumed that most 15mers in the host genome would
not constitute strong MHC binders and generated negative datasets
by randomly choosing 1,000 15mers from the human genome (12).
We compared our SVM-based epitope predictions with the pre-
dictions of previous methods using a subset of T-cell epitopes
withheld from initial training. Sensitivity and specificity were
evaluated over all alleles for our method, NetMHCII-v2.2 (13),
and PROPRED (14), and predictive performance was evaluated
by calculating the area under the receiving operator characteristic
(ROC) curve (AUC) for each allele type both independently and
over the entire set. Because PROPRED contains only matrices for
human leukocyte antigen DR beta (HLA-DRB) alleles, we com-
bined testing data for the eight DRB alleles covered by all three
methods and generated a standard ROC plot (Fig. 1A). The
highest AUC was achieved by NetMHCII (AUC = 0.759). Rosetta
performed comparably but slightly worse (AUC = 0.752), whereas

PROPRED achieved significantly lower prediction accuracy
(AUC = 0.710). Because more T-cell epitopes have been char-
acterized for some alleles in the test set, combining all testing data
weights performance analysis with alleles with more data points. If
we average AUCs with equal weight over the shared DRB allele
set, again, NetMHCII performs best (AUC = 0.792), with Rosetta
slightly lower (AUC = 0.785) and PROPRED lower still (AUC =
0.771) (Fig. 1B).

Large-Scale Benchmarking and Calibration of Design Method. We
first tested the ability of the method to eliminate putative human
T-cell epitopes from eight proteins from pathogenic organisms
that contain known MHC-binding epitopes. The computational
design protocol was used to simultaneously eliminate all predicted
epitopes for eight representative human DRB1 alleles (SI Meth-
ods), collectively covering almost 95% of the human population
(15). To evaluate the tradeoff between epitope removal and pro-
tein stability, multiple design simulations were carried out, with an
increasing weight on the SVM-based epitope scoring term. In-
creasing the weight on this term decreases the number of MHCII
predicted epitopes and increases the Rosetta energy (Fig. 2A).
Because amino acid substitutions predicted to disrupt pep-

tide–MHC binding might destabilize the overall protein, a bal-
ance between the stability of the protein and disruption of possible
MHC binding must be sought. A weight on the epitope scoring
term of 2.0 eliminates 79% of the predicted epitopes and 84% of
the known epitopes without increasing Rosetta energy above that
of the native protein (Table S1). Because sequence changes are
permitted only at critical predicted epitope positions, the num-
ber of mutations is minimized, thus allowing for substantial re-
duction in predicted immunogenicity while maintaining average
sequence identity at 66%. Similar calculations were carried out
varying the weight of the term favoring 9mer sequences found in
the human genome (Fig. 2B). As the weight increases, the average
number of human genome 9mers over the designed regions in-
creases, and the Rosetta energy becomes more unfavorable. At a
weight of 3.5, human 9mer sequences increase from 0% to 4.3%
of redesigned epitopes, whereas the average Rosetta energy
increases only 10% over baseline (Table S2). These weights were
used for the remainder of this work unless otherwise noted
in Methods.

Recapitulation of Previous Immunogenicity Reduction Data. We next
attempted to recapitulate the results of previous experimentally
validated protein deimmunization efforts where immunogenicity
was reduced without disrupting biological function. Cantor et al.
(16) sought to remove T-cell epitopes from Escherichia coli
L-asparaginase II, an enzyme approved for treatment of acute
lymphoblastic leukemia, while maintaining native-like enzymatic
activity and protein stability. Cantor et al. (16) first used a neutral
drift selection scheme to identify allowable mutations in each of
three predicted HLA-DRB1*04:01 epitopes and then combined

Fig. 1. Performance of Rosetta SVM T-cell epitope prediction. (A) ROC curve
true-positive rate vs. false-positive rate for all testing data and comparison
with current methods. Total AUC is listed for each method. (B) Predictive
performance over each allele test set. x Axis, Rosetta AUC; y axis, other
method AUC. Points below the 1:1 dotted line indicate where Rosetta per-
forms better than other methods.

Fig. 2. Tradeoffs between Rosetta energy and extent of deimmunization.
Rosetta energy (□) of redesigned proteins increases, whereas (A) epitope
content decreases and (B) human 9mer count increases (♦) as the weights on
the associated score terms are increased.
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mutations in each epitope to produce a fully functional enzyme
with reduced immunogenicity in vivo. We applied our protocol to
the biologically active tetrameric state of E. coli L-asparaginase II,
constraining design to the residue positions chosen for randomi-
zation in the previous study, and compared our predictions against
the mutations identified in the selection screen and the predicted
immunogenicity of the resultant design sequence. After Rosetta
redesign for all 24 epitope residues, two of five mutations assumed
residue identities found in the sequences of experimentally isolated
activity-preserving variants, with one mutation occurring at a posi-
tion not tested in the above study. In addition, two of three rede-
signed epitopes have predicted HLA-DRB1*04:01 binding affinity
lower than the peptides tested in the previous study (Table 1).
Tangri et al. (4) attempted the deimmunization of erythro-

poietin (Epo), a growth hormone used in treatment of anemia
and myelodysplasia. Tangri et al. (4) screened a set of Epo-derived
peptides for binding to a set of 15 different HLA alleles, targeted
two potential epitopes for deimmunization by screening a small
set of point mutants in each epitope for reduction of T-cell acti-
vation, combined point mutants, and screened for both immuno-
genicity and biological activity. We applied our deimmunization
design protocol to this protein using the structure of Epo bound to
its native receptor and targeting the same epitope positions ex-
perimentally explored by Tangri et al. (4). Because the HLA allele
set of the human donors in the study is unknown, we designed
simultaneously against all eight alleles in the HLA-DRB1 allele
set. In the first epitope region, Rosetta introduces only one sub-
stitution (the same mutation found to be optimal in ref. 4). Rosetta
similarly recovers the point mutation position in the second epitope
(Table 1) but substitutes an alanine to preserve the protein’s net
charge and makes three additional mutations to further disrupt
MHC binding. In both cases, the Rosetta design minimizes the
number of predicted MHC-binding peptides while minimizing
the energy of the protein in the epitope regions.

Epitope Removal in Superfolder GFP. As an experimental proof of
concept, we chose the fluorescent reporter protein superfolder
GFP (sfGFP) (17). GFP is used to identify and track genetically
modified stem cells in vivo for numerous applications (18) but

concern about the immunogenicity of cells expressing GFP remains
(19). We sought to redesign sfGFP to eliminate T-cell epitopes
without disrupting fluorescence. To do so, we targeted the top
four predicted H-2-IAb epitopes in the sfGFP sequence (Fig.
3A). None of these epitopes were present in our known epitope
database, although epitope 84 had been previously identified
as immunodominant in WT GFP. The design algorithm is nearly
deterministic; to generate multiple candidates for testing, we
stochastically sampled alternative sequences by random inclusion
of locally near-optimal mutations at each design position. Eight
designs were chosen for testing based on sequence diversity and
predicted stability (Table 2 and SI Methods, sfGFP Deimmunization
Design Sequences Alignment). sfGFP and all eight designs were
expressed in E. coli and purified as soluble protein. To determine
whether fluorescence was affected by the design mutations,
emission and absorbance spectra were obtained for sfGFP and
all eight deimmunized proteins. All eight designs showed fluores-
cence absorbance and emission spectra comparable with sfGFP,
with fluorescence excitation peaks at 485 nm (Fig. 4A and Fig. S1).
We then investigated whether existing epitopes were correctly

identified and removed and whether new epitopes were not in-
troduced by the design mutations. sfGFP and the deimmunized
variant (sfGFP.di.v3.2) were chosen for immunological testing.
This variant was selected as the most aggressive design, because
it had the highest Rosetta energy but still maintained function.
GFP:I-Ab tetramer reagents were generated using both native
and design peptide sequences for three of the predicted epitope
regions. For both constructs, five mice were injected with the
protein in complete Freund’s adjuvant (CFA). After 6 d, spleens
from all 10 mice were stained with a multicombinatorial panel of
GFP:I-Ab tetramers corresponding to both the native and design
sequences of all three predicted epitope regions (Table 2), and
tetramer-positive cells were magnetically bead-enriched. For mice
challenged with WT sfGFP, flow cytometry confirmed epitope 84
as the immunodominant epitope, with epitope 223/224 recognized
by a smaller number of T cells (Fig. 4B). For mice challenged with
the deimmunized protein, all three tetramers corresponding to the
three redesigned epitope regions failed to isolate T cells above
background levels, except for one mouse that responded weakly to

Table 1. Recapitulation of previous E. coli L-asparaginase II deimmunization efforts (16) against
one HLA allele and Epo (4) against eight HLA alleles

Sequence Predicted IC50 (nM) Rosetta energy

EcAII: Epitope 1 (115–123) (rank 6)
Native MRPSTSMSA 194.3 −12.0
Cantor et al. (16) VRPPTRMSP 339.9 77.4
Rosetta MRPQTFMSA 87.2 −9.4

EcAII: Epitope 2 (216–224) (rank 11)
Native IVYNYANAS 217.3 −15.4
Cantor et al. (16) VVYGYANAS 195.8 −13.8
Rosetta IVYNYSNAM 197.1 −11.2

EcAII: Epitope 3 (304–312) (rank 3)
Native VLLQLALTQ 135.3 −17.4
Cantor et al. (16) VLLTLALTN 122.4 −11.3
Rosetta VLLQLALWQ 193.1 −13.4

Epo: Epitope 1 (101–115) (rank 7)
Native GLRSLTTLLRALGAQ 7.7 −20.0
Tangri et al. (4) GLRSLTDLLRALGAQ 12.1 −20.3
Rosetta GLRSLTDLLRALGAQ 12.1 −20.3

Epo: Epitope 2 (136–150) (rank 1)
Native DTFRKLFRVYSNFLR 5.0 −23.5
Tangri et al. (4) DTFRKLFRVYDNFLR 24.0 −19.9
Rosetta DTFRKEFFDYANFLR 70.2 −13.7

MHC IC50 values are predicted by Rosetta SVM, and Rosetta energies are the sum of total residue energies
over the epitope region. IC50 values for Epo are listed as the lowest predicted across the allele set. Epitope ranks
as a function of predicted immunogenicity are listed next to the residue ranges. Mutations are highlighted in
bold, and known activity-preserving mutations are italicized. EcAII, E. coli L-asparaginase II.
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the mutant epitope 223/224 (Fig. 4C). These two experiments
confirmed that the design mutations effectively eliminated or
greatly reduced the antigenicity of WT T-cell epitopes without
creating new immunodominant epitopes or disrupting fluorescence.

Epitope Removal in Domain III of PE38. We next sought to remove
T-cell epitopes from the toxin domain of the cancer therapeutic
HA22, a recombinant immunotoxin containing a 38-kDa frag-
ment of PE38 (20), while maintaining cytotoxic activity. HA22
has been used successfully to treat refractory hairy cell leukemia
in a recent phase 1 clinical trial (21), and it has produced complete
remission in several patients with acute lymphoblastic leukemia
(22). However, HA22 has shown limited effectiveness in treating
patients who are not immune-compromised, because the pres-
ence of the bacterial PE38 moiety leads to host immune response
and the production of neutralizing antidrug antibodies (23). To
address this issue, we targeted three epitope regions in PE38
previously identified in humans (24) and designed five mutations
predicted to eliminate binding to a diverse set of 14 human HLA
alleles while maintaining favorable interactions with the toxin
substrate, eukaryotic elongation factor 2 (Fig. S2). The five
mutants were expressed and purified for subsequent testing of
cytotoxicity in two Burkitt lymphoma cell lines. Two mutants in
the region 466–480, A476D and A476D+D474Y, had cytotoxic
activity reduced by ∼80%, but three mutants in the region 547–
564 displayed equal or greater cytotoxicity than the WT toxin
(Fig. 5A). The two most active mutants (L552N and L552E)
were chosen for additional characterization of immunogenicity.
Peripheral blood mononuclear cells (PBMCs) derived from two
patients and one naïve donor were stimulated with mutant an-
tigen, and IL-2 response was measured after restimulation with

the WT and mutant epitope peptides. Both mutants caused
a significant reduction in T-cell response for both epitope pep-
tides in all three samples (P > 0.01 in Student t test) (Fig. 5B).

Discussion
We have developed a computational protein design method that
incorporates host genome information and MHC-binding pre-
diction tools to reduce the immunogenicity of arbitrary protein
targets. The method removes MHC epitopes and increases hu-
man sequence content while maintaining protein stability and
interactions with binding partners. Mutations predicted by the
method partially recapitulate the mutations of previous suc-
cessful deimmunization efforts. The effectiveness of the method
was verified experimentally by successfully predicting and elim-
inating an immunodominant T-cell epitope from sfGFP and
eliminating a known T-cell epitope from PE38. We redesigned
these proteins to mitigate T-cell immune responses in both mice
and humans, respectively, showing that the method presented is
generally applicable to humans or other species for which suffi-
cient MHC data exist.
Because of the possibility of disrupting folding and function of

the target protein, most deimmunization efforts rely on experi-
mental testing of a limited number of point mutants followed by
conservative attempts to combine a small subset of these mutations
into a functional product. Although varied in their approaches,
proprietary methods used by companies, such as EpiVax (25)
and Antitope (26), typically combine matrix-based epitope scoring,
experimental characterization of MHC binding or T-cell epitope
mapping, stepwise mutation of antigenic amino acids, and in-
troduction of tolerizing epitopes where possible. Using structure-
based design simulations, we introduced nine mutations into
sfGFP simultaneously without disrupting function. One rede-
signed epitope is largely buried in the core of the protein (Fig. 3 B
and C), requiring the selection of mutations that simultaneously
eliminates MHC-binding propensity without disrupting the fold-
ing free energy of the protein. Eliminating such epitopes would
be difficult using the above proprietary approaches, because
multiple substitutions may be required to compensate for
packing defects caused by mutations in the epitope region,
and nonconservative mutations near the protein-binding in-
terface of exotoxin A would not have been predicted without
a structure-based design calculation.
This work has focused only on eliminating the most immu-

noreactive epitopes for a given set of MHC alleles. Immuno-
logical testing of a larger number of human patients would be
required to fully cover the breadth of HLA allotype diversity,
and there may exist highly conserved T-cell reactive amino acids
in protein sequences for which no immune silencing mutations
are possible, necessitating the prediction and removal of discon-
tinuous B-cell epitopes from the protein surface. Methods exist for
prediction of B-cell epitopes but suffer from lower predictive
power because of the difficulty of obtaining sufficient structural
data for the entire repertoire of discontinuous 3D epitopes (27).
Nevertheless, B-cell epitope removal methods have proven suc-
cessful for a number of clinical targets (28, 29). Such methods could
be incorporated into a comprehensive deimmunization pipeline,
and additional testing of systemic antibody response would be re-
quired to show complete immune evasion.

Fig. 3. Rosetta design model for sfGFP deimmunization. (A) Published coor-
dinates of sfGFP crystal structure. Both known and predicted epitopes were
targeted for design. Epitope indices from Table 2 are labeled in circles. (B)
Close-up view of immunodominant epitope. (C) Rosetta deimmunization de-
sign of B. Cyan, design mutations; green, sfGFP; magenta, predicted epitopes.

Table 2. sfGFP epitopes targeted for redesign

Index

sfGFP sfGFP.di.v3.2

Native sequence Predicted IC50 (nM) Rosetta energy Design sequence Predicted IC50 (nM) Rosetta energy

8 FTGVVPILV 548 −12.9 FKGRVPIQV 998 −10.6
84 FKSAMPEGY 784 −8.4 MKSAMPDGY 4,465 −8.9
223 FVTAAGITH 542 −8.4 FVRAAGIQE 3,312 −7.9
224 VTAAGITHG 954 −7.15 VRAAGIQEE 2,354 −6.5

Mutations are highlighted in bold.
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Here, we have focused on application to protein therapeutics
delivered extracellularly, where MHCII mediates the primary im-
munological pathway. The method is readily extensible to both
MHC class I- and MHCII-based deimmunization, and it is, thus,
applicable to therapeutics expressed intracellularly, such as gene
therapy products. Because epitope scores are averaged over all
MHC allele SVMs, degenerate binding epitopes are penalized
more strongly and thus, are the first to be targeted in our greedy
design algorithm. This scoring scheme is critical, because mounting
evidence points to the correlation between the number of host
MHC alleles that a given epitope binds and its propensity to
initiate an immune reaction in vivo (4, 30). Our epitope pre-
diction method was trained on large-scale peptide-binding affinity
data, although predictions can be made using other sources. When
experimental binding constants are not available, MHC–peptide
structure simulations have shown promise in calculating accurate
sequence specificities based on MHC–peptide energetics (31). As
improvements in energy functions lead to improvement in the
prediction of the effects of mutations on stability and function
and high-throughput experimental MHC–peptide-binding data
become increasingly available, computational protein design will
play an increasingly prominent role in development of next
generation protein therapeutics.

Methods
Penalizing Predicted Epitopes. Epitope SVM construction. A detailed description
of SVM construction is provided in SI Methods. Briefly, one SVM model was
trained for each MHC using publicly available peptide–MHC binding con-
stants for 29 human and mouse MHC alleles; 15mer peptide sequences were
first aligned and then encoded into numerical feature vectors as described
in SI Methods. After encoded, SVM regression models were trained using
libSVM to recapitulate peptide–MHC binding IC50 values by minimizing
mean-squared error in fivefold cross-validation tests.
Epitope SVM scoring. The total epitope prediction score of a protein during
Rosetta design is calculated by sliding a 15-residue window across the protein
sequence, calculating the average SVM binding score over all allele SVM

models in the user-defined allele list, and summing the contributions from
each overlapping sequence frame.

Rewarding 9mer Sequences That Occur in the Host Genome and Penalizing Known
Epitopes. Host 9mer database construction. Protein translations of Ensembl gene
predictions for Homo sapiens and Mus musculus genomes were downloaded
from ftp://ftp.ensembl.org/pub/current_fasta/ on February 28, 2012. The num-
ber of occurrences of every unique contiguous 9mer peptide found in all hy-
pothetical translation products was first calculated. Each 9mer was assigned
a score that rewards common sequences; 9mers that occur between 1 and 10
times were assigned a score of −log(n) − 1, where n is the total count of the
9mer, and 9mers that occur more than 10 times were given a constant score of
−2.0 to prevent domination of scoring by widespread repeat sequences. Thus,
each unique sequence was given a score in the range [−2, −1].
Known epitope database construction. All epitope sequences known to elicit
T-cell activation through the MHCII pathway in either humans or mice were
downloaded from the IEDB on February 28, 2012; 9mer core sequences were
predicted as the epitope subsequence with the highest predicted MHC
binding affinity as scored by Rosetta SVMs. All 9mer epitope sequences were
assigned a constant score of 10.0.
9mer Database scoring. 9mer Subsequences with associated scores (genomic
9mers and known epitope sequences) are loaded from a user-supplied table
at runtime and stored in a hash table for quick look-up during design. The
total score is the sum of the scores for each 9mer subsequence.

Rosetta Design Calculations. Structure preprocessing and simulation parameters.
Before design calculations, all protein structures were subject to multiple
cycles of backbone minimization and rotamer optimization with position
restraints on side-chain heavy atoms, allowing for small structural changes to
bring the structure to the local energy function minimum. For all design
calculations, talaris2013 Rosetta score weights were used; native residues
were given a constant energy bonus of −0.2 Rosetta energy units (REU),
nonnative residues were given a penalty of 0.2 REU, and nonnative cysteine
and histidine residues were disallowed in design.
Rosetta greedy optimization design. All design simulations were implemented
using Rosetta Scripts (32). Greedy sequence design and rotamer optimization
were carried out using the Rosetta greedy descent optimization algorithm as
previously described (11). Details are provided in SI Methods. Briefly, every
amino acid point mutant is sampled independently, and the total energy is
stored. Optimal mutations are sorted by energy before combinatorial opti-
mization is attempted in a rank-ordered, steepest descent fashion. Multiple
diverse solutions can be generated by stochastically attempting combination
of near-optimal substitutions at each position.
Deimmunization design simulations. Details of each design calculation are
provided in SI Methods. Briefly, all simulations followed a similar workflow
as follows. Crystal structures were downloaded from the Protein Data Bank

Fig. 4. Redesign of sfGFP reduces T-cell reactivity without disrupting fluo-
rescence. (A) Deimmunized sfGFP excitation and emission spectra in arbitrary
units (AU). Excitation spectrum measured at 510-nm emission. Emission
spectra measured at 488-nm excitation. (B) Flow cytometry analysis of tet-
ramer-enriched populations of CD3+ CD4+ CD44+ GFP:I-Ab+ lymphocytes
labeled with phycoerythrin (PE) and/or A-phycocyanin (APC). Total CD44+

CD4+ tetramer-positive cells for each of six GFP:I-Ab tetramers in mice im-
munized with WT sfGFP. Immunization with the native sfGFP leads to the
expansion and activation of CD4+ T cells responding to epitopes 82–96. (C)
Total CD44+ CD4+ tetramer-positive cells for each of six GFP:I-Ab tetramers in
mice immunized with the designed sfGFP 3.2. Mice immunized with the
designed sfGFP 3.2 no longer respond to the native sfGFP 82–96 epitopes or
the designed epitopes 82–96 in sfGFP 3.2. MUT, mutant.

Fig. 5. Redesign of exotoxin A reduces T-cell reactivity without loss of
function. (A) Relative cytotoxicity for the original HA22-LR toxin and three
computationally designed variants in two cell types. (B) ELISpot IL-2 response
was measured for PBMCs derived from two patients and one naïve donor
after restimulation with two WT peptides and four mutant peptides.
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and preminimized with Rosetta as described above. Designable residues were
selected on the basis of average predicted MHC binding affinity; all residues in
any epitope frame that score above a certain threshold are selected for design.
For comparison with previous experimental works, residues were selected so as
to provide a meaningful comparison with the published data. Deimmuniza-
tion design was then carried out as described above. For design targets un-
dergoing experimental characterization, multiple design sequences were
generated by randomly sampling near-optimal mutations at each design po-
sition and combining these mutations in a stochastic manner.

sfGFP Activity and Immunogenicity Assays. Identification of eGFP82–96:I-A
b epitope.

To begin to narrow down a region in the EGFP protein containing a CD4+

T-cell epitope in C57BL/6 mice, the EGFP nucleotide sequence (Clontech) was
parsed into five equally sized fragments, and each fragment was inserted into
the TOPO cloning site of the pTrcHis2-TOPO vector containing an isopropyl
beta-D-1 thiogalactopyranoside-inducible promoter and a 6× His C-terminal
epitope tag (Invitrogen). EGFP protein fragments were expressed in Rosetta 2
competent E. coli (EMD Millipore). Bacteria were lysed with BugBuster protein
extraction reagent (Novagen) and sonicated, and EGFP fragments were purified
with His-Bind resin columns (Novagen). Next, individual mice were immunized
s.c. with 25 μg purified whole EGFP protein (Biovision, Inc.) in CFA (Sigma). After
10 d, draining lymph node cells were negatively selected for CD4+ T cells
(Miltenyi Biotech), and an anti–IFN-γ ELISPOT assay was done by interrogating
with the above purified EGFP protein fragments (antibodies were from eBio-
science, and 96-well Multiscreen filter plates were from Millipore). On identi-
fying the EGFP protein fragment that gave the best IFN-γ–producing CD4+ T-cell
response, a 15mer overlapping peptide library (each offset by 2 aa) was con-
structed (Mimotopes). This library was then used for interrogation in another
ELISPOT assay, as described above, to narrow down the 15mer epitope to
amino acids 82–96.
Immunizations. C57BL/6 mice were injected s.c. at the base of the tail with
either 50 μg sfGFP or 50 μg sfGFP.di.v3.2 emulsified in 50 μL CFA (Sigma-
Aldrich). C57BL/6 mice were injected i.p. with 100 μg sfGFP or 100 μg sfGFP.
di.v3.2 in aluminum hydroxide adjuvant (Brenntag).
Tetramer production. Biotin-labeled soluble I-Ab molecules containing EGFP
peptide (FKSAMPEGY) covalently attached to the I-Ab β-chain were pro-
duced in Drosophila melanogaster S2 cells and then purified and made into
tetramers with streptavidin-phycoerythrin or streptavidin-allophycocyanin
(Prozyme) as described (33).

Cell enrichment and flow cytometry. All antibodies were from eBioscience unless
noted. Single-cell suspensions of spleens and lymphnodeswere stained for 1 h at
room temperature with eGFP:I-Ab allophycocyanin tetramer. Samples were
then enriched for bead-bound cells on magnetized columns, and a portion was
removed for counting as described (33). For identification of surface pheno-
type, the rest of the sample underwent surface staining on ice with a mixture
of antibodies specific for B220 (RA3-6B2), CD11b (MI-70), CD11c (N418), CD44
(IM7; BD), CD4 (RM4-5; BD), CD3 (145-2C11), and CD8 (5H10; BioLegend), each
conjugated with a different fluorochrome. Cells were then analyzed on a Canto
(BD) flow cytometer. Data were analyzed with FlowJo software (TreeStar).
Fluorescence spectra. sfGFP samples were diluted to a uniform concentration of
9.8 μM in PBS, and fluorescence spectra were measured on a SpectraMax
plate reader. Excitation was measured from 448 to 500 nm (2-nm intervals)
at 510-nm emission. Emission was measured from 498 to 550 nm (2-nm
intervals) at 488-nm excitation. Fluorescence spectra were normalized by
subtracting the signal obtained from pure PBS buffer.

Exotoxin A activity and immunogenicity assays. Construction, expression, purification,
and cytotoxic activity of recombinant immunotoxin. The mutations L552E, L552N,
and P559E were introduced into a plasmid expressing HA22 VH-PE38 using PCR
overlap extension. Themutant RITwere purified as previously described (34).
Cytotoxicity assays were performed on CD22+ human Burkitt lymphoma cell
lines (CA46 and Raji). The assay was performed as previously described (24).
In vitro expansion and ELISpot. PBMCs from two patients who were previously
treated with PE38 RIT and one naïve donor were obtained after informed con-
sent. The PBMCs were stimulated with parent RIT, HA22-L552E, or HA22-L552N
and cultured in 37 °C with 5% (vol/vol) CO2 for 14 d. IL-2 (10 U/mL; Millipore) was
added every 3 d. On day 14, cells were harvested and restimulated with either
WT peptides 93 and 94 (GPEEEGGRLETILGW and EEGGRLETILGWPLA) or
mutant peptides (GPEEEGGREETILGW, EEGGREETILGWPLA, GPEEEGGRNETILGW,
and EEGGRNETILGWPLA). IL-2 ELISpot was used to detect T-cell activation
according to the manufacturer’s instructions.
Rosetta command line demonstration. Command line examples, input files, and
instructions for running all protein design simulations are included in a freely
available archived demonstration at https://zenodo.org/record/8436.
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