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Abstract

Gene Ontology (GO) annotation is a common task among model organism databases

(MODs) for capturing gene function data from journal articles. It is a time-consuming and

labor-intensive task, and is thus often considered as one of the bottlenecks in literature

curation. There is a growing need for semiautomated or fully automated GO curation

techniques that will help database curators to rapidly and accurately identify gene func-

tion information in full-length articles. Despite multiple attempts in the past, few studies

have proven to be useful with regard to assisting real-world GO curation. The shortage

of sentence-level training data and opportunities for interaction between text-mining

developers and GO curators has limited the advances in algorithm development and

corresponding use in practical circumstances. To this end, we organized a text-mining

challenge task for literature-based GO annotation in BioCreative IV. More specifically,

we developed two subtasks: (i) to automatically locate text passages that contain GO-

relevant information (a text retrieval task) and (ii) to automatically identify relevant GO

terms for the genes in a given article (a concept-recognition task). With the support from

five MODs, we provided teams with >4000 unique text passages that served as the basis

for each GO annotation in our task data. Such evidence text information has long been

recognized as critical for text-mining algorithm development but was never made avail-

able because of the high cost of curation. In total, seven teams participated in the chal-

lenge task. From the team results, we conclude that the state of the art in automatically

mining GO terms from literature has improved over the past decade while much pro-

gress is still needed for computer-assisted GO curation. Future work should focus on

addressing remaining technical challenges for improved performance of automatic

GO concept recognition and incorporating practical benefits of text-mining tools into

real-world GO annotation.

Database URL: http://www.biocreative.org/tasks/biocreative-iv/track-4-GO/.

Introduction

Manual Gene Ontology (GO) annotation is the task of

human curators assigning gene function information

using GO terms through reading the biomedical litera-

ture, the results of which play important roles in differ-

ent areas of biological research (1–4). Currently, GO

(data-version: 9 September 2013 used in the study) con-

tains >40 000 concept terms (e.g. cell growth) under

three distinct branches (molecular function, cellular com-

ponent and biological process). Furthermore, GO terms

are organized and related in a hierarchical manner (e.g.

cell growth is a child concept of growth), where terms

can have single or multiple parentage (5). Manual GO

annotation is a common task among model organism

databases (MODs) (6) and can be time-consuming and

labor-intensive. Thus, manual GO annotation is often

considered one of the bottlenecks in literature-based bio-

curation (7). As a result, many MODs can only afford to

curate a fraction of relevant articles. For instance, the

curation team of The Arabidopsis Information Resource

(TAIR) has been able to curate <30% of newly

published articles that contain information about

Arabidopsis genes (8).

Recently, there is a growing interest for building auto-

matic text-mining tools to assist manual biological data

curation (eCuration) (9–20), including systems that aim to

help database curators to rapidly and accurately identify

gene function information in full-length articles (21, 22).

Although automatically mining GO terms from full-text

articles is not a new problem in Biomedical Natural

Language Processing (BioNLP), few studies have proven to

be useful with regard to assisting real-world GO curation.

The lack of access to evidence text associated with GO an-

notations and limited opportunities for interaction with ac-

tual GO curators have been recognized as the major

difficulties in algorithm development and corresponding

application in practical circumstances (22, 23). As such, in

BioCreative IV, not only did we provide teams with article-

level gold-standard GO annotations for each full-text

article as has been done in the past, but we also provided

evidence text for each GO annotation with help from ex-

pert GO curators. That is, to best help text-mining tool
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advancement, evidence text passages that support each GO

annotation were provided in addition to the usual GO anno-

tations, which typically include three distinct elements: gene

or gene product, GO term and GO evidence code.

Also, as we know from past BioCreative tasks, recogniz-

ing gene names and experimental codes from full text are

difficult tasks on their own (24–27). Hence, to encourage

teams to focus on GO term extraction, we proposed, for

this task, to separate gene recognition from GO term and

evidence code selection by including both the gene names

and associated NCBI Gene identifiers in the task data sets.

Specifically, we proposed two challenge tasks, aimed to-

ward automated GO concept recognition from full-length

articles:

Task A: retrieving GO evidence text for relevant

genes

GO evidence text is critical for human curators to make

associated GO annotations. For a given GO annotation,

multiple evidence passages may appear in the paper, some

being more specific with experimental information while

others may be more succinct about the gene function. For

this subtask, participants were given as input full-text art-

icles together with relevant gene information. For system

output, teams were asked to submit a list of GO evidence

sentences for each of the input genes in the paper.

Manually curated GO evidence passages were used as the

gold standard for evaluating team submissions. Each team

was allowed to submit three runs.

Task B: predicting GO terms for relevant genes

This subtask is a step toward the ultimate goal of using com-

puters for assisting human GO curation. As in Task A, par-

ticipants were given as input full-text articles with relevant

gene information. For system output, teams were asked to

return a list of relevant GO terms for each of the input genes

in a paper. Manually curated GO annotations were used as

the gold standard for evaluating team predictions. As in

Task A, each team was allowed to submit three runs.

Generally speaking, the first subtask is a text retrieval

task while the second can be seen as a multi-class text

classification problem where each GO term represents a

distinct class label. In the BioNLP research domain, the

first subtask is in particular akin to the BioCreative II

Interaction Sentence subtask (24), which also served as an

immediate step for the ultimate goal of detecting protein–-

protein interactions. Task A is also similar to the

BioCreative I GO subtask 2.1 (22) and automatic GeneRIF

identification (18, 28–31). The second subtask is similar to

the BioCreative I GO subtask 2.2 (22) and is also closely

related to the problem of semantic indexing of biomedical

literature, such as automatic indexing of biomedical publi-

cations with MeSH terms (32–35).

Methods

Corpus annotation

A total of eight professional GO curators from five differ-

ent MODs—FlyBase (http://flybase.org/); Maize Genetics

and Genomics Database (http://www.maizegdb.org/); Rat

Genome Database (http://rgd.mcw.edu/); TAIR (http://

www.arabidopsis.org/); WormBase (http://www.worm-

base.org/)—contributed to the development of the task

data. To create the annotated corpus, each curator was

asked, in addition to their routine annotation of gene-

related GO information, to mark up the associated evi-

dence text in each paper that supports those annotations

using a Web-based annotation tool. To provide complete

data for text-mining system development (i.e. both positive

and negative training data), curators were asked to select

evidence text exhaustively throughout the paper (36).

For obtaining high-quality and consistent annotations

across curators, detailed annotation guidelines were de-

veloped and provided to the curators. In addition, each

curator was asked to practice on a test document following

the guidelines before they began curating task documents.

Because of the significant workload and limited number of

curators per group, each paper was only annotated by a

single curator.

Evaluation measures

For Task A evaluation, traditional precision (P), recall (R)

and F1 score (F1) are reported when comparing the submit-

ted gene-specific sentence list against the gold standard.

We computed the numbers of true-positive (TP) results and

false-positive (FP) results in two ways: the first one (exact

match) is a strict measure that requires the returned sen-

tences exactly match the sentence boundary of human

markups, while the second (overlap) is a more relaxed

measure where a prediction is considered correct (i.e. TP)

as long as the submitted sentence overlaps with the gold

standard. Although a single character overlap between the

text-mined and human-curated sentences would be suffi-

cient for the relaxed measure, the actual overlap is signifi-

cantly higher as we found in practice (see results below).

P ¼ tp

tpþ fp
; R ¼ tp

tpþ fn
; F1 ¼ 2 � P� R

Pþ R

For the Task B evaluation, gene-specific GO annotations

in the submissions were compared with the gold standard.
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In addition to the traditional precision, recall and F1 score,

hierarchical Precision (hP), Recall (hR) and F1 score (hF1)

were also computed where common ancestors in both the

computer-predicted and human-annotated GO terms are

considered. The second set of measures was proposed to

reflect the hierarchical nature of GO: a gene annotated

with one GO term is implicitly annotated with all of the

term’s parents, up to the root concept (37, 38). Such a

measure takes into account that ‘predictions that are close

to the oracle label should score better than predictions that

are in an unrelated part of the hierarchy’. (37) Specifically,

the hierarchical measures are computed as follows:

hP ¼ )ijĜi \ Ĝ
0
ij

)ijĜ
0
ij

; hR ¼ )ijĜi \ Ĝ
0
ij

)ijĜij
; hF1 ¼ 2 � hP � hR

hPþ hR

Ĝi ¼ fUGk2Gi
AncestorsðGkÞg

Ĝ
0
i ¼ fUG0 k2G0 i

AncestorsðG0
kÞg

where Ĝi and Ĝ
0
i are the sets of ancestors of the computer-

predicted and human-annotated GO terms for the ith set of

genes, respectively.

Results

The BC4GO corpus

The task participants were provided with three data sets

comprising 200 full-text articles in the BioC XML format

(39). Our evaluation for the two subtasks was to assess

teams’ ability to return relevant sentences and GO terms

for each given gene in the 50 test articles. Hence, we show

in Table 1 the overall statistics of the BC4GO corpus

including the numbers of genes, gene-associated GO terms

and evidence text passages. For instance, in the 50 test art-

icles, 194 genes were associated with 644 GO terms and

1681 evidence text passages, respectively. We refer inter-

ested readers to (36) for a detailed description of the

BC4GO corpus.

Team participation results

Overall, seven teams (three from America, three from Asia

and one from Europe) participated in the GO task. In total,

they submitted 32 runs: 15 runs from five different teams

for Task A, and 17 runs from six teams for Task B.

Team results of Task A

Table 2 shows the results of 15 runs submitted by the five

participating teams in Task A. Run 3 from Team 238

achieved the highest F1 score in both exact match (0.270)

and overlap (0.387) calculations. Team 238 is also the

only team that submitted results for all 194 genes from the

input of the test set. The highest recall is 0.424 in exact

match and 0.716 in overlap calculations by the same run

(Team 264, run 1), respectively. The highest precision is

0.220 in exact match by Team 238 Run 2 and 0.354 in

overlap by Team 183 Run 2. Also when evaluating team

submissions using the relaxed measure (i.e. allowing over-

laps), on average, the overlap between the text-mined and

human-curated sentences was found to be >50% (56.5%).

Team results of Task B

Table 3 shows the results of 17 runs submitted by the six

participating teams in Task B. Run 1 from Team 183

achieved the highest F1 score in traditional (0.134) and

hierarchical measures (0.338). The same run also obtained

the highest precision of 0.117 in exact match while the

highest precision in hierarchical match is 0.415 obtained

by Run 1 of Team 237. However, this run only returned

Table 1. Overall statistics of the BC4GO corpus

Curated data Training

set

Development

set

Test set

Full-text articles 100 50 50

Genes in those articles 300 171 194

Gene-associated passages in

those articles

2234 1247 1681

Unique gene-associated GO

terms in those articles

954 575 644

Table 2. Team results for Task A using traditional Precision

(P), Recall (R) and F-measure (F1)

Team Run Genes Passages Exact match Overlap

P R F1 P R F1

183 1 173 1042 0.206 0.128 0.158 0.344 0.213 0.263

183 2 173 1042 0.217 0.134 0.166 0.354 0.220 0.271

183 3 173 1042 0.107 0.066 0.082 0.204 0.127 0.156

237 1 23 54 0.185 0.006 0.012 0.333 0.011 0.021

237 2 96 2755 0.103 0.171 0.129 0.214 0.351 0.266

237 3 171 3717 0.138 0.305 0.190 0.213 0.471 0.293

238 1 194 2698 0.219 0.352 0.270 0.313 0.503 0.386

238 2 194 2362 0.220 0.310 0.257 0.314 0.442 0.367

238 3 194 2866 0.214 0.366 0.270 0.307 0.524 0.387

250 1 161 3297 0.146 0.286 0.193 0.239 0.469 0.317

250 2 140 2848 0.153 0.259 0.193 0.258 0.437 0.325

250 3 161 3733 0.140 0.311 0.193 0.226 0.503 0.312

264 1 167 13 533 0.052 0.424 0.093 0.088 0.716 0.157

264 2 111 2243 0.037 0.049 0.042 0.077 0.103 0.088

264 3 111 2241 0.037 0.049 0.042 0.077 0.103 0.088

Both strict exact match and relaxed overlap measure are considered.
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37 GO terms for 23 genes. The highest recall is 0.306 and

0.647 in the two measures by Run 3 of Team 183.

Discussion

As mentioned earlier, our task is related to a few previous

challenge tasks on biomedical text retrieval and semantic

indexing. In particular, our task resembles the earlier GO

task in BioCreative I (22). On the other hand, our two sub-

tasks are different from the previous tasks. For the passage

retrieval task, we only provide teams with pairs of <gene,

document> and asked their systems to return relevant evi-

dence text while <gene, document, GO terms> triples

were provided in the earlier task. We provided less in-

put information to teams because we aim to have our

tasks resemble real-world GO annotation more closely,

where the only input to human curators is the set of

documents.

For the GO-term prediction task, we provided teams

with the same <gene, document> pairs and asked their

systems to return relevant GO terms. In addition to such

input pairs, the expected number of GO terms and their

associated GO ontologies (Molecular Function, Biological

Process, and Cellular Component) returned were also pro-

vided in the earlier task. Another difference is that along

with each predicted GO term for the given gene in the

given document, output of associated evidence text is also

required in the earlier task.

The evaluation mechanism also differed in the two chal-

lenge events. We provided the reference data before the

team submission and preformed standard evaluation. By

contrast, in the BioCreative I GO task, no gold-standard

evaluation data were provided before the team submission.

Instead, expert GO curators were asked to manually judge

the team submitted results. Such a post hoc analysis could

miss TP results not returned by teams and would not per-

mit evaluation of new systems after the challenge. While

there exist other metrics for measuring sentence and se-

mantic similarity (31, 40–42), to compare with previous

results, we followed the evaluation measures (e.g. preci-

sion, recall and F1 score) in (22).

Despite these differences, we were intrigued by any po-

tential improvement in the task results due to the advance-

ment of text-mining research in recent years. As the

ultimate goal of the task is to find GO terms, the results of

Task B are of more interest and significance in this aspect,

though evidence sentences are of course important for

reaching this goal. By comparing the team results in the

two challenge events [Table 3 above vs. Table 5 in (22)],

we can observe a general trend of performance increase on

this task over time. For example, the best-performing team

in 2005 (22) was only able to predict 78 TPs (of 1227 in

gold standard)—a recall of <7%—while there are several

teams in our task who obtained recall values between 10

and 30%. The numbers are even greater when measured

by taking account of the hierarchical nature of the Gene

Ontology.

Post-challenge analysis: classification of FP

sentences

To better understand the types of FP sentences returned by

the participating text-mining systems, we asked curators to

manually review and classify FP predictions using one or

more categories described below. For this analysis, each

curator was given three test set papers that they previously

annotated. In total, seven curators completed this analysis

by assigning 2289 classifications to 2074 sentences.

Sentence classifications

(1) Experiment was performed—These types of sentences

relate that an experiment has been performed but do not

describe what the actual result was. Such sentences may or

may not contain a GO-related concept.

‘To characterize the functions and interrelationships of

CSP41a and CSP41b, T-DNA insertion lines for the

genes encoding the two proteins were characterized.’

(2) Previously published result—These sentences refer to

experimental findings from papers cited in the test set

papers. They often contain a parenthetical reference, or

Table 3. Team results for the Task B using traditional

Precision (P), Recall (R) and F1-measure (F1) and hierarchical

precision (hP), recall (hR) and F1-measure (hF1)

Team Run Genes GO terms Exact match Hierarchical match

P R F1 hP hR hF1

183 1 172 860 0.117 0.157 0.134 0.322 0.356 0.338

183 2 172 1720 0.092 0.245 0.134 0.247 0.513 0.334

183 3 172 3440 0.057 0.306 0.096 0.178 0.647 0.280

220 1 50 2639 0.018 0.075 0.029 0.064 0.190 0.096

220 2 46 1747 0.024 0.065 0.035 0.087 0.158 0.112

237 1 23 37 0.108 0.006 0.012 0.415 0.020 0.039

237 2 96 2424 0.108 0.068 0.029 0.084 0.336 0.135

237 3 171 4631 0.037 0.264 0.064 0.150 0.588 0.240

238 1 194 1792 0.054 0.149 0.079 0.243 0.459 0.318

238 2 194 555 0.088 0.076 0.082 0.250 0.263 0.256

238 3 194 850 0.029 0.039 0.033 0.196 0.310 0.240

243 1 109 510 0.073 0.057 0.064 0.249 0.269 0.259

243 2 104 393 0.084 0.051 0.064 0.280 0.248 0.263

243 3 144 2538 0.030 0.116 0.047 0.130 0.477 0.204

250 1 171 1389 0.052 0.112 0.071 0.174 0.328 0.227

250 2 166 1893 0.049 0.143 0.073 0.128 0.374 0.191

250 3 132 453 0.095 0.067 0.078 0.284 0.161 0.206
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other indication, that the information is from a previously

published paper.

‘Molecular studies of the REF-1 family genes hlh-29

and hlh-28 indicate that their gene products are identi-

cal, and that loss of hlh-29/hlh-28 activities affects C.

elegans embryonic viability, egg-laying, and chemore-

pulsive behaviors [21].’

(3) Not GO related—These sentences describe an aspect of

biology that is not amenable to GO curation, i.e. it does

not describe a biological process, molecular function or

cellular component.

‘(A) An anti-Aurora A anti-serum recognizes the NH2-

terminal recombinant histidine-tagged protein domain

used for immunization (left) and the 47-kD endogenous

Aurora A protein kinase in Drosophila embryo extracts

(right) by Western blotting.’

(4) Curator missed—This class of sentences actually repre-

sents TP sentences that the curator failed to identify when

annotating the test set papers.

‘We found that knockdown of Shank3 specifically

impaired mGluR5 signaling at synapses.’

(5) Interpretive statements/author speculation—These sen-

tences describe either an author’s broader interpretation of

an experimental finding or their speculation on that find-

ing, but do not necessarily provide direct evidence for a

GO annotation.

‘The binding site for AR-C155858 involves TMs 7-10

of MCT1, and probably faces the cytosol.’

(6) Contiguous sentence—These sentences were selected by

curators, but only as part of an annotation that required

additional sentences that may or may not be directly adja-

cent to the annotated sentence. In these cases, curators felt

that additional information was needed to completely sup-

port the GO annotation.

‘These results are in agreement with those obtained for the

TIEG3 protein in HeLa and OLI-neu cells [32] and indi-

cate that the Cbt bipartite NLS within the second and

third zinc fingers is functional in mammalian cells, suggest-

ing that different nuclear import mechanisms for this pro-

tein are being used in Drosophila and mammalian cells.’

In this case, information about the assay used to determine

‘these results’ is not available in just this sentence alone.

(7) Sentence was captured—In these cases, the sentence

was captured by the curator, but for some, the annotation

was for a different gene product than that predicted by the

participating teams.

‘Furthermore, in primary macrophages, expression

of Fcgr3-rs inhibits Fc receptor-mediated functions,

because WKY bone marrow-derived macrophages

transduced with Fcgr3-rs had significantly reduced

phagocytic activity.’

(8) Negative result—These sentences describe an experi-

mental finding, but one for which the result is negative, i.e.

the gene product is not involved, and thus the sentence

would not be annotated for GO.

‘The atnap null mutant and WT plants are developmen-

tally indistinguishable in terms of bolting and flowering

times.’

(9) Mutant background—These sentences describe an ex-

perimental finding that does not reflect the wild-type activ-

ity of the gene product. This classification is distinct from

sentences that describe mutant phenotypes, which are

often used to assign GO Biological Process annotations.

‘S5 shows Mad2MDF-2 enrichment on monopolar spin-

dles in the PP1-docking motif mutants.’

(10) Other—This classification was reserved for sentences

that did not readily fit into any of the additional

classifications.

‘Arrows indicate the main CSP41a and CSP41b protein

species.’

(11) Unresolved entity—These sentences mentioned enti-

ties, e.g. protein complexes, for which curators were not

able to assign a specific ID for annotation.

‘It is suggested that CSP41 complexes determine the

stability of a distinct set of chloroplast transcripts

including rRNAs, such that the absence of CSP41b af-

fects both tar-get transcript stability and chloroplast

translational activity.’

(12) Future experiments—These sentences describe pro-

posed future experiments.

‘Thus, mechanistic insight into the reactions that acti-

vate checkpoint signaling at the kinetochore and testing

the effect of KNL-1 microtubule binding on these reac-

tions as well as elucidating whether KNL-1 mutants

participate in parallel to or in the same pathway as

dynein in checkpoint silencing are important future

goals.’

The results of the classification analysis are presented in

Figure 1. These results indicate that the FP sentences cover

a broad range of classifications, but importantly, that only

12% of the FP sentences were classified by curators as

completely unrelated to a GO concept. Many of the FP

sentences thus contain some element of biology that is rele-

vant to GO annotation, but lack the complete triplet, i.e.

an entity, GO term and assay, that is typically required for
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making a manual experimentally supported GO

annotation.

As an additional part of the sentence classification, we

also asked curators to indicate which, if any, of the GO

triplet was missing from a FP sentence. These analyses indi-

cate some overall trends. For example, many of the sen-

tences that describe previously published results do not

indicate the nature of the assay used to determine the ex-

perimental findings. In contrast, sentences that describe

how or what type of an experiment was performed may in-

clude all aspects of the triplet yet lack the actual experi-

mental result that supports an annotation. Likewise,

sentences that describe negative results may contain all as-

pects of the triplet, but the prediction methods failed to

discern the lack of association between the gene product

and the GO term.

The results of the sentence classification analysis suggest

that many of the FP sentences returned by the participating

teams have some relevance to GO annotation but either

lack one element of the GO annotation triplet or contain

all elements of a triplet but fail to correctly discern the ac-

tual experimental result. This suggests that further work to

refine how evidence sentences are identified and presented

to curators may help to improve the utility of text mining

for GO annotation. For example, if curation tools can pre-

sent predicted evidence sentences within the context of the

full text of the paper, curators could easily locate those

sentences, such as those presented within Results sections,

that are most likely to support GO annotations.

Additionally, postprocessing of sentences to remove those

that contain terms such as ‘not’ or ‘no’ may help to elimin-

ate statements of negative results from consideration.

Further analysis of the content of evidence sentences

will hopefully provide valuable feedback to text-mining de-

velopers on how to refine their prediction algorithms to

improve precision of evidence sentence identification. For

example, within a sampling of the largest sentence classifi-

cation category, ‘Experiment was Performed’, curators

marked nearly half of the sentences as containing no GO

term. Systematic comparison of these sentences with

Figure 1. The classification of the FP sentences.
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similarly categorized sentences that did contain a GO term

concept may help to improve techniques for GO term

recognition.

Additional follow-up analysis may also help annotation

groups consider new ways in which to use text-mining re-

sults. Text mining for GO annotation might thus expand

to include not only predictions for experimentally sup-

ported annotations but also predictions for other annota-

tions supported by the text of a paper such as those

described from previously published results. GO annota-

tion practice includes an evidence code, Trace-able Author

Statement (TAS), that can be used for these types of anno-

tations, so perhaps a new evidence code that indicates a

TAS annotation derived from text mining could be de-

veloped for such cases.

Individual system descriptions

Each team has agreed to contribute a brief summary of the

most notable aspects of their system. In summary, the ma-

chine learning approaches performed better than the rule-

based approaches in Task A. For example, Team 238

achieved the best performance by using multiple features

(bag-of-words, bigram features, section features, topic fea-

tures, presence of genes) and training a logistic regression

model to classify positive vs negative instances of GO evi-

dence sentences.

A variety of methods were attempted for Task B, such

as K-nearest-neighbor, pattern matching and information

retrieval (IR)-based ranking techniques. Moreover, several

participants (Team 183, 238 and 250) used the evidence

sentences they retrieved in Task A as input for finding GO

terms in Task B. The best performance in Task B was ob-

tained by Team 183’s supervised categorization method,

which retrieved most prevalent GO terms among the k

most similar instances to the input text in their knowledge

base (43).

Team 183: Julien Gobeill, Patrick Ruch (Task A,

Task B)

The BiTeM/SIBtex group participated in the first

BioCreative campaign (22). We then obtained top competi-

tive results, although for all competing systems, perform-

ances were far from being useful for the curation

community. At this time, we extracted GO terms from full

texts with a locally developed dictionary-based classifier

(44). Dictionary-based categorization approaches attempt

to exploit lexical similarities between GO terms (descrip-

tions and synonyms) and the input text to be categorized.

Such approaches are limited by the complex nature of

the GO terms. Identifying GO terms in text is highly

challenging, as they often do not appear literally or ap-

proximately in text. We have recently reported on GOCat

(45, 46), our new machine learning GO classifier. GOCat

exploits similarities between an input text and already

curated instances contained in a knowledge base to infer a

functional profile. GO annotations (GOA) and MEDLINE

make it possible to exploit a growing amount of almost

100 000 curated abstracts for populating this knowledge

base. Moreover, we showed in (46) that the quality of the

GO terms predicted by GOCat continues to improve

across the time, thanks to the growing number of high-

quality GO terms assignments available in GOA: thus,

since 2006, GOCat performances have improved by

þ50%.

The BioCreative IV Track 4 gave us the opportunity to

exploit the GOCat power in a reference challenge. For

Task A, we designed a robust state-of-the-art approach,

using a naı̈ve Bayes classifier, the official training set and

words as features. This approach generally obtained fair

results (top performances for high precision systems) and

should still benefit from being tuned for this task with the

new available benchmark. We also investigated exploiting

GeneRIFs for an alternative 40 times bigger training set,

but the results were disappointing, probably because of the

lack of good-quality negative instances. Then, for Task B,

we applied GOCat to the first subtask output and pro-

duced three different runs with five, ten or twenty pro-

posed GO terms. These runs outperformed other

competing systems both in terms of precision and recall,

with performances up to 0.65 for recall with hierarchical

metrics. Thanks to BioCreative, we were able to design a

complete workflow for curation. Given a gene name and a

full text, this system is able to deliver highly relevant GO

terms along with a set of evidence sentences. Today, the

categorization effectiveness of the tool seems sufficient for

being used in real semiautomatic curation workflows, as

well as in fully automatic workflow for nonmanually cura-

ted biological databases. In particular, GOCat is used to

profile PubChem bioassays (47), and by the COMBREX

project to normalize functions described in free text for-

mats (48).

Team 220: Anh Tuan Luu, Jung-jae Kim (Task B)

Luu and Kim (49) present a method that is based on the

cross products database (50) and combined with a state-

of-the-art statistical method based on the bag of words

model. They call the GO concepts that are not defined

with cross products, ‘primitive concepts’, where the primi-

tive concepts of a GO term are those that are related to the

GO term through cross products possibly in an indirect

manner. They assume, like the assumption of bag-of-words
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approach, that if all or most of the primitive concepts of a

GO term appear in a small window of text (e.g. sentence),

the GO term is likely to be expressed therein. For each GO

term and a text, the method first collects all primitive con-

cepts of the GO term and identifies any expression of a

primitive concept in the text. It recognizes as expressions

of a primitive concept the words that appear frequently in

the documents that are known to express the concept

(called domain corpus), but not frequently in a representa-

tive subset of all documents (called generic corpus). Given

a document d and a primitive concept c, if the sum of the

relative frequency values of the top-K words of the concept

found in the text is larger than a threshold h, we regard the

concept as expressed in the document. Finally, a text is

considered to express GO term C whose cross products

definition has n primitive concepts, if this text expresses at

least k primitive concepts among the n concepts, where the

value of k is dynamically determined using a sigmoid func-

tion, depending on n.

Furthermore, the cross products–based method (called XP

method) is incorporated with Gaudan’s method (51), which

shows a better coverage than the XP method, as follows: For

each GO term C whose cross products definition has n primi-

tive concepts, if the XP method can find evidence to k primi-

tive concepts (as explained above) in the text zone d, the

combined method calculates the sum of the scores from the

two methods. If the sum is greater than a threshold, we as-

sume that d expresses C. If a GO term does not have a cross

products definition, we only use the score of the Gaudan’s

method. In short, we call the combination method is XP-

Gaudan method. The experiment results show that the

F-measures of the two individual methods are lower than

that of the XP-Gaudan method. The recall of the XP-Gaudan

method (21%) is close to the sum of the recall values of the

two individual methods (26%), which may mean that the

two methods target different sets of GO term occurrences. In

other words, the XP method is complementary to the

Gaudan’s method in detecting GO terms in text documents.

Team 237: Jung-Hsien Chiang, Yu-De Chen,

Chia-Jung Yang (Task A, Task B)

We developed two different methods: a sequential pattern

mining algorithm and GREPC (Geneontology concept

Recognition by Entity, Pattern and Constrain) for the

BioCreative GO track to recognize sentences and GO terms.

In our sequential pattern mining algorithm, the high-

light of this method is that it can infer GO term and which

gene(s) products the GO term belongs to simultaneously.

In this method, each of the generated rules has two classes,

one for the inferred GO term and another for the GO term

to which the gene(s) products belong to. Besides, each of

the rules is learned from data without human intervention.

The basic idea of the sequential pattern mining algorithm

we used was similar to (52–55). We also used Support and

Confidence in association rule learning to measure the

rules generated. In this work, the items were terms that ap-

peared in sentences. The different permutations of terms

will be considered different patterns because of the spirit of

sequential pattern. In the preprocessing, we removed stop

words, stemmed the rest and added P.O.S. tagger to each

term. Then, we anonymized each of the gene(s) products

for generating rules that can be widely used in the situation

with different gene product names. For instance, a sentence

‘In vitro, CSC-1 binds directly to BIR-1’ would become

‘vitro_NN __PROTEIN_0__ bind_VBZ directli_RB

__PROTEIN_1__ ’. Both the terms ‘__PROTEIN_0__’

and ‘__PROTEIN_1__’ are anonymized gene(s) products.

After preprocessing, we thereafter generated rules from the

preprocessed sentences. In the instance we mentioned

above, we can generate some rules, e.g. ‘__PROTEIN_0__

bind_VBZ __PROTEIN_1__ ¼> GO: 0005515,

__PROTEIN_0_’ and ‘__PROTEIN_0__ bind_VBZ

__PROTEIN_1__ ¼> GO: 0005515, __PROTEIN_1__’,

where the part before the symbol ‘¼>’ is the pattern and

after the symbol are the classes. The first class GO:

0005515 is the GO ID. The second class represents the GO

term belonging to which anonymized gene(s) products.

After all rules have been generated, we used those rules to

classify sentences in the testing data.

In the GREPC, we indexed the GO concepts based on

three divisions: entity, pattern and constrain. We gathered

these kinds of information by text mining inside the GO

database (56). Within that, we reconstructed the semi-

structured name and synonyms for a GO concept into a

better-structured synonym matrix. With GREPC, we can

find GO terms in a sentence with a higher recall without

losing much of the precision.

Team 238: Hongfang Liu, Dongqing Zhu (Task A,

Task B)

For Task A, the Mayo Clinic system effectively leveraged

the learning from positive and unlabeled data approach

(57, 58) to mitigate the constraint of having limited train-

ing data. In addition, the system explored multiple features

(e.g. unigrams, bigrams, section type, topic, gene presence,

etc.) via a logistic regression model to identify GO evidence

sentences. The adopted features in their system brought in-

cremental performance gains, which could be informative

to the future design of similar classification systems. Their

best performing system achieved 0.27 on exact-F1 and

0.387 for overlap-F1, the highest among all participating

systems.
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For Task B, the Mayo Clinic team designed two differ-

ent types of systems: (i) the search-based system predicted

GO terms based on existing annotations for GO evidences

that are of different textual granularities (i.e. full-text art-

icles, abstracts and sentences) and are obtained by using

state-of-the-art IR techniques [i.e. a novel application of

the idea of distant supervision in information extraction

(59)]; (ii) the similarity-based systems assigned GO terms

based on the distance between words in sentences and GO

terms/synonyms. While the search-based system signifi-

cantly outperformed the similarity-based system, a more

important finding was that the number and the quality of

GO evidence sentences used in the distance supervision

largely dictates the effectiveness of distant supervision,

meaning a large collection of well-annotated, sentence or

paragraph level GO evidences is strongly favored by sys-

tems using similar approaches.

Team 243: Ehsan Emadzadeh, Graciela Gonzalez

(Task B)

The proposed open-IE approach is based on distributional se-

mantic similarity over the Gene Ontology terms. The tech-

nique does not require the annotated data for training, which

makes it highly generalizable. Our method finds the related

gene functions in a sentence based on semantic similarity of

the sentence to GO terms. We use the semantic vectors pack-

age (60) implementation of latent semantic analysis (LSA)

(61) with random indexing (62) to calculate semantic similar-

ities. GO terms’ semantic vectors are created based on the

names of the entries in GO; one semantic vector is created for

each term in the ontology. Stop words are removed from GO

name, and they are generalized by Porter stemming (63).

After creating the GO semantic vectors, the question is

to find whether a sentence is related to a gene. We do this

by using lexical patterns and generalizing the sentence and

the gene symbol (e.g. removing the numbers and nonalpha-

betic characters). If lexical patterns imply that a sentence is

related to a gene, then we calculate semantic similarity of

the sentence to all GO terms using the generated semantic

vectors. The predicted GO terms for the sentence and the

gene are the conjunction of top similar GO terms to the

sentence (set G) and top similar GO terms to the related

abstract (set D):

GeneGOðgene; sentence; abstractÞ

¼ fGðsentenceÞ \DðabstractÞg

if HasGeneðsentence; geneÞ else fg

A GO term with the highest semantic similarity to

the sentence in GeneGO set will be chosen as the final GO

annotation for each gene in the sentence. For example, if a

sentence top m(¼2) similar GO terms are {g5, g10} and the

abstract top n(¼5) GO terms are {g4, g8, g5, g2, g9}, then

the final predicted GO terms for the sentence related to the

gene will be {g5}. m and n are tuning parameters that con-

trol the precision and the recall. We found that the first

sentences of the paragraphs are the most important sen-

tences in terms of information about gene functions, and

including all sentences in a paragraph significantly reduced

the precision.

Team 250: Yanpeng Li, Hong Yu (Task A, Task B)

For Task A, we built a binary classifier to identify evidence

sentences using reference distance estimator (RDE) (64,

65), a recently proposed semi-supervised learning method

that learns new features from around 10 million unlabeled

sentences. Different from traditional methods for text clas-

sification e.g. bag-of-words features with support vector

machine (SVM) or logistic regression, our method gener-

ates new features using the co-occurrence of existing fea-

tures in big unlabeled data, thus incorporating richer

information to overcome data sparseness and leading to

more robust performance. RDE is a simple linear classifier

in the form of:

f ðxi; rÞ ¼
X

j

ðPðrjjÞ � PðrÞÞxij (1)

where xi is the ith example represented by a Boolean vector

of xij, j is the index of feature, and r is called a reference

feature. The probability of PðrjjÞ � PðrÞ can be directly

estimated from unlabeled data. In the work (64), we

showed in theory and experiment that if r is discriminative

to the class label and highly independent with other fea-

tures, the performance of RDE tends to be close to a classi-

fier trained with infinite labeled data. In our submitted

runs, we applied the Algorithm 2.2 presented in the paper

(64), which generates new features from multiple RDEs

and integrates them in a logistic regression model. For this

task, we selected 110 reference features for semi-supervised

RDE based on the labeled (training and development sets)

and unlabeled data, and then used the output scores of the

110 RDEs leaned from unlabeled data as features (66).

Our best submitted run using only bag-of-words features

achieved an F-score of 19.3% in exact match and 32.5%

in relaxed match, which ranked second place by teams. It

is also promising to see that in both development and test

sets RDE achieved much better F score and area under

curve than SVM and logistic regression (64, 66).

In Task B, we developed an IR-based method to retrieve

the GO term most relevant to each evidence sentence using
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a ranking function that combined cosine similarity and the

frequency of GO terms in documents. The ranking func-

tion is defined as follows:

GORankðsentence;GO termÞ

¼ # of Common words in sentence and GO termffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
# of words in sentence

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
# of words in GO term

p

�log ðcountðGO termÞÞ

(2)

where the first part is the cosine similarity of the sentence

and GO term, and countðGO termÞ is the number of docu-

ments related to the GO term in the Gene Ontology

Annotation (GOA) databases. Similar to the idea of page

rank algorithm in Web search, the GORank function pre-

fers ‘important’ (high-frequency) GO terms, as we found

that the occurrence of GO term in documents follows a

power law distribution, that is, a small fraction of GO

terms appear in a lot of documents, and most GO terms

appear rarely. In addition, in order to make use of the in-

formation in the annotated sentences to improve the per-

formance, after the ranking, we built a classifier for 12

high-level GO classes trained on labeled sentences to prune

the result. A filtering threshold t was defined as the number

of t most relevant high-level GO classes to the sentence

determined by the classifiers. If the highest ranked GO

term by GORank is in the t classes, it will be selected as a

positive result. The result of submitted runs showed that

the F score increased from 3.6 to 7.8% using these two

strategies (66). Our submission as well as post-submission

results showed these novel methods were able to achieve

the F scores competitive to the top-ranked systems.

Team 264: Jian-Ming Chen, Hong-Jie Dai (Task A)

To efficiently and precisely retrieve GO information from

large amount of biomedical resources, we propose a GO evi-

dence sentence retrieval system conducted via combinatorial

applications of semantic class and rule patterns to automat-

ically retrieve GO evidence sentences with specific gene

mentions from full-length articles. In our approach, the task

is divided into two subtasks: (i) candidate GO sentence re-

trieval, which selects the candidate GO sentences from a

given full text, and (ii) gene entity assignment, which assigns

relevant gene mentions to a GO evidence sentence.

In this study, sentences containing gene entities or GO

terms are considered as potential evidence sentences.

Semantic classes including the adopted and rejected class

derived from the training set using semantic-orientation

point-wise mutual information (SO-PMI) are used for se-

lecting potential sentences and filtering out FP sentences

(67). To further maximize the performance of GO evidence

sentence retrieval, rule patterns generated by domain ex-

perts are defined and applied. For example, if a potential

sentence matches the rule pattern ‘[GENE].* lead to

.*[GO]’, the sentence is selected again as a GO evidence

sentence candidate. After generating the sentence candi-

dates, the process of gene entity assignment is performed

to identify probable gene mentions contained within each

sentence. In our current implementation, a gene is assigned

to the sentence S if the gene is mentioned in S. Otherwise,

we identify the gene with the maximum occurrence from

retrieved sentences in paragraph P in which S belongs, and

assign this gene to sentence S. Alternatively, gene with the

maximum occurrence from retrieved sentences in article A

is verified and assigned to sentence S.

The performance of our GO evidence sentence retrieval

system achieves the highest recall of 0.424 and 0.716 in the

exact match and relaxed overlap measure, respectively.

However, the inadequate F score of our system suggests

that the rule patterns used may decrease the system per-

formance. In the future, the conduction of rule selection in

rule pattern generation and co-reference resolution in gene

entity assignment will be performed to maximize the over-

all performance.

Conclusions

Based on the comparison of team performance in two

BioCreative GO tasks (see details in Discussion), we con-

clude that the state of the art in automatically mining GO

terms from literature has improved over the past decade,

and that computer results are getting closer to human per-

formance. But to facilitate real-world GO curation, much

progress is still needed to address the remaining technical

challenges: First, the number of GO terms (class labels for

classification) is extremely large and continues to grow.

Second, GO terms (and associated synonyms) are designed

for unifying gene function annotations rather than for text

mining, and are therefore rarely found verbatim in the art-

icle. For example, our analysis shows that only about 1/3

of the annotated GO terms in our corpus can be found

using exact matches in their corresponding articles. On the

other hand, not every match related to a GO concept is

annotated. Instead, only those GO terms that represent ex-

perimental findings in a given full-text paper are selected.

Hence, automatic methods must be able to filter irrelevant

mentions that share names with GO terms (e.g. the GO

term ‘growth’ is a common word in articles, but additional

contextual information would be required to determine if

this relatively high-level term should be used for GO anno-

tation purposes). Although a paper’s title can be very use-

ful in deciding whether it is relevant to a GO concept, any

annotations should be attributed to the paper itself rather
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than its citation. Therefore, excluding the reference section

may be a simple suggestion for making these methods

more relevant to real-life curation. Finally, human annota-

tion data for building statistical/machine-learning

approaches is still lacking. Despite our best efforts, we are

only able to include 200 annotated articles in our corpus,

which contains evidence text for only 1311 unique gene-

GO term combinations.

Our challenge task was inspired and developed in re-

sponse to the actual needs of GO manual annotation.

However, compared with real-world GO annotation, the

BioCreative challenge task is simplified in two aspects: (i)

gene information is provided to the teams while in reality

they are unknown; and (ii) extraction of GO evidence code

information is not required for our task while it is an essen-

tial part of GO annotation in practice. Further investiga-

tion of automatic extraction of gene and evidence code

information and their impact in detecting the correspond-

ing GO terms remains as future work.
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