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Abstract

As information flows through the brain, neuronal firing progresses from encoding the world as 

sensed by the animal to driving the motor output of subsequent behavior. One of the more tractable 

goals of quantitative neuroscience is to develop predictive models that relate the sensory or motor 

streams with neuronal firing. Here we review and contrast analytical tools used to accomplish this 

task. We focus on classes of models in which the external variable is compared with one or more 

feature vectors to extract a low-dimensional representation, the history of spiking and other 

variables are potentially incorporated, and these factors are nonlinearly transformed to predict the 

occurrences of spikes. We illustrate these techniques in application to datasets of different degrees 

of complexity. In particular, we address the fitting of models in the presence of strong correlations 

in the external variable, as occurs in natural sensory stimuli and in movement. Spectral correlation 

between predicted and measured spike trains is introduced to contrast the relative success of 

different methods.

Introduction

Advances in experimental design, measurement techniques, and computational analysis 

allow us unprecedented access to the dynamics of neural activity in brain areas that 

transform sensory input into behavior. One can address, for example, the representation of 
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external stimuli by neurons in sensory pathways, the integration of information across 

modalities and across time, the transformations that occur during decision-making, and the 

representation of dynamic motor commands. While new methods are emerging with the 

potential to elucidate complex internal representations and transformations, as reviewed in 

Cunningham and Yu, 2014, here we will focus on established techniques within the rubric of 

neuroinformatics that summarize the relationship between sensory input or motor output and 

the spiking of neurons. These techniques have provided insight into neural function in a 

relatively large number of experimental paradigms. We discuss these methods in detail, 

illustrate their application to experimental data, and contrast the interpretation, reliability, 

and utility of the results obtained with different methods.

The methods that we will consider aim to establish input/output relationships that capture 

how spiking activity, generally at the single-neuron level, is related to external variables: 

either sensory signals or motor output. These models focus on a description of the statistical 

nature of this relationship without any direct attempt to establish mechanisms; rather, they 

provide a compact representation of the components in a stimulus that cause a neuron to fire 

a spike.

Each of our methods is described by a model that relates the external input to a pattern of 

spiking (Box 1). A model has several stages (Figure 1A). The first stage includes linear 

feature vectors that extract a low-dimensional description of the stimulus that drives firing. 

In spike-triggered average (STA) models, a single feature is extracted from the input. These 

models have been very successful for neurons in the initial steps of sensory processing, such 

as retinal ganglion cells (Chichilnisky, 2001; Pillow et al., 2005) in vision or trigeminal cells 

in vibrissa touch (Jones et al., 2004; Campagner et al., 2016). When a single-feature vector 

is insufficient to fully describe the firing of the cells, additional features are included. These 

can be determined in a number of ways, including through spike-triggered covariance (STC) 

and maximum noise entropy (MNE) methods (Figure 1A). The second stage in these models 

is a static, nonlinear function that maps the strength of the feature in the time-varying input 

to an output firing rate; this nonlinear function can, for example, ensure that the predicted 

spike rate does not go below zero and that it saturates for very large inputs. This succession 

of linear feature selection followed by nonlinear firing rate prediction means that models of 

this type are generally known as linear/nonlinear (LN) cascade models. In addition to the 

stimulus dependence, the so-called generalized linear model (GLM) allows one to 

incorporate a dependence on the history of firing, as well as the history of firing by other 

neurons in the network, and potentially other stimulus or task parameters as well (Figure 

1A).

The output of these models can be taken to be a time-dependent firing rate. As a final stage, 

however, one may wish to generate a spike train. To do so, one can assume a specific 

mathematical process that converts the rate into spikes on a probabilistic basis. This is called 

a noise model and is generally chosen to be a Poisson or a Bernoulli process, which are 

described by only a single parameter. In many cases these particular noise models provide a 

good approximation of spike trains recorded from many different areas in the brain 

(Hagiwara, 1954; Werner and Mountcastle, 1963; Softky and Koch, 1993).
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The form of the feature vectors, nonlinearity, and history dependencies can reveal properties 

of the system that test theoretical concepts, such as how efficiently the stimulus is encoded 

by a neuron and how robust the encoding is to noise. For example, changes in the feature 

under different stimulus conditions can reveal the system's ability to adapt to, or cancel out, 

correlations in the sensory input (Hosoya et al., 2005; Sharpee et al., 2006). Further, changes 

in the nonlinearity reveal how the system can modulate its dynamic range as the intensity of 

the stimulus evolves (Fairhall et al., 2001; Wark et al., 2007; Díaz-Quesada and Maravall, 

2008).

While representing neuronal spiking through a predictive statistical model is only a limited 

aspect of neural computation, it is a fundamental first step in establishing function and 

guiding predictions as to the structure of neural circuitry. The key to any predictive model of 

a complex input/output relationship is dimensionality reduction, i.e., a simplification of the 

number of relevant variables that are needed to describe the stimulus (Pang et al., 2016). 

Here our primary goal is to present current methods for fitting descriptive models for single 

neurons and to directly compare and contrast them using different kinds of data. With the 

growing importance of multi-neuronal recording, it will also be necessary to seek lower-

dimensional representations of network activity. Although we will largely focus on methods 

to reduce the representation of external variables in order to predict firing, we will further 

point toward methods that yield a reduced description of both external and neural variables 

in models of network activity.

We have chosen three datasets for analysis here as illustrative examples. The first set 

consists of multi-electrode array recordings from salamander retinal ganglion cells that have 

been presented with a long, spatiotemporal white noise stimulus. This preparation has been a 

paradigmatic one in that many iterations of predictive modeling have been first successfully 

applied (Chichilnisky, 2001; Touryan et al., 2002; Rust et al., 2005; Pillow et al., 2008). The 

second and third set involve more challenging cases: the relationship between single unit 

recordings of thalamic neurons of alert, freely whisking rats and the recorded vibrissa self-

generated motion (Moore et al., 2015b); and the relationship between unit recordings from 

motor cortex of monkeys and the recorded position and grip strength of the hand as monkeys 

use a joystick to manipulate a robotic arm (Engelhard et al., 2013). Considering data from 

behaving animals requires us to discuss several important issues, including smaller data size 

and the highly correlated and non-repeated external variables that are generated by natural 

stimulus statistics and self-motion.

Whenever fitting data, one should avoid fitting structure in the data that is specific to the 

particular sample chosen as the training set. Further, any identified trends should generalize 

to other samples from a similar dataset. Thus one must always test the performance of a 

model with a portion of the data that was not used to build the model; typically 80% of the 

data are used to build the model and 20% for validation. We include methods for model 

validation and applications to all of our datasets. By permuting the data among the fractions 

used to fit and to validate, one builds up a jack-knife estimate of the variance for the 

reliability of the fit.
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We provide all of the code and spiking and stimulus data required to reproduce our results. 

Simple modification of this code will enable readers to extend the analysis methods we 

present to new datasets. As a brief refresher for the mathematics that we use throughout the 

Primer, we provide definitions of all essential terms (Box 2) as well as review basic linear 

algebraic manipulations (Box 3). Lastly, a reference list of all mathematical symbols is 

provided (Box 4).

The Linear/Nonlinear Modeling Approach

Linear/nonlinear (LN) models have been successful in providing a phenomenological 

description for many neuronal input/output transformations and are constructed by 

correlating spikes with the external variable. Some models are nonparametric in the sense 

that both feature vectors and the nonlinear input/output response of the neuron are derived 

from the data. Other models are parametric, in that the mathematical form of the 

nonlinearity is fixed. While the external variable, as emphasized in the Introduction, could 

be either a sensory drive or a motor output, we will use the term “stimulus” for convenience 

from now on. Note, however, that while for sensory drive one considers only the stimulus 

history, in motor coding applications one would also consider motor outputs that extend 

partially into the future.

We express the neuron's response r(t) at time t as a function of the recent stimulus s(t′) (with 

t′ < t) and, also, potentially its own previous spiking activity:

(Equation 1)

The stimulus vector s(t′ < t) might, for example, represent the intensity of a full-field flicker 

or the pixels of a movie, the spectrotemporal power of a sound, the position of an animal's 

vibrissae, and so on. The choice of this initial stimulus representation is an important step on 

its own and could in principle involve a nonlinear transformation, e.g., the phase of position 

in a whisk cycle, a case we will discuss later. The function f(·) generally represents a 

nonlinear dependence of the response on the stimulus. The response r(t) is equivalent to the 

condition probability of spiking and is of the form

(Equation 2)

The response r(t) is generally taken to be the expected firing rate of a random process, which 

is assumed here to be Poisson. We will denote the spike counts observed on a single trial as 

n(t).

The LN model is a powerful alternative approach that allows one to approximate the input/

output relation (Equation 1) using a plausible amount of experimental data. The key idea is 

to first find a simplified description of the complex stimulus that captures its relevance to 

neuronal firing in terms of one or a small number of feature vectors. One then fits the 

spiking response as a nonlinear function of those few components. Thus the first, “linear” 
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stage of the model acts to reduce the dimensionality of the stimulus. The stimulus s(t′ < t) is 

in general very high dimensional. For example, a gray-scale image on a 10×10 screen is 

specified by 100 numbers, which correspond to the light intensity at every location, and 

these numbers can take any of a range of values. Thus the description of the image is 100-

dimensional. If a visual neuron is sensitive, for example, only to the orientation and spatial 

frequency of the image patch in the center of the screen, this effectively selects a single 

specific configuration of the 100 values as relevant: all that matters for that neuron's 

response is the activity of a much small number of neurons that respond to how much 

“oriented bar” there is in that region of the image. Using linear filtering, one can then take 

any arbitrary stimulus image, multiply it at every point by the oriented bar configuration, and 

sum to give a single number that quantifies the presence of the relevant feature in the image.

More formally, the relation f(·) in Equation 1 is divided into two parts: a linear and a 

nonlinear stage. In general, the stimulus may consist of a sequence of successive 

instantaneous snapshots, e.g., frames of a movie, each with NX spatial pixels or an auditory 

waveform with NX frequency bands. With each “frame” discretized in time at sampling rate 

Δt (Figure 1), there is some time-scale T = NTΔt beyond which the influence of the stimulus 

on future spiking can be assumed to go to zero, defining the number of relevant frames as 

NT. Then the total number of components defining the stimulus, or dimensionality of the 

stimulus space, denoted N, is given by

(Equation 3)

This full N-dimensional stimulus is processed by a set of linear filters defined by the feature 

vectors. These filters act to extract certain components, i.e., linear combinations or 

dimensions of the stimulus, and possibly also the spike history. Next, a nonlinear stage, 

which we will denote as g(·), acts upon those components to predict the associated firing 

rate.

The LN family of models makes two important assumptions about the system's input/output 

transformation. One is that the number of stimulus components or dimensions, K, that are 

relevant to the neuron's response is much less than the maximum stimulus dimensionality, N. 

All methods thus necessarily include a dimensionality reduction step whose goal is to find 

these relevant K vectors that we will call features. They are denoted by ϕi, each of size N 
with i = 1, ..., K, in terms of which the input/output transformation can be written:

(Equation 4)

where

(Equation 5)

Aljadeff et al. Page 5

Neuron. Author manuscript; available in PMC 2017 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for i = 1, ... , K is the projection of the stimulus on the ith feature, i.e., a component-wise 

multiplication of the stimulus and the feature, followed by summation. The time-invariant 

features ϕi are vectors that span a low-dimensional subspace within the full stimulus space, 

and the response of the system is approximated to depend only on variations of the stimulus 

within that subspace. More complicated projections could in principle be used, but the 

determination of such projections typically will require more data when the zi are nonlinear 

functions of the stimulus.

The second assumption is that the nonlinear stage is taken to be stationary in time, i.e., g(·) 
has time dependence only through the stimulus and the history of the neuron's spiking 

response that, like the stimulus, may be high dimensional. The nonlinearity g(·) can be 

determined nonparametrically using the probabilistic interpretation of Equation 1 given in 

Equation 2. We consider for now only dependence on the stimulus and not on the history of 

spiking, i.e., r(t) = g(z1, z2, ..., zK).

A general means to estimate the nonlinearity is to determine the expectation of the response 

within each stimulus bin (Chichilnisky, 2001). Given zi(t), i.e., the projections of the 

stimulus on the K relevant feature vectors (Equation 5), the function g(z1, ..., zK) can be 

computed by first discretizing each of the K stimulus components into NB bins. The 

resolution at which the nonlinearity is estimated is limited by the need to ensure that each of 

the (NB)K bins contains multiple data points for a statistically robust result. Then the 

measured response r(t) is averaged over all the time points where the stimulus belongs to 

each bin. For concreteness, suppose that z1,b, ..., zK,b is the point in the middle of the bin b, 

and the lower and upper boundaries defining that bin are  and , 

respectively. The value of g(Z1,b, ..., zK,b) will be set to

(Equation 6)

where the tb comprise the set of all times that the stimulus belongs to the bin b, i.e.,

(Equation 7)

and Tb is the number of such samples in the data. Finally, the value of g(z1, ..., zK) for all 

points is found by interpolating between the values at the center points for each of the bins.

A more intuitive approach to find the nonlinear transformation, g(·), applies for the 

particular case of only binary responses, i.e., spike or no-spike per sample interval Δt. This is 

always possible for spike trains sampled at a sufficiently high rate. Here we can use Bayes’ 

rule, i.e.,

(Equation 8)
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to determine an input/output relation in terms of the reduced variables defined above 

(Equation 5):

(Equation 9)

The probability distributions on the right-hand side can be found from the data, i.e.,

• p(z1,z2,...,zK|spike), the spike-conditional distribution, is the probability 

distribution of the stimuli, projected onto the K features, conditioned on 

the occurrence of one or more spikes;

• p(z1,z2,...,zK), the underlying stimulus distribution, is the probability 

distribution of all stimuli in the experiment, projected on K stimulus 

features;

• p(spike), the mean firing rate over the entire stimulus presentation.

The underlying stimulus distribution and the spike-conditional distribution are estimated by 

binning the K-dimensional stimulus subspace along each of the feature vectors that span this 

space. The Bayesian procedure (Equations 8 and 9) can be deduced as a special case of the 

expectation rule (Equations 6 and 7) (Box 5).

It is often useful to examine the dependence of the input/output relation g(z1,z2,...,zK as a 

function of only one variable. This is referred to as the marginal gain and is found by 

integrating over all other variables. For example, the marginal of z1 is given by

(Equation 10)

Relation to Expansion Modeling

It is worthwhile to briefly contrast the LN approach with traditional nonlinear methods. If 

the neuron's response does not depend on its own history but only on the stimulus, the 

function f(·) can be expanded as a Volterra series (Marmarelis and Naka, 1972; Marmarelis 

and Marmarelis, 1978), i.e.,

(Equation 11)

where the functions f1(·), f2(·), etc. are weighting functions called kernels, analogous to the 

coefficients of a Taylor series, that are convolved with increasing powers of the stimulus. 

The Volterra series approach has been applied to a few examples in neuroscience, such as 

complex cells in primary vision (Szulborski and Palmer, 1990), limb position in walking in 
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insects (Vidal-Gadea and Belanger, 2009), and single-neuron firing (Powers and Binder, 

1996). However, the amount of data needed to fit the kernels increases exponentially with 

the order of the expansion. Furthermore, capturing realistic nonlinearities including, e.g., 

saturation typically requires expansions to more than first or second order. The LN approach 

differs in that no attempt is made to approximate the nonlinearity in successive orders. 

Rather, the nonlinearity is explicitly introduced as a component of the model.

Nonparametric Models

An important goal of this type of approach is to drive the system with a wide variety of 

inputs so that one explores, and the model captures, as much richness in the response as 

possible. One approach to this is to stimulate with white noise an input that samples a wide 

space of possibilities. However, one should bear in mind that that this is not a natural input 

for most sensory systems and might drive the system in ways that rarely occur in nature or 

put it into an unusual state of adaptation. While these possibilities raise interesting issues for 

future study, the results of noise stimuli often give strong clues as to the realm of structured 

stimuli that are relevant.

For white noise, the value of the stimulus at one location or time is unrelated to its value at 

any other location or time—that is, there are no correlations in the input. This means that all 

frequencies are represented in the stimulus up to a smoothing cutoff, which might be 

determined by limitations on how the stimulus is produced, or chosen using a reasonable 

guess at the fastest possible response timescales of the system. An example of such a 

stimulus is a visual checkerboard stimulus with a total of NX pixels whose luminance values 

are each chosen randomly from a Bernoulli distribution, i.e., a binary distribution with two 

choices, relative to an average intensity (Figure 3B). The input that drives the cell may be 

viewed as a matrix of pixels in space and time, denoted I(x,t).

To define a stimulus sample at time t, we select nT frames of the input to form a matrix, i.e.,

(Equation 12)

where (···) labels the component. In general, we wish to consider each stimulus sample as a 

vector in a high-dimensional space; thus one reorganizes each stimulus sample from this 

matrix format to an N = NX × NT (Equation 3) vector that indexes the NT frames that go 

back in time by NTΔt (Figure 3B):
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(Equation 13)

Spike-Triggered Average

The goal of the dimensionality reduction step is to identify a small number of stimulus 

features that most strongly modulate the neuron's probability to fire. Dimensionality 

reduction can be understood geometrically by considering each presented stimulus s(t) as a 

point in the N-dimensional space. Each location in this space is associated with a spiking 

probability, or firing rate r(s), that is given by the nonlinearity evaluated at that location. A 

given experiment will sample a cloud of points in this N-dimensional space with a geometry 

that is set by the stimulus design (all dots in Figure 2A). The spike-triggering stimuli are a 

smaller cloud, or subset, of these stimuli (red dots in Figure 2A). Dimensionality reduction 

seeks to find the stimulus subspace that captures the interesting geometrical structure of this 

spike-triggering ensemble.

The simplest assumption is that a cell's response is modulated by a single linear combination 

of the stimulus parameters, i.e., K equals one. The single most effective dimension is in 

general the centroid of the points in this high-dimensional stimulus space that are associated 

with a spike. This is the spike-triggered average (STA), denoted ϕsta, the feature obtained by 

averaging together the stimuli that precede spikes (de Boer and Kuyper, 1968; Podvigin et 

al., 1974; Eckhorn and Pöpel, 1981; Chichilnisky, 2001), i.e.,

(Equation 14)

where n(t) is the number of spikes at time t, nT is the total number of spikes, s̄ is the average 

stimulus, i.e.,

(Equation 15)

and M is the total number of stimuli presented in the experiment. As for the case of the 

stimuli (Figure 1B), the STA is organized as a vector of length N that indexes the NT frames 

back in time from t = 0 to t = (NT – 1)Δt (Equation 3), i.e.,
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(Equation 16)

For a Gaussian stimulus, the underlying distribution of stimulus values projected onto the 

STA, p(z) = p(ϕsta·s(t)), is also Gaussian. Often in experiments, the stimulus is binary, so 

that the stimulus in each pixel or time point takes one of two values. If the stimulus has a 

large number of components, the central limit theorem ensures that these projections, as a 

sum of many random values weighted by the feature vector components, will have a 

Gaussian distribution. This distribution can be either computed analytically from the 

statistics used to construct the stimuli or accurately fit from data.

The nonlinearity can be estimated as the expectation of the response (Equations 8 and 9) or, 

when the sampling interval is sufficiently fine, with the use of Bayes’ rule (Equations 8 and 

9). The conditional histogram defining p(z|spike) = p(ϕsta · s(t)|spike) is generally not 

Gaussian and is often under-sampled in the tails of the distributions. Thus, when computing 

this ratio of histograms, it can be helpful to fit the nonlinearity using a parametric model. If 

no functional form is assumed, one can simply apply a smoothing spline to the conditional 

distribution or reduce the number of bins used to estimate the distributions from the data.

Calculating the STA for Retinal Ganglion Cells. We consider the case of a binary 

checkerboard stimulus used to drive spiking in retinal ganglion cells (Figure 3), the neurons 

that output visual information from the retina. In this experiment, the pixel values were 

chosen from a binary distribution (Figure 3A). We applied the above formalism to the 

stimulus set reorganized as three consecutive frames for a stimulus dimension of N = 142 × 3 

= 588. We varied the number of bins used to discretize the stimulus to get reasonably 

smooth features. The STA feature was computed according to Equations 15 and 14 for each 

of 53 retinal ganglion units; an example is shown in Figure 4. The aim is to choose the 

stimulus dimensionality, i.e., NT × NX, so that any structure in the STA returns to zero at the 

boundaries. Further, the dimension of the stimulus should be sufficiently large to allow 

resolution of structure within the STA yet small enough to allow sufficient averaging over 

the effects of noise.

Here we tried both NT = 3 time points with a larger patch size of 14×14 pixels (Figures 4A 

and 4B) and NT = 6 frames with a smaller patch of 10×10 pixels (Figures 4C and 4D). The 

key feature is a central spot of excitation that rises and falls over three frames (Figures 4A 

and 4B). Thus the STA provides a readily computed one-dimensional description of the cell; 

in this case the feature is a transient spot of light. We return to this point when we extend the 

description through a covariance analysis.
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For this dataset, the large number of frames and spikes permits the underlying stimulus 

distribution to be well sampled (Figure 4C). This distribution is consistent with a Gaussian, 

as can be expected for a projection on any direction for a white noise stimulus (Figures 4B 

and 4D). The coarse time bins contained upward of three spikes per bin, and thus we used 

the expectation rule to calculate the nonlinearity (Equations 6 and 7). The observed 

nonlinearity is found to be monotonic (Figure 4D).

Interpreting the STA—The STA procedure (Equations 14 and 15) has a strong theoretical 

basis. It has been shown (Chichilnisky, 2001; Paninski, 2003) that ϕsta is an unbiased 

estimator of the feature if the spike-triggering stimuli have a non-zero mean when projected 

onto any vector, i.e., the cloud of spike-triggering stimuli is offset from the origin, and if the 

distribution of spike-triggering stimuli has finite variance. In the limit of infinite amounts of 

data and an elliptical noise distribution (Paninski, 2003), the STA feature is guaranteed to 

correctly recover the dependence of the neuron's response on this single feature. 

Geometrically, the vector ϕsta points from the origin exactly to the center of the cloud for a 

sufficiently large dataset. This is independent of the nonlinearity of the cell's response. 

However, this theorem does not guarantee that if the cell's response depends only on the 

projection of the stimulus onto one vector, that vector must be ϕsta. For example, the spike-

triggering cloud of stimuli points might be symmetric, such that the average lies at the 

origin, but the shape is nonetheless very different from the cloud consisting of all stimuli, 

i.e., the underlying stimulus distribution p(z) = p(ϕsta·s(t)). The spike-triggered covariance 

(STC), discussed next, makes use of this additional information.

Spike-Triggered Covariance

While generally the STA is the best solution to reduce the stimulus to a single dimension, 

the probability of a spike may be modulated along more than one direction in a stimulus 

space, as has been shown for many types of neurons across different sensory systems 

(Brenner et al., 2000; Fairhall et al., 2006; Slee et al., 2005; Fox et al., 2010; Maravall et al., 

2007). Further, there may be a symmetry in the response, such as sensitivity to both ON or 

OFF visual inputs for a retinal ganglion cell, or invariance to phase in the whisk cycle for a 

vibrissa cortical cell, that causes the ϕsta to be close to zero. Thus our next step is to 

generalize the notion of “feature” to a K-dimensional model of the form:

(Equation 17)

where, as a reminder, zi = zi(t) = ϕi·s(t) is the projection of the stimulus at time t on the i-th 

identified feature vector ϕi. To find these K-relevant dimensions, we will make use of the 

second-order statistics of the spike-triggering stimuli.

Let us first consider the second-order statistics of the stimulus itself. These are captured by 

its covariance matrix, also referred to as the underlying stimulus covariance, i.e.,

(Equation 18)
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where ⊤ means transpose and we assume averaging over M stimulus samples indexed by t. 
The covariance matrix can be diagonalized into its eigenvalues, denoted λi, and 

corresponding eigenvectors, denoted vi, as in principal component analysis (PCA), i.e.,

(Equation 19)

where the eigenvectors of Cp are space-time patterns in the present case. The eigenvectors 

define a new basis-set to represent directions in stimulus space that are ordered according to 

the variance of the stimulus in that direction, which is given by the corresponding 

eigenvalue.

For a Gaussian white noise stimulus, all eigenvalues of the covariance of the underlying 

stimulus distribution are equal and Cp is a diagonal matrix with Cp = σ2I, where I is the 

identity matrix. The constant σ2 is the variance of the distribution of pixel amplitudes. In 

practice, the use of a finite amount of data to compute the underlying stimulus covariance 

(Equation 19) affects the spectrum slightly, but in a predictable way; the spectrum of 

eigenvalues of the stimulus covariance matrix is close to constant (black dots in Figure 3B), 

in agreement with the analytical spectrum calculated for the same stimulus dimension and 

same number of samples (red dots in Figure 3B). Although we could have computed the 

underlying stimulus distribution without finite size limitations, it is instructive to see this 

effect. The dominant eigenvectors, shown in a space-time format, appear featureless, as they 

should (Figure 3C).

Our goal is to find the directions in stimulus space in which the variances of the spike-

triggering stimuli differ relative to the underlying stimulus distribution of stimuli. These can 

be found through the covariance difference matrix (de Ruyter Van Steveninck and Bialek, 

1988; Agüera y Arcas and Fairhall, 2003; Bialek and van Steveninck, 2005; Aljadeff et al., 

2013), denoted ΔC, where

(Equation 20)

and the STC matrix Cs is computed relative to the spike-triggered average (Equation 14) and 

given by

(Equation 21)

The underlying stimulus covariance matrix Cp is given by Equation 18, and we recall that nT 

is the total number of spikes.

The matrix ΔC (Equation 20) may be expanded in terms of its eigenvalues, λi, and 

eigenvectors, ϕstc,i, i.e.,
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(Equation 22)

As ΔC is a symmetric matrix, the eigenvalues are real numbers and the corresponding 

eigenvectors form a orthogonal normalized basis that spans the N-dimensional stimulus 

space; thus ϕstc,i, · ϕstc,j = 0 for i≠j and ϕstc,i,·ϕstc,i = 1. Positive eigenvalues correspond to 

directions in the stimulus space along which the variance of the spike-triggered distribution 

is larger than the underlying stimulus distribution, and negative eigenvalues correspond to 

smaller variance. This analysis is illustrated in two dimensions in Figure 2B. The dominant 

STC vectors, STC modes 1 and 2, are found by subtracting the eigenvectors of the 

underlying stimulus covariance matrix (gray area Figure 2B) from those of the STC matrix 

(blue area in Figure 2B).

Practical Considerations in Computing the STC—Some eigenvalues will emerge 

from the background simply because of noise from finite sampling. To determine which K of 

the N eigenvectors of ΔC are significant for the cell's input/output transformations, the 

eigenvalues λi are compared to a null distribution of eigenvalues obtained at random from 

the same stimulus. We compute, for a large number of repetitions, a STC matrix using 

randomly chosen spike times, tr, to select the same number of stimulus samples at random, 

i.e.,

(Equation 23)

The corresponding matrix of covariance differences ΔCr = Cr – Cp and its eigenvalues are 

computed for each random choice. The eigenvalues of all matrices ΔCr form a so-called 

“null distribution.” Eigenvalues of ΔC (Equation 20) computed from the real spike train that 

lie outside the desired confidence interval of the null distribution are said to be significant. 

Note that one might wish to preserve any structure that results from temporal correlations in 

the spike train, e.g., a tendency to spike in bursts. If such structure exists, one can compute 

the matrix Cr (Equation 23) using spike trains shifted by a random time lag with periodic 

boundary conditions such that the end of the spike train is wrapped around to the beginning.

The STC features, ϕstc,i, are the corresponding significant eigenvectors of the covariance 

difference matrix. If there is a non-zero STA, ϕsta will tend to be the most informative 

direction in stimulus space. Thus a higher-dimensional model of the stimuli that lead to 

spiking includes the STA and the significant STC features. Examination of these features 

will give insight into the underlying feature selectivity of the neurons. However, for the 

purpose of predicting spikes, it is convenient to work in a basis where all features are 

orthogonal. As the STC feature vectors are not generally orthogonal to the STA, one should 

project out the STA from each eigenvector used, recalling that the STC features remain 

orthogonal to one another. The new features are denoted as  where
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(Equation 24)

It is convenient to normalize these feature vectors such that the norm of each of them is 

equal to one, i.e., .

For the case of white noise, where the variance of the stimulus is equal along every 

direction, the eigenvalues of the underlying stimulus covariance matrix, Cp, are essentially 

all equal, and the STC features can be computed directly from Cs. However, if the variance 

along some directions of the stimulus is larger than others, as is the case for correlated noise, 

the significance threshold for each eigenvalue of Cs is different. In this case, subtracting the 

underlying stimulus covariance allows one to test whether the variance of the spike-triggered 

distribution is different from that of the underlying stimulus distribution along each 

direction.

The STA and the set of orthogonalized STC vectors are then used to compute a 

multidimensional nonlinear function by computing the joint histogram of the K values of the 

spike-triggering stimuli projected onto the feature vectors and applying either the 

expectation (Equations 6 and 7) or Bayesian (Equations 8 and 9) procedure. The function 

p(spike | s(t)) acts as a multidimensional look-up table to determine the spike rate of the cell 

in terms of the overlap for the stimulus with each of the feature vectors.

Calculating the STC for Retinal Ganglion Cells—The STC features were computed 

according to Equation 20 for a set of retinal ganglion units; results for the same 

representative unit used for the STA features (Figures 4 and 5A) are shown in Figure 5. 

There are four STC features (Figure 5A) that are statistically significant (Figure 5B). The 

first STC feature appears as a spatial bump with a 0.93 overlap with the STA feature. Thus 

the dominant STC stimulus dimension is oriented in almost the same direction as the STA. 

The second STC feature is spatially bimodal, and the third and fourth STC features have 

higher-frequency spatial oscillations; all of these second-order features are nearly orthogonal 

to the STA and indicate space-time patterns beyond a “bump” that will drive the neuron to 

spike.

We complete the model by calculating the nonlinearity (Equations 6 and 7). We first project 

out the component along the STA feature from the STC features (Equation 24) to find the 

orthogonal components. The first STC feature has such a high overlap with the STA feature 

that the projection essentially leaves only noise. The second STC feature is essentially 

unchanged by the projection. As there are too few spikes to consider fitting more than a two-

dimensional nonlinearity, the nonlinearity is computed as a function of two variables, i.e., 

 (Figure 5C). The one-dimensional nonlinearities for the STA and 

orthogonal STC mode can be recovered from this function by projecting along the respective 

axes (Equation 10) (Figure 5C). The corresponding nonlinearity for the STC mode is bowl-

shaped, increasing at large negative as well as positive values of the overlap of the stimulus 
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with . Such a nonlinearity can arise, for example, if the neuron is sensitive to a feature 

independent of its sign.

Interpreting the STC—For a sufficiently large dataset, the significant STC features are 

guaranteed to span the entire subspace where the variance of the spike-triggered stimulus 

ensemble is not equal to the variance of the underlying stimulus distribution (Paninski, 

2003). In contrast to the corresponding result for the STA feature, for the STC feature this 

guarantee only holds when the stimulus distribution is Gaussian or under certain restrictions 

on the form of the nonlinearity (Paninski, 2003). Even when it is difficult to obtain an 

accurate model for the nonlinearity, the relevant STC features help to develop an 

understanding of the processing the system performs on its inputs. For example, in the 

retina, STC analysis can reveal potentially separate ON and OFF inputs to an ON/OFF 

retinal ganglion cell (Fairhall et al., 2006; Gollisch and Meister, 2008) and can capture 

spatial or temporal phase invariance, such as that exhibited by complex cells, by spanning 

the stimulus space with two complementary filters that can add in quadrature (Touryan et al., 

2002; Fairhall et al., 2006; Rust et al., 2005; Schwartz et al., 2006; Maravall et al., 2007).

The spectral decomposition of the symmetric matrix ΔC always returns orthogonal 

components. Thus the STC features cannot, in general, be interpreted as stimulus subunits 

that independently modulate the cell's response (McFarland et al., 2013). Instead, the 

features span a basis that includes relevant stimulus components. Finding the appropriate 

rotations from the orthogonal feature vectors to stimulus components can strengthen the 

potential link between the functional model and underlying properties of the neural circuit, 

but requires additional assumptions. This is, in general, a difficult problem (Hong et al., 

2008; Kaardal et al., 2013; Ramirez et al., 2014).

Natural Stimuli and Correlations

Our development so far has focused on methods that work well for white noise inputs, yet 

neurons in intermediate and late stages of sensory processing—for example, areas V2 or V4 

in the visual pathway—are often not responsive to such stimuli. Rather, robust responses 

from these cells often require drive by highly structured stimuli, such as correlated moving 

stimuli that are typical of the statistics of the natural sensory environment (Simoncelli and 

Olshausen, 2001). In this case, the methods discussed above may be inappropriate or at the 

very least can be expected to yield suboptimal models. Therefore, much attention has been 

given to developing methods that are appropriate to analyzing neuronal responses to natural 

stimuli or stimuli with statistics that match those of the natural sensory environment (David 

and Gallant, 2005; Sharpee, 2013).

Another facet of coding natural scene statistics is that animals self-modulate the structure of 

incoming stimuli through active sensing (Nelson and MacIver, 2006; Kleinfeld et al., 2006; 

Schroeder et al., 2010; Prescott et al., 2011). While one could, for example, sample the 

natural scene statistics of a forest environment by computing the spatial and temporal 

correlations recorded by a stationary video camera (Ruderman and Bialek, 1994; van 

Hateren and van der Schaaf, 1998), an animal navigating through the forest experiences very 

different statistics because of its body motion (Lee and Kalmus, 1980) and saccadic eye 
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movements (Rao et al., 2002; Nandy and Tjan, 2012). It is desirable to characterize the 

response properties of groups of neurons to the type of inputs driving them in a scenario that 

is as close to real as possible, but as we will see below, analysis of responses to such stimuli 

presents considerable challenges.

Calculating the STC with Correlated Stimuli—Our calculation of features so far has 

been limited to the case of white noise stimuli with a variance that is equal, or nearly equal, 

in all stimulus dimensions. This led to a covariance matrix for these stimuli, Cp, whose 

eigenvalue spectrum was nearly flat (Figure 3B). Yet stimuli in the natural sensory 

environment have statistics that differ markedly, with spatiotemporal correlations and non-

Gaussian structure (Ruderman and Bialek, 1994; Simoncelli and Olshausen, 2001). While 

the complex higher-order moments of natural inputs may be relevant for neural responses 

and will not be captured by first- and second-order moments (see, for example, Pasupathy 

and Connor, 2002), we can still address the issue of correlation. A correlated stimulus has an 

underlying stimulus covariance matrix, Cp, that contains significant off-diagonal 

components and whose eigenvalue spectrum is far from flat.

The STA feature and the eigenvectors of ΔC, i.e., the STC features, will be affected by the 

correlations within the stimulus (Bialek and van Steveninck, 2005) (compare Figure 2A and 

Figure 2C). The removal of these correlations is a process referred to as decorrelation or 

whitening. This may be applied to the case of so-called colored noise, where the power in 

different frequency bands is not equal, as it is in white noise. In this case, whitening 

corresponds to equalizing the power at each frequency. In the time domain, this corresponds 

to dividing by the underlying stimulus covariance matrix. Thus one can whiten the stimulus 

itself by dividing by the underlying stimulus covariance matrix (Theunissen et al., 2001; 

Schwartz et al., 2006), i.e.,

(Equation 25)

and then proceed with the STA and STC analysis as defined by Equations 14 and 22 but with 

s(t) replaced by . Similar to the inverse of the covariance of the underlying stimulus 

distribution (Equation 29), the matrix  is defined by

(Equation 26)

Alternatively, the feature vectors may be calculated and the effect of correlations removed y 

dividing the feature vectors by the underlying stimulus covariance matrix (Equation 18). We 

denote the whitened features as  and , where

(Equation 27)
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(Equation 28)

and ϕsta and ϕstc,i are the estimates defined by Equations 14 and 22, respectively. The matrix 

 has the same eigenvectors as Cp (Equation 19), but the eigenvalues are inverted, i.e.,

(Equation 29)

Recall that Cp and thus  are close to the identity matrix for white noise. The 

decorrelation procedure is also applied when producing the null eigenvalue distribution used 

to determine the significance of the STC features (Equation 23).

Regularization of the Inverse Covariance Matrix—The whitening procedure is 

usually numerically unstable, as it tends to amplify noise (David et al., 2004; Sharpee et al., 

2008). This is because decorrelation attempts to equalize the variance in all directions. Yet 

the eigenvector decomposition of the underlying stimulus covariance matrix, Cp, includes 

directions in the stimulus space that have very low variance, i.e., small values of λi that are 

also likely to be poorly sampled. Un-checked, this leads to dividing the feature vectors or 

stimulus by small but noisy eigenvalues that amplify the noise in these components. This is 

especially a problem when there is a big difference between the large and small eigenvalues 

of Cp. In this case, it is best to simply remove stimulus components with small variance. 

This is done by replacing  with the pseudoinverse, a matrix in which the  is set to 0 

for λi below a certain threshold, i.e., stimulus components along small eigenvalue modes 

have simply been discarded. The number of remaining non-zero  is called the order of 

the pseudoinverse (Penrose, 1955).

The pseudoinverse of order L and pseudo square-root inverse of order L, with the 

eigenvalues λi arranged in decreasing order and L < N, are respectively defined as:

(Equation 30)

(Equation 31)

Multiplying by the pseudoinverse is equivalent to projecting out components of the stimulus 

along directions vi that correspond to small λi before multiplying by the inverse.
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The order of the pseudoinverse, L, is a regularization parameter that allows one to choose a 

cutoff for directions in stimulus space for which the variance is considered to be too small to 

accurately estimate the component of the feature in that direction. If we are able to construct 

a full spiking model of features and nonlinearity, we may choose the value of L as the one 

that yields a model that gives the best predictions for a test dataset; this is the course we 

followed.

STA and Covariance from Thalamic Spiking during Whisking in Rat—Rat 

whisking provides an excellent example of active sensing in that spiking is tied to the motion 

of the vibrissae, i.e., long hairs that the rat sweeps through space as it interrogates the region 

about its head (Figure 6A). Whisking consists of an underlying 6–10 Hz rhythm whose 

overall maximum amplitude, or envelope, and local mean, or set-point, change slowly in 

time. It is often convenient to characterize vibrissa position in terms of phase in the whisk 

cycle as opposed to absolute angle (Curtis and Kleinfeld, 2009) (Figure 6A), as many 

neurons have a preferred phase for spiking (Figure 6B). In our dataset, we include records of 

spiking from seven neurons along the primary sensory pathway in thalamus along with 

vibrissa position as the rats whisked in air (Moore et al., 2015b) (Figure 6C); free whisking 

in air is a means to study the reafferent signal alone, as a touch-based sensory input must be 

decoded relative to the reafferent signal of vibrissa position (Kleinfeld and Deschênes, 

2011).

To ensure that the mean firing rate is stationary over the time course of each behavioral 

epoch, we decomposed the whisking stimulus by computing the local phase and envelope 

using a Hilbert transform (Hill et al., 2011a) and removing shifts in the set-point of the 

motion (cf. green and blue traces of the reconstruction in Figure 6C). We then reconstructed 

the stimulus as changes in angle with respect to the set-point (Figure 6D). To analyze the 

spiking data relative to the reconstructed stimulus, we choose a 300 ms window with a 2 ms 

sampling period so that the stimulus s(t) is a NT = 150 dimension vector in time. Here, 

because we consider only a single vibrissa, the dimensions of the stimulus are NX = 1 and N 
= NT. The underlying stimulus covariance (Equation 19) has eigenvalues that fall off 

dramatically by a few orders of magnitude (Figure 6E), in contrast with the nearly flat 

spectrum of white noise (Figure 3B). The dominant eigenvectors appear as sines and cosines 

at the whisking frequency (modes 1 and 2 in Figure 6E), with higher-order modes 

corresponding to variations in amplitude (modes 3 to 6) and higher harmonics (mode 7 and 

8). The power in modes higher than about 60 is negligible. This spectral decomposition 

illustrates the high degree of correlation of the stimulus and the considerable variation in the 

sampling of each stimulus dimension, seen from the amplitude fall-off in high frequencies. 

Lastly, we observed that the inter-whisk interval shows a peak at the whisking frequency 

(Figure 6F), consistent with the form of the autocorrelation (Figure 6G). However, despite 

the presence of a strong rhythmic component in the stimulus, the inter-spike interval for a 

representative neuron appears largely exponential (Figure 6F).

We first consider the case of the feature vectors without whitening. We computed the STA 

feature (Equation 14) (Figure 7A) and the three significant STC features (Equation 20) 

(Figures 7A and 7B) for neurons in vibrissa thalamus. The STA feature appears as a 

decaying sine wave (Figure 7A), and the dominant STC feature appears as a phase-shifted 
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version of the ϕsta (gray, Figure 7A). The overlap of ϕstc,1 with ϕsta is small, i.e., −0.06. 

Thus the dominant unwhitened STC feature could be safely orthogonalized relative to the 

unwhitened STA feature (Equation 24) and used to construct a nonlinear input/output 

surface for this cell (not shown).

We repeated the above analysis with a whitened stimulus. The stimulus was decorrelated 

using an order L pseudoinverse (Equation 29), where L was varied between 2 and 40. For 

each value of L we computed a predictive model, as described later, and chose L = 3 as 

providing the best predictability. We show the decorrelated (Equation 27) and regularized 

(Equation 30) STA feature (Figure 7A) and the one significant STC feature (Figures 7A and 

7B). Here, the STA and the STC features are very similar to those for the unwhitened case 

even though the analysis was restricted to a three-dimensional subspace spanned by the 

leading eigenvalues of ΔC (Equation 20) after whitening. We then constructed the nonlinear 

input/output surface for the cell using these feature vectors (Equation 9) (Figure 7C). The 

nonlinearity with respect to the STA feature alone appears as a saturating curve with a fall-

off for extremely high inputs.

Before we leave the approach of nonparametric models, for which the features and 

nonlinearity are determined only by data, we note the method of maximally informative 

dimensions (Sharpee et al., 2003, 2004; Rowekamp and Sharpee, 2011) as an alternative 

means to find spike-triggering features and an arbitrary nonlinearity (Box 6). Rather than 

using a geometrical approach, this method uses the mutual information between the stimulus 

and the spike as a measure of the quality of the feature.

Models with Constrained Nonlinearities

The ability to find nonparametric stimulus features and nonlinearity can be severely 

constrained by the size of the dataset. As we have seen, with realistic amounts of data, such 

models are often under-sampled, particularly if one wants to incorporate dependence on 

multiple features and other factors such as the history of spiking and, potentially, network 

effects. The methods we will discuss next instead make specific assumptions about the form 

of the nonlinearity that simplify certain aspects of the fitting problem.

Fixing the form of the nonlinearity allows one to pose a so-called “noise model” for the 

responses given the stimulus and the choice of model parameters. One then estimates the 

parameters of the model that best account for the data through an approach known as 

maximum likelihood. The likelihood is the probability of the observed data given a choice of 

model parameters, understood as a function of those parameters. Maximization of the 

likelihood function provides an estimate of the model parameters that best accounts for the 

data. This maximization can be achieved reliably when the likelihood is convex. A convex 

function, one whose curvature does not change sign, has no local minima or maxima, and 

thus maximization can be performed using local gradient information and ascending the 

likelihood function to a unique peak. There are many convex optimization algorithms 

available, for instance the conjugate gradient ascent algorithm (Malouf, 2002).
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An important consideration in fitting these models is that, even in cases for which the 

solution is unique due to convexity, the model may be accounting for variation that is 

specific to the portion of the data used for the fit. This is a phenomenon known as 

overfitting, and it manifests as a decrease in predictability of the model on novel datasets 

relative to the quality of the fit obtained with the training data. To ensure that the model is 

not simply capturing noise terms specific to the training set, a comparison between 

performance on test and training data is, for all approaches, a critical validation step. To 

minimize overfitting, one can increase the tolerance of the fitting function such that the 

gradient ascent stops when the model parameters have not yet reached the global minimum. 

Alternatively, one can partition the data into different random choices of training and test 

sets, known as jack-knife resampling, and run the optimization repeatedly on these different 

partitions. The resulting parameters may then be averaged over the repetitions; the 

variability of the estimates may also be quantified.

Maximum Noise Entropy Method

A principled way to specify a probabilistic model of the input-output transformation, f(·), is 

by searching for a conditional probability distribution of stimuli and responses, p(spike | s). 

In doing so, we make as few assumptions as possible on the relationship between input and 

output, while remaining consistent with well-defined measures on the data. This can be done 

under the assumption that the variability in the response is described by a maximum entropy 

distribution, i.e., a distribution that is the least structured given the stimulus and the 

constraints set by measurements of the data. In this approach, called the maximum noise 

entropy (MNE) method, we compute moments of the measured spiking response with 

respect to the stimulus and equate these with the same moments calculated with the joint 

probability distribution from the model (Table 1). A full list of moments across the N 
dimensions of the stimulus space contains complete information about the neuronal 

response. However, as in other approaches, it is typically difficult to go beyond two 

moments.

The functional form of the MNE joint distribution, with constraints to second order 

(Globerson et al., 2009; Fitzgerald et al., 2011a, 2011b) is given by

(Equation 32)

The parameters of the model are a, a scalar needed to satisfy the zeroth-order constraint; h, 

an N-component vector needed to satisfy the first-order constraints; and J, an N×N 
symmetric matrix needed to satisfy the second-order constraints. The parameters of the 

distribution (Equation 32) that best fit the data, i.e., have highest likelihood, are found via a 

gradient descent algorithm. For each set of parameter values, the likelihood function is 

computed and the parameters are modified such that the likelihood function will increase in 

the next step, until a maximum is reached. Note that changes made to the parameters are not 

arbitrary: parameters must be changed such that a set of constraints is satisfied. Equation 32 

represents a probability distribution that is normalized, so . 
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Additionally, the moments of the distribution (Table 1) must match those computed from the 

data. There is no need to use a spectrally white stimulus with MNE. Lastly, by convention, 

one seeks the minimum value of the negative of the logarithm of the likelihood rather than 

the maximum of the likelihood.

Interpreting the MNE Model—How does the MNE model (Equation 32) ensure the 

maximal variability in the spike rate? Consider the maximum entropy distribution (Equation 

32) without any constraints, i.e., a = h = J = 0. The probability of a spike given a stimulus 

then is p(spike | s) = 1/2 and can be thought of as the least structured spiking model. At 

every time bin, the neuron will fire or not fire with equal probability. The next simplest 

model is the one where the probability of a spike is independent of the stimulus p(spike | s) = 

p(spike), but the overall firing rate is constrained to be the experimentally measured rate r0. 

Now the goal of the fitting procedure is to find a such that r0 = p(spike | s) = 1/(1 + ea), 

which yields a = log(1/r0 – 1).

In general, when there are multiple parameters, and spiking depends on the stimulus, a 

numerical fitting procedure is required to fit the value of the constraints computed from the 

data and return the value of the parameters for the second-order model (Equation 32). The 

zeroth-order term, 〈r(t)〉, has no stimulus dependence, and, as explained above, enforces that 

the average firing rate of the MNE model will equal that of the neuron. The parameters h 
and J act as linear feature vectors analogous to ϕsta and the ϕstc,i:

• Setting J = 0, equivalent to choosing a first-order MNE model, results in 

the model

(Equation 33)

This is equivalent to a STA model with feature ϕsta≈h and a sigmoidal 

nonlinearity.

• The matrix J can be decomposed in terms of its eigenvalues, λi, and 

eigenvectors, denoted ui, with i = 1,...,K, i.e.,

(Equation 34)

Defining the projection of a stimulus vector onto an eigenvector as zi = 

ui·s allows us to rewrite the quadratic term in Equation 32 as:

(Equation 35)
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Therefore, the eigenvectors of J with large eigenvalues, in absolute value, 

can be viewed as analogs of the STC features ϕstc,i with a quadratic-

sigmoidal nonlinearity. The match is not exact, as J is fitted in together 

with the linear component h, whereas ϕstc,i were calculated from the 

covariance difference matrix (Equation 20), independently of the STA. 

Similarly to the STC method, the eigenvectors of J are orthogonal to each 

other by construction. Thus we may not interpret these spatiotemporal 

vectors as independent aspects of the input that drive the cell's response.

In the STC approach, the significance of a given feature was determined by comparing the 

corresponding eigenvalue of ΔC (Equation 20) to the null distribution constructed using 

shuffled spike trains. Here, because the model parameters are estimated using a gradient 

ascent algorithm, we cannot construct a null model using shuffled spike trains. It is still 

possible, however, to estimate which of the eigenvalues of J correspond to features, denoted 

ui, that significantly modulate the spiking output. We accomplish this by shuffling the 

entries of J and computing the eigenvalues of the shuffled matrix. Note that the shuffled 

matrix must remain symmetric, and the diagonal and off-diagonal elements should be 

shuffled separately. Eigenvalues of the matrix J obtained from the real data are said to be 

significant only if they exceed the range calculated using this shuffling procedure, since the 

shuffled matrix represents a set of features with the same statistics as the components of the 

MNE models, but without the structure.

Relation to Minimal Mutual Information—From an information theoretic point of 

view, the problem could be posed differently, as was proposed by Globerson et al. 

(Globerson et al., 2009). In the MNE approach, one seeks a minimally structured conditional 

distribution of responses p(spike | s). In contrast, in the Minimal Mutual Information 

(MinMI) approach, one searches for the model, i.e., the distribution p(spike | s), where the 

responses provide the least information about the stimulus. Thus the goal with MinMI is to 

find a lower bound on the information content sent to a hypothetical downstream population. 

The problems with the MinMI approach are that the resulting model is typically highly 

structured and biologically unrealistic, and that the lower bound represents a worst case 

scenario that is unlikely to be attained by a biologically plausible model.

MNE Models for Thalamic Spiking during Whisking in Rat—We applied the MNE 

procedure to the datasets obtained from thalamic recordings while rats whisked in air 

(Figure 8). As expected, the calculated first-order feature, h, closely approximated the STA 

feature (Figure 8A). We found that the top nine of N = 150 eigenvectors of J were 

statistically significant (Figure 8B). The dominant feature, u1, makes a substantial 

contribution at short times, like the dominant STC feature ϕstc,1 (Figure 8A), but decays 

much more rapidly than the STC feature. The higher-order features calculated from J, i.e., 

u2 through u9, correspond to variations in the stimulus from whisk to whisk and have no 

clear interpretation.

A number of practical matters arise in applying the MNE model. First, in its raw form, the 

fitting procedure can generate high-frequency components that are not represented in the 

stimulus and thus not constrained. In the present case, we address this by removing the 
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components orthogonal to the first 15 principal components of the stimulus from the feature 

vectors of the model. Second, we use the full matrix J that was found by the fitting 

procedure to generate the predictions using this model (discussed later under Model 

Evaluation). Removing the insignificant eigenvectors often leads to poor predictions because 

the average spike rate predicted from the model no longer exactly matches the zeroth 

moment, i.e., the average firing rate, since the projections onto the insignificant eigenvalues 

of J do not sum exactly to zero. Third, while overfitting is always a potential problem, this 

did not arise with this dataset, possibly because of the rapid fall-off of the eigenvalues for the 

covariance of the stimulus matrix (Figure 6E). We return to the issue of overfitting when we 

discuss validation of the models and note that the MNE method was particularly susceptible 

to overfitting for white noise stimuli.

Separability

The feature vectors in the first two models we discussed, namely STA and STC, are 

computed directly from the spike-triggered and underlying stimulus distributions and do not 

require a fitting procedure to be applied. As such, they do not degrade significantly if the 

stimulus space is expanded, for example, by assuming that the spiking depends on the 

stimulus history further back into the past. However, if the cell's response is found to be 

modulated by a large number of features, e.g., multiple STC modes, the number of spikes 

will severely limit how many of these can be incorporated in a predictive model. For 

algorithmically fit models, the number of parameters scales with the dimensionality of the 

stimulus. In MNE, for example, the scaling is linear for a first-order model (Equation 32) 

and quadratic for a second-order model (Equation 31). Therefore, these models may suffer 

from overfitting, as a presentation of a large number of stimulus samples is required to 

accurately fit the parameters.

Here we discuss two forms of separability, which can be thought of as approximations that 

two or more of the model components act independently. If these approximations are 

accurate for a given neuron, they may greatly reduce the number of spikes needed to fit the 

model or help prevent overfitting.

Separability of a Feature Vector—Many stimuli, such as the checkerboard presented 

for the retinal studies, consist of both spatial and temporal components. Yet only a small 

number of these NX×NT components (Equation 12) are likely to be significant. The 

spatiotemporal features ϕi may, in general, be expanded in a series of outer products of 

spatial modes and temporal modes (Golomb et al., 1994). We define these as  and , 

respectively, where d labels the mode.

We express ϕi in the same form of a matrix for the space time stimulus (Equation 12), i.e.,
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(Equation 36)

where λd is the weight of the dth mode of the feature, also referred to as the singular value in 

singular value decomposition.

A great simplification occurs if the dependence on spatial components and temporal 

components is separable. In this case, the spatiotemporal features are well approximated by 

the product of a single spatial and temporal contribution, i.e., only the d = 1 term in Equation 

36 is used. This corresponds to a single spatial pattern that is modulated equally at all pixels 

by a single function of time. This assumption reduces the number of parameters one needs to 

estimate, per feature, from NX×NT to NX + NT + 1.

Separability of the Nonlinearity—Another important form of separability relates to the 

nonlinear function g(·) (Equation 9). While the nonlinearity g(·) can be any positive function 

of the K stimulus components zi, the amount of data required to fit g(·) over multiple 

dimensions is prohibitive. It is possible to get around this data requirement by making 

assumptions about g(·). First, one might assume that the nonlinearity is separable with 

respect to its linear filters (Slee et al., 2005). Under this asumption, g(·) can be written as:

(Equation 37)

This approximation is equivalent to assuming that the joint conditional probability 

distribution over the projections of the stimulus on the feature vectors, p(z1, z2, ..., zK|spike), 

is equal to the product of the marginal distributions, p(z1|spike) ... p(zK|spike). The validity 

and quality of this approximation can be quantified using mutual information (Adelman et 

al., 2003; Fairhall et al., 2006), which is a measure of the difference between joint and 

independent distributions.

Beyond the enormous reduction in the number of spikes sufficient to accurately fit the 

model, a separable model that makes reasonably good predictions can help us interpret the 

model and potentially relate it to circuit and biophysical properties of the system. A 

successful separable model implies that the cell is driven by processes that are, to a good 

approximation, independent. These could be, for example, inputs from parallel pathways 

such as separate dendrites or subunits, or the effects of feedforward versus feedback 

processing. A specific example of a model whose typical application generally assumes that 
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different factors influencing the firing of the neuron contribute independently and 

multiplicatively is the generalized linear model (GLM).

Generalized Linear Models

While the models so far only consider stimulus dependence, the biophysical dynamics of the 

neuron or local circuit properties might alter the ability of the cell to respond to stimuli as a 

function of its recent history of activity. For example, all neurons have a relative refractory 

period that could prevent them from spiking immediately after a previous spike, even if the 

stimulus at that time is one that normally strongly drives the cell (Berry and Meister, 1998). 

Further, projection neurons have a tendency to emit bursts of spikes, such that the 

probability of a spike will be increased if the cell has recently spiked (Magee, 2003). These 

effects, along with other more general dependencies, can be incorporated in the framework 

of a GLM (Nelder and Wedderburn, 1972; Brown et al., 1998).

GLMs are a flexible extension of standard linear models that allow one to incorporate 

nonlinear dependencies on any chosen set of variables, including the cell's own spiking 

history. They gain this ability to incorporate a richer set of inputs by taking an explicit form 

for the nonlinear function g(·) to reduce demands on data. A GLM is characterized by the 

choice of g(·) and by a noise model that specifies the distribution of spike counts, required to 

be within a class of distributions known as the exponential family. This includes many 

appropriate probability distributions, e.g., binomial, normal, and Poisson. As in previous 

approaches, we choose a Poisson process, for which the probability of counting n spikes in a 

time bin of width Δt at time t is determined by the predicted firing rate r(t) averaged over 

that time bin, i.e.,

(Equation 38)

The firing probability is taken to be a function g(·) of a linear combination of the stimulus, 

the recent spiking of the cell, and potentially other factors (Figure 1A). In its simplest form, 

the spike rate is given by

(Equation 39)

where the parameter a sets the overall level of the firing rate, the sum 

is the familiar projection of the stimulus onto the spatiotemporal feature ϕglm(t), and we 

have now included a temporal spike history filter, denoted ψ(t), which is a Nh-dimensional 

vector that weights the recent activity of the neuron. Together we refer to the set of 

parameters for the GLM as Θ. The task is to determine the optimal value of Θ given the 

specific observed sequence of spike counts. This is done by maximizing the likelihood, i.e., 
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the probability of the data given the parameters viewed as a function of the parameters, 

, over choices of Θ.

When the nonlinearity g(·) is both convex and log-concave, the likelihood function will itself 

be a convex function. This means that the likelihood  has a single, global optimum 

that can be obtained through any convex optimization routine. Fortunately, nonlinearities 

that satisfy this property include common choices like the exponential and the piecewise 

linear-exponential function (Paninski, 2004). We adopt an exponential non-linearity for all 

subsequent analyses.

Rather than maximize likelihood function, we maximize the logarithm of the likelihood 

function, referred to as the log-likelihood, which for Poisson spiking is

(Equation 40)

where r(s(t) | Θ) is the predicted firing rate, and we dropped the n(t)! term, as it is 

independent of the model. With this, the computational fitting problem we solve is simply

(Equation 41)

which can be maximized through a convex optimization routine of choice.

Overfitting and Regularization—As for other methods, the model that best fits the 

training data may not generalize to test datasets. In a likelihood framework, overfitting is 

simple to understand: one can always improve the log-likelihood simply by adding more 

parameters. Indeed, if the number of parameters encompassed by Θ is the same as the 

dimensionality of n(t), we can construct a model that fits the observed data exactly. But this 

is not the aim of constructing a model. Rather, we seek to find a model that captures trends 

in the data that are common across different samples, rather than details of individual 

fluctuations.

Overfitting arises either as a result of insufficient training data relative to the number of 

parameters being estimated or from a model that contains more parameters than are needed 

to describe the relationship under consideration. As discussed with respect to natural stimuli, 

correlations in the input reduce its effective dimensionality of the data and thus the number 

of parameters required in the model. A common effect in GLMs and other algorithmically fit 

models is the appearance of high-frequency components in the feature vector when the 

stimulus is slowly varying. This occurs because the fast variations minimally affect the 

predicted spike-trains and the likelihood when the slowly varying stimulus is projected onto 

them (Equations 40 and 41). While their effect on the log-likelihood may be minimal, they 

obstruct interpretation of the feature vectors ϕglm. Such overfitting can be avoided by 

penalizing models that are over-parameterized by adding a penalty term Q(Θ) to the quantity 

we are maximizing, i.e.,
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(Equation 42)

For instance, to avoid overfitting we might choose the term Q(Θ) to be large for models that 

contain a large number of non-zero parameters. The simple choice,

(Equation 43)

where NΘ is the number of parameters of the model, is known as the Akaike Information 

Criterion (Akaike, 1973; Boisbunon et al., 2014). This and related criteria provide a simple, 

principled means to choose between competing models of differing numbers of parameters 

and may be used to determine the optimal stimulus and history filter sizes (Shoham et al., 

2005).

Penalty terms may be interpreted as representing prior knowledge relevant to the estimation 

problem. In particular, if one has a prior distribution on the space of parameter estimates, 

pΘ(Θ), one can use Bayes’ rule to find an estimate that maximizes the a posteriori 

probability, denoted ΘMAP, where

(Equation 44)

Then we can identify the penalty term as the negative logarithm of the prior, i.e., Q(Θ) = 

−logpΘ(Θ). For instance, if one expects the feature vector to be smooth, one might apply a 

Gaussian prior of the form

(Equation 45)

The function Q(Θ) will penalize feature vectors that are not smooth or that vary excessively 

when D is chosen to be a second-derivative operator (Linden et al., 2003). The weight κ is 

often chosen to maximize the model's performance on data withheld from the optimization 

procedure.

Finally, a very simple heuristic that sometimes mimics the effect of these regularization 

methods to avoid overfitting is early stopping. Here we simply limit the number of iterations 

in the fitting process to effectively stop the fitting before the unique solution is found. This 

approach assumes that solutions near the optimal one for the training data are good and also 

lead to generalization. This involves monitoring the form of the solution at each step of the 

optimization and choosing the number of iterates that recovers a reasonable solution.

Choice of Basis—Overfitting can also be avoided by forbidding rather than just 

penalizing models that are over-parameterized. This is achieved by reducing the number of 

parameters of the model to a value known through experience to be reasonable. While we 
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have discussed previously the simple expedient of downsampling or truncating the data, 

more generally one can project the stimulus into a subspace that captures important 

properties of the data; the basis vectors for this subspace then define the number of 

parameters of the stimulus feature vector. One natural choice is to use the leading principal 

components of the stimulus (Equation 18) as the basis set. In the case of the spike history 

filter, one can choose basis functions that are appropriate to capture the expected biophysics 

of the neuron, such as refractoriness or burstiness. A common set of basis functions for 

representing spike history filters is a “raised cosine” basis, given by

(Equation 46)

that describes a sequence of bumps whose peaks are tightly spaced near the time of the spike 

and become increasingly sparse for earlier times. In this way the basis is well resolved where 

the spike history filter changes most rapidly (Pillow et al., 2008).

Stability—Despite much theory surrounding their application (Paninski, 2004; Brown et 

al., 1998), correctly specifying a GLM using appropriate timescales and basis functions 

remains as much an art as a science. Particular care must be taken in correctly 

parameterizing spike history filters. One approach is to initially fit the model with no special 

basis functions, examine the resulting filters, and then choose a parameterization of a 

reduced basis, e.g., raised cosines or exponentials that allows for the form obtained in the 

full-dimensional case. While this involves fitting a full-dimensional model, a lower-

dimensional model is ultimately obtained that is less likely to be overfit.

Unfortunately, nothing guarantees that the maximum likelihood estimate of a GLM will be 

stable, i.e., yield a sensible prediction that can be compared to data. Unstable models usually 

have predicted spike rates that diverge to infinity when stimulated by novel stimuli. While 

such models may still provide insight from the form of their feature vectors, they are not 

able to predict spike trains for novel stimulus datasets, the essence of model validation. If 

unstable GLMs are encountered, one should first check that the parameterization of the spike 

history filter accurately characterizes the neuron's refractory period. In this regard, improper 

spike sorting that leads to the presence of spike intervals that are less than the refractory 

period (Hill et al., 2011b) can cause misestimation of the spike history term and lead to 

instability.

GLMs for Retinal Ganglion and Thalamic Cells—We fit GLMs for the set of retinal 

ganglion cells stimulated with white noise (Figure 3) and thalamic neurons stimulated by 

self-motion of the vibrissae (Figure 6). We consider the white noise case first. A sequence of 

delta functions, i.e., independent pixels, was used as the basis functions for the stimulus 

feature vector, and raised cosines (Equation 46) were used as basis of the spike history filter. 

For the same representative neuron used previously, the feature vector ϕglm corresponds to a 

transient spot of illumination that is similar to the STA feature yet slightly delayed in time 

(Figure 9A). This shift is presumably the effect of the spike history dependence, which leads 

to increased firing rate approximately 40 ms after the previous spike, a timescale similar to 
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the stimulus refresh, Δt. Since the effect of the spike history filter is exponentiated, we plot 

both the result of the fit (black line, Figure 9B) and the exponent of the filter (gray line, 

Figure 9B) to more clearly illustrate the effect that this component of the model has on the 

predicted firing rate.

The GLM fit in the case of correlated noise gives a less intuitive but perhaps more 

interesting result. Here the 12 leading terms of a PCA of the stimulus were used as the basis 

functions for the stimulus feature vector, and raised cosines were used as the basis of the 

spike history filter (Equation 46). We observe that the feature vector ϕglm oscillates for less 

than one whisk cycle and returns to baseline very quickly (Figure 9C); it is quite different 

from the ϕsta. Further, the spike history shows a significant excitatory component, delayed 

by ~6 ms, that is likely to generate a burst of spikes at an approximately fixed position in the 

whisk cycle (Figure 9D). The GLM analysis therefore suggests that the thalamic cell is very 

responsive to changes in position of the vibrissae but has little dependence on the history of 

the stimulus or past spiking beyond around 80 ms, corresponding to about half of a whisk 

cycle.

Model Evaluation

How well does each of the models perform in predicting the spike rate for data that have the 

same statistical properties as the training set but are otherwise novel? For each model and 

dataset, 80% of the data were used as the training set for fitting the model, and the remaining 

20% were reserved for testing. A number of measures are available to test the quality of the 

model in predicting spikes. The most direct and intuitive is the root-mean-square of the 

difference between the recorded firing rate rs(t) and that predicted by the model. Ideally this 

would be computed for responses to a repeated but rich stimulus so that one could estimate 

the intrinsic variability of the neuronal spiking response. However, here and in general for 

natural stimuli, one only has a single presentation of the stimulus, or the relationship 

between the external variable and the spike train may be inherently non-repeatable, as during 

behavior when the stimulus is under the animal's control.

Log-Likelihood

In this case, one can compare the log-likelihood of the data given the model for different 

models. For Poisson spiking (Equation 38), this is

(Equation 47)

Typically, the log-likelihood estimate has a common large offset that depends only on the 

firing rate and a small range of variation of the term  among different 

models because of the logarithmic compression. To estimate a lower bound on the log-

likelihood, we replace the calculated rate with the measured rate to form a null hypothesis, 

i.e.,
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(Equation 48)

where 〈n(t)〉 is the average spike count in each bin. The confidence level is determined by a 

jack-knife procedure (Sokal and Rohlf, 1995) in which the 20% testing part of the data is 

permuted with the training part.

Spectral Coherence

A complementary metric for the fidelity of the predicted spike trains is the spectral 

coherence between the predicted and measured responses. Coherence provides a measure of 

correlation between signals in the frequency domain and thus can distinguish the 

performance of different models across different frequency bands, each of which may have 

particular behavioral relevance.

We define r̃(f) and r̃s(f) as the Fourier transform of the predicted and measured rates, 

respectively. The spectral coherence, denoted C̃(f), is:

(Equation 49)

The multi-taper method is used for averaging, 〈...〉, over a spectral bandwidth that is larger 

than the Raleigh frequency 1/(NTΔt) (Thomson, 1982; Kleinfeld and Mitra, 2011).

The magnitude of the coherence reports the tendency of two signals to track each other 

within a spectral band and is normalized by the power in either signal. The phase of the 

coherence reports the relative lag or lead of the two signals. There are no assumptions about 

the nature of the signals. The confidence level is determined by a jack-knife procedure 

(Thomson, 1982). Spectral coherence may be viewed in analogy to the Pearson correlation 

coefficient in linear regression (Box 7).

Validation of Models with White Noise Stimuli

The predictions with the STA model, the STC plus STA model, and the GLM capture the 

gross variations in spike rate for the retinal ganglion cells (Figures 10A and 10B). The GLM 

yields representative spike trains, as opposed to rates, so that we computed predicted rates 

by averaging over many spike trains computed by repeatedly presenting the same stimulus to 

the same model. In these predictions, many spikes are unaccounted for, while the spike 

probability also indicates spikes when none occur. Interestingly, the STA plus STC model 

has the highest value of the log-likelihood (Equation 47), while the GLM has the lowest, 

lower even than the STA and not significantly different from the null hypotheses (Figure 

10C). The relatively poor performance of the GLM may imply overfitting of the training 

data, as models that involve more parameters have a larger log-likelihood. In contrast, the 
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STA and STC plus STA models perform better than the null expectation (Equation 48) 

(Figure 10C).

Greater insight into fitting of the models is provided by a spectral decomposition. First, the 

spectral power of the stimulus is constant, by design (Figure 10D), and the power of the 

spike train decreases only weakly with increasing frequency, consistent with a Poisson 

process. The spectral power for the spike rates predicted from three models, i.e., STA, STC 

plus STA, and GLM, show a rather strong frequency dependence. The coherence is 

substantially below |C̃(f)| = 1 at all frequencies, yet it is statistically significant (Figure 10E). 

Consistent with expectations from the log-likelihood (Figure 10C), the STC plus STA model 

has an approximately 5% improved coherence at all frequencies (Figures 10E and 10F). The 

GLM yielded the worst predictions. Further, while the phase for the STA and STC plus STA 

models is close to zero, which implies that the predicted spikes arrive at the correct time, the 

phase is a decreasing function of frequency for the GLM model (Figure 10E). This implies 

that the predicted spikes arrive with a brief time delay that is estimated to be (1/2π) (Δphase/

Δf) = −25 ms or less than Δt (inset, Figure 10A).

Synopsis—For the white noise stimulus and this particular set of retinal ganglion cells, the 

data appear to be adequately modeled by the single STA feature and the accompanying 

nonlinearity (Figures 4C and 4D). The coherence shows an improvement with the STC plus 

STA model (Figures 10E and 10F). The GLM gives the worst predictions by all measures, 

and the predicted spikes occur with a shift in timing compared to the test data. Time delays 

relative to reverse correlation approaches have been seen in past implementations of the 

GLM as well (Mease et al., 2014).

Not surprisingly, the MNE model, with a large number of parameters, was susceptible to 

overfitting. The parameters from fitting the stimulus set with N = 600 (Figures 4C, 5A, and 

10A) led to a stable calculation of the linear feature, h, and three statistically significant 

second-order features (Equation 32). Yet the model gave poor predictions, with a log-

likelihood metric that was lower for the MNE model than for the null hypothesis (Equation 

48) and a spectral coherence that was relatively small. To reduce overfitting, we truncated 

the stimulus. The log-likelihood for this reduced model increased, and there was a 

concomitant increase in the spectral coherence at all frequencies, although the coherence 

was still lower than that achieved with the other models.

Validation of Models with Correlated Noise from Self-Motion

We now turn to the case of models for whisking cells in thalamus (Figures 6 and 11). Here, 

the underlying stimulus is highly correlated and strongly rhythmic (Figure 11A), with a 

broad spectral peak at the fundamental and harmonic frequencies of whisking (Figure 11D); 

recall that the stimulus has its slowly varying midpoint removed (Figure 6D). Despite the 

structure in the stimulus, the spectrum of the spike train of our example thalamic cell was 

largely featureless (Figure 11D).

We first ask if whitening the stimulus does indeed lead to an improved prediction. We 

computed the predicted rate from the feature vector for the STA model, i.e., ϕsta, and the 

feature vector after whitening  (Figures 7A and 11B). The log-likelihood is greater after 

Aljadeff et al. Page 31

Neuron. Author manuscript; available in PMC 2017 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



whitening (Figure 11C), albeit not significantly so. The spectral power for the  is greater 

at the harmonics, but not the fundamental, compared to the nonwhitened feature vector 

(Figure 11D). Interestingly, whitening increases the coherence between the predicted and the 

measured rates at the whisking frequency, with |C̃(f)| increasing from 0.70 to 0.75, as well as 

at other frequencies (Figures 11E and 11F). The exception is that the coherence below about 

1 Hz, where variations in the envelope of the whisk may be coded, is better for the 

nonwhitened STA feature vector (Figure 11E).

We further computed the predicted rate for the feature vector for the STC model, i.e., ϕstc,2, 

and the feature vector after whitening, i.e.,  (Figures 7A and 11B). As for the STA 

alone, whitening increases the coherence between the predicted and the measured rates at 

the whisking frequency, with |C̃(f)| increasing from 0.70 to 0.75, as well as at other 

frequencies, with the exception that the coherence below about 1 Hz is better for the 

nonwhitened STC plus STA feature vectors (Figure 11E).

Across all models, the best predictability at the whisking frequency occurred with the 

whitened STA, STA plus STC, and MNE models, albeit by an increase of only 5%–10% 

compared with the GLM. All of the models exhibited a slight phase advance at the whisking 

frequency. This corresponds to a time shift of approximately (1/2π) (Δphase/fwhisk) = 20 ms, 

which is worrisome, although short compared to the approximately 160 ms period of a 

whisk. All told, none of the models was clearly “best” at all frequencies, although the MNE 

model appeared to be strongly coherent with the measured train at all but the lowest 

frequencies (Figure 11E).

It has been shown that whisking may be characterized in terms of a rapidly varying phase 

(Hill et al., 2011a), denoted Φ(t). If the firing of neurons is sensitive to phase in the whisk 

cycle, independent of frequency, then a linear feature vector will be a poor representation. 

We therefore constructed an additional model in which we first applied a nonlinear 

transformation, the Hilbert transform (Hill et al., 2011a), to the stimulus to extract Φ(t). We 

then used Bayes’ rule to construct a phase tuning model to compare with the LN approaches 

(Figure 6B):

(Equation 50)

The phase model achieves the same high level of coherence at the whisking frequency as the 

whitened STA, STA plus STC, and MNE models (Figures 11D–11F). This suggests that the 

feature vectors are largely acting as broadband filters. Of course, the tuning model performs 

badly for frequencies away from the ~6 Hz whisking peak (Figure 11E).

Finally, we consider two additional thalamic neurons that had extreme response properties 

(Figure 12). The first is a neuron that tended to spike with respect to changes in the 

amplitude of whisking (Figures 12A–12D). Here the whitened STA and STC plus STA 

models did well, the MNE model was most impressive with greatest coherence over the 

broadest frequency range, and the GLM did poorly (Figure 12E). On the other hand, we 
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consider a neuron that responds almost solely to the phase of whisking (Figures 12F–12H). 

All models performed well at the whisking frequency (Figures 12I and 12J); the phase 

model performs particularly well, and here too the MNE model has higher coherence with 

the measured rate at both lower and higher frequencies.

Synopsis—This analysis suggests that for stimuli of this type, a metric for “goodness of 

fit” based on spectral decomposition offers far more insight than a scalar measure based on 

maximum likelihood. This may be particularly helpful when certain frequencies may have 

ethological significance. As for the “best” method with the thalamus data, we were 

impressed with the results obtained with the MNE model, which fits well over a broad range 

of frequencies. This stands in contrast to the difficulties in using MNE with the white noise 

data.

A noteworthy issue concerns the jack-knife estimate of the standard error. Unlike the case of 

a continuous record for retinal ganglion cells, the thalamic neurons were recorded for one to 

two dozen whisking bouts, each a few seconds long. Thus the test set for each jack-knife 

consisted of a recording of variable length, as opposed to exactly 20% of the data. 

Additionally, whisking variables such as amplitude and frequency are not stationary but 

change from bout to bout during active sensing behavior. These experimental issues, taken 

together with the log-likelihood being a shallow function that depends on the average firing 

rate, led to systematic differences between the different jack-knives that are larger than the 

differences between models; note relatively large error bars in the figure (Figure 11C). These 

issues were partly resolved by looking at the spectral coherence (Figures 11E and 11F), 

which is less susceptible to systematic differences.

Network GLMs

The GLM framework can be readily extended to network implementations of M neurons 

(Truccolo et al., 2005; Pillow et al., 2008). Each neuron is considered to be driven by a 

filtered stimulus, its own spiking history, and also the filtered activity of the rest of the 

neurons. If ψij(t) (i, j = 1, ..., M) is the filter acting on the spiking history of neuron j driving 

neuron i, then the model for the ith neuron is

(Equation 51)

The incorporation of such network filters has been shown to improve the capability of the 

model to account for correlations between neurons in a retinal population (Pillow et al., 

2008). While it is tempting to interpret the network filters as capturing, for example, 

synaptic or dendritic filtering of direct inter-neuronal connections, these terms cannot be 

taken to imply that two neurons are anatomically connected. For example, correlations might 

arise from a common input that is not taken into account through the stimulus feature vector 

(Kulkarni and Paninski, 2007; Pillow et al., 2008; Archer et al., 2014).
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Prior work found coupling terms, ψij (t), in a network GLM (Equation 51) that could be 

interpreted as functional interaction kernels between cells (Pillow et al., 2008). In that study, 

model validation of each neuron was done using the stimulus and the recorded activity of the 

remainder of the cells. This procedure is equivalent to fitting a single-cell model where the 

stimulus is expanded to include the spiking history of the rest of the network, i.e., the nj(t). 
As a practical matter, this procedure has value when one is interested in the precise thiming 

of coupling between cells, e.g., to find whether neurons are anatomically connected 

(Gerhard et al., 2013). However, expanding the stimulus to encompass the spiking history of 

the rest of the network stands in contrast to validation of a GLM that represents a network 

with feedback between neurons, for which the spike histories are based solely on 

simulations and the only external variable is the stimulus. We use the full network approach 

in our validation procedure.

Application to Cortical Data during a Monkey Reach Task

We present an example of a network GLM based on nine simultaneous recordings from 

monkey primary motor cortex in which the monkey performed a grip-and-reach motor task 

(Engelhard et al., 2013). The GLM consists of feature vectors that relate to hand motion, as 

measured by a cursor trajectory and grip force (Figure 13A), that were modeled with 

Gaussian-bump basis functions. Since motor neurons can encode future motor outputs, the 

stimulus feature encodes both past and future relationships relative to the current time bin 

(Figure 13B). Similar choices with GLMs have been previously applied to neurons in motor 

cortex (Shoham et al., 2005; Truccolo et al., 2005; Saleh et al., 2012). Lastly, we used raised 

cosine basis functions (Equation 46) for the spike history filters and the coupling filters for 

the histories of other neurons in the network.

The cursor position and grip data vary over hundreds of milliseconds to seconds (Figure 

13C), while the spike history data vary on the order of milliseconds. Capturing effects on 

these disparate timescales within the same model requires some care, as the data are non-

Gaussian and highly temporally correlated; as noted, this correlation can result in 

uninterpretable high frequencies in the feature vectors. This requires some form of 

regularization. Here, we used only a limited number of basis vectors that sparsely sample the 

stimulus at regular intervals, with the interval size on the order of the stimulus 

autocorrelation time-scale.

The fitting was performed only on data within the movement phases of the trials, i.e., from 

the beginning of the “Go signal” to the end of ”Grip pressed” (gray bands in Figure 13B). In 

order to avoid unnecessary coupling terms, a group “least absolute shrinkage and selection 

operator” (LASSO) (Yuan and Lin, 2006) penalty is applied to the sets of parameters 

representing connections between neurons. This takes the form

(Equation 52)
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where {Θi,j} are the parameters representing the coupling from neuron j to neuron i and κ is 

a fixed parameter in the algorithm that determines the magnitude of the regularization 

penalty. A similar penalty is applied in prior work (Pillow et al., 2008). The penalized 

likelihood is still convex and ensures global convergence.

Validation

As in the previous cases, the model is validated by splitting the data into a training set 

representing 80% of the total data. A test set representing a contiguous block of 20% of the 

total data, or 4 min of recording, is used for validation. We take a value κ = 100 in our 

network analysis (Equation 52); smaller values decreased the log-likelihood while larger 

values reduced all coupling terms to near zero. We then calculated the predicted rate for the 

models, used in log-likelihood estimate (Equation 47), by averaging repeated simulations of 

the GLM given the same stimulus. This validation process was repeated five times, selecting 

a non-overlapping 20% of the data for testing each time. Combining the likelihood and 

coherence estimates over all the individual estimates allows the mean likelihood and the 

standard error of the mean likelihood to be determined for both the coupled and uncoupled 

models.

With respect to a representative example cell (Figure 13), we find that history filter is the 

same for the coupled and uncoupled cases (Figure 14A), coupling terms are present on a 

variety of timescales, and the stimulus feature vectors are altered in magnitude by the 

coupling (Figure 14C). Interestingly, for all cells in the network, the log-likelihood of the 

model evaluated for the observed spike train shows overall a negligible difference be tween 

the coupled and uncoupled models (Figure 14D). This is consistent with studies of coupled 

GLMs applied to retina data (Pillow et al., 2008), in which the addition of coupling terms 

yields no observable benefit to predicting the average rate given the same stimulus.

As for the retina and thalamus datasets, more information can be gleaned from the coherence 

between the predicted rate and the observed spike train than from the log-likelihood. 

Significant spectral power in both coupled and uncoupled cases only occurred for low 

frequencies, i.e., 0–1 Hz, and the coupled model had a significantly higher coherence in this 

range for some cells. This increase was statistically significant and particularly strong for 

our example cell (red ellipse in Figure 14E) and one other cell (blue ellipse in Figure 14E) 

and barely significant in three other cells (green ellipses in Figure 14E). Thus network 

interactions through the spike history terms of neighboring cells improve the ability to 

predict the spike trains for some cells in this dataset.

Further Network GLM Methods

A priori, the coupling terms of the network GLM cannot be interpreted as representing direct 

or anatomical connectivity. Rather, they are best understood as representing functional 

interactions between the neurons modeled. Such measures of connectivity can still provide 

insight into anatomical connections in small networks (Gerhard et al., 2013) and population 

dynamics and encoding in large systems (Stevenson et al., 2012; Chen et al., 2009; 

Takahashi et al., 2012). In these cases it is useful to quantify the significance of a coupling 

term between neurons. A common approach is to employ an analysis based on Granger 
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causality (Granger, 1969; Seth et al., 2015). Granger causality is designed to determine 

when one variable is useful in predicting another. If a causal relationship between two 

processes exists, then the past values of one process should help to predict the future values 

of the other process. One can apply a variant of Granger causality to the network GLM 

(Equation 51) to test the connection from neuron j to neuron i (Kim et al., 2011). Other 

ongoing attempts to use maximum entropy methods have been reviewed (Fairhall et al., 

2012). More generally, the issue of disambiguating direct interactions from interactions that 

occur through unobserved, or latent, variables is receiving increasing attention (Pfau et al., 

2013; Vidne et al., 2012; Okun et al., 2015).

Discussion

We have presented and analyzed a class of methods that summarize the response properties 

of neurons in terms of one or a few feature vectors and an associated nonlinear input/output 

function (Table 2). These methods provide a principled means to describe neuronal spike 

responses. However, they are still phenomenological, and it is fair to ask what has been 

gained.

First, these methods provide a largely automatic and objective means to determine neuronal 

feature vectors, allowing one to determine how responses “tile” stimulus space. Second, the 

models are predictive and can be applied to novel stimuli, both as a crucial test of the 

reliability of the fit of the model as well as a means to estimate the fraction of the cell's 

response that is modeled by one or a few features. Further, the ability to predict spikes from 

stimuli will likely play a critical role in neuroprosthetic devices to restore sensation, such as 

artificial cochleas (Brown and Balkany, 2007), retinas (Trenholm and Roska, 2014; 

Nirenberg and Pandarinath, 2012), semi-circular canals (Merfeld and Lewis, 2012), and even 

artificial proprioception (Tabot et al., 2013). Third, the feature vectors and the nonlinearity 

serve as a basis to quantify changes in computation with context (Fairhall et al., 2001; 

Fairhall, 2013; Geffen et al., 2007), attention (Rabinowitz et al., 2015), learning (Shulz et al., 

2000), and through neuromodulation (McCormick et al., 2015).

Model Assessment

Generally, one would like to measure neural responses to repeated trials, allowing one to 

estimate the intrinsic variability in the responses and thus bound the expected precision of 

the model predictions. This results in an observed variance that is a continuous function of 

time and can be compared to a “model,” in this case the observed mean rate; these values, of 

course, depend on the scale of smoothing applied to the data. Within early stages of the 

visual pathway, modeling based on repeated trials capture 80%–90% of the variance in 

macaque retina (Pillow et al., 2008), 80%–90% of the variance in cat primary visual cortex 

(Touryan et al., 2002), and 94% of the variance in macaque primary visual cortex (Rust et 

al., 2005).

Here we dealt with the more general case of data that did not have repetitions. We therefore 

chose to evaluate the accuracy of each model's prediction in two different ways: the log-

likelihood (Equation 47) and the coherence (Equation 49) between the test spike train and 

the prediction. The log-likelihood, applied to test data (Figures 10C and 11C), is a natural 
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choice, as it is used as an objective function when fitting the MNE models and the GLM and 

can be used with spike trains as well as spike rates. However, we observed that it is not 

always satisfactory. It can be a shallow function that does not clearly discriminate between 

predictions from models that are rather distinct (Figures 10C and 13C). Also, as a scalar 

quantity, the log-likelihood provides no insight into what aspect of the cell's response is or is 

not captured by the model.

Calculating the coherence between the responses and the predictions offers a complementary 

approach (Figures 10E and 13E). Coherence has not been used directly as an objective 

function for model fitting. In contrast to the log-likelihood, it gives a normalized measure of 

the portion of the power of the neuronal responses at a given frequency that is explained by 

each model. It also indicates timing errors via phase shifts (insert in Figure 10A and Figures 

10E and 11E).

The magnitude of the coherence provides information about what aspects of the spike rate 

are captured by the model and may provide insight into how the model can be improved. 

The normalization allows one to compare results between cells in addition to comparing 

models of the same cell. The coherence will be less than one because of variations that are 

independent of the stimulus and thus are not captured by the models, as well as because of 

nonstationary variations, such as changes in brain states (Goris et al., 2014; McCormick et 

al., 2015). Further, it is always possible that an improved model could perform better on the 

existing data; in this regard the reported coherence should be taken as a lower limit on the 

predictability of the spike pattern.

Caveats on Whitening

The pre-whitening procedure for the STA and STC analysis is mathematically sound for 

random stimuli that have Gaussian statistics (Paninski, 2003) and a limited number of other 

distributions (Samengo and Gollisch, 2013). Even when this constraint does not strictly 

hold, our experience (Figures 7) suggests that, despite no convergence guarantees, a 

whitened STA or STC plus STA model can give rather good predictions for responses to 

novel stimuli with natural statistics (Figures 11). The pre-whitening procedure, however, 

does not always substantially improve predictions over using the raw stimulus. Since the 

latter simple approach is easier to construct and less computationally demanding than 

models specifically tailored for natural scenes, it is worthwhile to construct them and test 

their predictions.

An intermediate case between natural scenes and Gaussian white noise is when stimuli are 

drawn from a highly correlated Gaussian distribution, such that the variance along some 

dimensions is much greater than along others. Here the STC method is guaranteed to 

converge to the correct set of features, but the large ranges of variances may imply a slow 

convergence rate. This process can be improved through a modification of the STC method 

(Aljadeff et al., 2013).

Adaptation and Dependence on Stimulus Statistics

One significant issue with the fitting of LN models is that the resulting model, including 

feature vector, spike history filter, and nonlinearity, often depends on the mean, variance, 
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and correlation structure of the stimulus that is used to probe the system. For many sensory 

systems, the changes that are observed in LN models for different stimulus ensembles 

(Fairhall, 2013) act to improve information transmission through the system, i.e., account for 

the presence of noise (Atick, 1992), match the dynamic range of the input/output to the 

range of stimuli (Brenner et al., 2000; Fairhall et al., 2001; Wark et al., 2007), or cancel out 

correlations in the input to produce a predictive code (Srinivasan et al., 1982; Hosoya et al., 

2005; Sharpee et al., 2006). In some cases, the timescales under which these changes occur 

suggest that biophysical or circuit properties are likely to be altered through adaptation to 

different stimulus conditions (Hosoya et al., 2005; Sharpee et al., 2006). However, when the 

stimulus ensemble is changed abruptly, some corresponding changes in LN models follow 

close to instantaneously and need not require changes in any biophysical properties of the 

system (Rudd and Brown, 1997; Fairhall et al., 2001; Mease et al., 2013).

The above effect can occur because different stimulus ensembles may drive the system 

through different parts of its nonlinear regime, and the response behavior is only 

approximated through the LN model. Thus the best reduced model describing responses for 

a particular stimulus ensemble will depend on how that ensemble drives the system, even 

without any changes in the system itself (Gaudry and Reinagel, 2007; Hong et al., 2008; 

Mease et al., 2014). In some cases these dependencies can be predicted explicitly (Hong et 

al., 2008; Famulare and Fairhall, 2010) but more typically are simply empirically observed. 

The development of models that incorporate these dependencies on stimulus statistics would 

be of great value and would be able to generalize to a wider range of stimuli. One might 

have hoped, for example, that the GLM's dependence on the history of activity might take 

into account issues like spike frequency adaptation and allow one to separate out a common 

stimulus sensitivity along with a dependence on firing rate that could allow for greater 

generalization. However, GLMs fit for different stimulus statistics generally differ in all 

components (Mease et al., 2014) and do not generalize well to different ensembles. It is 

likely that incorporating features or dynamics acting over multiple timescales can provide 

sensitivity both to rapid fluctuations and slower-varying statistical properties of the stimulus. 

For example, a promising current alternative approach is the development of hybrid models 

that combine an LN model with a dynamical component modeling, e.g., activity-dependent 

changes in kinetic parameters (Ozuysal and Baccus, 2012).

Population Dimensionality Reduction

The potential role of correlation in neuronal firing is widely recognized (Cohen and Kohn, 

2011). The network GLM is just one approach to deciphering how the activity of many 

neurons in a fully connected network jointly encodes external inputs/outputs and carries out 

internal dynamics. More generally, one might expect to be able to represent measured high-

dimensional multi-neuronal activity in terms of a smaller number of spatially distributed 

activation patterns. One approach toward this goal is to project activity patterns into a low-

dimensional space and reveal the dynamics that occur during computation (Cunningham and 

Yu, 2014). A natural starting point to determine this space is to apply PCA to the 

instantaneous firing patterns (Mazor and Laurent, 2005; Churchland et al., 2010a, 2010b). 

The method of Gaussian process factor analysis (Yu et al., 2009) further adds some 

assumptions on the smoothness of the temporal evolution of firing patterns. Given these 
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reduced descriptions of neural activity, typically one then “reverse correlates” on a generally 

arbitrary or experimenter-defined low-dimensional description of the stimulus or behavior to 

sort and analyze these patterns according to their external correlates (Churchland et al., 

2010a, 2010b). The second strategy aims to systematically model the multi-neuronal 

response distribution, P(r1, r2, ..., rn), and its correlations using maximum entropy 

approaches (Schneidman et al., 2006; Ganmor et al., 2011; Fairhall et al., 2012). In this case, 

similar to the MNE approach (Equation 32), one fits a maximum entropy distribution to the 

joint neural responses by choosing relevant constraints on the response, such as mean firing 

rates and correlations. Typically these methods do not yet provide a full mapping of input to 

output. Hybrid maximum entropy models, where the first moment of the distribution 

depends on the response and the second on network interactions, have also been proposed 

(Granot-Atedgi et al., 2013).

Non-spiking Data

We have focused on the relation of spikes, or more generally point processes, to the ongoing 

stimulus. Yet many neurological events are smoothly varying. At the macroscopic level, this 

includes the subthreshold flow of current in the extracellular space that is measured by field 

electrodes or by magnetoencephelography, while at the microscopic level this includes the 

subthreshold membrane potential as well as second messenger activation, such as the 

intracellular concentration of calcium or cyclic AMP. Measurements of intracellular calcium 

are of particular importance as the technology to measure such signals with a high signal-to-

noise ratio is pervasive throughout neuroscience (Svoboda et al., 1997; Grienberger and 

Konnerth, 2012), and the onset of the calcium signal can often be taken as a surrogate for an 

electrical spike (Lütcke et al., 2013). The methods we presented to compute the STA, STC, 

and MNE features can readily be used to compute feature vectors by replacing the number 

of spikes per sample time, ns(t), by the intensity of the sampled signal (Ramirez et al., 2014). 

The challenge arises in computing the nonlinearity associated with the STA and STC 

methods. For the case of spiking, the procedures of spike detection and sorting provide a 

threshold between no spikes and one or more spikes, although this discrimination process 

has an associated uncertainty (Lewicki, 1998; Hill et al., 2011b). For an analog process like 

a change in intracellular calcium, one could simply regard the signal as a continuous signal 

and choose an appropriate noise model, e.g., Gaussian. Alternatively, one can represent it as 

a point process by selecting a threshold level of detectability. Detection of calcium events, as 

well as their mapping to spikes, is a topic of ongoing research (Vogelstein et al., 2010).

The generalized integrate and fire method (Pozzorini et al., 2015) provides an extension of 

the GLM method to account for both spiking and subthreshold dynamics, as would be 

obtained from an intracellular measurement of membrane potential. The generalized 

integrate and fire method incorporates a term that filters the membrane potential as it evolves 

over time that is equivalent to the stimulus feature vector in the GLM. It further incorporates 

two spike history filters. One is equivalent to the spike history filter in the GLM, and the 

second is a new term that evolves over time and shifts the threshold of the spiking 

nonlinearity. This approach accounts for the subthreshold dynamics of the neuron yet 

bypasses complicated modeling of the active membrane currents.

Aljadeff et al. Page 39

Neuron. Author manuscript; available in PMC 2017 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusion

We have presented, evaluated, and provided code for a number of methods, all established if 

not quite mainstream, that answer a simple question: what makes a neuron fire? We, along 

with a plethora of other practitioners, believe that these methods provide a convenient 

starting point to obtain insight into the responses of neurons typically obtained in a 

recording session. In so far as this has proven useful for measurements of single cells, the 

development of efficient and effective descriptive models becomes a necessity for 

simultaneous measurements across populations of neurons—thousands if not millions of 

neurons at once, if the hopes for new electrical and optical probes bear out (Alivisatos et al., 

2012). As yet, serious limitations apply. When real data do not satisfy certain constraints, 

such as Gaussian distributed stimulus inputs and monotonic input/output functions, that 

guarantee convergence for simpler methods, heuristics need to be used to keep fitting 

procedures from becoming numerically unstable. Even in the retina, LN models often fail to 

generalize to natural stimuli and do not capture more complex responses. Responses in 

neurons that are far downstream from the sensory periphery often have invariances that are 

very difficult to capture by these methods. In primary visual cortex, LN models have added 

substantially to the richness of previous descriptions, yet leave much unexplained 

(Olshausen and Field, 2005). Further, real-world stimuli may contain critical yet rare 

stimulus events (Khouri and Nelken, 2015), at least rare on the timescale of typical 

physiological recordings. By their very nature, rare stimuli will not be captured by low-order 

statistics no matter how hard they drive a cell to spike. Despite these caveats, we are 

optimistic that continuing advances that extend these approaches will become part of the 

standard canon of electrophysiology as recording techniques progress. But the application of 

spiking models is still an art form and, like much of electrophysiology (Kleinfeld and 

Griesbeck, 2005), is not yet an industrial process. Fortitudine vincimus.

Implementation

All calculations were performed using MATLAB running on a single processor computer. 

Annotated code is supplied that was used for all calculations and to generate the figures in 

the manuscript, along with all datasets (download file from http://neurophysics.ucsd.edu/

software.php): 53 salamander retina sets, 7 rat thalamic sets, and 9 monkey cortex sets. We 

recommend that interested individuals first repeat the calculations that we used to generate 

the figures for this paper, then modify the code to analyze their own data.

The following commercial software from MathWorks (http://www.mathworks.com) is 

required: MATLAB, the Image Processing Toolbox, the Optimization Toolbox, the Signal 

Processing Toolbox, the Statistics Toolbox, and the Symbolic Math Toolbox. In addition, the 

following free software must be downloaded: Daniel Hill's code for the Hilbert transform 

(http://neurophysics.ucsd.edu/software.php), Partha Mitra's Chronux Toolbox (http://

www.chronux.org), Jonathan Pillow's Generalized Linear Model (GLM) implementation for 

spike trains (http://pillowlab.princeton.edu/code_GLM.html), Mark Schmidt's L1-norm 

function L1GeneralGroup_Auxiliary.m (https://www.cs.ubc.ca/~schmidtm/Software/

thesis.html), and the multidimensional histogram function histcn.m downloaded at http://
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Box 1. Glossary of Model Terms

• Dimensionality reduction: in a neuroscience context, dimensionality 

reduction can be applied to stimulus inputs and to neural responses. 

Finding a reduced representation for data leads to fewer variables to 

specify each data point. The reduced representation for responses leads 

to a restricted range of spiking patterns.

• Feature vector: this is the mathematical representation of a template for 

a stimulus that is relevant to the neuron's response. When the overlap of 

the stimulus with this vector is large, i.e., a large inner product, the 

chance of observing a spike is significantly different from the baseline 

probability.

• Generalized linear model: a model for the output of a neuron that is a 

nonlinear function of a sum of linearly filtered inputs, through a feature 

vector, and the history of spiking by the neuron, through a history filter.

• History filter: the weights that multiply the recent history of spiking 

output of the neuron to modulate the future responses.

• Linear/nonlinear model: a class of phenomenological models of 

neuronal spiking. “Linear” refers to the extraction of stimulus 

components by linear filtering with feature vectors. “Nonlinear” refers 

to the static relationship between the filtered stimulus components and 

the firing rate.

• Network model: a mathematical description of the joint activity of 

multiple units. The predicted responses depend on interactions of each 

neuron with the rest of the network elements.

• Maximum entropy model: in a neuroscience context, these are 

probabilistic models of the associations between inputs and outputs. 

The probability distribution of producing a spike, given a stimulus as 

the input, is chosen as the one with the largest entropy subject to a set 

of predefined constraints that determine the family of associations that 

one wishes to model.

• Nonlinear input/output function: this relates the filtered stimulus 

components to the firing rate; it is also called a static nonlinearity.

• Spike-triggered average: the feature vector that results when many 

examples of sensory inputs that trigger spikes are aligned relative to the 

spike time and averaged. This procedure is equivalent to the so-called 

reverse correlation.

• Spike-triggered covariance: the covariance matrix formed from 

stimulus segments that precede a spike. This matrix quantifies how 

different stimulus components vary together preceding a spike. The 
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eigenvectors of the matrix form a coordinate frame that captures the 

stimulus’ structure that is relevant to predict a spike.
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Box 2. Glossary of Mathematical Terms

• Bayes’ rule: in a neuroscience context, it relates the predicted 

probability of a spike given a stimulus to the measured probability of a 

stimulus eliciting a spike. More generally, Bayes’ rule relates the 

probability p(A|B) of event A occurring given that event B has occurred 

to p(B|A), the probability of event B occurring given that event A 

occurred, through p(B|A) = p(A|B)p(B)/p(A).

• Coherence: a measure of how two scalar quantities track each other 

over time, expressed as a function of frequency. Here we use it to 

assess the relation between predicted and observed spike trains.

• Correlation and covariance: a measure of how two variables track each 

other over time, and with what time lag. The correlation of a signal 

with itself is called the autocorrelation; it provides an estimate of how 

similar a future stimulus value is to the current value.

• Gradient descent: when searching for the minimum of a function, one 

can think of the values of this function as a surface. Finding the 

minimum corresponds to computing the slope, or gradient, of the 

surface and moving in the direction of the steepest gradient. If the 

surface is convex, or bowl-like, it is guaranteed that the minimum is 

global, i.e., there are no points with lower value of the function than the 

local minimum found by the algorithm.

• Entropy of a probability distribution: this quantity describes the number 

of states a certain variable can attain and how frequently those states 

occur. In a neuroscience context, the variable could be the spiking 

response of a group of neurons; in this example the states represent the 

patterns of spikes emitted by the population of cells. Entropy increases 

with the number of states and with the uniformity of the probability of 

their occurrence. It represents the maximum amount of information a 

signal can convey about the variable. Specifically, if the probability of 

event x, drawn from an ensemble of random variables, X, is p(x), then 

the entropy of that ensemble is . When all 

states, i.e., values of x, are equally likely, the entropy is equal to the log 

of the number of states.

• Likelihood: the probability of the observed data given the model 

parameters, understood as a function of the model parameters. It is 

often convenient to use the log-likelihood because it simplifies the 

dependence on the model parameters considerably. In maximum 

likelihood methods, the likelihood is the function being maximized.

• Mutual information: a measure of the co-dependence between two 

variables that reports how the uncertainty in one variable is reduced by 
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knowing the value of the other. This measure can capture higher-order 

statistics that correlation and coherence do not.

• Poisson process: a random sequence of events in which the probability 

of observing an event in a given interval of time is independent of all 

past and future non-overlapping intervals. For a sufficiently small 

interval, the probability that a single event occurs is equal to the rate of 

events times the size of the interval. In a neuroinformatics context, a 

Poisson spiking process has the property that a spike at any interval in 

time is independent of previous spiking by the neuron. This implies 

that the inter-spike interval (ISI) has an exponential distribution when 

the rate does not change over time.

• Principal component analysis: this is a statistical method to find a set of 

orthonormal vectors within a space that explains the maximum amount 

of variance of the data with the fewest vectors.

• Whitening: the procedure by which a signal with arbitrary spectral 

power is transformed to have a uniform spectral density. For example, a 

set of variables that have non-zero correlations among themselves will 

be transformed to a new set that have no correlations. The correlations 

are measured by a covariance matrix; all cross-correlations among the 

whitened variables are zero, and the variance of all transformed 

variables are equal.
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Box 3. Refresher on Linear Algebra

We use lowercase letters for scalars, i.e., a and b; we use bold lowercase letters for 

vectors, i.e., a and b; and we use bold uppercase letters for matrices, i.e., A and B. As a 

refresher in linear algebra, we start with a two-dimensional system, i.e., vectors with two 

components, to illustrate essential concepts that further apply in high dimension. We 

define two two-dimensional vectors, V1 and V2, as

where the numbers in parentheses label the row (Figure B3A).

The inner product of two vectors, denoted by “·,” is the sum of component-by-component 

products. Thus

The sum of a set of vectors is given by the component-by-component summation. Thus 

the sum of V1 and V2 is (Figure B3A):

The transpose of a vector, denoted by “⊤,” is found by switching labels of row and 

columns, so that

Thus another way to write the inner product of V1 with V2 is , as we multiply a 

one-by-two vector with a two-by-one vector to get a single number, or scalar. On the 

other hand, the so-called outer product, , multiplies a two-by-one vector with a one 

by-two vector to form a two-by-two matrix, i.e.,

For any matrix M, there exist special vectors V such that when they are multiplied by 

matrix M, they do not change in direction but only in length. This is expressed by MV = 

λV, where the matrix M is square, i.e., it has the same number of rows as columns. A 

special but useful class of square matrices have  and are referred to as symmetric 

matrices.
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For a two-by-two symmetric matrix, the eigenvectors V1 and V2 and associated 

eigenvalues λ1 and λ2 satisfy . The V s are orthogonal, i.e., they 

satisfy V1·V2 = 0, and they are normalized to satisfy V1·V1 = V2·V2 = 1. How do we find 

the V s? For concreteness, we consider a matrix M defined by

where k is a scalar. This satisfies the eigenvalue equation

There is a so-called trivial solution, V = 0, as well as two non-zero eigenvectors. The 

latter are found by setting the determinant, denoted |···|, to zero, i.e.,

and the eigenvalues are λ1 = 1 and λ2 = 1 – 2α. The corresponding eigenvectors are found 

from substitution plus normalization and are

respectively (Figure B3B). The dominant eigenvector, V1, points in the direction of equal 

variation of V1(1) with V1(2).

A final issue is that any symmetric matrix with non-zero eigenvalues has an inverse, 

denoted M−1, such that the product is equal to the identity matrix, i.e., MM−1 = I, where 

I has ones along the diagonal and zeros everywhere else. Thus all of the eigenvalues of 

the identity matrix are one. For the above example,

and the eigenvalues of M−1 are  and .
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Box 4. Glossary of Symbols

• N, number of stimulus dimensions

• NX, number of spatial (or spectral) points in stimulus

• NT, number of time points in stimulus

• r(t), predicted firing rate

• s(t), stimulus presented at time t (N×1 vector)

• ϕi, the i-th feature vector, i = 1, ...,K (N×1 vector)

• K, number of feature vectors in LN model

• zi, projection of stimulus onto i-th feature vector

• g(z1, ··· zK), nonlinearity specified as a function of the stimulus 

projections zi

• tb, set of all times that the reduced stimulus belongs to bin b

• ϕsta, spike-triggered average (N×1 vector)

• s̄, average stimulus (N×1 vector)

• M, number of stimuli

• n(t), number of spikes at time t

• nT, total number of spikes in time series

• Cp, underlying stimulus covariance (N×N matrix)

• Cs, spike-triggered stimulus covariance (STC) (N×N matrix)

• Cr, spike-triggered stimulus covariance conditioned on randomly 

shifted spike trains (N×N matrix)

• ΔC, matrix of covariance differences (N×N matrix)

• ΔCr, matrix of covariance differences with respect to randomly shifted 

spike trains (N×N matrix)

• λi, the i-th eigenvalue of a matrix

• ui, vi, the i-th eigenvector of a matrix

• I, identity matrix

• ϕstc,i, the i-th STC eigenvector (N×1 vector)

•  and , decorrelated STA and STC feature vectors (N×1 vectors)

• , pseudo-inverse of rank L of underlying stimulus covariance

• a, h, J, parameters of maximum noise entropy models, found such that 

zeroth-, first-, and second-order constraints are satisfied, respectively
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• ϕglm, feature vector of generalized linear model (GLM) (N×1 vector)

• ψ, spike history filter of single-neuron GLM

• ψij, spike history filter, from neuron j to neuron i, of multi-neuron GLM

• , likelihood function

• C̃(f), spectral coherence at frequency f

• Φ, phase in whisk cycle

• k, regularization penalty in network GLM
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Box 5. Nonlinearity for Neuronal Responses

We discussed two alternatives to compute the nonlinearity g(·) in the main text. Here we 

show that these are equivalent if the response is binary. In the more general method 

(Equations 6 and 7), g(·) is set to the average response that corresponds to stimuli in each 

specific bin, i.e.,

Assume that the response is binary and that each bin is sufficiently well sampled. Then 

average response is equal to the probability of a spike given that the stimulus belongs to a 

certain bin b, i.e.,

With the use of Bayes’ rule, this becomes

and we recover Equation 9.
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Box 6. Maximally Informative Dimensions

This method uses the mutual information between the stimulus and the spike as a 

measure of the quality of the feature (Sharpee et al., 2003, 2004; Rowekamp and 

Sharpee, 2011). An “informative” dimension is one in which, when a spike occurs, the 

spread of possible stimulus values along that dimension, as quantified by the entropy, is 

as small as possible. Thus, the MID approach implements a search to locate a feature that 

minimizes this entropy or, equivalently, maximizes the mutual information between 

stimulus and spikes. To understand this approach, we return to the definition of the 

nonlinearity based on the Bayesian procedure (Equations 8 and 9), which we will recall 

just for a single feature and the corresponding projection of the stimulus, i.e., z1 = ϕ1,·s, 

so that

One wishes to find a feature, ϕ1, such that this function varies strongly with z1. If it is 

constant, the observation of a spike gives no information about the presence of the feature 

in the input, and conversely that feature is not predictive of the occurrence of a spike. The 

mutual information between spike and stimulus will be maximized when the two 

distributions, p(z1 | spike) and p(z1), are as different as possible. One method for 

evaluating the difference between two probability distributions is the Kullback-Leibler 

divergence, defined as , where p(z) and q(z) are 

probability distributions. Here, maximizing mutual information is equivalent to searching 

for the direction that maximizes the divergence between the distribution of all stimuli, 

projected onto ϕ1, and the spike-conditional distribution of these projections. Unlike the 

STC procedure, this approach requires no assumptions about the structure of the stimulus 

space and has been applied to derive features from natural images. It can also be extended 

to multiple features. In general, however, this method is computationally expensive and 

prone to local minima, so we do not implement this analysis here; the code can be 

downloaded from http://cnl-t.salk.edu/Code/.
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Box 7. Spectral Coherence as Regression

Coherence may be viewed in analogy to the more familiar Pearson correlation coefficient 

in linear regression. The expected value of the predicted rate given the observed rate is

where the coefficient b̃(f) is

Thus, to the extent that real and imaginary parts of both r̃(f) and r̃s(f) may be considered 

as Gaussian variables, C̃(f) forms part of the regression coefficient. The variance of the 

expectation, denoted , is given by

and, of course, goes to zero when measured and predicted signals are the same.
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Figure 1. Schematic for the Generation of Spike Trains from Stimuli from Different Classes of 
Models
(A) An LN model consists of a number of processing steps that transform the input stimulus 

into a predicted spike train. Here we illustrate the types of processing stages included in the 

computational methods we consider. Most generally, the stimulus is projected onto one or 

more features and may then be passed through a nonlinear function whose dimensionality is 

given by the number of features. The result of this may be summed with a term that depends 

on the spike history and passed through a further nonlinear function. Finally there is a 

stochastic spike generation mechanism that yields a spike train. None of the methods we will 
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consider have all model components; one should choose among the methods depending on 

the nature of the stimulus, the type of response, and the need for parsimony. For example, 

only the generalized linear model includes the influence of the spike history.

(B) Here we illustrate how an example visual stimulus is reformatted as a time-dependent 

vector. Each stimulus frame has two spatial coordinates and a total of NX pixels. First, the 

frame presented in each time point is unwrapped to give a NX-dimensional vector. Then, if 

the model we will construct depends on the stimulus at NT time points, the final stimulus is a 

vector in which the spatial component is copied across consecutive time points to form N = 

NX×NT components.
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Figure 2. Schematic of Stimulus Samples Plotted in Two Arbitrary Directions in Stimulus Space 
as Gray and Red Dots
(A–C) Only red dots lead to a spike.

(A) The STA is a vector that points to the mean of the spike-triggered stimuli (red dots).

(B) The covariance of the spike-triggered stimuli captures the coordinates of variation of the 

cloud. The covariance of the stimulus, i.e., the underlying stimulus covariance Cp (solid gray 

circle), forms one set of vectors, and the covariance of the spike-triggered stimuli, Cs, forms 

a second set. The two dominant vectors comprising their difference, i.e., ΔC = Cs - Cp, yield 

the dominant STC two modes. The mode is significant only if its length is larger than the 

radius of the underlying stimulus covariance.

(C) The naively computed STA for the case of correlated or colored noise, where the 

variance of the underlying stimulus distribution is heterogeneous.
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Figure 3. Spike Responses from Salamander Retinal Ganglion Cell 3 for a Visual Checkerboard 
Stimulus, Used to Illustrate the Methods with a “White Noise” Stimulus
(A) Each pixel in the checkerboard was refreshed each Δt = 33.33 ms with a random value, 

and the spikes were recorded within the same interval.

(B) We constructed the covariance matrix of the stimulus (Equation 18) and plotted its 

spectrum (black). The eigenvalues are all close to the variance of a single pixel, σ2 = 1, for 

the checkerboard stimulus. We compared this spectrum to that expected theoretically for the 

same-sized random matrix (Marčenko and Pastur, 1967) with signal-to-noise parameter γ = 

n/N (number of samples divided by number of dimensions).

(C) The hallmark of white noise is that there is no structure in the stimulus, and indeed the 

eigenvectors of the stimulus covariance matrix (Equation 18) that correspond to the largest 

eigenvalues are seen to contain no spatial or temporal structure.

Methods: The dataset consists of 53 time series of spike arrival times simultaneously 

recorded from 53 retinal ganglion cells of retinae that had been isolated from larval tiger 

salamander (Ambystoma tigrinum) and laid upon a square array of planar electrodes (Segev 

et al., 2004). The pitch of the array was 30 μm and the spiking output of each cell, which 

includes spikes in both the soma and the axon, was observed on several electrodes. Using a 

template distributed across multiple electrodes enables one to accurately identify spikes as 

arising from a single retinal ganglion cell. Visual stimuli were a 402 = 1600 square pixel 

array that was displayed on a cathode ray tube monitor at a frame rate of 30 Hz (Segev et al., 

2006). Each pixel was randomly selected to be bright or dark relative to a mean value on 

each successive frame, i.e., the amplitude of each pixel was distributed bimodally and was 
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spectrally white up to the Nyquist frequency of 15 Hz. The image from the monitor was 

conjugate with the plane of the retina and the magnification was such that visual space was 

divided into 50 μm squares on the retina, which allowed many squares to fit inside the 

spatial receptive field of each ganglion cell, with a cut-off of 200 cm−1 in spatial frequency. 

For each cell, we extracted either the 142 = 196 or the 102 = 100 pixel region with 

modulated activity; these give rise to 2196 or 2100 potential patterns, respectively. Each time 

series was 60–120 min long and contained between 1,000 and 10,000 spikes, but samples a 

tiny fraction of the potential patterns.
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Figure 4. The Spike-Triggered Average ϕsta, for the Responses of Retinal Ganglion Cell 3
(A and B) We considered two stimulus representations. In (A), we show a short sequence 

where we retain three stimulus frames in the past (NT = 3), and the frame was NX = 142 = 

196 pixels. We chose the optimal lag for which the cell's response is maximally modulated 

by the stimulus. In (B), we show a long sequence where NT = 6, but the frame was cropped 

such that NX = 10×10 = 100. We chose the first six frames into the past.

(C) The underlying stimulus distribution computed for both representations, (A) and (B), in 

solid and dashed curves, respectively.

(D) The expectation procedure (Equations 6 and 7) was used to obtain the input/output 

nonlinearity for both representations, (A) and (B), in solid and dashed curves, respectively.
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Figure 5. The Spike-Triggered Covariance Features for the Response of Retinal Ganglion Cell 3
(A) The two significant STC feature vectors, in addition to the STA feature for comparison, 

using the stimulus representation with NT = 6 and NX = 100. The feature vector ϕstc,1 has 

0.93 overlap with ϕsta, while ϕstc,2 through ϕstc,4 have only a 0.20, 0.11, and a 0.05 overlap, 

respectively.

(B) The significance of each candidate STC feature, i.e., eigenvectors of ΔC (Equation 20), 

were determined by comparing the corresponding eigenvalue (red and black) to the null 
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distribution (gray shaded area). We used 1,000 repetitions of the calculation for randomized 

spike trains, corresponding to a confidence interval of 0.001.

(C) The nonlinearity in the space spanned by the STA and the second orthogonalized STC 

feature, after the STA feature was projected out (Equation 24), , completes the 

construction of the spiking model. The nonlinearity is found by the expectation procedure 

(Equations 6 and 7). The marginals of this distribution give nonlinearities with respect to the 

STA (top) and second STC features (right) alone.
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Figure 6. Spike Responses from Thalamic Cell 57 in Response to Whisking in Air without 
Contact
(A) The coordinate systems used to describe the whisk cycle. The left is absolute angle, 

θwhisk, and the right is phase, Φ(t), which are related by θwhisk(t) = θprotract – θamp(1 – 

cos(Φ(t))) (Deschênes et al., 2016).

(B) The spike rate as a function of phase in the whisk cycle. The peak defines the preferred 

phase Φo.

(C) A typical whisk, the stimulus, and spikes in the vibrissa area of ventral posterior medial 

thalamus. We show raw whisking data and, as a check, the data after the slowly varying 
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components θprotract and θamp and the rapidly varying component Φ(t) were found by the 

Hilbert trasform and the whisk reconstructed.

(D) Reconstructed whisk, leaving out slowly varying mid-point θprotract – θamp. The self-

motion stimulus is taken as the vibrissa position up to 300 ms in the past with Δt = 2 ms time 

bins, so that Nx = 1, NT = 150, and thus N = 150.

(E) The spectrum of the covariance matrix of the self-motion (Equation 18). Note the highly 

structured dominant modes.

(F) The inter-whisk and inter-spike intervals.

(G) The autocorrelation of whisking. Black is over all trials and gray is only over large 

amplitude whisks. Note the narrow band nature of this dataset.

Methods: The whisking dataset is used to illustrate our methods with a stimulus that 

contains strong temporal correlations. It consists of seven sets of spike arrival times, each 

recorded from a single unit in the vibrissa region of ventral posterior medial thalamus of 

awake, head-restrained rats (Moore et al., 2015b). The animals were motivated to whisk by 

the smell of their home cage. Spiking data were obtained with quartz pipets using 

juxtacellular recording (Moore et al., 2015a); this method ensures that the spiking events 

originate from a single cell. The anterior-to-posterior angle of the vibrissae as a function of 

time was recorded simultaneously using high-speed videography. Each time series contained 

4–14 trials, each 10 s in length, with between 1,300 and 3,500 spikes per time series. The 

correlation time of the whisking, which serves as the stimulus for encoding by neurons in 

thalamus, is nominally 0.2 s (Hill et al., 2011a). We found that the cells’ response was 

strongly modulated by the dynamics of vibrissa motion only when the amplitude θamp was 

relatively high; therefore we constructed the models and tested their predictions only for 

periods when θamp≥10°.
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Figure 7. The Spike-Triggered Average and Spike-Triggered Covariance Feature Vectors for the 
Response of Thalamic Cell 57 in the Rat Vibrissa System
(A) The STA feature and the same feature computed for the whitened stimulus, along with 

the leading STC features calculated with and without whitening. The dashed curves are after 

projecting out the STA vector from the STC modes.

(B) Comparing the eigenvalues of ΔC, without whitening, to the null eigenvalue distribution 

computed from randomly shifted spike trains demonstrates the statistical significance of the 

leading STC eigenvectors; red denotes significant eigenvectors and black not significant. For 
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the case of ΔC with whitening, regularization led to only three eigenvectors, of which one 

was significant.

(C) A two-dimensional model of the nonlinearity for  and the leading STC feature, , 

both computed after whitening. We further plot the two marginals.
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Figure 8. The Dominant Features Calculated by the Maximum Noise Entropy Method for 
Example Thalamic Cell 57
(A) We fit a MNE model to the spike train with the same stimulus representation, with N = 

150, and plot the first feature, i.e., h, and statistically significant second-order feature 

vectors, i.e., eigenvectors of J (Equation 34). We also plot the STA feature next to the first-

order mode for comparison.

(B) The number of significant second-order features was found by comparing the 

eigenvalues of J to a null distribution.
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Figure 9. The Fit of the Generalized Linear Model for the Responses of Retina Ganglion Cell 3 
and Thalamic Vibrissa Cell 57
(A and C) The stimulus feature ϕglm compared with the previously calculated STA feature.

(B and D) The spike history filters ψ (black curves) along with the exponent of the filter 

(gray).
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Figure 10. Summary of the Performance of Model Predictions for the Retinal Ganglion Cell 3
(A–F) Three methods—STA, STC plus STA, and GLM—are compared.

(A) A part of the spike train cut out from the test set for illustration purposes. Insert: 

expanded temporal scale to highlight the slight delay inherent with the GLM.

(B) The predicted spike count per frame obtained by computing the probability of a spike 

corresponding to each stimulus frame (top, STA; middle, STC; bottom, GLM). Note that to 

generate a prediction from the GLM at time t we need the history of the spike train up to that 

point t′ < t, which is not deterministic due to the Poisson variability. Thus, the trace 

presented here (orange) is the average spike count over 500 simulations of the GLM on the 

test set.
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(C) The log-likelihood (Equation 47) of each model given the test set, which quantifies the 

quality of the prediction. We further include the log-likelihood for the null condition 

(Equation 48). The bars are one standard error jack-knife estimates.

(D) The spectral power of individual pixels in the stimulus (black) and the recorded spike 

train (gray), as well as those of the predicted spike trains. The mean value has been removed, 

so that the initial data point represents an average over the spectral half-bandwidth. Spectra 

were computed with a half-bandwidth of 0.087 Hz as an average over 159 spectral 

estimators for 920 s of data.

(E) The phase and magnitude of the spectral coherence between the recorded and predicted 

spike train for each method. Coherence was computed with a half-bandwidth of 0.065 Hz as 

an average over 119 spectral estimators.

(F) The coherence averaged from 0.5 to 5.0 Hz, together with one standard error jack-knife 

estimates for the average.
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Figure 11. Summary of the Performance of Predicted Spike Trains for Thalamic Neuron 57
(A–F) Seven means of analysis are compared, i.e., STA, STA after whitening of the 

stimulus, STC plus STA, STA and STC after whitening of the stimulus, MNE, GLM, and a 

phase tuning curve model.

(A) The stimulus corresponds to vibrissa position with slowly carrying changes in the set-

point removed.

(B) The predicted probability of spiking per 2 ms time bin obtained by computing by each 

model and the corresponding stimulus. Note that to generate a prediction from the GLM at 
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time t, we need the history of the spike train up to that point, t′ < t, which is not deterministic 

due to the Poisson variability. Thus, the trace presented here (orange) is the average spike 

count over 500 simulations of the GLM on the test set.

(C) The log-likelihood (Equation 47) of each model given the test set, which quantifies the 

quality of the prediction. The bars are one standard error computed as a jack-knife estimate.

(D) The power spectra of individual pixels in the stimulus (black) and the recorded spike 

train (gray), as well as those of the predicted spike trains. Spectra were computed with a 

half-bandwidth of 0.6 Hz as an average over 23 spectral estimators.

(E) The phase and magnitude of the coherence between the recorded and predicted spike 

train for each method (Equation 49). Coherence was computed with a half-bandwidth of 1.2 

Hz as an average over 49 spectral estimators.

(F) The magnitude of the coherence at the peak of the spectrum for whisking (*), 6.7 Hz, 

with one standard error jack-knife estimates.
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Figure 12. Summary of the Performance of Predicted Spike Trains for Two Additional Thalamic 
Cells, Units 88 and 99
(A–E) The whisking stimulus (A) and predicted spike probabilities (B) for a cell with weak 

phase tuning (C). Yet this cell was strongly modulated by the amplitude of whisking, which 

changes on a slow timescale, approximately 1 s, compared with changes in phase. The 

predicted rate is shown for two models that perform best, i.e., STA after whitening of the 

stimulus and MNE. The phase tuning model performs poorly as it ignores the amplitude (D). 

The one standard error jack-knife was calculated for the coherence at low frequency (*), 0.5 

Hz (E).
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(F–J) The whisking stimulus (F) and predicted spike probabilities (G) for a cell with 

particularly strong phase tuning (H). The predicted rate is shown for three models that 

perform best, i.e., STA after whitening of the stimulus, MNE, and the phase tuning model. 

Here the coherence between the predictions and the measurements in the whisking 

frequency band is near 1.0 for all models (I). The one standard error jack-knife was 

calculated for the coherence at low frequency (*), 0.5 Hz (J).
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Figure 13. Summary of the Three-Dimensional Monkey-Based Reach Task with Spike Data from 
Unit 36
(A–D) Analysis is based on a single ~90 min recording session in which the monkey 

performed the task; both cursor motion and grip force are recorded.

(A) Grip-and-reach task involves first moving the cursor to a central position, followed by 

gripping the handle with sufficient force. Once gripping at the center, after a variable wait 

time, a target appears randomly in one of eight locations. Following another wait of a 

variable time, the cue at the origin disappears, acting as a go signal, after which the monkey 

may perform the reach movement. Grip on the handle has to be maintained through the 

duration of the trial. A successful trial requires reaching the target within a set time limit. 

Once the target is reached, the monkey needs to hold the cursor at the target for 700 ms and 

to release its grip on the handle. Following a successful trial, the monkey receives a reward, 

and after an inter-trial period, the next trial begins.
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(B) Measured cursor position and grip force.

(C) Stimulus autocorrelation.

(D) Distribution of inter-spike intervals shows a clear refractory period.

Methods: Spikes were recorded from single isolated units in the contralateral cortex to the 

task arm using an intracortical multi electrode array (Blackrock Utah array) implanted in the 

arm region of M1. Spiking data were binned into millisecond intervals, while both cursor 

data and grip force are sampled at 100 Hz. Of the isolated units, we selected those that 

showed no evidence of contamination based on inspection of the inter-spike interval 

distribution. Analysis was performed from the time of the Go signal until the grip was 

released; see gray band in (B).
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Figure 14. Network GLM Features and Validation for Monkey Reach Data Using the Interval 
between the Start of the Go Signal and the End of the Trial
(A) Spike history filter for sample unit 36, one of nine concurrently recorded units in our 

analysis. The nine were chosen as those out of 45 units with no extra spikes in the refractory 

period of the inter-spike interval. Red curve shows result for the coupled model (κ = 100 in 

52), and black curve shows the filter in the absence of coupling between units; in this case 

the two curves are indistinguishable.

(B) Spike history filters from eight neighboring cells for the coupled model (κ = 100). The 

coupling terms are non-zero for three neighbors.

(C) Feature vectors calculated for the network, i.e., coupled (red), and single cell, i.e., 

uncoupled GLM (black).

(D) Scatterplot of log-likelihood between predicted spike rate and observed spike train for 

the coupled and uncoupled model. The red dot refers to the data in (A)–(C); the bars are one 

standard error jack-knife estimates.

(E) The spectral coherence, calculated as an average over all trials with a 0.5 Hz bandwidth, 

for the network, i.e., coupled (red), and single cell, i.e., uncoupled GLM (black). The band is 

one standard error.

(F) Scatterplot of the coherence between predicted spike rate and observed spike train for the 

coupled and uncoupled models. The ellipses are one standard error jack-knife estimates. The 
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red ellipse refers to the data in (A)–(C) and (E). The red and blue data are significant at the 

level of three standard errors (0.01), the green data barely significant at two standard errors 

(0.05), and the gray data have no significant improvement from coupling to the network.
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Figure B3. Two-Dimensional Vector Plots
(A) Example vectors.

(B) Eigenvectors of our example matrix M. Each has unit length.
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Table 1

Moments for the MNE Models

Moment 0 1 2

Element scalar [i]-th component of a vector [i,j]-th component of a matrix

Symbol <r(t)> <r(t)s[i](t)> <r(t)s[i](t)s[j](t)>

Data nT/N 1
N ∑tn t s i t 1

N ∑tn t s i t s j t

Model p(spike) ∑tss[i](ts)p(spike)p(spike | s(ts)) ∑tss[i](ts)s[j](ts)p(spike)p(spike | s(ts))

nT is the total number of spikes and ts are the spike times.
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Table 2

Summary of Methods

STA STC + STA MNE GLM

Number of stimulus 
feature vectors

One Typically two or three, 
bounded by the 
stimulus dimension

Bounded by the 
stimulus dimension

One

History dependence No Yes

Network interactions No Yes

Fitting method Averaging and binning Matrix diagonalization 
and binning

Optimization

Nonlinearity Derived from expectation or Bayes’ procedure Fixed as sigmoidal Fixed as exponential

Binning of stimulus 
projections

Necessary but not 
problematic

Necessary but 
problematic for 
multiple dimensions

Not appropriate

Convergence on training 
set

Guaranteed for elliptic distributions of stimuli with a 
non-zero second moment

Optimization converges as fitting is convex

Over-fitting Not a problem with 
appropriate binning

Not a problem since 
nonlinearity is 
smoothed in light of 
sparse data

Potential problem as 
number of parameters 
scales as square of 
stimulus dimension

Potential problem from 
features and spike history 
that occur on vastly 
different timescales

Pioneering publication(s) Marmarelis and Naka, 
1972; Eckhorn and Popel, 
1981

de Ruyter Van 
Steveninck and Bialek, 
1988

Fitzgerald et al., 2011b 
for cells; Granot-Atedgi 
et al., 2013 for networks

Brown et al., 1998 for 
cells; Pillow et al., 2008 
for networks
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