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Abstract

We present a natural generalization of the recent low rank + sparse matrix decomposition and 

consider the decomposition of matrices into components of multiple scales. Such decomposition is 

well motivated in practice as data matrices often exhibit local correlations in multiple scales. 

Concretely, we propose a multi-scale low rank modeling that represents a data matrix as a sum of 

block-wise low rank matrices with increasing scales of block sizes. We then consider the inverse 

problem of decomposing the data matrix into its multi-scale low rank components and approach 

the problem via a convex formulation. Theoretically, we show that under various incoherence 

conditions, the convex program recovers the multi-scale low rank components either exactly or 

approximately. Practically, we provide guidance on selecting the regularization parameters and 

incorporate cycle spinning to reduce blocking artifacts. Experimentally, we show that the multi-

scale low rank decomposition provides a more intuitive decomposition than conventional low rank 

methods and demonstrate its effectiveness in four applications, including illumination 

normalization for face images, motion separation for surveillance videos, multi-scale modeling of 

the dynamic contrast enhanced magnetic resonance imaging and collaborative filtering exploiting 

age information.

Index Terms

Multi-scale Modeling; Low Rank Modeling; Convex Relaxation; Structured Matrix; Signal 
Decomposition

I. INTRODUCTION

Signals and systems often exhibit different structures at different scales. Such multi-scale 

structure has inspired a wide variety of multi-scale signal transforms, such as wavelets [1], 

curvelets [2] and multi-scale pyramids [3], that can represent natural signals compactly. 

Moreover, their ability to compress signal information into a few significant coefficients has 

made multi-scale signal transforms valuable beyond compression and are now commonly 

used in signal reconstruction applications, including denoising [4], compressed sensing [5], 

[6], and signal separation [7]–[9]. By now, multi-scale modeling is associated with many 

success stories in engineering applications.

On the other hand, low rank methods are commonly used instead when the signal subspace 

needs to be estimated as well. In particular, low rank methods have seen great success in 

HHS Public Access
Author manuscript
IEEE J Sel Top Signal Process. Author manuscript; available in PMC 2017 June 01.

Published in final edited form as:
IEEE J Sel Top Signal Process. 2016 June ; 10(4): 672–687. doi:10.1109/JSTSP.2016.2545518.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



applications, such as biomedical imaging [10], face recognition [11] and collaborative 

filtering [12], that require exploiting the global data correlation to recover the signal 

subspace and compactly represent the signal at the same time. Recent convex relaxation 

techniques [13] have further enabled low rank model to be adaptable to various signal 

processing tasks, including matrix completion [14], system identification [15] and phase 

retrieval [16], making low rank methods ever more attractive.

In this paper, we present a multi-scale low rank matrix decomposition method that 

incorporates multi-scale structures with low rank methods. The additional multi-scale 

structure allows us to obtain a more accurate and compact signal representation than 

conventional low rank methods whenever the signal exhibits multi-scale structures (see 

Figure 1). To capture data correlation at multiple scales, we model our data matrix as a sum 

of block-wise low rank matrices with increasing scales of block sizes (more detail in Section 

II) and consider the inverse problem of decomposing the matrix into its multi-scale 

components. Since we do not assume an explicit basis model, multi-scale low rank 

decomposition also prevents modeling errors or basis mismatch that are commonly seen 

with multi-scale signal transforms. In short, our proposed multi-scale low rank 

decomposition inherits the merits from both multi-scale modeling and low rank matrix 

decomposition.

Leveraging recent convex relaxation techniques, we propose a convex formulation to 

perform the multi-scale low rank matrix decomposition. We provide a theoretical analysis in 

Section V that extends the rank-sparsity incoherence results in Chandrasekaran et al. [17]. 

We show that the proposed convex program decomposes the data matrix into its multi-scale 

components exactly under a deterministic incoherence condition. In addition, in Section VI, 

we provide a theoretical analysis on approximate multi-scale low rank matrix decomposition 

in the presence of additive noise that extends the work of Agarwal et al. [18].

A major component of this paper is to introduce the proposed multi-scale low rank 

decomposition with emphasis on its practical performance and applications. We provide 

practical guidance on choosing regularization parameters for the convex method in Section 

IV and describe heuristics to perform cycle spinning [19] to reduce blocking artifacts in 

Section IX. In addition, we applied the multi-scale low rank decomposition on real datasets 

and considered four applications of the multi-scale low rank decomposition: illumination 

normalization for face images, motion separation for surveillance videos, compact modeling 

of the dynamic contrast enhanced magnetic resonance imaging and collaborative filtering 

exploiting age information. (See Section X for more detail). Our results show that the 

proposed multi-scale low rank decomposition provides intuitive multi-scale decomposition 

and compact signal representation for a wide range of applications.

Related work

Our proposed multi-scale low rank matrix decomposition draws many inspirations from 

recent developments in rank minimization [13], [14], [18], [20]–[24]. In particular, the 

multi-scale low rank matrix decomposition is a generalization of the low rank + sparse 

decomposition proposed by Chandrasekaran et al. [17] and Candès et al. [25]. Our multi-

scale low rank convex formulation also fits into the convex demixing framework proposed 
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by McCoy et al. [26]–[28], who studied the problem of demixing components via convex 

optimization. The proposed multi-scale low rank decomposition can be viewed as a concrete 

and practical example of the convex demixing problem. However, their theoretical analysis 

assumes that each component is randomly oriented with respect to each other, and does not 

apply to our setting, where we observe the direct summation of the components. Bakshi et 

al. [29] proposed a multi-scale principal component analysis by applying principal 

component analysis on wavelet transformed signals, but such method implicitly constrains 

the signal to lie on a predefined wavelet subspace. Various multi-resolution matrix 

factorization techniques [30], [31] were proposed to greedily peel off components of each 

scale by recursively applying matrix factorization. One disadvantage of these factorization 

methods is that it is not straightforward to incorporate them with other reconstruction 

problems as models. Similar multi-scale modeling using demographic information was also 

used in collaborative filtering described in Vozalis and Margaritis [32].

II. MULTI-SCALE LOW RANK MATRIX MODELING

In this section, we describe the proposed multi-scale low rank matrix modeling in detail. To 

concretely formulate the model, we assume that we can partition the data matrix of interest 

Y into different scales. Specifically, we assume that we are given a multi-scale partition 

 of the indices of an M × N matrix, where each block b in Pi is an order magnitude 

larger than the blocks in the previous scale Pi−1. Such multi-scale partition can be naturally 

obtained in many applications. For example in video processing, a multi-scale partition can 

be obtained by decimating both space and time dimensions. Figures 2 and 4 provide two 

examples of a multi-scale partition, the first one with decimation along two dimensions and 

the second one with decimation along one dimension. In Section X, we provide practical 

examples on creating these multi-scale partitions for different applications.

To easily transform between the data matrix and the block matrices, we then consider a 

block reshape operator Rb(X) that extracts a block b from the full matrix X and reshapes the 

block into an mi × ni matrix (Figure 3), where mi × ni is the ith scale block matrix size 

determined by the user.

Given an M × N input matrix Y and its corresponding multi-scale partition and block 

reshape operators, we propose a multi-scale low rank modeling that models the M × N input 

matrix Y as a sum of matrices , in which each Xi is block-wise low rank with 

respect to its partition Pi that is,

where Ub, Sb, and Vb are matrices with sizes mi ×rb, rb × rb and ni × rb respectively and form 

the rank-rb reduced SVD of Rb(Xi). Note that when the rank of the block matrix Rb(Xi) is 
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zero, we have {Ub, Sb, Vb} as empty matrices, which do not contribute to Xi. Figure 2 and 4 

provide illustrations of two kinds of modeling with their associated partitions.

By constraining each block matrices to be of low rank, the multi-scale low rank modeling 

captures the notion that some nearby entries are more similar to each other than global 

entries in the data matrix. We note that the multi-scale low rank modeling is a generalization 

of the low rank + sparse modeling proposed by Chandrasekaren et al. [17] and Candès et al. 

[25]. In particular, the low rank + sparse modeling can be viewed as a 2-scale low rank 

modeling, in which the first scale has block size 1 × 1 and the second scale has block size M 
× N. By adding additional scales between the sparse and globally low rank matrices, the 

multi-scale low rank modeling can capture locally low rank components that would 

otherwise need many coefficients to represent for low rank + sparse.

Given a data matrix Y that fits our multi-scale low rank model, our goal is to decompose the 

data matrix Y to its multi-scale components . The ability to recover these multi-scale 

components is beneficial for many applications and allows us to, for example, extract 

motions at multiple scales in surveillance videos (Section X). Since there are many more 

parameters to be estimated than the number of observations, it is necessary to impose 

conditions on Xi. In particular, we will exploit the fact that each block matrix is low rank via 

a convex program, which will be described in detail in section III.

A. Multi-scale low rank + noise

Before moving to the convex formulation, we note that our multi-scale matrix modeling can 

easily account for data matrices that are corrupted by additive white Gaussian noise. Under 

the multi-scale low rank modeling, we can think of the additive noise matrix as the largest 

scale signal component and is unstructured in any local scales. Specifically if we observe 

instead the following

(1)

where XZ is an independent and identically distributed Gaussian noise matrix. Then we can 

define a reshape operator RZ that reshapes the entire matrix into an MN × 1 vector and the 

resulting matrix fits exactly to our multi-scale low rank model with L+1 scales. This 

incorporation of noise makes our model flexible in that it automatically provides a 

corresponding convex relaxation, a regularization parameter for the noise matrix and allows 

us to utilize the same iterative algorithm to solve for the noise matrix. Figure 5 provides an 

example of the noisy multi-scale low rank matrix decomposition.

III. PROBLEM FORMULATION AND CONVEX RELAXATION

Given a data matrix Y that fits the multi-scale low rank model, our goal is to recover the 

underlying multi-scale components  using the fact that Xi is block-wise low rank. 
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Ideally, we would like to obtain a multi-scale decomposition with the minimal block matrix 

rank and solve a problem similar to the following form:

However, each rank minimization for each block is combinatorial in nature. In addition, it is 

not obvious whether the direct summation of ranks is a correct formulation as a 1-sparse 

matrix and a rank-1 matrix should intuitively not carry the same cost. Hence, the above non-

convex problem is not a practical formulation to obtain the multi-scale decomposition.

Recent development in convex relaxations suggests that rank minimization problems can 

often be relaxed to a convex program via nuclear norm relaxation [13], [23], while still 

recovering the optimal solution to the original problem. In particular, Chandrasekaren et al. 

[17] and Candès et al., [25] showed that a low rank + sparse decomposition can be relaxed to 

a convex program by minimizing a nuclear norm + ℓ1-norm objective as long as the signal 

constituents are incoherent with respect to each other. In addition, Candès et al., [25] showed 

that the regularization parameters for sparsity and low rank should be related by the square 

root of the matrix size. Hence, there is hope that, along the same line, we can perform the 

multi-scale low rank decomposition exactly via a convex formulation.

Concretely, let us define ‖·‖nuc to be the nuclear norm, the sum of singular values, and ‖·‖msv 

be the maximum singular value norm. For each scale i, we consider the block-wise nuclear 

norm to be the convex surrogate for the block-wise ranks and define ‖·‖(i) the block-wise 

nuclear norm for the ith scale as

Its associated dual norm  is then given by

which is the maximum of all block-wise maximum singular values.

We then consider the following convex relaxation for our multi-scale low rank 

decomposition problem:
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(2)

where  are the regularization parameters and their selection will be described in detail 

in section IV.

Our convex formulation is a natural generalization of the low rank + sparse convex 

formulation [17], [25]. With the two sided matrix partition (Fig. 2), the nuclear norm applied 

to the 1 × 1 blocks becomes the element-wise ℓ1-norm and the norm for the largest scale is 

the nuclear norm. With the one sided matrix partition (Fig. 4), the nuclear norm applied to 1 

× N blocks becomes the group-sparse norm and can be seen as a generalization of the group 

sparse + low rank decomposition [21]. If we incorporate additive Gaussian noise in our 

model as described in Section II-A, then we have a nuclear norm applied to an MN × 1 

vector, which is equivalent to the Frobenius norm.

One should hope that the theoretical conditions from low rank + sparse can be generalized 

rather seamlessly to the multi-scale counterpart. Indeed, in Section V, we show that the core 

theoretical guarantees in the work of Chandrasekaren et al. [17] on exact low rank + sparse 

decomposition can be generalized to the multi-scale setting. In section VI, we show that the 

core theoretical guarantees in the work of Agarwal et al. [18] on noisy matrix decomposition 

can be generalized to the multi-scale setting as well to provide approximate decomposition 

guarentees.

IV. GUIDANCE ON CHOOSING REGULARIZATION PARAMETERS

In this section, we provide practical guidance on selecting the regularization parameters 

. Selecting the regularization parameters  is crucial for the convex 

decomposition to succeed, both theoretically and practically. While theoretically we can 

establish criteria on selecting the regularization parameters (see Section V and VI), such 

parameters are not straightforward to calculate in practice as it requires properties of the 

signal components  before the decomposition.

To select the regularization parameters  in practice, we follow the suggestions from 

Wright et al. [33] and Fogel et al. [34], and set each regularization parameter λi to be the 

Gaussian complexity of each norm‖·‖, which is defined the expectation of the dual norm of 

random Gaussian matrix:

(3)
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where ∼ denotes equality up to some constant and G is a unit-variance independent and 

identically distributed random Gaussian matrix.

The resulting expression for the Gaussian complexity is the maximum singular value of a 

random Gaussian matrix, which has been studied extensively by Bandeira and Handel [35]. 

The recommended regularization parameter for scale i is given by

(4)

For the sparse matrix scale with 1 × 1 block size,  and for the globally low 

rank scale with M × N block size, . Hence this regularization parameter 

selection is consistent with the ones recommended for low rank + sparse decomposition by 

Candès et al. [25], up to a log factor. In addition, for the noise matrix with MN × 1 block 

size, , which has similar scaling as in square root LASSO [36]. In practice, we 

found that the suggested regularization parameter selection allows exact multi-scale 

decomposition when the signal model is matched (for example Figure 1) and provides 

visually intuitive decomposition for real datasets.

For approximate multi-scale low rank decomposition in the presence of additive noise, some 

form of theoretical guarantees for the regularization selection can be found in our analysis in 

Section VI. In particular, we show that if the regularization parameters λi is larger than the 

Gaussian complexity of  in addition to some “spikiness” parameters, then the error 

between recovered decomposition and the ground truth  is bounded by the block-

wise matrix rank.

V. THEORETICAL ANALYSIS FOR EXACT DECOMPOSITION

In this section, we provide a theoretical analysis of the proposed convex formulation and 

show that if  satisfies a deterministic incoherence condition, then the proposed 

convex formulation (2) recovers  from Y exactly.

Our analysis follows similar arguments taken by Chandrasekaren et al. [17] on low rank + 

sparse decomposition and generalizes them to the proposed multi-scale low rank 

decomposition. Before showing our main result (Theorem V.1), we first describe the 

subgradients of our objective function (Section V-A) and define a coherence parameter in 

terms of the block-wise row and column spaces (Section V-B).

A. Subdifferentials of the block-wise nuclear norms

To characterize the optimality of our convex problem, we first look at the subgradients of 

our objective function. We recall that for any matrix X with {U, S, V} as its reduced SVD 

representation, the subdifferential of ‖·‖nuc at X is given by [23], [37],
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Now recall that we define the block-wise nuclear norm to be . 

Then using the chain rule and the fact that , we obtain an expression for 

the subdifferential of ‖·‖(i) at Xi as follows:

To simplify our notation, we define  and Ti to be a vector space that 

contains matrices with the same block-wise row spaces or column spaces as Xi, that is,

where mi ×ni is the size of the block matrices for scale i and rb is the matrix rank for block b. 

Then, the subdifferential of each ‖·‖(i) at Xi can be compactly represented as,

We note that Ei can be thought of as the “sign” of the matrix Xi, pointing toward the 

principal components, and, in the case of the sparse scale, is exactly the sign of the entries.

In the rest of the section, we will be interested in projecting a matrix X onto Ti, which can be 

performed with the following operation:

Similarly, to project a matrix X onto the orthogonal complement of Ti, we can apply the 

following operation:

where I is an appropriately sized identity matrix.
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B. Incoherence

Following Chandrasekaren et al. [17], we consider a deterministic measure of incoherence 

through the block-wise column and row spaces of Xi. Concretely, we define the coherence 

parameter for the jth scale signal component Xj with respect to the ith scale to be the 

following:

(5)

Using μij as a measure of incoherence, we can quantitatively say that the jth scale signal 

component is incoherent with respect to the ith scale if μij is small. In the case of low rank + 

sparse, Chandrasekaren et al. [17] provides excellent description of the concepts behind the 

coherence parameters. We refer the reader to their paper for more detail.

C. Main Result

Given the above definition of incoherence, the following theorem states our main result for 

exact multi-scale low rank decomposition:

Theorem V.1—If we can choose regularization parameters  such that

then  is the unique optimizer of the proposed convex problem (2).

In particular when the number of scales L = 2, the condition on {μ12, μ21} reduces to μ12μ21 

< 1/4 and the condition on {λ1, λ2} reduces to 2μ12 < λ1/λ2 < 1/(2μ21), which is in similar 

form as Theorem 2 in Chandrasekaren et al. [17].

The proof for the above theorem is given in Appendix A.

VI. THEORETICAL ANALYSIS FOR APPROXIMATE DECOMPOSITION

In this section, we provide a theoretical analysis for approximate multi-scale low rank 

decomposition when the measurement is corrupted by additive noise as described in Section 

II-A. Our result follows arguments from Agarwal et al. [18] on noisy 2-scale matrix 

decomposition and extends it to the multi-scale setting.

Instead of using the incoherence parameter μij defined for the exact decomposition analysis 

in Section V, we opt for a weaker characterization of incoherence between scales for 

approximate decomposition, studied in Agarwal et al. [18]. Concretely, we consider 

spikiness parameters αij between the jth signal component Xj and ith scale norm ‖·‖(i) such 

that,
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for each j ≠ i. Hence, if αij is small, we say Xj is not spiky with respect to the ith norm.

For analysis purpose, we also impose the constraints in the convex program. 

That is, we consider the solution from the following convex program:

(6)

(7)

We emphasize that the additional constraints (7) are imposed only for the purpose of 

theoretical analysis and are not imposed in our experimental results. In particular, for our 

simulation example in Figure 5, the minimizer of the convex program (2), using the 

recommended regularization parameters in Section IV, satisfied the constraints (7) even 

when the constraints were not imposed.

Let us define  and ΔZ to be the errors between the ground truth components 

and XZ and the minimizers of convex program (6). Then, equivalently, we can denote 

 and XZ + ΔZ as the minimizers of the convex program (6). The following 

theorem states our main result for approximate decomposition.

Theorem VI.1

If we choose  such that

(8)

and λZ such that

(9)

then the error is bounded by
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where ≲ denotes inequality up to a universal constant.

Hence, when the spikiness parameters are negligible and XZ = σG, where G is an 

independent, identically distributed Gaussian noise matrix with unit variance and σ is the 

noise standard deviation, choosing  and 

 ensures the condition is satisfied 

with high probability. This motivates the recommended regularization selection in Section 

IV.

The proof for the above theorem is given in Appendix B and follows arguments from 

Agarwal et al. [18] on noisy matrix decomposition and Belloni et al. [36] on square root 

LASSO.

VII. AN ITERATIVE ALGORITHM FOR SOLVING THE MULTI-SCALE LOW 

RANK DECOMPOSITION

In the following, we will derive an iterative algorithm that solves for the multi-scale low 

rank decomposition via the Alternating Direction of Multiple Multipliers (ADMM) [38]. 

While the proposed convex formulation (2) can be formulated into a semi-definite program, 

first-order iterative methods are commonly used when solving for large datasets for their 

computational efficiency and scalability. A conceptual illustration of the algorithm is shown 

in Figure 6.

To formally obtain update steps using ADMM, we first formulate the problem into the 

standard ADMM form with two separable objectives connected by an equality constraint,

(10)

where I{·} is the indicator function.

To proceed, we then need to obtain the proximal operators [39] for the two objective 

functions  and . For the data consistency objective 

, the proximal operator is simply the projection operator to the set. To 

obtain the proximal operator for the multi-scale nuclear norm objective , we 
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first recall that the proximal operator for the nuclear norm ‖X‖nuc with parameter λ is given 

by the singular value soft-threshold operator [23],

(11)

Since we defined the block-wise nuclear norm for each scale i as , the 

norm is separable with respect to each block and its proximal function with parameter λi is 

given by the block-wise singular value soft-threshold operator,

(12)

which simply extracts every blocks in the matrix, performs singular value thresholding and 

puts the blocks back to the matrix. We note that for 1 × 1 blocks, the block-wise singular 

value soft-threshold operator reduces to the element-wise soft-threshold operator and for 1 × 
N blocks, the block-wise singular soft-threshold operator reduces to the joint soft-threshold 

operator.

Putting everything together and invoking the ADMM recipe [38], we have the following 

algorithm to solve our convex multi-scale low rank decomposition (2):

(13)

where ρ is the ADMM parameter that only affects the convergence rate of the algorithm.

The resulting ADMM update steps are similar in essence to the intuitive update steps in 

Figure 6, and alternates between data consistency and enforcing multi-scale low rank. The 

major difference of ADMM is that it adds a dual update step with Ui, which bridges the two 

objectives and ensures the convergence to the optimal solution. Under the guarantees of 

ADMM, in the limit of iterations, Xi and Zi converge to the optimal solution of the convex 

program (2) and Ui converges to a scaled version of the dual variable. In practice, we found 

that ∼ 1000 iterations are sufficient without any visible change for imaging applications. 

Finally, we note that because the proximal operator for the multi-scale nuclear norm is 

computationally simple, other proximal operator based algorithms [39] can also be used.

VIII. COMPUTATIONAL COMPLEXITY

Given the iterative algorithm (13), one concern about the multi-scale low rank 

decomposition might be that it is significantly more computationally intensive than other 
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low rank methods as we have many more SVD’s and variables to compute for. In this 

section, we show that because we decimate the matrices at each scale geometrically, the 

theoretical computational complexity of the multi-scale low rank decomposition is similar to 

other low rank decomposition methods, such as the low rank + sparse decomposition.

For concreteness, let us consider the multi-scale partition with two-sided decimation shown 

in Figure 2 and have block sizes mi = 2i−1 and ni = 2i−1. Similar to other low rank methods, 

the SVD’s dominate the per iteration complexity for the multi-scale low rank 

decomposition. For an M × N matrix, each SVD costs<monospace>#flops</monospace>(M 
×N SVD) = O(MN2). The per iteration complexity for the multi-scale low rank 

decomposition is dominated by the summation of all the SVD’s performed for each scale, 

which is given by,

(14)

Hence, the per-iteration computational complexity of the multi-scale low rank with two-

sided decimated partition is on the order of a M × N matrix SVD. In general, one can show 

that the per-iteration complexity for arbitrary multi-scale partition is at most log(N) times 

the full matrix SVD.

While theoretically, the computation cost for small block sizes should be less than bigger 

block sizes, we found that in practice the computation cost for computing the small SVD’s 

can dominate the per-iteration computation. This is due to the overhead of copying small 

block matrices and calling library functions repeatedly to compute the SVD’s.

Since we are interested in thresholding the singular values and in practice many of the small 

block matrices are zero as shown in Section X, one trick of reducing the computation time is 

to quickly compute an upper bound on the maximum singular value for block matrices 

before the SVD’s. Then if the upper bound for the maximum singular value is less than the 

threshold, we know the thresholded matrix will be zero and can avoid computing the SVD. 

Since for any matrix X, its maximum singular value is bounded by the square root of any 

matrix norm on X⊤X [40], there are many different upper bounds that we can use. In 

particular, we choose the maximum row norm and consider the following upper bound,

(15)

Using this upper bound, we can identify many below-the-threshold matrices before 

computing the SVD’s at all. In practice, we found that the above trick provides a modest 

speedup of 3 ∼ 5×.
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IX. HEURISTICS FOR TRANSLATION INVARIANT DECOMPOSITION

Similar to wavelet transforms, one drawback of the multi-scale low rank decomposition is 

that it is not translation invariant, that is, shifting the input changes the resulting 

decomposition. In practice, this translation variant nature often creates blocking artifacts 

near the block boundaries, which can be visually jarring for image or video applications. 

One solution to remove these artifacts is to introduce overlapping partitions of the matrix so 

that the overall algorithm is translation invariant. However, this vastly increases both 

memory and computation especially for large block sizes. In the following, we will describe 

a cycle spinning approach that we used in practice to reduce the blocking artifacts with only 

slight increase in per-iteration computation.

Cycle spinning [19] has been commonly used in wavelet denoising to reduce the blocking 

artifacts due to the translation variant nature of the wavelet transform. To minimize artifacts, 

cycle spinning averages the denoised results from all possible shifted copies of the input, 

thereby making the entire process translation invariant. Concretely, let S be the set of all 

shifts possible in the target application, SHIFTs denote the shifting operator by s, and 

DENOISE be the denoising operator of interest. Then the cycle spinned denoising of the 

input X is given by:

(16)

In the context of multi-scale low rank decomposition, we can make the iterative algorithm 

translation invariant by replacing the block-wise singular value thresholding operation in 

each iteration with its cycle spinning counterpart. In particular, for our ADMM update steps, 

we can replace the Zi step to:

(17)

To further reduce computation, we perform random cycle spinning in each iteration as 

described in Figueiredo et al. [41], in which we randomly shifts the input, performs block-

wise singular value thresholding and then unshifts back:

(18)

where s is randomly chosen from the set S.

Using random cycle spinning, blocking artifacts caused by thresholding are averaged over 

iterations and in practice, reduces distortion significantly. Figure 7 shows an example of the 

multi-scale low rank decomposition with and without random cycle spinning applied on a 

simulated data that does not fall on the partition grid. The decomposition with random cycle 
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spinning vastly reduces blocking artifacts that appeared in the one without random cycle 

spinning.

X. APPLICATIONS

To test for practical performance, we applied the multi-scale low rank decomposition on four 

different real datasets that are conventionally used in low rank modeling: illumination 

normalization for face images (Section X-A), motion separation for surveillance videos 

(Section X-B), multi-scale modeling of dynamic contrast enhanced magnetic resonance 

imaging (Section X-C) and collaborative filtering exploiting age information (Section X-D). 

We compared our proposed multi-scale low rank decomposition with low rank + sparse 

decomposition for the first three applications and with low rank matrix completion for the 

last application. Randomly cycle spinning was used for multi-scale low rank decomposition 

for all of our experiments. Regularization parameters λi were chosen exactly as 

 for multi-scale low rank and max(mi, ni) for low 

rank + sparse decomposition. Our simulations were written in the C programming language 

and ran on a 20-core Intel Xeon workstation. Some results are best viewed in video format, 

which are available as supplementary materials.

In the spirit of reproducible research, we provide a software package (in C and partially in 

MATLAB) to reproduce most of the results described in this paper. The software package 

can be downloaded from: https://github.com/frankong/multi_scale_low_rank.git

A. Multi-scale Illumination Normalization for Face Recognition Pre-processing

Face recognition algorithms are sensitive to shadows or occlusions on faces. In order to 

obtain the best possible performance for these algorithms, it is desired to remove 

illumination variations and shadows on the face images. Low rank modeling are often used 

to model faces and is justified by approximating faces as convex Lambertian surfaces [11].

Low rank + sparse decomposition [25] was recently proposed to capture uneven illumination 

as sparse errors and was shown to remove small shadows while capturing the underlying 

faces as the low rank component. However, most shadows are not sparse and contain 

structure over different lighting conditions. Here, we propose modeling shadows and 

illumination changes in different face images as block-low rank as illumination variations 

are spatially correlated in multiple scales.

We considered face images from the Yale B face database [42]. Each face image was of size 

192×168 with 64 different lighting conditions. The images were then reshaped into a 32, 256 

× 64 matrix and both multi-scale low rank and low rank + sparse decomposition were 

applied on the data matrix. For low rank + sparse decomposition, we found that the best 

separation result was obtained when each face image was normalized to the maximum value. 

For multi-scale low rank decomposition, the original unscaled image was used. Only the 

space dimension was decimated as we assumed there was no ordering in different 

illumination conditions. The multi-scale matrix partition can be visualized as in Figure 4.
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Figure 8 shows one of the comparison results. Multi-scale low rank decomposition 

recovered almost shadow-free faces. In particular, the sparkles in the eyes were represented 

in the 1 × 1 block size and the larger illumination changes were represented in bigger blocks, 

thus capturing most of the uneven illumination changes. In contrast, low rank + sparse 

decomposition could only recover from small illumination changes and still contained the 

larger shadows in the globally low rank component.

B. Multi-scale Motion Separation for Surveillance Videos

In surveillance video processing, it is desired to extract foreground objects from the video. 

To be able to extract foreground objects, both the background and the foreground dynamics 

have to be modeled. Low rank modeling have been shown to be suitable for slowly varying 

videos, such as background illumination changes. In particular, if the video background only 

changes its brightness over time, then it can be represented as a rank-1 matrix.

Low rank + sparse decomposition [25] was proposed to foreground objects as sparse 

components and was shown to separate dynamics from background components. However, 

sparsity alone cannot capture motion compactly and often results in ghosting artifacts 

occurring around the foreground objects as shown in Figure 9. Since video dynamics are 

correlated locally at multiple scales in space and time, we propose using the multi-scale low 

rank modeling with two sided decimation to capture different scales of video dynamics over 

space and time.

We considered a surveillance video from Li et al. [43]. Each video frame was of size 

144×176 and the first 200 frames were used. The video frames were then reshaped into a 25, 

344×200 matrix and both multi-scale low rank and low rank + sparse decomposition were 

applied on the data matrix.

Figure 9 shows one of the results. Multi-scale low rank decomposition recovered a mostly 

artifact free background video in the globally low rank component whereas low rank + 

sparse decomposition exhibits ghosting artifact in certain segments of the video. For the 

multi-scale low rank decomposition, body motion was mostly captured in the 16 × 16 × 16 

scale while fine-scale motion was captured in 4 × 4 × 4 scale.

C. Multi-scale Low Rank Modeling for Dynamic Contrast Enhanced Magnetic Resonance 
Imaging

In dynamic contrast enhanced magnetic resonance imaging (DCE-MRI), a series of images 

over time is acquired after a T1 contrast agent was injected into the patient. Different tissues 

then exhibit different contrast dynamics over time, thereby allowing radiologists to 

characterize and examine lesions. Compressed sensing Magnetic Resonance Imaging [44] is 

now a popular research approach used in three dimensional DCE-MRI to speed up 

acquisition. Since the more compact we can represent the image series, the better our 

compressed reconstruction result becomes, an accurate modeling of the dynamic image 

series is desired to improve the compressed sensing reconstruction results for DCE-MRI.

When a region contains only one type of tissue, then the block matrix constructed by 

stacking each frame as columns will have rank 1. Hence, low rank modeling [10], and 

Ong and Lustig Page 16

IEEE J Sel Top Signal Process. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



locally low rank modeling [45] have been popular models for DCE-MRI. Recently, low rank 

+ sparse modeling [46] have also been proposed to model the static background and 

dynamics as low rank and sparse matrices respectively. However, dynamics in DCE-MRI are 

almost never sparse and often exhibit correlation across different scales. Hence, we propose 

using a multi-scale low rank modeling to capture contrast dynamics over multiple scales.

We considered a fully sampled dynamic contrast enhanced image data. The data was 

acquired in a pediatric patient with 20 contrast phases, 1×1.4×2 mm3 resolution, and 8s 

temporal resolution. The acquisition was performed on a 3T GE MR750 scanner with a 32-

channel cardiac array using an RF-spoiled gradient-echo sequence. We considered a 2D slice 

of size 154×112 were then reshaped into a 17, 248×20 matrix. Both multi-scale low rank and 

low rank + sparse decomposition were applied on the data matrix.

Figure 10 shows one of the results. In the multi-scale low rank decomposition result, small 

contrast dynamics in vessels were captured in 4 × 4 blocks while contrast dynamics in the 

liver were captured in 16 × 16 blocks. The biggest block size captured the static tissues and 

interestingly the respiratory motion. Hence, different types of contrast dynamics were 

captured compactly in their suitable scales. In contrast, the low rank + sparse modeling 

could only provide a coarse separation of dynamics and static tissue, which resulted in 

neither truly sparse nor truly low rank components.

D. Multi-scale Age Grouping for Collaborative Filtering

Collaborative filtering is the task of making predictions about the interests of a user using 

available information from all users. Since users often have similar taste for the same item, 

low rank modeling is commonly used to exploit the data similarity to complete the rating 

matrix [14], [22], [23]. On the other hand, low rank matrix completion does not exploit the 

fact that users with similar demographic backgrounds have similar taste for similar items. In 

particular, users of similar age should have similar taste. Hence, we incorporated the 

proposed multi-scale low rank modeling with matrix completion by partitioning users 

according to their age and compared it with the conventional low rank matrix completion. 

Our method belongs to the general class of collaborative filtering methods that utilize 

demographic information [32].

To incorporate multi-scale low rank modeling into matrix completion, we change the data 

consistency constraint in problem (2) to  for observed jk entries, and 

correspondingly, the update step for  in equation (13) is changed to 

 for observed jk entries and 

 for unobserved jk entries. We emphasize that our theoretical analysis 

does not cover matrix completion and the presented collaborative filtering application is 

mainly of empirical interest.

To compare the methods, we considered the 100K Movie-Lens dataset, in which 943 users 

rated 1682 movies. The resulting matrix was of size 1682 × 943, where the first dimension 
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represented movies and the second dimension represented users. The entire matrix had 

93.7% missing entries. Test data was further generated by randomly undersampling the 

rating matrix by 5. The algorithms were then run on the test data and root mean squared 

errors were calculated over all available entries. To obtain a multi-scale partition of the 

matrix, we sorted the users according to their age along the second dimension and 

partitioned them evenly into age groups.

Figure 11 shows a multi-scale low rank reconstructed user rating matrix. Using multiple 

scales of block-wise low rank matrices, correlations in different age groups were captured. 

For example, one of the scales shown in Figure 11 captures the tendency that younger users 

rated Star Wars higher whereas the more senior users rated Gone with the Wind higher. The 

multi-scale low rank reconstructed matrix achieved a root mean-squared-error of 0.9385 

compared to a root mean-squared-error of 0.9552 for the low rank reconstructed matrix.

XI. DISCUSSION

We have presented a multi-scale low rank matrix decomposition method that combines both 

multi-scale modeling and low rank matrix decomposition. Using a convex formulation, we 

can solve for the decomposition efficiently and exactly, provided that the multi-scale signal 

components are incoherent. We provided a theoretical analysis of the convex relaxation for 

exact decomposition, which extends the analysis in Chandrasekaren et al. [17], and an 

analysis for approximate decomposition in the presence of additive noise, which extends the 

analysis in Agarwal et al. [18]. We also provided empirical results that the multi-scale low 

rank decomposition performs well on real datasets.

We would also like to emphasize that our recommended regularization parameters 

empirically perform well even with the addition of noise, and hence in practice does not 

require manual tuning. While some form of theoretical guarantees for the regularization 

parameters are provided in the approximate decomposition analysis, complete theoretical 

guarentees are not provided, especially for noiseless situations, and would be valuable for 

future work.

Our experiments show that the multi-scale low rank decomposition improves upon the low 

rank + sparse decomposition in a variety of applications. We believe that more improvement 

can be achieved if domain knowledge for each applications is incorporated with the multi-

scale low rank decomposition. For example, for face shadow removal, prior knowledge of 

the illumination angle might be able to provide a better multi-scale partition. For movie 

rating collaborative filtering, general demographic information and movie types can be used 

to construct multi-scale partitions in addition to age information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A PROOF OF THEOREM V.1

In this section, we provide a proof of Theorem V.1 and show that if  satisfies a 

deterministic incoherence condition, then the proposed convex formulation (2) recovers 

 from Y exactly. Our proof makes use of the dual certificate common in such proofs. 

We will begin by proving a technical lemma collecting three inequalities.

Lemma A.1

For i = 1,…, L, the following three inequalities hold,

(19)

(20)

(21)

Proof

To show the first inequality (19), we recall that . Then, using 

the variational representation of the maximum singular value norm, we obtain,

where col and row denote the column and row spaces respectively.

Similarly, we obtain the second inequality (20):

The third inequality (21) follows from the incoherence definition that 

for any non-zero Nj.■
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Next, we will show that if we can choose some parameters to “balance” the coherence 

between the scales, then the block-wise row/column spaces  are independent, that is 

 is a direct sum. Consequently, each matrix N in the span of  has a unique 

decomposition , where Ni ∈ Ti.

Proposition A.2

If we can choose some positive parameters  such that

(22)

then we have

(23)

In particular when L = 2, the condition on {μ12,μ21} reduces to μ12μ21 < 1, which coincides 

with Proposition 1 in Chandrasekaren et al. [17]. We also note that given μij, we can obtain 

 that satisfies the condition  by solving a linear program.

Proof

Suppose by contradiction that there exists  such that , but 

 Then there exists  such that  and not all Ni 

zero. But this leads to a contradiction because for i = 1,…,L,

(24)

(25)

(26)
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where we have used equation (21) for the first inequality (24), Holder’s inequality for 

second inequality (25) and  for the last inequality. Hence, none of 

 is the largest of the set, which is a contradiction. ■

Our next theorem shows an optimality condition of the convex program (2) in terms of its 

dual solution.

Theorem A.3

(Lemma 4.2 [33]).  is the unique minimizer of the convex program (2) if there exists 

a matrix Q such that for i = 1,…,L,

1) 

2) 

Proof

Consider any non-zero perturbation  to  such that  stays in the 

feasible set, that is . We will show that .

We first decompose Δi into orthogonal parts with respect to Ti, that is, 

. We also consider a specific subgradient  of 

 at  such that , and 

. Then, from the definition of subgradient and the 

fact that , we have,

Applying the orthogonal decomposition with respect to Ti and using 

, we have,

Using Holder’s inequality and the assumption for the subgradient Gi, we obtain,
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■

With Proposition A.2 and Theorem A.3, we are ready to prove Theorem V.1.

Proof of Theorem V.1

Since , by Proposition A.2,  for all i. Thus, there is a 

unique matrix Q in  such that . In addition, Q can be uniquely 

expressed as a sum of elements in Ti. That is,  with Qi ∈ Ti. We now have a 

matrix Q that satisfies the first optimality condition. In the following, we will show that it 

also satisfies the second optimality condition .

If the vector spaces  are orthogonal, then Qi is exactly λiEi. Because they are not 

necessarily orthogonal, we express Qi as λiEi plus a correction term λi∈i. That is, we 

express Qi = λi(Ei + ∈i). Putting Qi’s back to Q, we have

(27)

Combining the above equation (27) with the first optimality condition (A.3), , 

we have . Since , rearranging the equation, 

we obtain the following recursive expression for :

(28)

We now obtain a bound on  in terms of εi.

(29)
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(30)

(31)

where we obtain equation (29) from equation (20), equation (30) from equation (21) and the 

last inequality (31) from Holder’s inequality.

Similarly, we obtain a recursive expression for  using equation (28)

(32)

(33)

(34)

where we obtain equation (32) from equation (19), equation (33) from equation (21) and the 

last inequality (34) from Holder’s inequality.

Taking the maximum over i on both sides and rearranging, we have

Putting the bound back to equation (31), we obtain

(35)
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where we used  in the last inequality.

Thus, we have constructed a dual certificate Q that satisfies the optimality conditions (A.3) 

and  is the unique optimizer of the convex problem (2).

APPENDIX B PROOF OF THEOREM VI

In this section, we provide a proof of Theorem VI, showing that as long as we can choose 

our regularization parameters accordingly, we obtain a solution from the convex program (6) 

that is close to the ground truth .

We will begin by proving a technical lemma collecting three inequalities. Throughout the 

section, we will assume  is non-zero for simplicity, so that the subgradient of  is 

exactly .

Lemma B.1

For i=1,…,L, the following three inequalities hold,

(36)

(37)

(38)

Proof

We will prove the inequalities in order.

Let us choose a subgradient  of  at Xi such that 

. Then, from the definition of the subgradient, we have,

(39)
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where we used Holder’s inequality for the last inequality (39). Re-arranging, we obtain the 

first result (36).

For the second inequality, we note that since , we have 

.From the definition of subgradient, we obtain,

(40)

(41)

(42)

where we obtain equation (40) from Holder’s inequality, equation (41) from the condition of 

 (8) and equation (42) from the triangle inequality.

Since  and  achieves the minimum objective function, we have,

Substituting equation (39) and (42), we obtain,
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(43)

Cancelling and re-arranging, we obtain the desired inequality (37),

For the third inequality, recall that for any rank-r matrix X, its nuclear norm  is upper 

bounded by . Moreover, the projection of any matrix Y to the column and row 

space T of a rank r matrix is at most rank-2r, that is rank(PT (Y)) ≤ 2r. Hence, we obtain,

where the last inequality follows from Cauchy-Schwatz inequality and the fact that 

■.

With these three inequalities, we now proceed to prove Theorem VI.

Proof of Theorem VI

From the optimality of , we have the following inequality,

Re-arranging, we obtain,
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For convenience, let us define  and . 

Then, from Lemma B.1 equation (36), we obtain,

(44)

We would like to keep only  on the left hand side and cancel . To do this, we multiply 

both sides of equation (44) with . Then, using (a+b)(a−b) = a2 − b2, 

we expand the left hand side as:

Recall that , we obtain the following lower bound for the left hand side:

(45)

(46)

(47)

where we used Holder’s inequality for equation (45), the condition for λi for equation (46), 

and the triangle inequality for (47).

We now turn to upper bound the right hand side. We know 

 from equation (44). Hence, we obtain,

Using Lemma B.1 equation (37), we have,
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(48)

Combining and simplifying the lower bound (47) and the upper bound (48), we obtain,

(49)

We will now lower bound  by individual terms:

where we used Holder’s inequality for the last inequality.

Now, using the assumption that both  and  are bounded by αij. We have,

(50)

(51)

where we used the triangle inequality for equation (50) and Lemma B.1 equation (37) for 

equation (51).

Substituting the lower bound back to equation (49), we have
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(52)

We now turn to upper bound the equation. From Lemma B.1 equation (38), we know that 

. Hence, we have,

(53)

(54)

where we used Cauchy-Schwartz’s inequality for equation (53) and the condition for  for 

equation (54). Hence, substituting back to equation (52), rearranging and ignoring constants, 

we have, 

Completing the squares with respect to  gives us,

Using the triangle inequality to lower bound the left hand side, we obtain

Using the fact that ℓ1-norm is larger than the ℓ2-norm, and re-arranging give us the desired 

result,
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Fig. 1. 
An example of our proposed multi-scale low rank decomposition compared with other low 

rank methods. Each blob in the input matrix is a rank-1 matrix constructed from an outer 

product of hanning windows. Only the multi-scale low rank decomposition exactly separates 

the blobs to their corresponding scales and represents each blob as compactly as possible.
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Fig. 2. 
Illustration of a multi-scale matrix partition and its associated multi-scale low rank 

modeling. Since the zero matrix is a matrix with the least rank, our multi-scale modeling 

naturally extends to sparse matrices as 1 × 1 low rank matrices.
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Fig. 3. 
Illustration of the block reshape operator Rb. Rb extracts block b from the full matrix and 

reshapes it into an mi × ni matrix. Its adjoint operator  takes an mi × ni matrix and embeds 

it into a full-size zero matrix.
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Fig. 4. 
Illustration of another multi-scale matrix partition and its associated multi-scale low rank 

modeling. Here, only the vertical dimension of the matrix is decimated. Since a 1 × N matrix 

is low rank if and only if it is zero, our multi-scale modeling naturally extends to group 

sparse matrices.
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Fig. 5. 
An example of the multi-scale low rank decomposition in the presense of additive Gaussian 

noise by solving the convex program (2).
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Fig. 6. 
A conceptual illustration of how to obtain a multi-scale low rank decomposition. First, we 

extract each block from the input matrix and perform a thresholding operation on its singular 

value to recover the significant components. Then, we subtract these significant components 

from our input matrix, thereby enabling the recovery of weaker, previously submerged 

components.
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Fig. 7. 
An example of the multi-scale low rank decomposition with and without random cycle 

spinning. Each blob in the input matrix Y is a rank-1 matrix constructed from an outer 

product of hanning windows and is placed at random positions. Blocking artifacts can be 

seen in the decomposition without random cycle spinning while vastly diminished in the 

random cycle spinned decomposition.
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Fig. 8. 
Multi-scale low rank versus low rank + sparse on faces with uneven illumination. Multi-

scale low rank decomposition recovers almost shadow-free faces, whereas low rank + sparse 

decomposition can only remove some shadows.
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Fig. 9. 
Multi-scale low rank versus low rank + sparse decomposition on a surveillance video. For 

the multi-scale low rank, body motion is mostly captured in the 16 × 16 × 16 scale while 

fine-scale motion is captured in 4 × 4 × 4 scale. Background video component is captured in 

the globally low rank component and is almost artifact-free. Low rank + sparse 

decomposition exhibits ghosting artifacts as pointed by the red arrow because they are 

neither globally low rank or sparse.
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Fig. 10. 
Multi-scale low rank versus low rank + sparse decomposition on a dynamic contrast 

enhanced magnetic resonance image series. For the multi-scale result, small contrast 

dynamics in vessels are captured in 4 × 4 blocks while contrast dynamics in the liver are 

captured in 16 × 16 blocks. The biggest block size captures the static tissues and 

interestingly the respiratory motion. In contrast, the low rank + sparse modeling could only 

provide a coarse separation of dynamics and static tissue, which result in neither truly sparse 

nor truly low rank components.
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Fig. 11. 
Multi-scale low rank reconstructed matrix of the 100K MovieLens dataset. The extracted 

signal scale component captures the tendency that younger users rated Star Wars higher 

whereas the more senior users rated Gone with the Wind higher.
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