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Abstract

Purpose—To develop a rapid 31P-MRSI method with high spatiospectral resolution using low-

rank tensor-based data acquisition and image reconstruction.

Methods—The multidimensional image function of 31P-MRSI is represented by a low-rank 

tensor to capture the spatial–spectral–temporal correlations of data. A hybrid data acquisition 

scheme is used for sparse sampling, which consists of a set of “training” data with limited k-space 

coverage to capture the subspace structure of the image function, and a set of sparsely sampled 

“imaging” data for high-resolution image reconstruction. An explicit subspace pursuit approach is 

used for image reconstruction, which estimates the bases of the subspace from the “training” data 

and then reconstructs a high-resolution image function from the “imaging” data.

Results—We have validated the feasibility of the proposed method using phantom and in vivo 

studies on a 3T whole-body scanner and a 9.4T preclinical scanner. The proposed method 

produced high-resolution static 31P-MRSI images (i.e., 6.9×6.9×10 mm3 nominal resolution in a 

15-min acquisition at 3T) and high-resolution, high-frame-rate dynamic 31P-MRSI images (i.e., 

1.5 × 1.5 × 1.6 mm3 nominal resolution, 30 s/frame at 9.4T).

Conclusions—Dynamic spatiospectral variations of 31P-MRSI signals can be efficiently 

represented by a low-rank tensor. Exploiting this mathematical structure for data acquisition and 

image reconstruction can lead to fast 31P-MRSI with high resolution, frame-rate, and SNR.
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INTRODUCTION

Phosphorus-31 magnetic resonance spectroscopy and imaging (31P-MRS/I) provides a 

unique capability for noninvasive quantification of the high-energy phosphate metabolites, 

which is useful for direct assessment of mitochondrial energy metabolism in vivo (1). In 

particular, monitoring the depletion and resynthesis of phosphocreatine (PCr) during 

exercise-recovery or ischemia-reperfusion by dynamic 31P-MRS/I allows for the assessment 

of mitochondrial oxidative capacity in the muscle (2,3). Furthermore, 31P magnetization-

transfer provides quantitative evaluation of the synthesis of high-energy phosphate 

metabolites via creatine kinase and ATP synthase (4). However, because the concentrations 

of phosphate metabolites are at least three-orders of magnitude lower than water protons, 

current 31P-MRS methods require very long acquisition time to achieve adequate signal-to-

noise ratio (SNR), significantly limiting its clinical utility. Despite the significant progress 

on fast imaging sequences (5–10) and advanced image reconstruction methods (11,12), the 

applications of 31P-MRSI are still limited by long data acquisition time, poor spatial 

resolution, and low SNR. To alleviate the limitations, most 31P-MRS studies have employed 

either non-localized or single voxel techniques, rendering the assessment of metabolic 

heterogeneity impossible.

Recently, a subspace based approach, called SPICE (SPectroscopic Imaging by exploiting 

spatiospectral CorrElation), has been proposed for accelerated high-resolution MRSI (13). In 

SPICE, MRSI signals are represented by a low-rank model (14–17), which captures the 

spatiospectral correlation of the data. This model implies that high-dimensional MRSI data 

reside in a very low dimensional subspace, thus enabling recovery of high resolution MRSI 

images from undersampled k-space data via special data acquisition schemes (e.g., sparse 

sampling) and image reconstruction methods. SPICE has been successfully applied to proton 

MRSI (1H-MRSI) of the brain, producing 3D MRSI images at 3 mm isotropic resolution 

from a less than 10-min acquisition (18–20). Two unique properties of 31P-NMR make 

application of SPICE to 31P-MRSI promising. First, the 31P spectra of most detectable 

metabolites have a much simpler structure than the 1H spectra, containing only a small 

number of resonance peaks with a large chemical shift dispersion of approximately 30 ppm. 

Second, while removing the nuisance water and lipid signals in 1H-MRSI is very 

challenging (21), water and lipids do not contribute to 31P-MRSI signals. These properties 

make it possible to model 31P-MRSI signals using the low-rank model with a lower rank 

than 1H-MRSI and therefore a reduced number of degrees of freedom.

This work presents a generalization of the SPICE method for both high-resolution static and 

dynamic 31PMRSI. We extend the low-rank matrix model in SPICE to a low-rank tensor 

model (14,22). This model allows us to take advantage of the inherent correlations of high-

dimensional data in multiple dimensions, i.e., the spatial–spectral–temporal correlations of 
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the dynamic 31PMRSI signal, which further reduces the number of degrees of freedom of the 

signal. A hybrid data acquisition scheme is used for sparse sampling, which consists of a set 

of “training” data with limited k-space coverage to capture the subspace structure (spectral 

and temporal basis functions) of the image function, and a set of sparse “imaging” data for 

high-resolution image reconstruction. An explicit subspace pursuit approach is used for 

image reconstruction, which estimates the bases of the subspace from the “training” data and 

then reconstructs a high-resolution image function by fitting the subspace model to the 

“imaging” data using the estimated bases.

The feasibility of the proposed method was demonstrated using phantom and in vivo studies 

on a 3T whole-body scanner and a 9.4T preclinical scanner. A preliminary account of this 

work was presented in (23–25).

THEORY

In the following, we describe the signal model, data acquisition scheme and reconstruction 

procedure of the proposed method in the context of dynamic 31P-MRSI and treat static 31P-

MRSI as a special case.

Signal Model

Denote the image function of dynamic MRSI as ρ(x, f, T), where x, f, and T denote the 

spatial, spectral, and temporal axis, respectively. In practice, the variation of ρ(x, f, T) along 

each of these axes can be approximated by a linear combination of a small number of basis 

functions. For instance, the spectral distribution of ρ(x, f, T) can be represented by a finite 

number of resonance peaks (e.g., PCr, Pi, and the α, β, and γ peaks of ATP). The temporal 

variation of ρ(x, f, T) can be represented by a set of exponential functions with different 

decay or recovery time constants. In order to take advantage of these properties, we propose 

to represent the image function ρ(x, f, T) using a unified and more general model, known as 

the partially separable (PS) model (14):

[1]

where , , and  denote basis functions that describe the 

variation of ρ(x, f, T) along the spatial, spectral, and temporal axis, respectively, and 

 the corresponding model coefficients.

In the case of static MRSI, the model in Equation [1] is reduced to

[2]

Without loss of generality, assuming L ≤ M, Equation [2] can be rewritten as
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[3]

where the model orders of the spatial and spectral basis functions become the same. The 

model in Equation [3] is the same as in our previous low-rank based methods for static 

MRSI (16,18–20).

Mathematically, the PS model in Equation [1] implies a low-rank tensor structure. More 

specifically, after discretization, the image function ρ(x, f, T) can be represented by a three-

way array be or a tensor , where P, Q, and R denote the dimension of ρ along 

the spatial, spectral, and temporal axis, respectively. For a given ρ(x, f, T), P is determined 

by the FOV and desired spatial resolution, Q by the spectral bandwidth and desired spectral 

resolution, and R by the length of the dynamic process of interest and desired frame rate. 

According to Equation [1], ρ can be expressed in the Tucker form (26) as follows:

[4]

where θl, ϕm, and ψn are vectors that concatenate samples of θl(x), ϕm(f), and ψn(T) in 

Equation [1] on a discrete grid defined by ρ and ‘○’ denotes the vector outer product (27). 

The rank of the tensor in Equation [4] is specified by (L, M, N), known as the multilinear 

rank of a tensor (27). In practice, L, M, and N are much smaller than P, Q, and R, 

respectively. This implies that the high-dimensional data ρ has a lot of redundancy (i.e., is 

highly correlated). Compared to the low-rank matrix model that exploits data correlation in 

two dimensions (e.g., the spatiospectral correlations in static MRSI data), the low-rank 

tensor model exploits data correlation in multiple dimensions simultaneously (e.g., the 

spatial–spectral–temporal correlations in dynamic MRSI data).

Data Acquisition

We propose a hybrid data acquisition scheme to exploit the PS property of the image 

function ρ(x, f, T) for high-resolution dynamic MRSI. The proposed scheme collects two 

complementary datasets: a “training” dataset for estimation of the subspace structure of ρ(x, 

f, T), and a sparsely sampled “imaging” dataset for high-resolution reconstruction of ρ(x, f, 

T). The “training” dataset further consists of two subsets, one of which (denoted as ) is 

acquired to estimate the spectral basis (  in Eq. [4]), and the other (denoted as ) 

to estimate the temporal basis (  in Eq. [4]).  can be acquired either before or 

after the dynamic process being studied with a high spectral bandwidth, using a chemical 

shift imaging (CSI) sequence or a fast echo-planar spectroscopic imaging (EPSI) sequence 

(if SNR allows). , on the other hand, is acquired at a high temporal rate during the 

dynamic process being studied along with the “imaging” dataset (denoted as ) either in an 

inter-leaved fashion or as part of .  and  only need to cover limited k-space for 
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accurate subspace estimation. The “imaging” dataset  covers an extended k-space to 

determine the spatial basis (  in Eq. [4]) at high resolution.  can be sampled 

sparsely in the (k, t, T)-space. Many fast sequences such as EPSI sequences with Cartesian 

or spiral trajectories (6,7) can be used to acquire . An example of the proposed data 

acquisition scheme is illustrated in Figure 1.

Image Reconstruction

We adopt an explicit subspace pursuit approach for image reconstruction, which first 

estimates the bases of the subspace from the “training” data and then reconstructs the high-

dimensional image by fitting the subspace model to the “imaging” data with the estimated 

bases.

Subspace Estimation—To estimate the spectral basis from , the B0 inhomogeneity 

effects are first compensated using the method in (28), which aims to correct the B0 

inhomogeneity effects on MRSI data with limited k-space coverage by using a measured 

high-resolution B0 inhomogeneity map and anatomical constraints, i.e., edge information 

derived from 1H structural images. We then perform low-rank approximation (LORA) 

denoising to improve the SNR of  (16), which takes advantage of both the PS and linear 

predictability properties of MRSI data for denoising. Denote the resultant data as 

, where P1,f and Q1,f are the number of samples along k and f 

axis, respectively. The spectral basis  are estimated by calculating the M principal 

left-singular vectors of the following Casorati matrix:

[5]

See Refs. 13,28,29 for more details.

Assuming B0 inhomogeneity does not change over time, it is straightforward to estimate the 

temporal basis from . Denote the k-space samples in  as 

, where P1,T, Q1,T, and R are the number of samples along k, f, 

and T axis, respectively. We first perform LORA denoising on  at each Tr. Denote the 

resultant data as . Note that  itself is a tensor. In order to estimate the temporal basis 

functions, we unfold  and form the following Casorati matrix:
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[6]

The temporal basis  are then estimated by calculating the N principal left-singular 

vectors of the Casorati matrix in Equation [6].

Reconstruction—Denoting the estimated spectral and temporal bases as  and 

, ρ in Equation [4] is reconstructed by determining the model coefficients 

 and spatial basis  via fitting the “imaging” data in  (22):

[7]

where d2 denotes a vector concatenating k-space samples in , Ω a sampling pattern in the 

(k, f, T)-space, and  a Fourier encoding operator taking B0 field inhomogeneity into 

account. In Equation [7], the first term is a standard data consistency penalty and the second 

term is used to incorporate the prior knowledge of the spatial distributions of metabolites 

(30).

While the optimization problem in Equation [7] can be solved by updating 

and  in an alternating scheme as described in Ref. 22, we propose to solve the 

problem using the following algorithm because of its computational efficiency:

1.
Estimate an MRSI image (denoted as ) at each time point Tr, 

r = 1, …, R by solving the following optimization problem:

[8]

where d2,r denotes a vector concatenating the k-space samples in  at Tr, Ωr the 

sampling pattern in the (k, f, T)-space at Tr, and am,r the corresponding spatial 

coefficients at Tr to be estimated.
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2. Project each  r = 1, …, R onto a subspace spanned by the temporal subspace 

:

[9]

where  is a Casorati matrix formed by . Denote the 

resultant image as ρ(2):

[10]

3. Estimate the spatial basis functions by calculating the L principal left-singular 

vectors of the Casorati matrix formed by ρ(2), i.e., . Denote 

the estimated spatial basis functions as .

4. Estimate the model coefficients by solving the following least-squares problem:

[11]

METHODS

Static and Dynamic 31P-MRSI at 3T

The feasibility of the proposed method was demonstrated using phantom and in vivo studies 

(approved by our local IRB) on a 3T Siemens Trio scanner (Siemens Healthcare, Germany) 

equipped with a dual-channel 31P surface coil (PulseTeq, UK).

A static 31P-MRSI study was performed on a phantom to compare the performance of the 

proposed method with the conventional CSI and EPSI methods. The phantom consisted of 

one shorter and wider tube with an inner diameter of 25 mm and a length of 95 mm and two 

longer and thinner tubes with an inner diameter of 15 mm and a length of 125 mm. The three 

vials were filled with 100 mM sodium phosphate (Sigma Aldrich) solution and mounted in a 

cylindrical jar filled with NaCl-doped water. Experiments were carried out with acquisitions 

equivalent in time. 3D 31P-MRSI data were acquired using customized free induction decay 

(FID) MRSI sequences with 170 ms TR, 3.3 ms TE, 18° flip angle, and 240 × 240 × 120 

mm3 field-of-view (FOV). The proposed method consisted of two acquisitions. The 

“training” dataset  was acquired using a CSI sequence with 8 × 8 × 8 spatial encodings, 

192 spectral encodings, 2 kHz sampling bandwidth, and four signal averages (5.8 min 
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acquisition). The “imaging” dataset  was acquired using an EPSI sequence with 50 × 50 × 

20 spatial encodings, 128 echoes (bipolar acquisition), 68 kHz sampling bandwidth, 0.96 ms 

echo spacing (the distance between two neighboring echoes), and four signal averages (11.2 

min acquisition). For comparison, conventional CSI and EPSI data were also acquired using 

the same CSI and EPSI sequence, respectively. The CSI data were acquired with 10 × 10 × 

10 spatial encodings and six signal averages. The EPSI data were acquired with 50 × 50 × 20 

spatial encodings and six signal averages. The acquisition time of the CSI and EPSI 

experiment was 17 min as well. Additional 1H structural images and B0 inhomogeneity 

maps were acquired using a dual-echo gradient recalled echo (GRE) sequence and the body 

coil of the scanner with an in-plane resolution of 1.9 mm and a slice thickness of 5 mm.

An in vivo study was performed on a healthy subject to demonstrate the feasibility of the 

proposed method for static 31P-MRSI. The proposed method was used to acquire 3D 31P-

MRSI data from the calf muscle of the subject using a FID-CSI sequence. The “training” 

dataset  was acquired with 170 ms TR, 3.0 ms TE, 18° flip angle, 220 × 220 × 120 mm3 

FOV, 8 × 8 × 6 spatial encodings, 192 spectral encodings, 2 kHz sampling bandwidth, and 

two signal averages. The “imaging” dataset  was acquired with the same TR, TE, FOV, 

and sampling bandwidth, 32 × 32 × 12 spatial encodings (6.9 × 6.9 × 10 mm3 nominal 

resolution), 192 spectral encodings, elliptical sampling, and single signal averages. The total 

acquisition of the proposed method was 15 min. Additional 1H structural images and B0 

inhomogeneity maps were acquired using a dual-echo GRE sequence and the body coil of 

the scanner with an in-plane resolution of 1.9 mm and a slice thickness of 5 mm.

Another in vivo study was performed on a healthy subject to demonstrate the feasibility of 

the proposed method for dynamic 31P-MRSI. First, a set of , , and  data were 

acquired while the subject kept still.  data were acquired using an FID-CSI sequence 

with 160 ms TR, 3 ms TE, 240 × 240 × 120 mm3 FOV, 8 × 8 × 8 spatial encodings, 192 

spectral encodings, 2 kHz sampling bandwidth, and six averages.  and  data were then 

acquired using an FID-CSI and FID-EPSI sequence, respectively, in an interleaved fashion. 

More specifically, at each frame,  data were acquired using the FID-CSI sequence with 

the same TR, TE, and FOV, 4 × 4 × 4 spatial encodings, and two averages (22 s acquisition), 

followed by an EPSI acquisition for  with the same TR, TE, and FOV, 32 × 32 × 12 

spatial encodings (7.5 × 7.5 × 10 mm3 nominal resolution), 128 echoes, 0.93 ms echo 

spacing, 40 kHz sampling bandwidth, and single average (65 s acquisition). The nominal 

frame rate was thus 87 s. The interleaved acquisition was repeated 12 times. The subject was 

then asked to perform repeated plantarflexion and dorsiflexion exercises without resistance 

for 5 min to stress the muscles of the lower leg. After exercise, the subject was again asked 

to remain still while the same imaging protocol was used to acquire another set of  and 

 data to observe the recovery of PCr.

Dynamic 31P-MRSI at 9.4T

To further demonstrate the feasibility of the proposed method for dynamic 31P-MRSI, in 

vivo data were acquired from the hindlimb of an anesthetized rat on a 9.4T Bruker scanner 

equipped with a custom-built 31P saddle coil and a Bruker 1H volume coil. First, an FID-CSI 
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sequence was used to acquire a  dataset at baseline for 8 min with 160 ms TR, 0.69 ms 

TE, 17° flip angle, 24 × 24 × 20 mm3 FOV, 8 × 8 × 6 spatial encodings, 256 spectral 

encodings, 6 kHz sampling bandwidth, and eight signal averages. Ischemia was then induced 

by inflating a cuff placed around the animal’s thigh (see Ref. 30 for more details). An FID-

spiral-EPSI sequence was used to acquire a  dataset during 10 min ischemia and 5 min 

reperfusion with the same TR, TE, and FOV, 16 × 16 × 12 matrix size (stack of uniform 

density spirals), 20 echoes, 3.96 ms echo-spacing, 111.1 kHz sampling bandwidth, and 15 

averages. The nominal frame rate of the spiral-EPSI acquisition was 30 s/frame. No 

data were acquired. Temporal basis functions were estimated from . The total experiment 

time was approximately 23 min.

RESULTS

The reconstruction dimensions and model orders of each experiment are summarized in 

Supporting Table S1.

Figure 2 shows the results from the equivalent-time acquisition experiment on a phantom. 

Figure 2a shows the 1H structural images of the phantom. Figure 2b–d show the maps of Pi 

obtained by the conventional CSI, EPSI, and the proposed method, respectively. Figure 2e–g 

show representative spectra from Figure 2b–d. Compared to the conventional CSI and EPSI 

method, the proposed method was able to recover the spatiospectral distribution of the 

chemical compound with both high resolution and high SNR. Most notably, the three vials 

are clearly seen in the map of Pi obtained by the proposed method (Fig. 2d) and the 

corresponding spectrum (Fig. 2g) has an SNR comparable to the CSI result (Fig. 2e). The 

signal inhomogeneities were due to transmit and receive B1 inhomogeneities of the dual-

channel 31P surface coil. Note that images from three representative slices are shown in 

Figure 2a–d. Please see Supporting Figure S1 for images from all the slices.

Figure 3 shows the static 31P-MRSI results of the calf muscle obtained by the proposed 

method on a healthy human subject. Figure 3a shows the 1H structural images. Figure 3b,c 

show the maps of PCr obtained by taking spectral integral around the single peak of PCr. 

Figure 3d,e show representative spectra from Figure 3b,c, respectively. Compared to the 

results obtained by direct Fourier reconstruction of  (Fig. 3b,d), the proposed method 

significantly improved the SNR (Fig. 3c,e). Besides the strong PCr peak, the peaks of Pi and 

ATP are clearly seen in the reconstructed spectrum and the bone areas with expected low 31P 

signals in the reconstructed PCr map that matched well with the 1H structure image. 

Compared to the spectrum obtained by a low-resolution CSI acquisition with the same flip 

angle, TR and TE (Supporting Fig. S2), the Pi and ATP peaks in Figure 3e are at similar 

amplitudes. Also see Supporting Figure S3 for the five spectral basis functions that were 

used to produce the results in Figure 3.

Figures 4 and 5 together show the spatial–spectral–temporal distributions obtained by the 

proposed method in the dynamic 31P-MRSI experiment on a healthy subject. Figure 4 shows 

the results of the measurement before the subject performed repeated plantarflexion and 

dorsiflexion exercises. The time-average PCr map (Fig. 4b) and representative spectrum 

(Fig. 4c) show that the proposed method reconstructed the spatial–spectral distribution of the 
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imaging object at both high spatial resolution and high SNR. Note that the results in Figure 3 

were obtained using a CSI sequence, while those in Figure 4 were obtained using a hybrid 

CSI/EPSI sequence that has higher acquisition efficiency and is thus more suitable for a 

dynamic 31P-MRSI experiment. The representative changes of PCr over time at two voxels 

from different muscles groups are plotted as blue solid lines in Figure 5c,d, respectively, 

which show a constant PCr level as expected. After exercises, the same measurement was 

repeated. The representative changes of PCr over time at the same locations are plotted as 

red dashed lines in Figure 5c,d, respectively, showing expected exponential recovery after 

the exercise and distinct responses of different muscle groups.

Figures 6 and 7 show the dynamic 31P-MRSI results obtained by the proposed method in the 

animal experiment carried on a 9.4T preclinical system. Figure 6a shows the center five 

slices of the anatomical reference images of a rat leg. The corresponding PCr maps during 

ischemia (Fig. 6b–d) and reperfusion (Fig. 6e) show that PCr pool was significantly reduced 

during ischemia and rapidly replenished upon reperfusion. Dynamic spectra from two pixels 

in different muscle groups showed variation in the kinetics during ischemia-reperfusion (Fig. 

7). These preliminary results demonstrate that our method was able to capture both the 

temporal dynamics and spatial variation of the image while maintaining good spectral 

quality. The dynamic behavior of the PCr spatiospectral distribution is consistent with the 

previous experiments reported in the literature (31–33). Note that the presented animal 

experiment was designed for proof-of-concept validation of our method. The SNR of the 

experiment can be further improved by using surface coils. The spatial resolution of the 

experiment can be improved by using a multishot variable density spiral trajectory to acquire 

 and  data simultaneously.

DISCUSSION

We have proposed a low-rank tensor-based method for high-resolution 31P-MRSI, which is 

characterized by a hybrid data acquisition scheme and an explicit subspace pursuit approach 

to image reconstruction. According to the literature in matrix completion and recovery, it is 

possible to accurately estimate the subspace (row space) of a low-rank matrix (e.g., a rank-L 

matrix ) from a small number (e.g., s > L but s ≪ P) of fully sampled rows (34). 

The same applies to a low-rank tensor because a low-rank tensor can always be unfolded 

into a low-rank matrix. Therefore, the “training” datasets  and  only need to contain 

a small number of fully sampled data points in the (k,f)-plane and (k,T)-plane, respectively, 

for estimation of the tensor subspace. We choose to let  and  cover the center of k-

space for SNR benefits. It can be shown that any spectral or temporal basis functions that are 

not captured by such “training” datasets are associated with spectral or temporal components 

that only appear as high-frequency spatial variations, which are rare for most applications. In 

practice, more samples are needed for  to ensure accurate estimation of the spectral basis 

in the presence of B0 field inhomogeneity. Based on our experience, 8 × 8 × 6 spatial 

encodings in  are generally sufficient for typical 3D 31P-MRSI at 3T, which is still 

relatively small compared to the dimension of the target high-resolution reconstruction (e.g., 

32×32×12 spatial encodings).
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In image reconstruction, rank selection is critical. In principle, the rank of the proposed 

model is determined by the number of distinct metabolites, tissue types, and dynamic 

processes of the imaging object. In practice, we determine the rank adaptively by performing 

singular value decomposition (SVD) on the Casorati matrices formed by , , and ρ(2) 

in Equation [10] and thresholding the calculated singular values. Automatic selection of rank 

is under investigation. Once the temporal and spectral basis functions are determined, the 

image reconstruction problem is reduced to estimating the model coefficients 

and spatial basis  via fitting the “imaging” data in  as in Equation [7]. We proposed 

to estimate  and  separately, i.e., via Equation [8] to [11], which works 

well when there are sufficient samples in the (k,f)-plane at each time frame of  to allow 

successful frame-by-frame low-rank based reconstruction via Equation [8]. Our feasibility 

studies fell into this scenario. If a more general (k,f,T)-space sampling pattern is used to 

acquire , e.g., for higher frame rate, the joint estimation of  and  in 

(22) can be used for image reconstruction, where the proposed method can be used to obtain 

the initial guess of  and .

Compared to the conventional CSI and EPSI method, our method has significant advantage 

in SNR as shown in Figures 2 and 3. Conceptually, the SNR benefit of our method comes 

from two sources. First, the spectral and temporal basis functions are estimated by 

performing SVD on the “training” data, which cover the center of the k-space and are often 

acquired with good SNR. Second, once the spectral and temporal basis functions are 

determined, the image reconstruction problem is reduced to determining the spatial basis 

functions and model coefficients from the “imaging” data. This significantly reduces the 

degrees-of-freedom of the imaging function, making it possible to recover the imaging 

function from the noisy “imaging” data with good SNR. Assuming no modeling error, the 

SNR of the low-rank tensor based reconstruction can be theoretically characterized by 

analyzing the noise properties of the estimated spectral, temporal, and spatial basis 

functions, respectively. The noise level of the spectral and temporal basis functions are 

determined by the noise level of the “training” data. The noise level of the estimated spatial 

basis functions and model coefficients can be characterized by performing perturbation 

analysis to the solution of the optimization problem in Equation [7]. This is our ongoing 

research and will be reported in future publications.

The general framework of the low-rank tensor based approach to high-dimensional MRI has 

been proposed and validated using proof-of-concept simulation studies in (22). This work 

presents a specialized data acquisition scheme (as shown in Fig. 1) and image reconstruction 

method (Eqs. [8] to [11]) for use with the low-rank tensor model to achieve high spatial-

resolution, high frame-rate 31P-MRSI. Furthermore, the feasibility of the method in this 

work has been validated using phantom and in vivo experimental studies on a 3T scanner 

and a 9.4T preclincal scanner. Other applications of the low-rank tensor model include 

diffusion tensor imaging (22), parameter mapping (22), J-resolved MRSI (22,35), cardiac 

imaging (36), and dynamic electronic paramagnetic resonance imaging (37).
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CONCLUSIONS

Dynamic spatiospectral variations of 31P-MRSI signals can be efficiently represented by a 

low-rank tensor. Exploiting this mathematical structure for data acquisition and image 

reconstruction can lead to fast 31P-MRSI with high resolution, frame-rate, and SNR. The 

feasibility of the proposed method was demonstrated using phantom and in vivo experiments 

on a healthy subject and on a rat undergoing an ischemia-reperfusion procedure. The 

proposed method could enable a range of new applications of 31P-MRSI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 

An example of the proposed acquisition scheme. The “training” dataset  is acquired at 

high temporal sampling rate but with limited k-space coverage (blue boxes). The sparse 

“imaging” dataset  is acquired with extended k-space coverage (green cross signs). The 

acquisitions of  and  are interleaved in the whole dynamic process of the imaging 

object. Another “training” dataset  is acquired with high spectral bandwidth but limited 

k-space coverage (red box) when the studied dynamic process is relatively stationary. Signal 

averaging can be used to improve SNR when acquiring  (as reflected by the width of the 

red box).
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FIG. 2. 
Static 31P-MRSI on a phantom. a: 1H structural images. b–d: Maps of Pi obtained by the 

conventional CSI (10 × 10 × 10 spatial encodings and six averages), EPSI (50 × 50 × 20 

spatial encodings and six averages), and the proposed method (50 × 50 × 20 spatial 

encodings), respectively, in an equivalent-time acquisition experiment. e–g: Representative 

spectra from (b–d). The location of the spectrum is indicated by the red arrow in (a). Note 

that images from three representative slices are shown in (a–d). Please see Supporting 

Figure S1 for images from all the slices.
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FIG. 3. 
Static 31P-MRSI of the calf muscle. a: 1H structural images. b, c: Maps of PCr obtained by 

direct Fourier reconstruction of  and the proposed method, respectively. d, e: 

Representative spectra from (b, c). The location of the spectrum is indicated by the red circle 

in (c).
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FIG. 4. 
Dynamic 31P-MRSI of the calf muscle. a: 1H structural images. b: Time-average PCr map. 

c: Representative spectrum from (b). Its location is indicated by the red triangle in (b).
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FIG. 5. 
Dynamics of PCr from a representative slice. a: 1H structural image. b: Time-average PCr 

map fused with the structural image in (a). c, d: Changes of PCr over time at two voxels 

from different muscle groups. The locations of the spectra in (c, d) are indicated by the black 

triangle and square in (b), respectively. The blue solid lines correspond to the measurement 

before the subject performed repeated plantarflexion and dorsiflexion exercises. The red 

dashed lines correspond to the measurement after the exercise.
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FIG. 6. 
Slices of the anatomical reference images (a) and PCr peak integral (b–e) of the 

reconstruction at various time points. The pressure cuff was inflated and deflated at 

approximately 0 and 10 min respectively.
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FIG. 7. 
Spectra from two different spatial points in the reconstruction shown over time. The 

locations of the spectra in (a, b) correspond to the locations of the red circle and blue square 

in Figure 6b respectively.
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